The Lattice Boltzmann Method and Turbidity Flow Modeling

Omar al-Khayat, Are Magnus Bruaset Hans Petter Langtangen May 23, 2007

[simula research laboratory]

Overview

Physical problem

Particle-based methods: Lattice Boltzmann approach

$$\frac{\partial h}{\partial t} + \frac{\partial Uh}{\partial s} = (1 - \delta)e_w U - \delta v_s$$

$$\frac{\partial Ch}{\partial t} + \frac{\partial UCh}{\partial s} = -v_s C$$

$$\frac{\partial Uh}{\partial t} + \frac{\partial U^2h}{\partial s} + \delta Uv_s = -\frac{1}{2}Rg\frac{\partial Ch^2}{\partial x} + RgChS - C_{f0}U^2$$

$$(1 - \lambda_p)\frac{\partial \eta}{\partial t} = -v_s C$$

Physical problem

- Turbidity currents often arise from underwater avalanches
- Triggered by tsunamis and earthquakes
- Sand and water mix to create turbulent fluid
- Very complex fluid flow problem

Physical Problem cont.

- Turbidity currents settle into turbidites
- Turbidites form a basis for hydrocarbon reservoirs
- Very challenging physical problem

Conventional Computational Fluid Dynamics

- Averaged multiphase fluid approach
- Difficult to construct appropriate constitutive relations
- Requires fitting of many, often nonphysical, parameters

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x}(uh) = E_w u \qquad (1)$$

$$\frac{\partial}{\partial t}(uh) + \frac{\partial}{\partial x}(u^2h) = -\frac{(\rho_s - \rho_w)g}{2\rho_w} \frac{\partial}{\partial x}(Ch^2) + \frac{(\rho_s - \rho_w)ghCS}{\rho_w} - C_d(1 + \alpha)u^2(2)$$

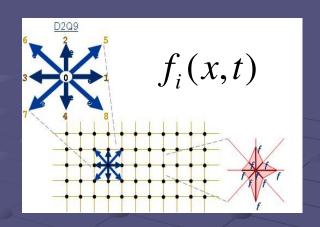
$$\frac{\partial}{\partial t}(Ch) + \frac{\partial}{\partial x}(uCh) = -F_d + F_e \qquad (3)$$

Particle-based Methods

- Different philosophy than conventional computational fluid dynamics
- Discrete set of interacting particles act as foundation
- Usually simple rules that describe particle interaction

Lattice Boltzmann Method

- A quasi-particle description of the fluid
- The microscopic particle dynamics is averaged to obtain a simplified algorithm
- In principle, a discrete version of the Boltzmann equation on a regular lattice



$$\frac{df}{dt} = C[f]$$

Basic Lattice Boltzmann Theory

- Fluid described by a distribution function
- Macroscopic fluid quantaties are derived from mesoscopic quantaties
- The Lattice Boltzmann equation is

$$f_i (\mathbf{x} + c_i, t + 1) = f_i (\mathbf{x}, t) + \frac{f_i (\mathbf{x}, t) - f_i^{eq} (\mathbf{x}, t)}{\tau}$$

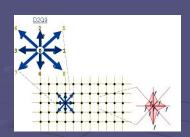
The equilibrium distribution function

$$f_i^{eq}(x,t) = w_i \rho$$
 $1 + 3c_i u + \frac{9}{2}(c_i u)^2 - \frac{3}{2}u^2$

Lattice Boltzmann Algorithm

- Very similar to an explicit finite difference scheme
- Algorithm consits of two basic steps, set up to conserve mass and momentum

Collision :


$$\tilde{f}_i(x,t) = f_i(x,t) - \frac{1}{\tau} \left(f_i(x,t) - f_i^{eq}(x,t) \right)$$

Streaming :

$$f_i(x+c_i,t+1) = \tilde{f}_i(x,t)$$

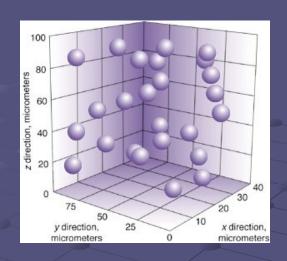
Lattice Boltzmann Algorithm cont.

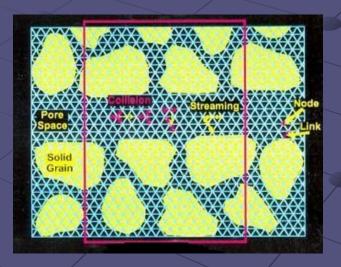
At each time step, macroscopic quantaties are calculated from the distribution function

$$\rho(x,t) = \int_{i}^{t} f_i(x,t)$$

$$u(x,t) = \frac{1}{\rho(x,t)} \int_{i}^{t} f_i(x,t) c_i$$

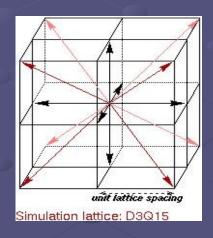
Adding additional forces conceptually easy

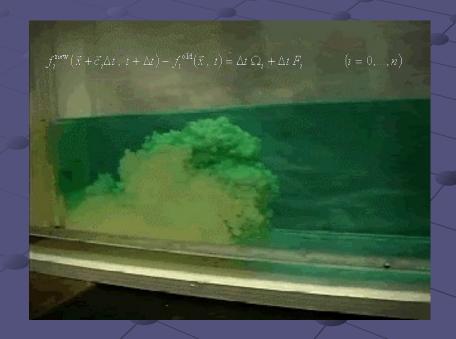

$$u_{new}(x,t) = u(x,t) + \frac{\tau F}{\rho}$$


Lattice Boltzmann Applications

- Applied to many physical problems like shallow water equation, plasma physics
- Very successfull in simulating time-dependent fluid flow problems
- Multicomponent fluid problems been studied as well
- Ideal for parallelization

Particle Lattice Boltzmann Method


- Particle based nature simplifies simulation of particle suspension
- Reverse populations on solid wall boundaries
- Simulation of fluid flow in porous media is accomplished as well
- LBM in the study of fluid-structure interaction



Turbidity Current Simulation with the Lattice-Boltzmann Method

- Relatively easy to incorporate sand-fluid interaction at the particle level
- Parameters have simple physical interpretations
- Turbulence modeling essential
- Work in progress

Conlusion

- Turbidity flow is a very comlex system to model
- Particle-based modeling possible alternate approach to conventional methods
- Lattice Boltzmann method is a good candidate for simulating turbidity flow
- More details in the article

