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Intro
About tsunami

Tsunamis: large waves formed by rapid mass movements )

@ Induced by subwater earthquake, volcanic eruption

@ Induced by asteroid impact

@ Induced by landslide/rockslide (of great importance to the
Norwegian fjords)
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Intro

Historical tsunamis

Total 1965 tsunami events from 1628BC to 2004

Statistics and figure by Tsunami Laboratory, Novosibirsk, Russia
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Intro

Indian Ocean Tsunami Dec. 2004

More than 225,000 people died [
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Intro

Tafjord, Norway, 1934

Rockslide induced tsunami, 62 meter runup, 40 people dead

More than 170 tsunami-related deaths in Norway in last century
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Intro
Tsunami danger at Aknes

@ Potential rock avalanche

@ Different scenarios need to be simulated = lots of
computations
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Intro
Preliminary Aknes simulation

Maximum surface elevation and run-up

distance [km]
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Courtesy of S. Glimsdal NGI/ICG, the " Aknes-Tafjord project” J
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Intro
Three phases of tsunami

@ Tsunami generation

¢ modeling is complex

¢ long distance
¢ huge area

& in connection with geological source modeling
@ Tsunami propagation
o Costal impact

o different physics

¢ wave amplification, breaking, runup and inundation on shore

Our objective: high-resolution, high-accuracy and efficient
simulation of tsunamis
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Challenges

Challenge 1: mathematical modeling

@ Different physics
o dispersion
wave breaking
rotational effects
nonlinear effects
wave runup and innudation
sedimentation
o turbulence

¢ ¢ € ¢ ¢

@ Different mathematical models
@ Navier-Stokes equations
o potential-flow model
o Boussinesq wave equations
o shallow water long wave equations
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Challenges

Challenge 2: numerical aspects

)

A wealth of discretization strategies:

o finite difference
o finite element

o finite volume

@ spectral methods

Stability

Moving computational boundaries

Fast solution of linear systems

°
°
@ Nonlinearity
°
°
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Challenges

Challenge 3: computational amount

@ Huge solution domain

o for example an entire ocean

s (ambition: the whole globe)

@ Very high resolution is needed regionwise
@ near shore zones

e source modeling
o sharp local topographical changes

@ High temporal resolution
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Challenges
Challenge 4: software

@ A wealth of existing software codes

& public domain
@ commercial
@ in-house

@ Each code is targeting a particular mathematical model
@ Each code is bound with a particular numerical strategy
@ Each code has advantages and disadvantages

@ Adaptive meshing and time stepping not yet common

There exists no software code good enough for our objectives |
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Challenges

Challenge 5: high-performance computing

@ Huge amount of computation
@ Short turnaround time

o Parallel computing is essential

@ must incorporate adaptivity at different levels

s must preferably make use of existing (serial) codes
o must efficiently use modern parallel computers
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Challenges

Computational resolutions (example: Indian Ocean)

Bangladesh -

Myanpmar (Buriay.

i i,
,_g; Macau
i s kaos e

Thailand
Bay of Bengal

Paracel Islands|
Sfi Lanka

Earthquake
(3316 deg, 95,85

Brup:

British Indi@n Ocean Teritory

Indonesia

@ lkmx1km resolution overall: about 40 x 10° mesh points
@ 200mx200m resolution overall: 10° mesh points
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Challenges

Computational resolutions (cont “d)

@ 1km resolution ok for deep water, insufficient everywhere

@ 200m resolution — too large meshes, and still too coarse near
shore

@ In the Malacca Strait, e.g., up to 10m resolution necessary
@ We need "smart computing”:

@ High resolution only in areas where necessary

@ Simple mathematical model in vast areas

o Advanced mathematical model (due to complicated physics) in
small areas

@ Desirable resolution requires

@ number of mesh points ~ 100 x 10°
@ number of time steps ~ many thousands
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Strategy

Overview

(*]
(*]
(*]
(*]
(*]

Wave propagation simulation is essential to tsunami studies
Need to seamlessly couple with coastal impact simulation
Build parallel simulators from re-using serial codes

Plug and play

Objective: high-resolution, high-accuracy and efficient
simulations

(]

Vision: real-time simulation and assessment of transoceanic
tsunamis
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Strategy
Strategy: adaptivity at different levels

@ Adaptivity in mathematical models
@ advanced models in "demanding regions”
o simpler models elsewhere
@ Adaptivity in numerical strategies
@ finite elements and unstructured meshes in "demanding
regions”
o simpler and more efficient methods elsewhere
@ Adaptivity in resolution
o very high resolution in "demanding regions”
o sufficiently high resolution elsewhere
@ Adaptivity in software

o sophisticated software in " demanding regions”
@ simpler software elsewhere

Purpose: economic high-performance parallel computing
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Plug and play

@ Not certain which mathematical model is best suited in a
particular region

@ Not certain which numerical strategy is best suited in a
particular region

@ Not certain which software code works best in a particular
region

We want the flexibility of " plug and play” )

o = = E A
X. Cai Tsunami simulation



Strategy
Subdomain-based parallelization

@ The entire solution domain is decomposed into subdomains
@ Each subdomain can choose between

different mathematical models

o different numerical methods

o different mesh types and resolutions

o different serial software codes

©

@ Parallelism arises from concurrent computations on the
subdomains

@ Mathematically inspired by the additive Schwarz algorithm
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Strategy
The numerical foundation

Additive Schwarz algorithm

@ Small amount of overlap between subdomains

@ Simple algorithmic structure

@ Originally as a parallel numerical strategy for solving large
linear systems

@ We apply domain decomposition at "software level”
@ Subdomains are more independent

@ Many components of additive Schwarz are generic and can be
implemented as library
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Strategy
Programming effort

@ Wrap up each existing serial code with a unified generic
interface of all subdomain solvers

@ Write a relatively simple main program coordinating all the
subdomain solvers

@ Use library for tasks such as domain partitioning and
inter-subdomain communication

@ Users are not directly exposed with low-level parallel
programming details

@ Limited user programming effort due to extensive code re-use

@ generic library of additive Schwarz components
@ re-use of existing serial codes
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Strategy
Proof of concept

Parallel tsunami simulation using two serial codes together
@ Starting point

o C++ Boussinesq solver using FEM with adaptivity
o Legacy F77 code using FDM

@ Direct parallelization of either code requires too much work
@ High-level parallelization

o Easy programming using the generic Schwarz framework
Result: hybrid parallel tsunami simulator
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Strategy
Simulation of Indian Ocean Tsunami
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Bathymetry |
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Strategy
Subdomain preparation (1)
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Uniform FDM meshes and regular domain partitioning
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Strategy

Subdomain preparation (I1)

New finite element code

Finite difference legacy code
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Strategy
Preliminary test simulation
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0 1000
Initial wave elevation after the earthquake
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Strategy
Snapshot 1
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After 1.4 hours
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Strategy
Snapshot 2
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Strategy
Concluding remarks

Economic high-performance computing due to adaptivity at
different levels

@ Subdomain-based parallelization using a generic framework
@ Numerical foundation in additive Schwarz algorithm
°
°

Extensive re-use of existing serial codes

Possibility of plug-and-play

o = = E A
X. Cai Tsunami simulation



	Introduction
	Challenges
	Strategy

