
Assessing Software System Maintainability
 using Structural Measures and Expert Assessments

Bente Anda
Simula Research Laboratory and University of Oslo

bentea@simula.no

Abstract

Software maintenance is often expensive; hence,
strategies for assessing the maintainability of complete
software systems are important. Nevertheless, a
software client usually has few means of assessing the
maintainability of a software system as part of the
acquisition process. Assessing the maintainability of
complete systems is difficult due to the influence of
many factors, such as the people, tasks and tools, in
addition to the code. Furthermore, most research on
maintainability focuses on individual classes of
individual systems.

This paper describes an empirical study in which the
maintainability of four functionally equivalent systems
developed in Java was assessed using both structural
measures and expert assessments. The results suggest
that such a combination may be useful. Although the
assessment based on structural measures mostly
corresponded with the expert assessments, there were
several examples of potential problems regarding
maintainability that were not captured by the structural
measures.

1. Introduction

Due to the high costs of software maintenance, a
software client wants systems that will be easy to
maintain. However, software clients typically have few
means of assessing the maintainability of the software
system that they are in the process of acquiring. It is
also far from common for software development
organizations to have control over the maintainability
of their developed software. Furthermore, even if the
software developers manage to assess the
maintainability of their software, they may not wish to
share this information with their clients. From the point
of view of a software development organization, it may
be most economically beneficial to spend few

resources on developing maintainable and extendable
software initially, and then achieve higher earnings
from providing costly extensions in the maintenance
phase.

It is therefore of great economic importance for
software clients to be able to assess the maintainability
of software systems or products. Nevertheless, what
constitutes a maintainable software system is not well
defined, and we do not know the conditions under
which a system is maintainable. To the author’s
knowledge, few studies have compared the
maintainability of different systems.

Maintainability may be affected by a large number
of factors in addition to properties of the code, such as
the qualifications of the people performing the
maintenance, the maintenance tasks, and the tools
used. Furthermore, the fact that technology changes
frequently means that new standards for design and
architecture of software systems are set frequently. It
may therefore not be feasible to establish once and for
all the factors that affect the maintainability of
software systems.

Assessing the maintainability of a software system
is equivalent to making a prediction, on the basis of
information about the existing system, about the effort
that will be expended on maintaining it. The strengths
and weaknesses of experts, formal methods, and
combinations of these have been studied in the field of
software estimation. The findings are that a
combination of expert assessments and formal methods
usually provides the best results [12]. Although there
are obvious differences between estimating software
development effort and assessing maintainability
(maintenance effort), there are also similarities, which
indicates that further studies on the role of expert
assessments may be beneficial also in the field of
software maintainability.

This paper presents a qualitative comparison of
assessments of maintainability based on structural

mailto:bentea@simula.no

measures and expert assessments. Four functionally
equivalent systems developed using Java, with Simula
Research Laboratory as client, provided us with a
unique opportunity to compare the effects of different
design choices on maintainability. The goals of the
study were twofold: 1) to identify properties of Java
software systems that are considered important for
maintainability by experts who have a great deal of
experience of Java development, and 2) to identify
strengths and weaknesses of assessing maintainability
using structural measures and using expert
assessments.

The results showed that there was mostly
correspondence between the overall assessments of
maintainability based on structural measures and those
based on expert assessments, but also that many
potential maintainability problems are difficult to
detect using only structural measures. Examples of
such maintainability problems are: choice of concepts
to be implemented as classes that do not support
understanding of the code and/or do not support
traceability from the requirements; trivial components
and unnecessary classes; a design that is not
appropriate for the size and complexity of the system;
and the inappropriate use of names. These problems
are difficult to detect using structural measures,
therefore the results support the claim that the
maintainability of software systems can best be
assessed by using a combination of expert assessments
and structural measures. The results of the study
reported herein could constitute one step towards
formulating a combined strategy for assessing the
maintainability of complete software systems.

The remainder of this paper is organized as follows.
Section 2 describes the concept of maintainability and
discusses factors that affect maintainability. Section 3
presents approaches to assessing maintainability.
Section 4 describes the case study. Section 5 describes
the use of structural measurements when assessing the
maintainability of the case systems. Section 6 describes
the expert assessments. Section 7 describes the scope
of the results and presents threats to validity. Section 8
concludes and presents plans for future work.

2. Maintainability

The IEEE standard for software engineering
terminology defines software maintainability as the
ease with which a software system or component can
be modified to correct faults, improve performance or
other attributes, or to adapt to a changed environment
[11].

The maintainability of a software system is affected
by design and architectural principles. However, such
principles change over time as technology changes;
hence, the establishment of definitive criteria for
assessing maintainability is probably not feasible.
Nevertheless, many criteria are likely to be stable for
quite some time; hence, the fast pace in the software
industry should not be used as a reason to abandon the
attempt to improve strategies for assessing the
maintainability of complete software systems.

Two project factors affecting maintainability are:
the maintenance tasks to be performed on the system
and the people who will perform them. With respect to
the former, small tasks restricted to a limited part of
the system may be easier to perform on software with
fewer and larger classes because it is then easy to
identify the class or cluster of classes where changes
must be made. By contrast, larger change tasks that
require changes to larger parts of the software depend
more on the organization of the code and the
programming principles that have been applied.

With respect to the latter, the IT industry is
characterized by people who frequently change their
job, or at least change projects, within an organization.
Hence, new developers are often assigned to an
existing project and must relate to the old code in order
to develop the system further. A maintainable system
should therefore be easy to understand for new
developers. Furthermore, studies have shown that the
experience and education of the developers play a
significant role in understanding and applying the
principles behind different designs [3,18].

3. Assessing Maintainability

Maintainability can only be measured indirectly.
When assessing maintainability we typically must
choose between using (i) well-defined measures that
may not correspond to our intuitive understanding of
maintainability and that may use, for example,
structural code measures, and (ii) a vague definition of
maintainability and use experts.

3.1 Structural Measures

A large amount of empirical research has been done
on measuring the structural properties of software.
Briand and Wuest provide an overview of empirical
work on structural measures and conclude that
measures of size, coupling and cohesion of classes are
generally correlated with their maintainability [6].

Chidamber & Kemerer’s set of structural measures,
denoted CK-metrics, is probably the most used. Its

relation to maintainability has been confirmed
empirically [7,8]. The CK-metrics include the
following class-level measures: WMC (Number of
methods in class), CBO (Coupling between objects),
NOC (Number of children), DIT (Depth of inheritance
tree), LCOM (Cohesion of methods) and RFC
(Response set for a class).

Research on maintainability has focused mostly on
the maintainability of classes or clusters of classes of
individual systems, while the maintainability of
complete software systems has received relatively little
attention. Furthermore, models for assessing
maintainability that are based on structural measures
have rarely been used on unknown systems, that is, on
systems to which they have not been calibrated [4].
However, Bakota et al. investigated how the different
CK-metrics behaved over a set of unrelated systems.
They found that the measures WMC and RFC behaved
very differently on different systems.

Another set of metrics, MOOD, is intended to
provide an overall assessment of a software system
[10]. The set measures method hiding, attribute hiding,
method inheritance and attribute inheritance, coupling,
and polymorphism. Hence, it is focused more on
methods than on classes, as is the case for the CK-
metrics. However, the relationship of the MOOD set of
metrics to maintainability of complete software
systems has not been confirmed empirically.

3.2 Expert Assessments

The most commonly used strategies in practice for
assessing maintainability are guided and unguided
expert assessments [15]. One example of a guided
strategy is The Air Force operation Test and
Evaluation Center (AFOTEC) pamphlet, which
provides a rich set of instructions for evaluating
software maintainability [1]. Another guided strategy
is to search the code for so-called code smells.
According to Fowler and Beck, a defined set of code
smells can indicate poor maintainability and a need for
refactoring [9]. However, this has not been confirmed
empirically and in an experiment experts judged the
code differently with respect to the presence of code
smells [15].

The reliability of expert assessments is open to
question. Different studies have obtained different
results regarding the reliability of expert assessments.
Schneiderman found little agreement in the expert
evaluation of code quality where experts had not
developed the code [16], while Shepperd found high
reliability within development teams [17].

Another difficulty with expert assessments is that
they depend on having people who are both qualified

to make them and are representative of, or understand
the qualifications of, those who will perform
maintenance on the systems. Finally, experts may also
be biased in their opinions, for example by considering
designs that they are not familiar with as problematic.

3.3. Combined Assessments

There are few studies on the correspondence

between measurement-based assessments and expert
assessments or on how to combine measurement
strategies. Mayrand and Coallier describe an approach
for software system assessment used as part of an
acquisition [14]. This approach combines structural
measures with expert assessments, but it is described in
little detail. Measurements were found useful to guide
design evaluations in [13].

Assessing the maintainability of a software system
is equivalent to predicting future costs related to
maintaining the system. The strengths and weaknesses
of using expert judgment vs. formal methods in
making predictions in software engineering have been
studied in the context of software estimation [12].
Results from that field show that expert assessments
are more common in practice than formal methods and
also that expert assessments outperform the formal
methods. The reasons for this are suggested to be that
the important variables influencing development effort
are not well established, the relationship between
characteristics of a software project, and the formal
methods usually only have small sets of previous
projects on which they can be calibrated. However,
expert assessments may be biased due, for example, to
the expectations of project members or simply the
current mood of the estimator(s). Hence, combining
expert estimates and formal estimation models appears
to yield the best results in software estimation [12].

There are both similarities and differences between
software estimations and assessments of
maintainability. Both are about assessing future costs,
but the main difference is that assessing
maintainability is about assessing software that already
exists. However, the results from software effort
estimation suggest that it is worthwhile to investigate
how to combine expert assessments and more formal
assessments based on, for example, structural
measures, in the field of software maintenance as well.

A problem with expert assessments of large
software systems is that it will often be impossible to
assess all the code. A strategy for selecting which parts
of the code to assess is therefore required. AFOTEC,
relies on random samples of the code [1], while the
approach described by Mayrand and Coallier relies on
samples chosen by the developers [14].

4. The Case Study

The Software Engineering (SE) Department at

Simula Research Laboratory sent out a tender for a
software system to 85 Norwegian software consultancy
firms. Of the 35 companies that responded, four
companies were selected to develop individual
software systems based on the same requirements
specifications. These software systems, hereafter called
A, B, C and D, presented us with the challenge of
assessing which was the most maintainable, and also
provided us with a unique opportunity to investigate
and compare the maintainability of four functionally
equivalent systems. The development projects and the
resulting systems are described more in detail in [2,5].
The four companies and the people involved in the
development knew that they were participating in a
research project and agreed to it.

The system to be developed was a web-based
system for handling the studies conducted by the SE
department at Simula Research Laboratory. The
functional requirements were described in detail to
ensure functionally equivalent systems (this was also
ensured through detailed acceptance tests conducted by
the client, us). The business logic was simple and the
requirements specification did not include specific
requirements on the quality of the code in terms of, for
example, maintainability or reusability. Furthermore,
the system to be developed had no characteristics that
would make a specific design strategy right or wrong.
Each company chose their own development process
and what emphasis they would place on code quality
and maintainability.

After finishing the development, the teams provided
their own opinions on the quality of the code in
interviews (see Table 1).

5. Maintainability Assessment based on
Structural Properties

The structural properties of the four systems were

measured using an adapted version of the CK-metrics.
Two different approaches were then used to assess
maintainability of the systems. The detailed
measurement procedure and the rationale between the
two approaches are described in more detail in [5].
In the first approach, called aggregation first, all the
measures were aggregated into summary statistics for
the four systems. In the second approach, called
combination first, the different measures for each class
were combined and the classes were then categorized

Table 1. Developers’ assessment of maintainability
Company Opinion
A Maintainability is acceptable. The three-

layer architecture is good, but the use of
components could have been better.

B Maintainability is acceptable.
Maintainable code has been emphasized
and extensions have been planned for.
The database layer is easy to extend, but
in some places the code could have been
better.

C It is too costly to plan for maintainability,
but the system should be suited for simple
extensions.

D Maintainability has been emphasized.
Particular care was taken to ensure a good
three-layer architecture, although some
trade-offs were made to keep to the
schedule.

according to assumed maintainability. The tool used to
extract the measures from the code was the M-System
from Fraunhofer IESE.

The original CK set was adapted in the following
way:
1. LOC (Lines of code), Comments (number of

lines of comments) and Classes (Number of
classes) were added.

2. The CBO measure has been shown to confound
with size, and fan-out coupling has different
effects than fan-in coupling. Hence, CBO was
substituted with OMMIC (Call to methods in
unrelated class) and OMMEC (Calls from
methods in unrelated class).

3. When OMMIC was included. RFC was
considered superfluous and removed.

4. The LCOM measure was substituted with TCC
(Tight class cohesion), which is a normalized
cohesion measure that has more discriminating
power and is less influenced by size.

5.1 Aggregation first

Table 2 shows values for LOC, Comments and
Classes and mean values and standard deviation for the
other measures (the format is mean value/std).

System C has relatively high values and large
standard deviations for size (WMC) and coupling
(OMMIC, OMMEC) of classes, which indicates large
and complex classes and an uneven design.
Furthermore, System C has zero value for the
inheritance measures, so inheritance was not used. The

Table 2. Summary statistics of CK metrics
 A B C D

LOC 7937 14549 7208 8293

Comments 1484 9135 1412 2508

Classes 63 162 24 96

WMC 6.9/11.2 7.8/10.3 11.4/12.5 4.9/4.5

OMMIC 7.7/15.8 5.3/11.8 8.6/25 4.7/14.1

OMMEC 7.7/20.6 5.3/15.6 8.6/16 4.7/10.1

NOC 0.46/2.75 0.59/2.37 0/0 0.76/3.81

DIT 0.46/0.5 0.75/0.81 0/0 0.83/0.54

TCC 0.26/0.37 0.17/0.31 0.20/0.23 0.11/0.22

cohesion value (TCC) is high, probably much due to
the size of the classes. The measures in Table 2
therefore indicate that System C will be difficult to
maintain.

System D has a low measure for size and
complexity and coupling, and a low standard
deviation, but relatively high measures of inheritance.
Despite very low cohesion, this indicates that System
D will be easy to maintain.

System A has large coupling values, a rather large
standard deviation for export coupling (OMMEC) and
relatively low inheritance depth and high cohesion,
while System B has good mean values. Due to lower
coupling measures, System B was assessed as being
more maintainable than System A.

5.2 Combination first

The second approach was to combine the different
measures for each class and subsequently categorize
each class as having low, acceptable, high, or very
high values. The limits of each category were
calculated from the 0 to 50 percentile, 50 to 75
percentile, 75 to 95 percentile, and above 95 percentile
of the concatenation of all classes. The comparison
criterion used was “The weighted sum of the criteria
supporting the classification should be larger than the
weighted sum opposing the classification”. Table 3
shows the number of classes in each category for each
of the systems.

Table 3. Number of classes in each category

 A B C D
Low 41 87 7 58
Acceptable 12 40 9 30
High 8 30 6 6
Very high 2 5 2 2

Systems A, C and D had few classes with high or
very high values, although, in the case of System C
there is a large percentage of such classes due to the
low total number of classes. System B has many
classes with high and very high values, but also very
many with low values. Considering the percentage of
classes with high values, the ranking of the systems
with respect to likely future maintenance effort is: D,
A, B, C (in order of increasing effort).

These measures may give some indications of
which classes, and how many, are likely to be difficult
to maintain, but it is difficult to assess the
consequences of such classes on the maintainability of
complete software systems. In this case, we had the
opportunity to compare four systems and can therefore
rank the systems according to assumed maintainability
and draw the tentative conclusion that the system that
exhibits the worst values will create maintainability
problems. In the typical situation, in which there is
only one system to assess, interpreting the values will
be much more difficult.

6. Expert Assessments

The expert assessments were conducted
individually by two very experienced Java consultants1
who did not know the results of the assessments based
on structural measures. The first expert had 20 years
experience of software development, including 10
years with Java development. The second had 10 years
development experience, including six years with Java.
Both were paid their normal consultancy fee for the
work on the assessment and both delivered a report as
the result. They assessed the code from the perspective
of maintainers who are experienced Java programmers,
but not familiar with details of the system. Due to there
being few previous studies on expert assessments of
Java software, it was decided to let the experts choose
their own evaluation criteria on the basis of their
experience with software development. For the same
reason, it was decided not to ask the experts to
quantify the assessment of each factor at this stage
because the goal of the study was to identify a set of
factors affecting maintainability and to obtain an
overall assessment of the maintainability of each of the
systems.

1 In the study described in [5] the results were also
validated by two expert assessments. One of them did
not have industrial experience with Java development,
so in this study he was substituted by an expert with
long industrial experience of Java development.

Although the two experts did not communicate in
any way, their criteria and conclusions were very
similar. Due to the relative simplicity of the four
systems, the experts were also asked to extrapolate
beyond the system and attempt to predict the
consequences of design decisions that they considered
important for maintainability also of larger and more
complex systems. This section describes the factors
that were considered important by the experts and their
assessments of the four systems according to these
factors.

6.1 Factors Affecting Maintainability and their

Assessment

An overview of the assessment is given in Table 4,
and the opinions of the experts on each factor and its
effect on maintainability is summarized below.

Choice of Classes and Names - The requirements
of a software system usually indicate a number of
obvious objects. In what follows these are denoted
primary objects, which should be implemented as
classes. These classes should be easy to identify to
facilitate the mapping from domain and requirements
to code.

Design - The design, including the use of design
patterns, must be adapted to the actual project. The use
of design patterns may make maintenance easier,
because such patterns represent well-known solutions
to commonly occurring problems in software
development. However, the complexity of the system
must justify the chosen solution, and the maintenance
staff must be competent to implement a solution in
accordance with the design principles.

The comprehensibility and, hence, the utility of
individual design patterns has been shown to depend
on the competencies of developers [18]. Therefore, a
good initial design may not become a good
implementation if the developers are not sufficiently
competent. In fact, a good, but complex design may
cause more harm than a simple and easy to understand
design, because complex designs are more vulnerable
to bad implementation practices.

Architecture - A clear separation of concerns
between presentation, business and persistence layer is
considered good practice. Each layer should remain
de-coupled from the layers above it and depend only
on more general components in the lower layers.

Components - Classes should be organized
according to functionality or according to the layer of
the code on which they operate.

Encapsulation - In Java there are three ways of
ensuring encapsulation: 1) using public attributes,

constants and methods, 2) using interfaces, and 3)
using inner classes. Using public attributes, constants
and methods is the simplest and most common way,
but if not used consciously, public methods may
require a specific sequence of method calls or may
require an object structure to be established before a
method is called. Such dependencies may create
maintenance problems. There are also some potential
pitfalls with the use of interfaces; if an interface
implements several classes, it has the same effect as
multiple inheritances, which may lead to confusion and
lower maintainability.

In Java, inner classes may be used to hold internal
structures that are not needed outside a specific class.
Since Java methods return only one object, developers
often create many small container classes where output
from methods can be delivered. Using inner classes
allows return values from methods to contain more
than one variable. This reduces the use of these small
classes and simplifies the design, making it more
maintainable.

An additional aspect of encapsulation is that texts
that may have to be changed should be collected as
static variables and referenced elsewhere.

Inheritance - The impact of inheritance on
maintainability depends on how it is used. Due to the
small size of the systems, inheritance was not used
extensively; there is typically only one level of
inheritance. The maintainability in this case was
assumed to depend on the distribution of functionality
between the base class and subclasses. The base class
should include enough “standard” functionality for
example exception handling so that this must not be
handled in each subclass. When this is satisfied, the
class should be open to extensions, but closed to
modifications. However, especially in the first iteration
of a system, there is a balance between adding
functionality to a base class or extending it, because it
may not be obvious what generic functionality will be
required by all or most subclasses. Furthermore, the
use of inheritance increases the total number of classes,
which may in itself decrease maintainability and
should therefore be used with care.

Libraries – In this case, the use of libraries was
very much related to the use of inheritance. Class
libraries may allow developers to be more efficient
because they provide good basic operations. However,
the use of libraries may mean a greater amount of
code, which in itself is less maintainable. The use of
proprietary libraries may mean lower maintainability,
because new developers will need to familiarize
themselves with them. Proprietary libraries may also
be influenced by the coding style of the developers that
created the library, something that may make the code

Table 4. Expert Assessments
 A B C D
Choice of
Classes

Primary objects are
implemented with
classes that contain
both data and logic.

Primary objects are
implemented as
containers. There are also
additional, unnecessary
containers for these
objects.

Primary objects are
mostly implemented as
containers and most of the
logic is separate from
these.

Primary objects are
implemented as
containers. Each has a
corresponding class for
communication with
the database.

Design A good design with
good use of design
patterns.

A textbook example of a
good design, but too
comprehensive for this
project. Unnecessary use
of design patterns.

A simple design centred
around two classes. Other
classes are either
containers or very small.
No use of design patterns.

A comprehensive
solution, with good use
of design patterns.

Architecture A three- layer
architecture, but code is
used across layers in
some places.

A three-layer architecture,
but the business layer is
not completely de-coupled
from the presentation
layer.

No layered architecture,
for example, just one
large Java class for
database management.

A three-layer
architecture, but the
business layer mostly
contains commands to
the database layer.

Components Good use of
components in the
database layer, but not
so good in the business
layer. Some
components are trivial.

Uses components, but not
always successfully.

No use of components.

Mostly good use of
components. Some of
the components have
very little content.

Encapsulation Mostly good use of
public methods, but too
many methods are
declared as public.
Does not use interfaces
or inner classes.

Good use of public
methods and uses
interfaces. However,
many classes implement
several interfaces. Good
use of inner classes.

Does not use public
methods very cons-
ciously. Many large
classes means that most
variables and methods are
used in many places.
Does not use interfaces or
inner classes.

Good use of public
methods. Uses
interfaces, but many of
the interfaces do not
have methods.

Inheritance Mostly successful use
of inheritance, but in
some cases the base
class does not contain
all the functionality
that is expected in a
base class.

Too extensive use of
inheritance. Confusions
regarding whether
functionality should be in
the base class or the sub
class.

No use of inheritance. Mostly successful use
of inheritance, but in
many cases the base
class does not contain
all the functionality
that is expected in a
base class.

Simplicity Unused code. Many
almost identical
methods for checking
user input.

Many almost empty
classes.

Classes with several
functionalities, repeti-
tions, inconsistencies in
the use of SQL queries.

Many small classes
with very limited
responsibilities, some
repetition in the code.

Naming Some method names
are very long.

Class names are often
single, generic words.

Class names are mostly
single, generic words.

Class names are often
user functions.

Comments Mostly good, but some
redundant comments
due to removed code.

Some classes lack overall
comments.

Few overall comments on
the classes. Most methods
have good comments.
Some comments are
trivial.

Mostly good, but some
comments are trivial
and some are missing.

Libraries Uses only standard
Java libraries.

Uses a comprehensive
proprietary library.

Uses only standard Java
libraries.

Uses a proprietary
library.

Technical
platform

Standard tools Uses some non-standard
components.

Standard tools Uses some non-
standard components.

difficult for other developers to understand. The
growth of standard Java libraries has made proprietary
code libraries less important.

If a system has special needs that the library does
not support, developers may have to alternate between
services found in the library and making specialized
code, something that may result in code that is more
difficult to understand.

Simplicity – The code should not include
statements that are very similar to each other. The code
smell “DuplicateCode” is, perhaps, the worst [9]. The
presence of several classes that are almost empty is
another sign of code that may possess low
maintainability, because it takes longer to identify a
specific class when there are many classes (there is
also a code smell for this situation, “LazyClass”, a
class that is not doing enough). Another factor related
to simplicity is code that is commented out. This may
be an asset because it can be included later; but it adds
to size and complexity. System A had some unused
code and Systems B and D had some small classes, but
System C had long if-else statements for retrieving
information and had statements that were almost
identical.

Naming - The use of standard naming conventions
for packages, classes, methods and variables eases
understanding. In addition, the developers should use
names to create a consistent schema that allows the
reader to understand the relationship between methods
and classes. All the companies followed mostly
standard Java naming conventions, the only exception
being D’s use of class names.

Comments – The amount of comments was
measured automatically and their quality was assessed
by the experts.

Technical platform – An important part of systems
maintenance is the ability to adapt to different
environments, and many problems with systems
maintenance are related to undocumented, implicit
requirements that surface when a system is moved to a
different environment. The use of a standard platform
of tools simplifies this. A standard platform is, by
definition, widely used; hence, it will be known by
developers and will be supported by other companies.
By contrast, the use of non-standard third party
components poses a number of challenges related to
using the components in further development. The
developers have to put extra effort into understanding
how to use the component. They will also have to
understand how to replace the component in the future
because such components may not be maintained or
may become unavailable.

According to the expert assessments, System A is
likely to be the most maintainable system, at least as
long as the extensions to the system are not too large.
System D exhibited slightly more potential
maintainability problems than did System A, especially
as some of the code was unfinished due to ambitions
that were not fulfilled. However, System D may be a
good choice if the system is to be extended
significantly. System C was considered difficult to
maintain. It may be easy to perform small maintenance
tasks on the system, but it is not realistic to think that it
could be extended significantly. System B was too
complex and comprehensive and is likely to be very
difficult to maintain. The design solution would have
been more appropriate for a larger system.

The two experts agreed in their assessment of the
individual factors for each of the systems. However,
they disagreed slightly on the overall ranking of the
systems. Expert 1 ranked the systems in the order A,
D, C and B, while Expert 2 ranked Systems A and D
together in first place and then System B before
System C. The difference was probably due to the fact
that Expert 1 considered size and simplicity as more
important for maintainability, while Expert 2
considered adherence to object-oriented principles as
more important.

6.2 Comparison of Assessments

We see from Tables 2, 3 and 4 that the expert
assessments and the assessments based on structural
measures gave quite similar results when used to rank
the systems.

On the basis of structural measures, System D was
ranked as the most maintainable and System C as the
least maintainable system. Systems A and B had very
similar measurement values, and in the aggregation-
first approach that considered mean and standard
deviation of the values for the different CK-metrics,
System B was ranked as more maintainable than
System A because of lower (better) values on the
coupling measures. In the combination-first approach,
System A was ranked before System B because System
B had a higher number of classes that, overall, had
high or very high measurement values. These
assessments were in agreement with the opinions of
the teams themselves.

The experts ranked the assumed maintainability of
the systems slightly differently. They ranked System A
as the most maintainable, with System D as a close
second. They assessed both System B and System C as
being potentially difficult to maintain, citing as reasons
that System C did not follow basic object-oriented
principles, while System B was too complex.

Many of the factors that the experts considered
important were also measured implicitly using the
structural properties. In addition, good measurement
values on the structural attributes may, in general, be
an indication of well-qualified developers who have
maintainability in mind. Therefore, systems with good
measurement values are also likely to be good with
respect to other design factors (although this was not
seen to be the situation in this case, where relatively
good structural measures for System B “hid” potential
maintainability problems).

The individual CK-metric in Table 2 that
corresponds best with the expert assessment is the size
measure WMC.

The factors that the experts considered important
for maintainability in this context for small to medium
systems that were developed using Java but that were
not captured by the structural measurements were as
follows:
• Choice of classes and names.
• Unnecessary classes, for example in the form of

too many interfaces per class. A high percentage
of small classes may also be an indication of such
a problem.

• Division of classes into components.
• The distribution of functionality between the base

class and subclasses. A high percentage of small
classes may be an indication of too little
functionality in the base class.

• Encapsulation and use of public methods.
• A design that is appropriate for the complexity of

the system. In general, bad measurement values
may be a sign of a design that is either too simple
or too complex for the system, although this was
not the case in the study.

• A good architecture where the presentation layer,
business layer, and database layer are well
separated.

7. Scope of Results

The scope of the results is Java systems. The
structural properties were assessed using the CK-
metrics. It is possible that other metrics may be more
suited to this type of system. For example, one factor
that was considered important for maintainability, but
not detected using the CK-metrics, is the appropriate
use of public methods. The MOOD set of metrics
contains a measure for the use of such methods[10].

A threat to the validity of the results is posed by the
assessments made the experts. They were both very
experienced and their assessments were in accord.
However, the assessments were subjective and

different experts may consider other factors to be
important and/or may assess Java systems differently
according to the same factors.

The assessments based on the CK-metrics also
relied on expert opinion to give an overall opinion on
the maintainability of the systems and to rank the
systems. There is no established way of combining the
CK-metrics into one overall measure. Therefore, the
results of these assessments may also be affected by
subjective opinion. This represents a threat to the
validity of the results, although probably to a much
lesser extent than that posed by the expert assessments.

8. Conclusion and Future Work

It is important to be able to assess the
maintainability of complete software systems,
particularly for software clients. However, most
research on the maintainability of software has focused
on class-level measures and methods for identifying
the least maintainable classes of individual software
systems.

Related research in the field of software estimation
indicates that the maintainability of software systems
can best be assessed using a combination of expert
assessments and methods based on structural measures
of the code.

This paper has described the assessment of four
functionally equivalent systems developed using Java.
The systems were first assessed using structural
measures and expert assessments. The results of the
two assessments were mostly in agreement, but also
point to some important factors related to
maintainability that are not easily detected by
structural measures. The results should therefore
represent one (small) step in the direction of
formulating a strategy for assessing the maintainability
of complete software systems.

The contributions of this study are twofold: 1) it
provides insights into the factors that experienced Java
developers consider to be important for
maintainability, and 2) it describes and exemplifies
strengths and weaknesses of maintainability
assessments that are based on structural measures and
expert assessments.

The lessons learned from this study, from the point
of view of software practitioners and software clients
in particular, are that structural measures may be useful
in assessing maintainability of software systems, but
such measures should be used with care and should be
combined with assessments of the factors described in
Section 6.1.

Future work is planned to study agreement among
experts when assessing maintainability of Java code,
and also to expand the set of structural measures used
in the assessment of the systems. Furthermore, the
consequences for actual maintainability of the different
designs used in these four systems will be investigated.
More work is also needed on how to best combine
expert-based and method-based assessments of
maintainability.

Acknowledgements

I thank Hans Christian Benestad and Erik Arisholm for
assessing the code using class-level measures, Per
Einar Arnstad and Sindre Mehus for their assessments
of the Java code, and Dag Sjøberg for obtaining the
necessary funding for, and for organizing, the research
project in which the four software systems were
developed.

9. References

[1] AFOTEC Software maintainability evaluation guide.
Department of the Air Force, HQ Air Force Operational Test
and Evaluation Center, 1996.

[2] Anda, B., Benestad, H.C. and Hove, S.E. A Multiple-
Case Study of Effort Estimation based on Use Case Points, in
Proceedings of the 4th International Symposium on Empirical
Software Engineering (ISESE’2005). IEEE Computer
Society, Noosa, Australia, November 17-18, pp. 407–416,
2005.

[3] Arisholm, E. and Sjøberg, D.I.K. Evaluating the Effect of
Delegated versus Centralized Control Style on the
Maintainability of Object-Oriented Software. IEEE
Transactions on Software Engineering, 30(8):521-534, 2004.

[4] Bakota, T., Ferenc, R., Gyimóthy, T., Riva, C. and Xu, J.
Towards Portable Metrics-based Models for Software
Maintenance Problems, in Proceedings of the 22nd IEEE
International Conference on Software Maintenance
(ICSM’06), pp. 483 – 486, 2006.

[5] Benestad, H.C., Anda, B. and Arisholm, E. Assessing
Software Product Maintainability Based on Class-Level
Structural Measures, in Proceedings of the 7th International
Conference on Product-focused Software Process
Improvement (PROFES), edited by Jürgen Münch. Springer-
Verlag, pp. 94-111, 2006.

[6] Briand, L. and Wuest, J. Empirical Studies of Quality
Models in Object-Oriented Systems, Advances in Computers,
Vol. 56, pp. 97-166, 2002.

[7] Chidamber, S.R. and Kemerer, C.F. A Metrics Suite for
Object Oriented Design. IEEE Transactions on Software
Engineering, 20(6): 476-493, 1994.

[8] Darcy, D. and Kemerer, C.F. OO Metrics in Practice.
IEEE Software, 22(6): 17-19, 2005.

[9] Fowler, M. and Beck, K. Bad smells in code. In:
Refactoring: Improving the design of existing code, 1st ed.
Addison-Wesley, Boston, pp.75-88, 2000.

[10] Harrison, R., Counsell, S.J., and Nithi, R.V. An
Evaluation of the MOOD Set of Object-Oriented Software
Metrics, IEEE Transactions on Software Engineering, 24(6):
491-496, 1998.

[11] IEEE standard for software maintenance. The Institute
of Electrical and Electronics Engineers, Inc, New York,
1998.

[12] Jørgensen, M. Estimation of Software Development
Work Effort: Evidence on Expert Judgement and Formal
Models, Accepted for publication in the International
Journal of Forecasting, 2007.

[13] Kirsopp, C., Shepperd, M. and Webster, S. An empirical
study into the use of measurement to support OO design
evaluation. In Proceedings of the 6th International
Symposium on Software Metrics, Boca Raton, USA,
November 4-6, pp. 230-241, 1999.

[14] Mayrand, J. and Coallier, F. System Acquisition Based
on Software Product Assessment, in Proceedings of the 18th
International Conference on Software Engineering
(ICSE’96), pp. 210-219, 1996.

[15] Mäntylä, M.V. and Lassenius, C. Subjective evaluation
of software evolvability using code smells: An empirical
study. Empirical Software Engineering, 11(3):395-431,
2006.

[16] Schneiderman, B. Software psychology: human factors
in computer and information systems. Winthrop, Cambridge,
Massachusetts, 1980.

[17] Shepperd, M.J. System architecture metrics for
controlling software maintainability. In Proceedings of the
IEE Colloqium on Software Metrics, April 1-3, 1990.

[18] Vokač, M., Tichy, W., Sjøberg, D.I.K, Arisholm, E. and
Aldrin, M. A Controlled Experiment Comparing the
Maintainability of Programs Designed with and without
Design Patterns—A Replication in a Real Programming
Environment. Empirical Software Engineering, 9(3): 149-
195, 2004.

	1. Introduction
	2. Maintainability
	3. Assessing Maintainability
	3.1 Structural Measures
	3.2 Expert Assessments
	3.3. Combined Assessments

	4. The Case Study
	5. Maintainability Assessment based on Structural Properties
	5.1 Aggregation first
	5.2 Combination first

	6. Expert Assessments
	6.1 Factors Affecting Maintainability and their Assessment
	6.2 Comparison of Assessments

	7. Scope of Results
	8. Conclusion and Future Work
	Acknowledgements
	9. References

