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Abstract

Many safety-related and certification standards exist for developing safety-critical
systems. Safety assessments are performed in practice, and system certification according
to a standard requires the submitting information about the software. The airworthiness
standard, RTCA DO-178B, is the software de-facto standard for commercial and military
aerospace programmes. The objective of this research is to propose an approach to
improve the line of communication between safety engineers and software engineers by
proposing a Unified Modeling Language (UML) profile that allows software engineers to
model safety related concepts and properties in UML, the de-facto software modeling
language. In this research, the list of safety-related concepts is extracted from RTCA DO-
178B, and then a UML profile is presented to enable modeling them. Then, approaches to
generate certification-related information from UML models are presented. This new
approach is illustrated through a case study on developing an aircraft’s navigation
controller subsystem.
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1 INTRODUCTION

1.1 Safety and UML

Software’s role in various systems has been rapidly increasing over past several decades.
Its purpose is no longer restricted to managing financial or mathematical data. Due to the
technological advances of computer processors, memory and other components, discrete
hardware components in many systems have been replaced by software. Putting software
on aircrafts, for example, has become significantly more affordable than it used to be. As
a result, software now directly affects human life by managing flights, airplanes, ships,
nuclear reactors, medical systems, and many others. This led to increased emphasis on
the quality of software used in such systems. This emphasis focused on many aspects.
First, it led to improved software verification and testing methods to detect software bugs
before the software is delivered and deployed in its target system. However, it was
accepted that software can never be 100% correct and error free. Therefore, fault
tolerance emerged as a design technique to increase the reliability of the software. The
principles of fault tolerance focus on adding protection mechanisms to detect software
failures within a specified software boundary such that the software is able to recover and
continue execution despite the presence of software faults or bugs. Therefore, fault
tolerance aims at reducing the likelihood that the software becomes unavailable due to

software bugs.

However, it was observed that highly reliable software is not necessarily safe within the
context of the system in which it is used. Software is safe if it does not contribute to
hazards within the context of the system in which it is used, and a system is safe if it does
not cause accidents to or harm its environment. In particular, software may be reliable but

unsafe when any of the following conditions occurs [1]:

1. The software correctly implements the requirements, but the specified behaviour

is unsafe for the system as a whole (i.e. some requirements are unsafe).

2. Some safety-related requirements are missing (i.e. requirements are incomplete).

10
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3. The software implements unintended and unsafe behaviour that is not specified in

the requirements.

As a result, emphasis increased on developing safety requirements, whose goal is to
ensure the safety of the environment in which the system is used. Safety requirements
and constraints are generally the output of safety assessments that are performed on the
system in which the software will be used. As a result, proper requirements development

is vital towards ensuring safety.

Furthermore, safety-related standards generally require gathering information about the
software that is not necessarily related to the implementation of safety-related
requirements. Examples of such information include the use of COTS software and time-

related functions such as filters.

UML is the de-facto standard language for specifying, modeling, analyzing, and
documenting software [2]. It is also used in other areas such as modeling systems,
hardware, and even business contexts. UML represents a collection of best engineering
techniques and practices that have proven successful in modeling large and complex
software systems. It is a very important part of the software development process, and is
particularly well-suited for developing object-oriented software. It uses mostly graphical
notations to express the design of software systems. The benefits of UML include helping
project teams communicate, explore potential designs, and validate the software
architecture. It also increases the formalism of the software model, which makes the
analysis process easier. Furthermore, it is the heart of the Model-Driven Architecture

(MDA) initiative [3], whose supporters claim that it is the future of developing software.

UML is an extensible modeling language; it allows developers to add semantics to the
UML language that are applicable in a particular domain, area, or industry. Such added
semantics are called a “UML Profile”, which in effect tailor the UML language to a
specific area of interest such as, for example, fault tolerance, distributed computing, and
Common Object Resource Broker Architecture (CORBA). A UML profile extends the

core UML language by defining additional modeling mechanisms of the following types:
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1. Stereotypes: A stereotype is used to describe a UML element in a platform or
domain specific language.

2. Constraints: A constraint is a condition or a restriction that is applied to a UML
element. It can be expressed in any language, regardless on whether it is machine-

readable or not.

3. Tagged Value: A tagged value is used to further describe a stereotyped-element
through parameterization of the stereotype in a platform or domain specific

language.

1.2 Research Problem

Safety assessments are performed on the system as a whole regardless of which of its
features will be implemented in software. As a result, safety requirements are first
developed for the system itself. Once it is determined which functionality will be
implemented in software, the safety requirements associated with that functionality are

allocated to the software that implements it.

Moreover, software certification authorities require information about the software that is
not necessarily captured within the safety requirements. Such information could include
the use of COTS software, time-related functions as filters, state machines, and others.
The certification authorities consider this information along with the safety requirements

when determining whether the software is safe or not.

Generally, safety engineers that perform the safety assessments and collect certification
information are not the software engineers that design and implement the software. In
fact, it is uncommon to find software engineers that are experienced with the safety and
certification aspects of systems and software. Conversely, safety engineers are often
inexperienced with software engineering’s development techniques, including UML. This
creates a critical gap that must be bridged — safety engineers need to have better insight
into the software and to what extent it is compliant with the safety and certification

requirements, and software engineers need to have better understanding of the safety and
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certification requirements so that they develop safe software that can run in a certified

system.

In this research, the airworthiness standard [4], which is the de-facto safety-related
standard in the aerospace industry, is analyzed to extract a list of safety-related concepts
that are of interest to both safety engineers and software engineers. It is argued that if
those concepts are properly represented in UML models of software, then a tool can
automatically generate reports containing safety and certification-related information
about the software. This gives the safety engineers better insight into the software’s
safety and compliance aspects, which they can easily track over time. Those reports could
also be used as evidence of software compliance with the airworthiness requirements, and
then presented to the external certification authority. Furthermore, this will increase
software engineers’ knowledge of safety-related concepts, which will enable them to

implement safer software and better communicate with safety engineers.

To model the safety-related concepts in UML, this research proposed a UML profile that
can be used to model the safety-related information that is extracted from the
airworthiness standard [4]. The proposed profile contains stereotypes and tagged values
that correspond to the safety-related concepts, their attributes that capture the concept
details, and the relationships among safety-related concepts. The focus here is modeling
safety and certification information in structural diagrams, specifically class diagrams,
but the stereotypes and tagged values should be easily transferable to dynamic diagrams

such as object diagrams and state charts.
1.3 Document Organization

Section 1.4 of this document describes the research method that was followed in this

research.

Section 2 describes the industrial view of this research. Section 2.1 describes safety
assessments in general, and then provides examples of safety requirements and safety
assessment techniques. Section 2.2 lists several safety-related industrial standards and

then provides a high-level description of the Radio Technical Commission for
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Aeronautics (RTCA) DO-178B [4] airworthiness standard. Section 2.3 presents research
findings on the challenges of developing safety-critical software that has certification
requirements. Section 2.4 presents and describes usage scenarios for safety information,
and proposes using UML to model the safety information. Section 2.5 identifies
traceability between software concepts that needs to be tracked. Section 2.6 discusses the
rationale, disadvantages, advantages, and requirements of using a UML profile to model

safety information.

Section 3 introduces safety-related concepts that are extracted from the airworthiness
standard, RTCA DO-178B [4]. Section 3.1 identifies, describes, and categorizes the
safety-related concepts as extracted from the airworthiness standard. Each category is
prefixed with “primarily” to indicate that its concepts are related to other categories as
well. The concepts are then refined in section 3.2. Section 3.2.1 introduces the conceptual
model describing the refined concepts. Section 3.2.2 describes each concept in detail,
presents their attributes and relationships with other concept, and explains which original
safety-related concept from section 3.1 can be represented using each of the refined
concepts. Section 3.2.4 explains how the refined concepts, and their conceptual model,
satisfy the required traceability explained in section 2.5. Section 3.3 identifies precise
information requirements that a suitable UML profile should be able to model.

Section 4 presents some of the existing UML profiles and patterns and assesses each one
of them versus the information requirements identified in section 3.3. Section 4.1
introduces the “UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanism” [5], which is an Object Management Group’s (OMG)
UML profile that enables modeling some safety and fault tolerance concepts. Section 4.2
introduces the “UML Profile for Schedulability, Performance, and Time Specification”
[6], which enables modeling some concepts that are usually important in safety-critical
software such as performance and concurrency. Section 4.3 introduces a UML profile
that was developed by a European research project that specialized in developing high-
integrity real-time systems [26]. Section 4.4 introduces a UML profile that was developed
by a researcher who argued that safety is often related to messages across software

components [27]. Section 4.5 introduces patterns that can be used to model some
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reliability and safety concepts such as software redundancy. Section 4.6 summarizes the
overall suitability of each profile with respect to the information requirements identified

in section 3.3.

Section 5 presents a new UML Profile, one for modeling safety-related concepts listed in
section 3.2, and provides examples of its usage. Section 5.1 presents the UML profile,
section 5.3 provides numerous examples of its usage, and section 5.4 describes a
development methodology for safety-critical systems within which the proposed UML

profile can be used.

Section 6 describes how safety certification information can be generated from a UML
model where the new UML profile is applied. Section 6.1 describes the technological
requirements that are needed to be able to generate such safety and certification
information, with sections 6.1.1 and 6.1.2 providing guidance on how such requirements
can be achieved. Section 6.1.1 describes how UML modeling tools can be extended to
support generation of certification information, an section 6.1.2 introduces another
approach that uses XML Metadata Interchange (XMI) to obtain the safety and
certification information. Section 6.2 presentes examples of search queries that can be
executed on a UML model to generate safety and certification information from the

software model.

Section 7 presents a case study of an aircraft’s navigation controller subsystem, which
controls the movement of an aircraft by performing autopilot and custom Fly-To-Point
(FTP) positions from the pilots. Section 7.1 provides an overview of the system and
presents some navigation terminology. Section 7.2 describes the aircraft’s system
architecture in which the navigation controller subsystem appears. Section 7.3 lists the
functional requirements of the navigation controller subsystem. Section 7.4 discussed the
safety assessment that was performed on the system and lists the identified safety hazards
that are relevant to the subsystem under study. Section 7.4.1 lists safety hazards that were
identified using the Action Error Analysis (AEA) safety assessment method, section 7.4.2
lists those that were identified using the Failure Modes and Effects Analysis (FMEA)

method, section 7.4.3 lists those that were identified using the Hazards and Operability
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Analysis (HAZOP) method, and section 7.4.4 lists those that were identified using the
Interface Analyses (IA) method. Section 7.4.5 lists safety requirements that were
assigned to the navigation controller subsystem based on the hazards identified in
sections 7.4.1 - 7.4.4. Section 7.5 presents the UML model for the subsystem design
using the proposed UML profile, with section 7.5.2 showing the subsytem’s safety-
related events of interest, section 7.5.3 showing the subsystem’s reactions to those events,
section 7.5.4 explicitly listing all the relationships between events and reactions, section
7.5.5 showing the subsystem’s high-level design, and section 7.5.6 presenting approaches
to low-level design of events and reactions. Section 7.6 discusses the benefits of the
proposed UML profile by analysis the UML model of the subsystem according to the

usage scenarios identified in section 2.4.

Section 8 concludes this research by describing the use of the proposed UML profile and
identifying open issues for future work. Section 8.1 assesses the UML profile according
to the requirements identified in section 2.6.3 the same way existing UML profiles were
assessed in section 4. Section 8.2 lists open issues and improvement opportunities for

future work.

Section 9 provides a summary of this document.

1.4 Research Method

This research was performed according to the method described in Figure 1. There is no
input or entry criterion for the first step, S-1. The input of each of the other steps is all the
outputs from all of its previous steps. The entry criterion of those steps is the exit
criterion of its previous step. Notice, however, that the input to step S-2 includes the
outputs of both steps S-1 and S-7 when it is entered from step S-7. The exit criterion for
each step is that its output becomes available. The activity, output, and reference sections
of each step are presented in Table 1 below.
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S-1: Select a relevant S-2: Identify a list of relevant S-3: Identify requirements for
Start industrial standard for safety-related concepts and - dentily req )
. a suitable UML profile
analysis define their relationships

S-6: Demonstrate how the S-5: Define a safety-related S-4: Assess existing UML
defined UML profile improves UML profile based on the o 9
profiles based on the
the process of developing safety-related concepts and . . A
information requirements
safe software information requirements

S-7: Are the
results
satisfactory?

Figure 1: Research method.

Step Description

s-1 | Select a relevant industrial standard for analysis

Activity: A safety-related standard is identified for analysis.

Output: A list of one or more standards that are selected for further analysis.
Reference: Section 2.2.

g-2 | Identify a list of relevant safety-related concepts and define their relationships

Activity: Safety-related concepts that are emphasized in the standard selected in S-
1 are identified. Those safety-related concepts are then refined into terms that are
friendlier from a software modeling perspective. Relationships across the refined
safety-related concepts are defined through a conceptual model.

Output: A detailed list of safety-related concepts and their definitions, which
includes the definition of each concept as it is used in the selected standard, and a
list of refined safety-related concepts including a conceptual model describing their
inter-concept relationships.

Reference: Sections 3.1 and 3.2.

s-3 | ldentify requirements for a suitable UML profile

Activity: The safety-related concepts identified in S-2 are further analyzed.
Requirements for developing software under the identified standard, as well as
software-related requirements for certifying systems, are understood. Information
that a suitable UML profile should be able to model are developed into information
requirements.

Output: A list of high-level requirement, and a list of information requirements
specifying which information a suitable UML profile should be able to model.

Reference: Sections 2.6.3 and 3.3.
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Step

Description

S-4

Assess existing UML profiles based on the information requirements

Activity: Identify existing UML profiles that are related to the development of
safety-critical software. Assess each one of them based on the information
requirements identified in S-3.

Output: An assessment of existing UML profiles and how they perform versus the
identified information requirements.

Reference: Section 4.

S-5

Define a safety-related UML profile based on the safety-related concepts and
information requirements

Activity: A safety-related UML profile that fulfils the information requirements is
defined. This UML profile is able to represent the refined safety-related concepts
on UML designs, thus enabling engineers to better meet the challenges and
requirements identified in S-2. A system and software development methodology
for using the UML profile is presented.

Output: A safety-related UML profile, examples of its usage, and a development
methodology for using the UML profile.

Reference: Section 5.

S-6

Demonstrate how the defined UML profile improves the process of developing safe
software

Activity: The degree to which a software model using this profile describes the
safety and certification aspects of the system is considered. An analysis of how the
requirements in section 3.3 are fulfilled is presented. Approaches are proposed on
how a UML modeling tool can be used to extract certification information from a
UML model using this profile are presented. A case study using the profile is
performed.

Output: A proposed approach on how a UML modeling tool can extract safety and
certification-related information from a UML model using this profile, an analysis
of the profile versus the information requirements identified in section 3.3, and a
case study using the profile.

Reference: Sections 6, 7, and 8.1.

Are the results satisfactory?

Activity: The results of steps S-5 and S-6 are assessed. If they satisfactorily
improve the development process of safety-critical software, then the process is
complete. If not, then step S-2 is revisited for another iteration of this process.

Output: The decision on whether to perform another iteration of this process,
starting with step S-2, the strengths of the defined UML profile, and a list of open
issues in this work.

Reference: Section 8.

Table 1: Details of the research method steps.
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2 INDUSTRIAL PRESPECTIVE

2.1 Safety Assessments

Safety-critical software must exhibit safe behaviour that does not contribute to hazards
within the context in which it is used. For example, an aircraft must only allow the pilot
to hide the landing wheel if it is flying in the air. If the landing wheel was hidden while
the aircraft is on ground, then there would be a hazard of damaging the aircraft and
hurting its occupants. A hazard is a state of the system that could ultimately lead to an

accident that may result in a loss in human life.

Because of such added requirements and constraints, developing safety-critical software
is more expensive than developing non-safety-critical software. In fact, it is generally
well accepted that developing safety-critical software is at least 10 times more expensive
than non-safety-critical software, and some sources claim that it can be 20 to 30 times

more expensive [8].

Many standards require that a safety assessment be performed for each safety-critical
system. Safety assessments, which have some similarities with risk assessments [1] and
are performed using similar methods, produce a list of safety requirements and
constraints that the system developers must adhere to. Performing a safety assessment is a
mandatory and critical element to developing a safety-critical system. Table 2 provides

examples of safety requirements and the potential accidents they protect against.

Safety Requirement

Accident Protected Against

A submarine detection aircraft may only
release a sonobuoy while it is flying above

water

The sonobuoy is dropped on unintended

locations and causes unintended damages

An aircraft’s automatic flight pilot programme
may only fly the aircraft to a particular
destination after explicit confirmation from the

pilot

The automatic flight pilot programme flies the

aircraft to incorrect destinations, possibly

through hazardous flight paths

Table 2: Examples of safety requirements and the accidents they protect against.
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There exist many methods for performing a safety or risk assessment. Those methods
differ, for instance, in terms of what factors they consider as possible causes of accidents
(e.g., operator actions, environment state), the subjects they analyze (e.g., critical events,
possible failures), their outputs (e.g., a tree), their scalability. Furthermore, some methods
target reliability issues (e.g., Failure Modes and Effects Analysis (FMEA), Failure
Modes, Effects, and Criticality Analysis (FMECA), Interface Analyses (1A)) whereas
others solely consider safety issues (e.g., State Machine Hazard Analysis (SMHA)), and
some consider both (e.g., Event Tree Analysis (ETA)). Most of those methods originated
in hardware or system analysis, and some were developed for software. Some consider
single events at a time (e.g., FMEA and FMECA), whereas others consider relationships
across events (e.g., Fault Tree Analysis (FTA)). Furthermore, some are used to identify
potential hazards (e.g., Action Error Analysis (AEA)), whereas others are used to analyze

previously identified hazards (e.g., ETA).

Therefore, some of these methods are complimentary to each other, whereas others are
similar and overlap. As a result, a project is likely to use several of those methods rather
than just one. Examples of those methods are listed in Table 7 of Appendix A. Those

methods are discussed in many references, and a summary of them is presented in [1].
2.2 Safety-Related Standards

Many industrial standards exist for system and software safety. Some are common to all
industry sectors (e.g., IEC 61508-3 on software requirements for the functional safety of
electrical/electronic/programmable electronic systems) whereas others are industry
specific (e.g., CENELEC 50128 for Railway applications). Table 8 of Appendix B lists
some of these standards that relate to safety, or reliability due to its relation to safety.
Hermann provided a high-level summary for those standards, or some of their earlier

versions, in [9].

RTCA DO-178B [4] is the de-facto safety-related standard for developing software to run
in aerospace systems. It is also known as the “airworthiness” standard. Consequently,
engineers whose responsibilities includes ensuring compliancy with the airworthiness

standard are known as “airworthiness engineers”.
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In addition to developing safety-related requirements, standards usually have additional
certification-related requirements. Those requirements are not necessarily implemented in
software, but rather they represent information about the software that must be submitted
to the certification authorities. For example, the airworthiness standard requires that
developers submit information regarding the COTS software used in the system.
Moreover, it requires that the developers specify time-related functions, such as filters,
that are used in the system. Therefore, it is important to be able to gather such

information easily about the software.

DO-178B realizes that not all software components in an airborne system have the same
impact on the safety of the aircraft and its occupants. For example, the failure of software
that controls the altitude of an aircraft is much less acceptable than the failure of the
software that controls the aircraft VCR for watching movies. This is because the failure
of the former may significantly reduce the aircraft’s chances of a safe flight. The failure
of the latter, however, does not have such effects as long as the VCR is isolated from
other safety-critical software. As a result, DO-178B classifies software failure conditions

into the following five categories [4]:

1. Catastrophic: A failure condition of this type would prevent continued safe flight
and landing of the aircraft. A software component whose failure may result in
failure condition of this category is known as a level A software component, and

is said to have airworthiness level A.

2. Hazardous/Severe-Major: A failure condition of this type would introduce
operating conditions that would severely reduce the ability of the aircraft crew to
cope with them to the extent where there would be large reductions in system
safety, the inability of the crew to perform tasks accurately and completely, and
potential fatal injuries. A software component whose failure may result in failure
condition of this category is known as a level B software component, and is said

to have airworthiness level B.

3. Major: A failure condition of this type would introduce operating conditions that

would severely reduce the ability of the aircraft crew to cope with them to the
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extent where there would be significant reductions in system safety and crew
efficiency, significant increase in crew workload and occupant discomfort, and
potential injuries. A software component whose failure may result in failure
condition of this category is known as a level C software component, and is said

to have airworthiness level C.

4. Minor: A failure condition of this type would introduce operating conditions that
can be handled by the crew, but may include a slight increase in the crew’s
workload or occupant discomfort, and a slight reduction in safety. A software
component whose failure may result in failure condition of this category is known

as a level D software component, and is said to have airworthiness level D.

5. No Effect: A failure condition of this type does not impact the system safety of the
aircraft, nor does it increase the aircraft crew’s workload. A software component
whose failure may result in failure condition of this category is known as a level E

software component, and is said to have airworthiness level E.

It should be noted, however, that there exists a difference between the concepts of
“airworthiness” and “safety”. The airworthiness standard, like many other safety-related
standards, defines different levels of impact on safety called “failure condition
categories” and “software levels”. However, it defines the failure condition categories
and the software levels based on the “severity of failure conditions on the aircraft and its
occupants” [4]. This is different from Leveson’s definition of safety, which was stated as
“the freedom from accidents or losses” [1]. While safety is the freedom from accidents or
losses, airworthiness is therefore the freedom from accidents or losses with respect to the
aircraft and its occupants. Thus, airworthiness is a subset of safety, and safe software is
airworthy but airworthy software is not necessarily safe. For example, the first safety
requirement in Table 2 of page 19 is not necessarily an airworthiness requirement,

whereas the second one is.
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2.3 Challenges in Software Safety

The NASA Langley Research Center, which has long cooperated with the Federal
Aviation Administration (FAA) on research about software engineering methods for
aerospace applications, conducted a research programme called Streamlining Software
Aspects of Certification (SSAC). This programme included an extensive survey to
identify the challenges in developing safety-critical software for aerospace systems.

Hayhurst and Holloway have documented results of this research in [10].

Hayhurst and Holloway of the NASA Langley Research Center identified “the challenge
of accurately communicating requirements between groups of people” as “the root of
many of the current challenges” in software safety [10]. They presented the
communication challenge as a combination of the following two major communication

channels:

1. Between regulatory people (e.g. certification authorities) and systems people (e.g.

systems engineers and airworthiness engineers).

2. Between systems people (e.g. systems engineers and airworthiness engineers) and

software people (e.g. software engineers).

Since systems engineers and safety/airworthiness engineers need to communicate with
the certification authorities, they need to have insight into the software and its sfety
compliance aspects. The fact that they are unlikely to be experienced in software
engineering makes their responsibilities even more challenging. Moreover, software is
continuously changing and it is likely that the software engineers significantly outnumber
safety engineers. Therefore, it is essential to be able to achieve insight into the software’s
compliance aspects at relatively low costs. Such insight could be the ability to easily
monitor the software engineers’ progress with respect to the safety requirements and the
compliance with the certification requirements of the software.

Hayhurst’s and Holloway’s survey also found out that “requirements definition is

difficult” [10]. This undoubtedly contributes to the communication challenges between
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the various people groups. For example, systems engineers may define requirements that
software engineers find unusual or expensive. If software engineers better understand the
needs behind the requirements, then they may be able to propose solutions that are more
cost effective. The software engineers’ misinterpretation of the requirements may also be
due to their lack of experience in safety. In fact, their lack of experience in safety often
causes them to confuse safety with reliability. In many instances, software engineers
cannot clearly define software safety without having prior background knowledge or

experience.
2.4 Usage Scenarios for Safety Information

Based on the discussion in sections 2.1 - 2.3, safety information is used by many

stakeholders as described in the use case diagram in Figure 2.

Usage Scenarios for Safety Information

USAGE 2
Design Safety
Requirements in
Systems

USAGE 1
Provide Safety
Requirements

USAGE 4
Monitor Safety

USAGE 5
Get Safety
Information

/ Software Engineers

Safety Enginek

Airworthiness Engineers

i~

Certification Authorities
(3rd Parties)

USAGE 3
Record and Justify
Design Decisions

Figure 2: Usage scenarios for safety information.
The usage scenarios are:

USAGE 1 Provide Safety Requirements: Safety and airworthiness engineers
perform a safety assessment of the system being designed or modified.
As discussed in section 2.1, such a safety assessment results in safety
requirements, a subset of which will be allocated to software and
communicated to the software engineers. The software engineers will

then design and implement the software according to the safety
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USAGE 2

USAGE 3

USAGE 4

information and requirements. Thus, this usage scenario represents the
process of communicating safety information from the safety and

airworthiness engineers to the software engineers.

Design Safety Requirements in Systems: Once the software engineers are
informed with the safety requirements allocated to software, they design
the software system with the safety requirements in mind. Then, they
implement it such that it meets all the safety requirements. Thus, this
usage scenario represents the process of designing and implementing the

software system according to the safety requirements.

Justify Design Decisions: Not only must the software engineers design
the software to meet the safety requirements, but they must justify their
design decisions as well. Such justification should explain the rationale
for the architecture and design details. In practice, architectural and
major design decisions are documented in separate documents, which
makes it separate from the software model. Furthermore, detailed design
decisions normally appear as plain text comments in the source code,
which makes it hard for safety and airworthiness engineers to obtain
justifications for the various design decisions. Thus, this usage scenario
represents the process of justifying and documenting design decisions so

that they can be easily obtained in the future.

Monitor Safety: The safety and airworthiness engineers continuously
monitor the safety of the system, including the software, over the
project’s lifecycle. In order to do so, they need to consider how the
software engineers designed the software (USAGE 2) according to the
safety requirements they were provided with (USAGE 1). The software
engineers’ justifications for the design decisions (USAGE 3) will also be
considered. Then, the safety and airworthiness engineers can assess this
information and discuss any issue with the software engineers. This

ensures that the software’s safety is continuously improving during the
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USAGE 5

software’s lifecycle so that it meets the final safety objectives of the
system. In addition, this usage scenario provides additional confidence
that the system certification process will go more smoothly. Thus, this
usage scenario represents the process of continuously monitoring the
design and implementation of the software in accordance with the

system’s overall safety requirements.

Get Safety Information: Once it is time to certify the system, which is
usually towards the end of the development lifecycle, safety and
certification information is submitted to the certification authorities. This
information includes the safety requirements (USAGE 1), the software
design (USAGE 2), the justification of the software design (USAGE 3)
given the safety requirements of the software, and the process used to
continuously monitor the system and software safety over the
development lifecycle (USAGE 4). If safety and airworthiness engineers
continuously and appropriately monitor safety over time (USAGE 4),
then certification should be a much easier experience. Thus, this usage
scenario represents the process of obtaining the appropriate safety
information, system and software design, justification of the design from
a safety perspective, and the method used for monitoring safety during
the development lifecycle for the purpose of submitting this information

to the certificatrion authorities.

If the safety information is captured in a UML model, then this would easily facilitate the

above mentioned usage scenarios. UML models are developed for software systems

anyways, so using it to facilitate the usage scenarios and address the challenges in

software safety fits well (this is rationalized further in section 2.6). Therefore, a UML

model can serve a central role as shown in Figure 3.
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Monitor

Safety Engineers Record

Airworthiness Engineers UML Model )\

Software Engineers

Certification Authorities
(314 Parties)

Figure 3: A UML model serves as a central role for stakeholders.

As Figure 3 shows, a UML model can serve as a central role and a key element in the
communication of safety information across engineering groups. Software engineers
record safety information in UML models. Then, safety and airworthiness engineers can
monitor the safety information by automatically generating reports about it, using a tool,
from the UML model. Therefore, they need not understand the UML model because any
tool that extracts the safety information from the model can format it in a model-
independent way. When it is time to certify the system, certification authorities can get
the safety and certification information from the UML model, again, using a tool which
could produce the safety and certification information in a format that is suitable for

submission to the certification authorities.
2.5 Traceability Requirements

Proper traceability is key in the development of large systems, and it is even more
important for the development of safety-critical systems. For example, the airworthiness
DO-178B standard [4] requires traceability across the development lifecycle. In fact, it
requires that at least the software design be traceable to the original high-level
requirements for all software of level D or higher. Therefore, it is important to be able to

trace design elements to the requirements.

Another important traceability requirement relates to the analysis of safety requirements.
For example, the first requirement in Table 2 states: A submarine detection aircraft may

only release a sonobuoy while it is flying above water. This can be rephrased to: The
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ordnance (sonobuoy release) subsystem shall not release a sonobuoy if it is requested to
do so when the aircraft is not flying above water. This results in identifying the following
event of interest: The ordnance subsystem is requested to release a sonobuoy when the
aircraft is not flying above water. Furthermore, this also results in identifying a reaction
to this event, namely: The ordnance subsystem verifies that the aircraft is flying above
water, and forbids the sonobuoy from being released if it is not flying above water. Since
reactions are caused by events, it is important to ensure that every reaction is traceable to

the appropriate events
In summary, two important traceability requirements are:
1. Tracing software design elements to software requirements.

2. Tracing software reactions to software events.
2.6 UML APPROACH

Because the results of safety assessments are an important part of software developers’
work, they need to be appropriately communicated and implemented in the technical
designs. Furthermore, certification information about the software is required for the
certification authorities. It is appropriate and useful to be able to represent the results of
safety assessments and certification information in UML diagrams because it is the
standard modeling language used by software developers throughout the world [2].
Currently, there does not seem to be a comprehensive UML profile specifically targeted
towards modeling safety-related concepts driven from safety standards (see section 4). If
it existed, such a UML profile would help bridge the gap between the system’s safety
assessment (performed by safety engineers) and the software design (performed by
software engineers). The safety engineers need not necessarily understand the UML
profile, but they will need the information that is reprented by the profile. See Figure 4

for an illustration.
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produce a list of safety requirements UML to model their systems, which
and certification information must conform to the safety and

Safety and Airworthiness engineers Software and system engineers use
certification requirements

Use Unified
Modeling
Language

(UML)

Generate Safety
Requirements
and Certification
Information

Information Flow

1
Safety Engineers An appropriate UML safety profile bridges this gap by allowing software and Software Engineers
Airworthiness Engineers system engineers to include safety requirements and certification System Engineers
information in their UML models. In turn, they may discover additional safety

or certification information that are communicated back to the safety and

airworthiness engineers.

Figure 4: Role of a UML safety profile in the development process.
2.6.1 Disadvantages
Using this approach has the following disadvantages:

1. Is an extra step to the development process: Most software development
processes do not require documenting safety-related properties on design models.
Therefore, this approach will be an additional step to most software development

processes.

2. Requires that software engineers consider a topic they are likely to have little
experience in — safety: Safety is a specialized topic of software engineering. Since
software engineers may come from backgrounds where they were developing
non-safety-critical systems, they may not have sufficient knowledge and

experience in this topic.
2.6.2 Advantages
Using this approach has the following advantages:

1. Results in safer and higher quality software: By representing safety requirements
and constraints on UML diagrams, the engineers are forced to consider them and

use them to design and implement the systems.
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2.

Enables the possibility of reusing the results of a safety assessment through
software models: Performing a safety assessment, like a risk assessment, is costly
and time consuming. Therefore, representing the results of a safety assessment on
UML diagrams allows it to be reused whenever the design is reused instead of
reassessing the new or modified system from scratch. This is important when an

organization is designing similar systems.

Improves communication between safety engineers and software engineers:
Software developers will have a better understanding of the safety engineers’
requirements. This will allow software engineers to better understand and review
the results of the safety assessment. As a result, software engineers will be able to

provide feedback regarding the safety assessment.

Improves documentation of safety-related properties: Appropriate documentation
is required by many standards including the MIL-STD-498 [11], and its
replacement IEEE/EIA 12207 [12], which is one of the most referenced software
development documentation standards. Documenting the results of a safety

assessment in UML provides a step in that direction.

Increases participation of software engineers in the safety assessment: This
approach drives software engineers to think about the results of the safety
assessment because it is represented in UML. Therefore, they will implicitly
perform additional analyses as part of their job to design and implement the
software. As a result, they may discover additional safety requirements and
constraints, which can then be communicated back to the safety assessment

process.

Increases level of formalism: The results of the safety assessment will be
represented using methods that are more formal than plain text English. This helps
introduce the benefits of using formal methods, such as being able to detect
conflicting or ambiguous requirements. In addition, this will make it easier for
tools to use this information to help the engineers design, implement, and verify

systems.
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7.

10.

11.

Maps safety-related properties to source code: This approach allows safety-
related properties to be represented in UML models. In the software development
process, the source code is directly traceable to UML models. Therefore, this
approach allows safety-related properties to be mapped to the source code through
the UML designs. This improves traceability, which is often required by many
standards and is critical in large programmes.

Lower cost to use since UML is known in the software community: A UML safety
profile builds on the engineers’ knowledge of UML. Therefore, there is no
additional cost to train the software engineers to use UML. They only need to be
aware of the UML profile specifics and how it builds on top of UML. This should
be inexpensive as software engineers should already be experienced with UML

and the tools that support it.

Emphasizes a “develop in safety” culture: In her book on software safety [1],
Nancy Leveson stressed the need for a “develop in safety” culture in
organizations. This UML approach emphasizes Leveson’s point as it involves the

software engineers and developers in the safety aspects of the software.

Supports the MDA initiative: The MDA initiative [3] is a promising approach
that, in conjunction with UML, seems to be the future of software development. It
argues that design should be modeled appropriately first, which then allows the
engineers to forward-generate the implementation (e.g. software code) from the
high-level designs using appropriate computer tools. This is a very active research
area that is projected to be the future of the development process as it will
increase the level of automation. Such a UML profile allows describing the safety

aspects in the software model, which would in turn be used in the MDA approach.

Makes life of engineers easier: For the engineers, this means that relevant safety
information will be represented in a language that they understand, namely UML,
rather than having to read other informal documents that risk being ambiguous.
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2.6.3 Requirements of an Effective UML Profile

Based on the previous discussion, we identify that the requirements of an effective UML

profile are:

REQ 1

REQ 2

REQ 3

REQ 4

The profile shall provide insight into the software’s compliance aspects with
airworthiness, and such evidence of compliance shall be obtainable at low
costs: In essence, the cumulative cost of training the engineers to use the
profile and extracting regular software compliance reports for progress
tracking shall be less than the cost of collecting software compliance

evidence when the profile is not used.

The profile shall allow the software engineers to relate technical solutions
to the specific airworthiness requirements: Therefore, it shall be possible to
exactly determine the software design and source code units that are

responsible for satisfying each airworthiness requirement.

The profile shall have clear language semantics with respect to safety and
airworthiness: For example, the profile shall not assume that safety is
simply reliability or some other concept — it shall recognize safety and
airworthiness as a separate quality domain. This will enable better
representation of requirements as well as improve the software engineers’
understanding and ability to distinguish between safety and other concepts

such as reliability.

The profile shall model technical solutions using machine-readable
extension mechanisms that increase the level of formalism: In other words,
specific domain stereotypes, tags, and constraints shall be preferable to
general purpose comments. In addition, the extensions shall allow software
engineers to identify various kinds of technical solutions. Examples of
technical solutions include safety monitors and multiple-version dissimilar

software. This is particularly useful when developing software under high
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REQ5

REQ 6

REQ 7

software airworthiness (see section 2.2) levels when formal methods are

more likely to be used, and when models are reused across projects.

The profile shall support, or be easily scalable to, developing software
under high airworthiness levels: Different airworthiness levels have
different compliance requirements. For example, level C and above require
tracing source code to low-level requirements and tracing low-level
requirements to high-level requirements, whereas levels D and E do not
have such requirements [4]. As another example, high software levels
require checking that requirements are compatible with the target computers
on which the software is deployed. Refer to annex A in [4] for a list of

objectives per software level.

The profile shall favour language semantics that are meaningful to both
software engineers and airworthiness engineers for concepts that both
engineering groups need to discuss: Therefore, it will improve

communication between the two groups.

The profile shall favour representing airworthiness requirements using
machine-readable extension mechanisms: Thus, it shall define some
airworthiness-specific ~ stereotypes, tags, and constraints that are
parameterizable. Again, this is particularly useful when developing software
under high-software levels because that is when formal methods are more
likely to be used due to their ability to prove correctness. In addition, this is

also useful when models are to be reused across projects.
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3 SAFETY-RELATED CONCEPTS

This section describes airworthiness-related concepts that were extracted from the
airworthiness standard, RTCA DO-178B [4]. Since airworthiness is a subset of safety
(see end of section 2.2), all of the identified airworthiness-related concepts are safety-
related concepts. This does not necessarily mean that those concepts are the only ones
needed for all safety-critical applications including transportation, medical, nuclear, and
other industries. However, they should be enough for any development under the

airworthiness standard [4], which is the goal of this research.

Since airworthiness is a subset of safety, airworthiness-related concepts will be referred
to with their general term, safety-related concepts, in the remainder of this document.
This is to emphasize that they are not restricted to airworthiness even though they

resulted from analysing the airworthiness standard.

Ensuring software safety has many concerns that impact other qualities of service. As a
result, the extracted safety-related concepts form a long list of concepts related to many
concerns and qualities of service. Hence, it is important to group concepts that are most
related together, which will also improve clarity and give the reader the general goal of

each concept. For example, consider the following safety-related requirement:

An aircraft shall ensure that its landing wheels are deployed when the
aircraft’s altitude is less than 100 meters

The following concerns are relevant for designing and implementing the safety-critical

software assigned with the above requirement:

1. It must be safe so that the aircraft does not hit the ground with the landing wheels
not deployed (i.e. when they are in their compartments). Software safety is the
ability of the software to execute within its system context without contributing to

hazards, which may lead to accidents or losses [1].
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2.

It must be reliable so that it correctly implements the requirement by ensuring
that landing wheels are deployed when the altitude is less than 100 meters.
Software reliability is the capability of the software system to offer continued
service, or more specifically to maintain a specified level of performance when

used under specified conditions [5].

It must have high integrity by providing precise and accurate results so that an
altitude of less than 100 meters is not interpreted to be larger than 100 meters (and
thus causing the aircraft not to deploy its wheels when it should). Software
integrity is the capability of the software system to produce the expected quality
of service of the correct functionality delivered by the software [5].

It must have high performance capabilities, so that the landing wheels are
deployed when the aircraft’s altitude drops to less than 100 meters even when it
does so quickly in a fast descent such as the case in an emergency. Software
performance refers to the timeliness aspects of how software systems behave, and
sometimes it refers to the relationship between the services provided and the

utilization of resources [5].

It must provide concurrent control so that the landing wheels are deployed even if
pilot is already using the system to perform other functionality through the user
interface. Software concurrency refers to the concurrent and temporal consistency

of data and software elements [5].

It must be certifiable as vendors of such safety-critical systems often require them
to be certified by an external third-party certification authority. Certification is the
legal recognition by the certification authority that a product, service, organization

or person complies with the requirements [4].

It must be properly designed so that non-critical software, such as a language
dictionary, is decoupled from highly safety-critical software, such as the software
interfacing with the landing wheels and the altitude sensors, to ensure that

software bugs in non-critical software do not cause the critical software to fail.
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8. It must be independent of the various software configurations that may be loaded
into the system to configure it such as English and French dictionaries to
customize the user interface. Software configuration, which is not the same as
software configuration management, is the concept of having multiple software
configurations or settings, each of which has a different set of functionalities and
behaviours than the others.

Notice that while the concerns above describe various software quality categories, they
all contribute to safety in some way. With that in mind, it is important to classify all of
the extracted safety-related concepts into quality categories that best describe each related
group of concepts. Those categories help the reader have a better understanding of the
general goal of each concept, and they provide guidance on what to look for when

attempting to describe a specific concept.
3.1 Concept Identification and Categorization

The selected standard, the airworthiness RTCA DO-178B standard [4], was analysed and
a list of safety-related concepts was extracted. Those safety-related concepts are not
solely safety concepts, and hence the rationale behind using the term “safety-related
concepts” rather than simply “safety concepts” — in fact, many of those concepts are
primarily non-safety concepts, such as reliability concepts, fault-tolerance concepts,
certification concepts, and others. The “primarily” keyword identifies the category with
which a concept is most associated. For example, fault tolerance is associated with
reliability and, therefore, is a primarily reliability concept that also affects safety in some

way.

To clarify and group related concepts together, the extracted safety-related concepts are

classified in this research into the following safety-related quality categories:

1. Primarily safety concepts: The concepts listed in this category are software
concepts that describe the software’s safety aspects in the context of the system in
which it is used. Software safety is the ability of the software to execute within its

system context without contributing to hazards, which may lead to accidents or
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losses [1]. Examples of these concepts include safety-monitoring techniques and
software levels. These concepts are listed and described in section C.1 of
Appendix C.

2. Primarily reliability concepts: The concepts listed in this category are software
concepts that describe the software’s reliability aspects. However, they also
impact the safety of the software because of the relationship between software’s
reliability and safety — reliability measures the probability of failure, whereas
safety measures the consequences of those failures [5]. Software reliability is the
capability of the software system to offer continued service, or more specifically
to maintain a specified level of performance when used under specified conditions
[5]. Examples of primarily reliability concepts include exception handling and
fault tolerance. These concepts are listed and described in section C.2 of

Appendix C.

3. Primarily integrity concepts: The concepts listed in this category are software
concepts that describe the software’s integrity aspects. However, they also impact
the safety of the software because of the relationship between software’s integrity
and safety. Software integrity is the capability of the software system to produce
the expected quality of service of the correct functionality delivered by the
software [5]. Examples of primarily integrity concepts include accuracy and
precision: Inaccurate data may cause the safety-critical system to behave in a non-
safe way. As an example, consider an aircraft the needs to know when to deploy
the landing wheels — it must have an accurate value of the altitude so that it
deploys the landing wheels when it should. These concepts are listed and
described in section C.3 of Appendix C.

4. Primarily performance concepts: The concepts listed in this category are software
concepts that describe the software’s performance aspects. However, they also
impact the safety of the software because of the relationship between software’s
performance and safety. Software performance refers to the timeliness aspects of

how software systems behave, and sometimes it refers to the relationship between
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the services provided and the utilization of resources [5]. In this document,
performance concepts include schedulability and time concepts. Examples of
primarily performance concepts include scheduling strategies (e.g. round robin,
rate monotonic) and time-related (e.g. filters) functions. For example, an aircraft’s
scheduling software must schedule safety-critical tasks with priorities higher than
non safety-critical tasks. These concepts are listed and described in section C.4 of

Appendix C.

5. Primarily concurrency concepts: The concepts listed in this category are software
concepts that describe the software’s concurrency aspects. However, they also
impact the safety of the software because of the relationship between software’s
concurrency and safety. Software concurrency refers to the concurrent and
temporal consistency of data and software elements [5]. Examples of primarily
concurrency concepts include multi-tasking and active software components,
which may be safety-critical. These concepts are listed and described in section
C.5 of Appendix C.

6. Primarily certification concepts: The concepts listed in this category are software
concepts that describe the software’s certification aspects. However, they also
impact the safety of the software because of the relationship between software’s
certification and safety. Certification is the legal recognition by the certification
authority that a product, service, organization or person complies with some
requirements. Such certification comprises the activity of technically checking the
product, service, organization or person and the formal recognition of compliance
with the applicable requirements by issue of a certificate, license, approval or
other documents as required by national laws and procedures [4]. Examples of
primarily certification concepts include certification requirements (e.g. specifying
hardware/software interfaces) and software traceability. These concepts are listed
and described in section C.6 of Appendix C.

7. Primarily design concepts: The concepts listed in this category are software

concepts that describe the software’s design aspects. However, they also impact
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the safety of the software because of the relationship between software’s design
and safety. These generally impact areas such as the quality, clarity, and
maintainability of the model and the source code. The impact of these decisions
on the use of the end product is usually less defined than those of other quality
categories. Examples of primarily design concepts include software coupling and
software complexity. These concepts are listed and described in section C.7 of

Appendix C.

8. Primarily configuration concepts: The concepts listed in this category are
software concepts that describe the software’s configuration aspects. However,
they also impact the safety of the software because developing multiple-
configuration software is more challenging than developing single configuration
software due to the changing behaviour. As a result, it is more challenging to fully
predict the behaviour of the software, especially when the user of the software can
change the configuration (e.g. by changing memory bits or loading customized
look up tables). Software configuration, which is not the same as software
configuration management, is the concept of having multiple software
configurations or settings, each of which has a different set of functionalities and
behaviours than the others. Choosing the desired software configuration is usually
performed by the user rather than the software developer. Examples of primarily
configuration concepts include option-selectable software and user-modifiable

software. These concepts are listed and described in section C.8 of Appendix C.

An 8-dimensional space is needed to fully describe the relationships across all safety-
related quality categories identified above. For simplicity, let us assume that reliability,
integrity, performance, concurrency, certification, design, and configuration concepts sets
form mutually exclusive sets. If we fix values for 6 dimensions, then we can arrive at a 2-
dimensional view that shows the relationship between safety and each of the other
identified safety-related quality categories independently of their cross relationships. This
view is somehow simplistic but it is useful for illustration purposes. It is shown in Figure

5 below.
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Figure 5 shows that the identified quality categories are related to safety. In other words,
there exist concepts that are present in more than one quality category, one of which is
the safety quality category. All of the concepts extracted from the airworthiness standard
belong to at least the safety quality category. In addition, some of those concepts also
belong to categories other than the safety category. For example, a “shared resource” is a
“concurrency” concept because multiple flows of control may be competing for access to
it. This will also impact the performance aspects of the software. Moreover, it is also
relevant to the “design” aspects of the software because the way it will be used is a result
of design decisions. Finally, all of these aspects might impact the “safety”-aspects if one
or more of the competing flows of control are executing a safety-critical software section.

Purely Purely Purely Purely
Reliability Integrity Performance Concurrency
Primarily Primarily Primarily Primarily
Reliability Integrity Performance Concurrency
Primarily Safety
Primarily Primarily Primarily
Certification Design Configuration
Purely Purely Purely Safety-Related Concepts
Certification Design Configuration (concepts of interest)

Figure 5: Relationship between safety and other safety-related quality categories

assuming that those categories form mutually exclusive sets.
Regardless of its category, each concept can be one of three different kinds:

1. It can be a “safety entity”, which is software that may contribute, positively or
negatively, to the overall safety level of the system or software. Furthermore, a
safety entity can interact with another safety entity. An example of a safety entity
would be identifying a particular software component as a fault monitor. A fault
monitor (one safety entity) is used to monitor particular functions (other safety
entities) to detect faults that could occur and cause the system to enter a
hazardous state. If a fault monitor detects such a fault, it could then perform

appropriate actions to prevent the system from entering hazardous states.
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Therefore, the fault monitor is a safety entity whose purpose is to increase the
overall level of safety of the system.

2. It can be a “safety attribute”, which is a concept that describes a safety property,
such as the safety level or impact on safety, of safety entities. For example, the
fault monitor described above may be used to detect specific faults or unusual
results and behaviours. For example, what if a particular software function that is
used to indicate the altitude of the aircraft provides output that says that the
aircraft has a negative altitude? This is clearly an incorrect result. Assume that a
fault resulting in this scenario is detectable by the fault monitor described earlier.
In this case, this specific fault can be used as a safety attribute of the fault
monitor. In other words, the complete specification of the fault monitor safety
entity will explicitly state through one of its safety attributes that it can detect this
fault.

3. It can be a “safety method”, which is an activity, technique, or a process that may
measure or impact, positively or negatively, the safety level of safety entities. For
example, a scenario that describes the fault monitoring example above covers
many concepts such as fault monitoring, faults, and possibly many others that are
related to the ability of monitoring software against faults that they may cause.
Therefore, all that discussion is centred around one concept, namely “fault
monitoring”. Thus, that scenario describes one “safety method” that is fault

monitoring.

The use of the word “safety” in safety entity, safety attribute, and safety method only
means that those concepts are safety-related. It does not assume that they increase the

level of safety.

Figure 6 (a) formalises those definitions through a conceptual conceptual model. Notice
that each safety entity is described through safety attributes. Safety entities may interact
with each other, and they may implement safety methods (usually those that positively

impact safety). Safety methods may measure or impact, positively or negatively, the
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safety level of safety entities. Figure 6 (b) describes the fault monitoring example
presented above, which is an instance of the conceptual model in Figure 6 (a).

interacts
with 1 faulMonitor 1

* :SafetyEntity
described
through monitors | 1 *
SafetyEntity SafetyAttribute 1

* * Imple-
* ments|

recognizes

monitoredComponent causes Fault

* $ * :SafetyEntity 1 * :SafetyAttribute
) measures or
implements

impacts safety of 1
* % 1 | improves safety of

g faultMonitoring
SafetyMethod SafetyConcept 1% :SafetyMethod

(a) Model (b) Fault monitoring example
Figure 6: Relationship across safety entities, attributes, and methods.

The safety-related concepts for each category are listed in Appendix C. They are
described according to the context in which they appear within the airworthiness
standard, RTCA DO-178B [4]. Those concepts are then refined into a terminology that is
more suitable for modeling software. The refined concepts, along with their descriptions

and their inter-concept relationships, are presented in section 3.2.
3.2 Concept Refinement

Section 3.1 and Appendix C introduced 65 safety-related concepts that were found
relevant for developing airworthiness-compliant software. They were then grouped
according to their software quality category. In this section, those concepts are refined for

the following reasons:

1. Removing duplicate concepts: In some instances, seemingly different concepts
appeared in the airworthiness standard where, in reality, they can be represented
using a single concept or term. This is because the same fundamental software
concept can appear in different forms in airworthiness-related applications.
Examples are presented below.

Consider, for example, the two following primarily reliability concepts exactly as

they appear in the airworthiness standard: Multiple-Version Dissimilar Software
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and Software Redundancy (see Appendix C.2 for definitions). They revolve
around the same software concept, which is that of using multiple software
components that have the same functionality but different implementations. It
would be unnecessarily confusing to use two different terms to denote the same
concept. As a result, a single refined term is provided to model both of those
concepts, which is the “replicated” concept to denote software replication or

redundancy.

2. Grouping concepts: Some concepts are in fact examples of a more general
concept.
Consider the following concepts: Safety Monitoring, Loadable Software
Indicator, Safeguard, Safety Feature (primarily safety concepts defined in
Appendix C.1); Error Detection, Fault Detection, Fault Containment (primarily
reliability concepts defined in Appendix C.2); Integrity Check, Software Protector
(primary integrity concepts defined in Appendix C.3); Error Prevention
(primarily design concept defined in Appendix C.7). They are applications of a
single software-concept that is “Monitor”. A “monitor” monitors the activity of

other software components to detect unusual, potentially hazardous, events.

3. Precise definition of details: Presenting each concept is a single entry in a list may

be misleading by giving the impression that it is the smallest level of detail. In
reality, each concept has many attributes that describe it, with each attribute
describing a single aspect of the concept. Examples are presented below.
For example, “Safety Requirement” is identified as a (primarily safety) safety-
related concept (Appendix C.1). However, it does not mention the specification of
safety requirements. When refining the “Safety Requirement” concept, we give it
an attribute called “specification” that can be used to specify the details of the
requirement. Therefore, a concept’s attribute is used to describe a specific aspect
or detail of it.

The rest of this section shows how the concepts and their relationships have been

formalized under the form of a conceptual model, i.e., a UML class diagram (section
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3.2.1), describes the template we use to specify the concepts (section 3.2.2), and then
actually specifies the concepts (section 3.2.3). Appendix D provides additional details on

the relationships between concepts.
3.2.1 Conceptual Model

Before describing the details of the concepts, we introduce a conceptual model to list the
refined concepts and formalize the relationships among them (Figure 7—its elements are
further described in section 3.2.3). Thus, the motivations for defining a conceptual model

for the refined concepts are:

1. Itintroduces a high-level presentation of the concepts and their relationships, thus
leaving out most attributes that are considered low-level details. This helps the

reader better understand the concepts and their relationships.

2. It formalises the relationships across the concepts, for instance by specifying

multiplicities on relationships.

3. It makes the definition and the use of the UML profile’s extensions (stereotypes,
tagged values, and constraints) in section 5 easier because the refined concepts are
designed to be more appropriate from a modeling point of view. Thus, many of
the profile’s extensions refer back to the refined concepts. In fact, the profile’s
stereotypes and tagged values are based on the refined concepts, their attributes,
and their relationships.

3.2.2 Concept Details

In this section, we describe the template we use in section 3.2.3 to define the concepts in

Figure 7. Each of the following describes one characteristic of a concept:

1. Definition: This presents a definition for the concept. It describes the concept and

gives its general purpose.
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Figure 7: Meta-model for the refined safety-related concepts.

2. Attributes: This lists and describes the attributes for the concept. Each attribute
describes a specific aspect of the concept. A name, description, and examples are

provided for each concept.

3. Relationships: This lists and describes the relationships that the concept has with
other concepts. A name and a description, which includes the end multiplicities,

are provided for each concept’s relationships.

4. Original Safety-Related Concepts: This lists the original safety-related concepts,
which were extracted from the airworthiness standard, RTCA DO-178B [4], and
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presented in section 3.1 (and Appendix C), that this concept represents. Thus, this
information serves as additional justification for the concept, its attributes, and its

relationships.

The attributes of each concept are presented in a table. For example, the attributes of the

“Safety Critical” (section 3.2.3.10) refined concept are presented as follows:

Name Description Examples

Criticality Level Indicates the level of criticality (e.g. | For RTCA DO-178B [4]:
airworthiness level, Safety Integrity | “A”, “B”, “C”, “D”, “E”

Level (SIL)), on some pre-defined | For IEC 61508 [24]:
scale, such as the software level or | «g|L 1”7, “SIL 2", “SIL

the failure condition category 3", “SIL 4"
.. etc
Confidence Level Indicates the level of confidence, on | “High”, “Medium”,

some pre-defined scale, that the | “Low”, *“80%”, “50%”,

criticality level is satisfied ... etc

Each row describes a single concept attribute. The first column (Name) specifies the
name of the attribute, the second column (Description) describes the attribute, and the

third column (Examples) provides examples for the value of the attribute.

Similarly, the relationships of each concept are presented in a table. For example, the
relationships of the “Safety Critical” (section 3.2.3.10) refined concept are presented as

follows:

Name Description

Triggers Identifies zero or more “Event” instance that the “Safety Critical”

instance triggers

Each row describes a single concept relationship. The first column (Name) specifies the
name of the relationship, and the second column (Description) describes the relationship.
The description of the relationship identifies the concept at the other end of the

relationship as well as its multiplicity.
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3.2.3 Concepts Specifications

The refined concepts are listed below in sections 3.2.3.1 to 3.2.3.27 in an order, different
from the alphabetical order, that we think will help the reader better understand them and
their relationships. For example, concept A is listed before concept B if concept B

references or depends on concept A.

Some of the concepts’ attributes presented below are specific to the developed system or
the development project. This is common for attributes whose type is an enumeration. In
such cases, this research does not attempt to define all the possible values. However, it
does present examples on what they could be. It is up to the software developers to define
the enumeration values that are relevant to the system being developed.

The term “design element” is used to indicate “a portion of the design” such as a class,
operation, collaboration (i.e. diagram), or relationship between classes. The design

element can be either hardware or software.
3.23.1 Requirement

Definiton:
The “Requirement” concept specifies a requirement that must be met. The
requirement need not necessarily be a safety requirement — it can be any functional
or non-functional requirements. It may be traceable to another requirement, which
is often a higher level one. This enables the concept of requirements traceability,

which is a key element in the software development process.

Attributes:
Name Description Examples
ID A unique ID for this requirement “REQ 17, “REQ 27,
“FREQ 1”7, “SREQ 107,
.. etc
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Name

Description

Examples

Kind

The kind of this requirement

“Functional”,  “Safety”,
“Reliability”, “Integrity”,
“Performance”,
“Concurrency”,
“Certification”, “Design”,
“Configuration”,

“Derived”, ... etc

Specification

The

specification

actual requirement’s

“Radar Output is Poisson
with Lambda = 20 ms”,
“Levels of Code Nesting

<57 ...etc

Relationships:

Name

Description

Is Requirement Of

Identifies zero or more, usually higher-level, “Requirement”

instances to which this “Requirement” instance can be traced

Original Safety-Related Concepts:

Safety Requirement, Certification Requirement, Derived Requirement, Design by

Contract
3.23.2 Deviation

Definiton:

The “Deviation” concept identifies a design deviation from a plan, standard, or

requirement (3.2.3.1). Deviations are important to note as they must be submitted to

the certification authorities according to the airworthiness standard RTCA DO-

178B [4].
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Attributes:
Name Description Examples
Kind The kind of this deviation. This | “Using Recursive
generally specifies the deviation | Algorithm”, “Using
action or decision Dynamic Memory",
etc
Explanation Specifies how, or why, this is a | “Kalman filter is

deviation from the reference

requirements  (see  relationships

recursive o) using

recursive algorithm for

below) the implementation”,
etc
Relationships:
Name Description
References Identifies one or more “Requirement” (3.2.3.1) instances from

which the “Deviation” instance deviates

Original Safety-Related Concepts:

Deviation
3.2.3.3  Style

Definiton:

The “Style” concept is an abstract concept indicating an implementation or a

behavioural style. It does not capture any information, but it serves as a base class

for other concepts.

Attributes:
None

Relationships:

None
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Original Safety-Related Concepts:

Implementation Style, Time-Related, State-Related

3.2.3.4

Definiton:

ImplementationStyle

Decermber 2006

The “ImplementationStyle” concept identifies a style that is used to implement a

design. A development standard should define which styles are permitted and which

ones are not.

Attributes:
Name Description Examples
Kind The kind of this implementation style | “Recursive”, “Unbounded
Loop”, “Compacted
Expression”,  “Dynamic
Memory”, “Data Alias”,
.. etc
Parameters Describes additional details of the | “Dynamic memory
implementation style. It is generally | allocation frequency =
an expression whose meaning is | Poisson with Lambda =
dependent on the Kind of the | 15 seconds”, ... etc
implementation style
Explanation Specifies how this implementation | “Using dynamic memory

style conforms to, or deviates from,
the reference requirements (see

relationships below)

here because static
because 90% of the time
only 10% of the
maximum memory space
will be needed (which
would be required if static
memory is used). This
improves performance”,

.. etc
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Name

Description

Is Child Class Of

States that all “ImplementationStyle” instances are “Style”

(3.2.3.3) instances

References

ldentifies zero or more

“Requirement”

(3.2.3.1) instances

indicating that the “ImplementationStyle” instance conforms to or

deviates from

Original Safety-Related Concepts:

Recursion, Compacted Expression, Dynamic Memory, Data Alias

3.2.3.5

Definiton:

BehaviouralStyle

The “BehaviouralStyle” concept identifies and describes a behavioural style of a

design. A development standard should define which styles are permitted and which

ones or not..
Attributes:
Name Description Examples
Kind The kind of thie behavioural style “Time-Related”, “State-
Related”, ... etc
Parameters Describes additional details of the | “Number of state machine
behavioural style. It is generally an | states = 107, “Number of
expression  whose meaning is | state transitions = 207,
dependent on the Kind of the | “Frequency of  state
behavioural style changes = Periodic every
1 minute”, ... etc
Explanation Specifies how this behavioural style | “Frequency  of  state
conforms to, or deviates from, the | changes is less than the
reference requirements (see | maximum value permitted
relationships below) by REQ 237, ... etc
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Name

Description

Is Child Class Of

States that all “BehaviouralStyle” instances are “Style” (3.2.3.3)

instances

References

Identifies zero or more “Requirement” (3.2.3.1) instances
describing that the “BehaviouralStyle” instance conforms to or

deviates from

Original Safety-Related Concepts:
Time-Related, State-Related

3.2.3.6 Nature

Definiton:

The “Nature” concept describes the source for the design such as whether the actual

software is purchased to meet the requirements, whether it was previously

developed as part of another project or software system, or whether it is deactivated

and does not get executed.

Attributes:
Name Description Examples
Kind The kind of the software’s nature. It | “COTS”, “Deactivated”,
is the primary attribute that describes | “Previously Developed”,
the actual software represented by | ... etc
this concept
Explanation Specifies how the referenced | “This is a COTS software

requirements are met by the nature of | component purchased
this design (see relationships below) | according to document
number 1234567 to meet
requirements REQ 1 -
REQ 107, ... etc
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Name

Description

References

Identifies zero or more “Requirement” (3.2.3.1) instances that are

the reasons for the “Nature” instance’s existence

Original Safety-Related Concepts:

COTS Software, Deactivated Code, Previously Developed Software

3.2.3.7 Rationale

Definiton:

The *“Rationale” concept specifies that a specific design exists to support another

design element, or to fulfill specific requirements. It explicitly allows modelers to

trace the design to specific requirements (3.2.3.1).

Attributes:
Name Description Examples
Explanation Specifies how the design decision is a | “This class lists safe flight
solution  for  the referenced | paths for an aircraft,
requirements which is used to satisfy
safety requirements
SREQ 1, SREQ 2, and
SREQ 37, ... etc
Relationships:
Name Description
References Identifies one or more “Requirement” (3.2.3.1) instances that are

the reasons for the “Rationale” instance’s existence

Original Safety-Related Concepts:

Traceability
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3.2.3.8 Event
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The “Event” concept describes an event or action that may occur. An event may

impact safety by either causing or removing hazards. It may also be caused

internally by the system or it may be an external event. It does not need another

event to trigger it.

Attributes:
Name Description Examples
Kind The kind of this event “External”, “Internal”,...
etc
When Describes the conditions under which | “Event occurs when a
this event occurs. This may be | sonobuoy is released from
specified in a formal language the aircraft”, ... etc
Effect On Safety | Specifies the direction of its impact | “Positive”, “Neutral”,
Direction on safety, i.e. whether it removes | “Negative”, ...etc
some hazards, does not impact safety,
or causes additional hazards to occur.
Therefore, this attribute provides
qualitative information
Effect On Safety | Specifies the severity of its impact on | “+5”, “0”, “-5”, ... etc
Value safety. This is also used to quantify
the impact on safety, possibly be
identifying the effect of the event on
the number of hazards in the system.
Therefore, this attribute provides
guantitative information
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Name Description Examples

Effect on Safety | Identifies the context within which | “Aircraft is flying above
Context the “Effect On Safety Direction” and | water”, “Aircraft is on the
“Effect On Safety Value” attributes | ground”, “Aircraft is in
are valid. This attribute is necessary | autopilot mode”, ...etc

because understanding the context is

essential to safety [1]

Relationships:

None

Original Safety-Related Concepts:

Unsafe Action, Failure, Failure Condition, Fault, Error, Integrity Check
3.2.3.9  Reaction

Definiton:
The “Reaction” concept describes a reaction to one or more events (3.2.3.8) that
may occur. A reaction may impact safety by either causing or removing hazards. It
is an event (3.2.3.8) in itself, but it always occurs in response to other events
(3.2.3.8). It is a subclass of the event (3.2.3.8) concept to allow the possibility of

chain reactions (i.e. there could be a reaction for a reaction).

Attributes:
Name Description Examples
Kind Inherited from “Event” (3.2.3.8) See “Event” (3.2.3.8)
When Inherited from “Event” (3.2.3.8). In | See “Event” (3.2.3.8)

effect, this attribute filters out
situations when the reaction will not
be performed as a result of the event
(3.2.3.8) occurrence. This may be

specified in a formal language
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Name Description Examples
Effect On Safety | Inherited from “Event” (3.2.3.8) See “Event” (3.2.3.8)
Direction
Effect On Safety | Inherited from “Event” (3.2.3.8) See “Event” (3.2.3.8)
Value
Effect on  Safety | Inherited from “Event” (3.2.3.8) See “Event” (3.2.3.8)
Context

Relationships:

Name

Description

Is Child Class Of

States that all “Reaction” instances are also “Event” instances

Is Consequence Of

Identifies one or more “Event” (3.2.3.8) instances to which the

“Reaction” instance is a consequence of

Original Safety-Related Concepts:

Safety Response
3.2.3.10 SafetyCritical

Definiton:

The “SafetyCritical” concept represents a safety-critical design or element that

impacts safety. It also identifies the safety or airworthiness level of design elements.

Attributes:

Name

Description

Examples

Criticality Level

Indicates the level of criticality (e.g.
airworthiness level, Safety Integrity
Level (SIL)), on some pre-defined
scale, such as the software level or

the failure condition category

For RTCA DO-178B [4]:
l‘Al], “B’l’ “C”, llDl], “E”

For

IEC 61508 [24]:

“SIL 17, “SIL 27, “SIL

37, “SIL 4

.. etc
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Name Description Examples

Confidence Level Indicates the level of confidence, on | “High”, “Medium”,
some pre-defined scale, that the | “Low”, *“80%”, “50%”,

criticality level is satisfied ... etc

Relationships:

Name Description

Triggers Identifies zero or more “Event” (3.2.3.8) instance that the

“SafetyCritical” instance may trigger

Original Safety-Related Concepts:
Safety-Critical, Software Level, Level of Confidence, Failure Condition Category

3.2.3.11 Partition

Definiton:
The “Partition” concept identifies a design partition that resulted from separating
some design element from other design elements. Partitioning is a technique for
providing isolation between functionally independent entities to contain and/or
isolate faults and potentially reduce the effort of the verification process. It prevents
specific interactions and cross-coupling interference [1]. Its key advantages are in
separating safety-critical design elements that have different safety levels, so that
the failure of the less critical entity does not result in the failure of the more critical

entities.
Attributes:
Name Description Examples
Explanation Provides further details on the | “Partitioned away from a

reasons for the partitioning software component with
a higher airworthiness

level”, ... etc
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Relationships:

Name Description

References Identifies zero or more “Requirement” (3.2.3.1) instances that

specify the reasons for the “Partition” instance’s existence

Is Partitioned From Identifies one or more “Safety Critical” (3.2.3.10) instances from

which this “Partition” instance was partitioned

Original Safety-Related Concepts:

Partitioning
3.2.3.12 Handler

Definiton:
The “Handler” concept identifies a design element that handles events (3.2.3.8) that
are detected by a monitor (3.2.3.13). A handler handles the events (3.2.3.8) by

performing specific reactions (3.2.3.9) in response to the events (3.2.3.8).

Attributes:
None

Relationships:

Name Description

Handles Identifies one or more “Event” (3.2.3.8) instances that the

“Handler” instance can handle by performing certain reactions

Performs Identifies one or more “Reaction” (3.2.3.9) instances that the

“Handler” instance performs to handle events

Original Safety-Related Concepts:
Exception Handling, Fault Containment, Immunity, Software Protector, Safety

Feature
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3.2.3.13 Monitor

Definiton:
The “Monitor” concept identifies a design element that monitors other safety-
critical (3.2.3.10) design elements for events (3.2.3.8). Detected events (3.2.3.8) are

passed to handlers (3.2.3.12) for processing, which in turn invoke the appropriate

reactions (3.2.3.9).
Attributes:
Name Description Examples
Kind The kind of this monitor, indicating | “Safety”,  “Reliability”,
the quality of service that it monitors | “Integrity”,
“Performance”,
“Concurrency”,

“Configuration”,... etc

Relationships:

Name Description

Monitors Identifies one or more “Safety Critical” (3.2.3.10) instances that

the “Monitor” instance monitors for events

Detects Identifies one or more “Event” (3.2.3.8) instances that the

“Monitor” instance detects

Notifies Identifies zero or more “Handler” (3.2.3.12) instances that the

“Monitor” instance notifies when it detects events

Original Safety-Related Concepts:
Safety Monitoring, Error Detection, Fault Detection, Fault Containment, Error
Prevention, Integrity Check, Software Protector, Loadable Software Indicator,

Safeguard, Safety Feature
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3.2.3.14 Simulator

Definiton:
The “Simulator” concept identifies a design element that mimics the behaviour,
usually in test mode, of another design element that will be used in the real system.
For example, software simulators are common for hardware elements or other
subsystems (hardware or software). Simulators are often used in developing large
systems, they make the testing experience easier and more cost effective, and they

play a key role in system integration labs [1].

Attributes:
Name Description Examples
Parameters Specifies which behaviours are | For a communication
simulated and how subsystem simulator (e.g.

Radio Frequency (RF)):
“Messages received as
Poisson with Lambda =
100ms”, “Message loss
frequency is Poisson with
Lambda = 250 messages”,

.. etc

Relationships:

Name Description

Simulates Identifies one or more “Safety Critical” (3.2.3.10) instances that

the “Simulator” instance simulates

Original Safety-Related Concepts:

Simulator
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3.2.3.15 Strategy

Definiton:

Decermber 2006

The “Strategy” concept describes an approach used to achieve a set of

requirements. This approach is a design decision that relates to some category (see

Kind attribute below).

Attributes:
Name Description Examples
Kind The kind of this strategy “Safety”,  “Reliability”,
‘Integrity”,
“Performance”,
“Concurrency”,
“Certification”, “Design”,
“Configuration”,
“Scheduling”, ... etc
Parameters Specifies the  strategy  policy | For a scheduling strategy:
parameters “Round Robin”, “FIFO”,
“LIFO”, ... etc
Relationships:
Name Description

Describes Design Of

Identifies one or more “Safety Critical” (3.2.3.10) instances that is

designed according to a strategy described by

instance

the “Strategy”

Original Safety-Related Concepts:

Safety Strategy, Scheduling Strategy
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3.2.3.16  Formalism
Definiton:

The “Formalism” concept indicates that formal methods were used to develop, or

prove the correctness, of some design element.

Attributes:
Name Description Examples
Methods Identifies the formal methods that | “Natural Deduction”,
were used “Linear Logical
Framework (LLF)”,
etc

Relationships:

Name Description

Describes Formalism | Identifies one or more “Safety Critical” (3.2.3.10) instances that
Of are designed according to some formal method as described in the

“Formalism” instance

Original Safety-Related Concepts:
Formal Method

3.2.3.17 Complexity

Definiton:
The *“Complexity” concept describes the complexity of a design element.
Complexity aspects, such as coupling between entities or complexity of a single

entity, can be measured through a variety of measures.
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Attributes:
Name Description Examples
Measure Identifies the kind of the measure that | “Level of Nested Calls”,
is used to quantify the complexity “Conditional Structures”,
“Unconditional
Branches”, “Number of
Entry/Exit  Points  of
Code”, “Big O”, ... etc
Value An expression specifying the value, | “n?”, “log n”, “25”, ... etc
or the permitted range, of the
measure
Relationships:
Name Description
Describes Identifies one or more “Safety Critical” (3.2.3.10) instances for

Complexity Of

which there is a measure of complexity

Original Safety-Related Concepts:

Complexity, Coupling
3.2.3.18 Interface

Definiton:

The “Interface” concept describes an interface between design elements. Interfaces

are common between subsystems of the same system, between the system and some

other external system, between software and hardware, and other situations.

Attributes:

Name

Description

Examples

Is Between Hardware
And Software

Indicates whether the interface is

between hardware and software

“True”, “False”
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Name Description Examples
Protocol ID Identifies the protocol used “MIL STD 1553” [25],
“Ethernet”, “CORBA”, ...
etc
Input Function | Specifies the expected input function | “Poisson with Lamba =
Parameters and/or its frequency 20ms”, “Periodic every 1
second”, ... etc
Output Function | Specifies the expected output | “Poisson with Lamba =
Parameters function and/or its frequency 20ms”, “Periodic every 1
second”, ... etc
Relationships:
Name Description

Is Interface For

Identifies one or more “Safety Critical” (3.2.3.10) instances that

the “Interface” instance acts as an interface for

Original Safety-Related Concepts:

Hardware / Software Interface

3.2.3.19 Concurrent

Definiton:

The *“Concurrent” concept identifies a design element that participates in a

concurrency model. There are several possible roles that the design element can

assume in a concurrency model, such as being a resource or software execution

code that can be either active or passive. An active design element is one that is

capable of generating stimuli concurrently or pseudo (seemingly) concurrently

without being prompted by an explicit stimulus instance, whereas a passive one is

one that cannot generate its own behaviour but only reacts when prompted by a

stimulus [6].
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Attributes:
Name Description Examples
Role The role of this entity “Active”, “Passive”,
“Resource”
Is Shared Specifies whether this entity can be | “True”, “False”
shared by more than one other entity
or not
Parameters Specifies how this entity acts from a | “Poisson with Lamba =
concurrency point of view, such as | 20ms”, “Periodic every 1
the frequency of events that an active | second”, ... etc
entity can trigger, or the maximum
frequency at which a passive entity or
a resource can be accessed
Relationships:
Name Description
Triggers Identifies zero or more “Event” (3.2.3.8) instance that the
“Concurrent” instance triggers

Original Safety-Related Concepts:

3.2.3.

Active, Passive, Shared Resource, Multi-Tasking

20 Defensive

Definiton:

The “Defensive” concept specifies that a design element employs a defensive

design model, and describes it. In a defensive design model (e.g. defensive

programming model for software), a design element checks for illegal inputs and

forbid execution using illegal inputs, thus avoiding a scenario where the design

element may fail due to an unfulfilled assumption on the input variables.
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Name

Description

Examples

Defendable Inputs

Specifies illegal input conditions that

this design element checks against

“Division by  Zero”,

“Altitude < 07, ... etc

Relationships:

Name

Description

Performs

Identifies one or more “Reaction” (3.2.3.9) instances that the

“Defensive” instance performs to handle defendable (e.g. invalid)

inputs

Original Safety-Related Concepts:

Defensive Programming

3.2.3.21

Definiton:

Configuration

The “Configuration” concept represents a specific configuration. Software and/or

hardware configurations may change by changing memory bits, changing lookup

tables, loading a software patch, and others.

Attributes:

Name

Description

Examples

Uniquely  identifies

software configuration

a

specific

For a user interface

software that can provide

interface in many
languages based on a
string  lookup  table:
“English Interface”,
“French Interface”,
“German Interface”,
etc
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Relationships:
None

Original Safety-Related Concepts:

Configuration
3.2.3.22 Configurable

Definiton:

Decermber 2006

The “Configurable” concept identifies a design element that can be configured or

altered to produce a different configuration (3.2.3.21) or behaviour. Such change is

generally performed by the user or buyer of the software, not the by vendor or its

development team.

Attributes:
Name Description Examples
Kind The kind of this configurable design | “Memory Bits”, “Lookup
element Tables”, ...etc
When Specifies when this configurable | “Compile-Time”, “Link-
design element can be configured to | Time”, “Run-Time”,
change configurations etc

Relationships:

Name

Description

Is Defaulted To

Identifies one default “Configuration” (3.2.3.21) instance for the

“Configurable” instance

Is Configurable To

Identifies one or more “Configuration” (3.2.3.21) instances that

can be produced by loading loadable instances on

“Configurable” instance

the

Original Safety-Related Concepts:

User Modifiable Software, Option Selectable Software
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3.2.3.23 Loadable

Definiton:
The “Loadable” concept identifies a design element that can be loaded by the user
to change the configuration (3.2.3.21). Loadable design elements are loaded on

configurable (3.2.3.22) design elements.

Attributes:

None

Relationships:

Name Description

Is Loadable On Identifies one or more “Configurable” (3.2.3.22) instances on

which the “Loadable” instance can be loaded

Requires Identifies zero or more “Configuration” (3.2.3.21) instances in

which the “Loadable” instance can be loaded

Produces Identifies one or more “Configuration” (3.2.3.21) instances that

result by loading the “Loadable” instance

Original Safety-Related Concepts:
Field Loadable Software, Software Patch

3.2.3.24  Configurator

Definiton:
The “Configurator” concept identifies a design element that can configure
configurable (3.2.3.22) design elements to change the configuration (3.2.3.21),
possibly by loading loadable (3.2.3.23) design elements.

Attributes:

None
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Name Description
Configures Identifies one or more “Configurable” (3.2.3.22) instances that can
be configured by the “Configurator” instance
Loads Identifies one or more “Loadable” (3.2.3.23) instances that can be
loaded by a “Configurator” on configurable instances

Original Safety-Related Concepts:

Loader
3.2.3.25 Replicated

Definiton:

The “Replicated” concept identifies a design element that participates in a

replication group (3.2.3.27), such as multiple-version dissimilar software, and

whose output is evaluated by a comparator (3.2.3.26).

Attributes:

Name

Description

Examples

Specifies a unique identifier for this

entity within its replication group

“Filter Version 17, “Filter

Version

Version

2”!

37, ... etc

“Filter

Relationships:

None

Original Safety-Related Concepts:

Multiple-Version Dissimilar Software, Software Redundancy
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3.2.3.26  Comparator

Definiton:
The “Comparator” concept identifies a design element that analyzes outputs of
replicated (3.2.3.25) design elements and determines the formal output of the

replication group (3.2.3.27).

Attributes:
Name Description Examples
Policy Parameters Specifies how the comparator | “Equal Weights”,
determines the formal output. Can | “Majority Voting”, ... etc
include assignment of weights

Relationships:

Name Description

Compares Identifies two or more “Replicated” (3.2.3.25) instances whose

outputs are compared by the “Comparator” instance

Original Safety-Related Concepts:

Comparator (\VVoter)
3.2.3.27 ReplicationGroup

Definiton:
The “ReplicationGroup” concept identifies a software replication group composed
of replicated (3.2.3.25) design elements and a comparator (3.2.3.26) that compares
their outputs. For example, a replication group is an instance of software
redundancy or multiple-version dissimilar software. It is a technical solution to

reliability challenges and has been traditionally used in safety-critical systems.
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Attributes:
Name Description Examples
ID Specifies the ID of this replication | “Radar Filter Replication
group Group”, “Controller
Replication Group”,
“REPLICATION 17,
etc

Relationships:

Name Description
Owns (with | Identifies one “Comparator” (3.2.3.26) instance that belongs to
Comparator) this “ReplicationGroup” instance
Oowns (with | Identifies two or more “Replicated” (3.2.3.25) instances that
Replicated) belong to this “ReplicationGroup” instance

Original Safety-Related Concepts:
Multiple-Version Dissimilar Software, Software Redundancy

3.2.4 Providing Traceability

The refined concepts and their conceptual model satisfy all the traceabilty requirements

specified in section 2.5.

First, software requirements can be specified using the “Requirement” (3.2.3.1) concept.
Then, software design elements can be traced to software requirements using the
“Rationale” (3.2.3.7) concept. There also exists other concepts that allow for specialized
forms of traceability to requirements, namely the “Deviation” (3.2.3.2), Nature (3.2.3.6),
Partition (3.2.3.11), Implementation Style (3.2.3.4), and Behavioural Style (3.2.3.5)

concepts.

In addition, the conceptual model explicitly identifies the “Event” (3.2.3.8) and
“Reaction” (3.2.3.9) concepts, and establishes traceability links between those two
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concepts and the “Handler” concept (3.2.3.12). Furthermore, it requires reactions to be
traceable to events through the “Is Consequence Of” relationship.

It is important to note that, while the traceability described above and in section 2.5 are
commonly needed for developing software, this conceptual model satisfy many more
traceability requirements than those. In fact, the “Rationale” (3.2.3.7) concept is a “one-
size-fits-all” traceability concept that can be used to trace any model element to any other
model element or requirement. For example, the “Rationale” (3.2.3.7) concept allows
traceability links from safety-critical design elements to requirements, from subsystems

to requirements, and from classes to subsystems
3.3 Information Requirements

Section 3.1 identified detailed safety-related concepts as they appear in the airworthiness
standard, which were refined in section 3.2. Therefore, a UML profile useful for safety
purposes should be able to model at least this information. In other words, the refined
concepts are central to defining information requirements for the definition of a UML

profile, and one can transform every concept into an information requirement.

However, the information requirements we present below are defined at a level lower
than the refined concept and, therefore, a refined concept may correspond to more than
one information requirements. This is done so in order to break down concepts that
capture many details and recognize the fact that existing profiles may only satisfy parts of
a concept. For example, the “Reaction” concept and its “Consequence Of” attribute can
be considered a single concept, but they capture two different pieces of information.
Therefore, they are represented as two different information requirements (IREQ 22 and
IREQ 23 below) to recognize the fact that a UML profile can meet only one of those two

requirements (and therefore partially, but not entirely, be able to model the concept).

Moreover, there are terms that are useful from a modeling prespective but that are not
really safety-related concepts. They were not mentioned in section 3.2 because they are
not concepts. Nevertheless, they help the modeler specify safety-related information in

the model. Their information requirements are IREQ 1 - IREQ 8 (see below). It is
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common in UML profiles to provide stereotypes for such cases (see OMG UML profiles

such as [5] and [6] for examples). Examples of those concepts include: Safety Context,

which is used to provide high-level information about the safety of the software;

Performance Context, which is used to provide high-level information about the

performance aspects of the software.

The information requirements we derived from the concepts presented in section 3.2.3

are.
IREQ 1
IREQ 2
IREQ 3
IREQ 4
IREQ 5
IREQ 6

IREQ 7

IREQ 8
IREQ 9

IREQ 10

IREQ 11

IREQ 12

IREQ 13
IREQ 14

The profile shall be able to identify a safety-related software context.

The profile shall be able to identify a reliability-related software context.
The profile shall be able to identify an integrity-related software context.
The profile shall be able to identify a performance-related software
context.

The profile shall be able to identify a concurrency-related software
context.

The profile shall be able to identify a certification-related software
context.

The profile shall be able to identify a configuration-related software
context.

The profile shall be able to identify a design-related software context.

The profile shall be able to specify software requirements, including the
kind of the requirements such as safety, certification, and derived.

The profile shall be able to relate software requirements to other
requirements.

The profile shall be able to model a software model deviation from a plan,
requirement, or a standard.

The profile shall be able to model specific software implementation styles
of interest to airworthiness-related software such as recursion, dynamic
memory, compacted expressions, and data aliases.

The profile shall be able to model time-related software such as filters.
The profile shall be able to model state-related software such as state

machines.
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IREQ 15

IREQ 16

IREQ 17

IREQ 18

IREQ 19

IREQ 20

IREQ 21

IREQ 22

IREQ 23

IREQ 24

IREQ 25
IREQ 26

IREQ 27
IREQ 28

IREQ 29
IREQ 30

The profile shall be able to model COTS software, including the rationale
for using it.

The profile shall be able to model previously-developed software,
including the rationale for using it.

The profile shall be able to model software that has deactivated code and
the rationale for including the deactivated code in the design.

The profile shall be able to provide traceability by relating model
elements to other elements that caused related design decisions, such as
relating a software comparator to a requirement element that says that a
software comparator shall be used for multiple-version dissimilar
software.

The profile shall provide the capability to specify a reference or
explanation for a modeled traceability, possibly referring to non-model
elements or documents.

The profile shall be able to model software events.

The profile shall be able to specify how a particular software event affects
the level of safety.

The profile shall be able to model software reactions, or responses, to
software events.

The profile shall be able to specify which reactions, or responses, occur
for which events.

The profile shall be able to specify how a particular software reaction, or
response, affects the level of safety.

The profile shall be able to model safety-critical elements.

The profile shall be able to specify the criticality level of safety-critical
model elements, or the element’s contributions to failure conditions.

The profile shall be able to model a software partition.

The profile shall be able to model event handlers that perform reactions to
unusual events that are detected by monitors.

The profile shall be able to model software monitors.

The profile shall be able to model safety monitoring software.
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IREQ 31
IREQ 32
IREQ 33
IREQ 34
IREQ 35
IREQ 36
IREQ 37
IREQ 38

IREQ 39
IREQ 40

IREQ 41

IREQ 42

IREQ 43

IREQ 44

IREQ 45

IREQ 46

IREQ 47

IREQ 48

The profile shall be able to model fault monitoring software.

The profile shall be able to model integrity monitoring software.

The profile shall be able to model a software simulator.

The profile shall be able to specify what a software simulator simulates
and the parameters by which it does so.

The profile shall be able to model safety strategies.

The profile shall be able to model scheduling strategies.

The profile shall be able to specify the use of formal methods.

The profile shall be able to model and quantify an entity’s complexity on
the design such as coupling and the level of code nesting.

The profile shall be able to model hardware/software interfaces.

The profile shall be able to describe an interface’s parameters or reference
external documents describing the interface parameters.

The profile shall be able to model active software that can initiate a flow
of control.

The profile shall be able to model passive software whose execution is
triggered by external events.

The profile shall be able to model resources such as databases and
semaphores.

The profile shall be able to indicate whether a modeled resource is shared
or not.

The profile shall be able to distinguish software that uses defensive
programming from others that do not.

The profile shall be able to describe the defensive programming
parameters of software developed using defensive programming methods.
The profile shall be able to model software elements whose behaviour can
be modified by the user (e.g. by changing memory bits or loading look-up
tables).

The profile shall be able to specify what can be modified about
modifiable software elements (e.g. is it a set of memory bits? A lookup
table?).
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IREQ 49 The profile shall be able to specify when a modifiable software element
can be modified, such as at compile-time or run-time.

IREQ 50 The profile shall be able to model software that can be loaded into a
system (e.g. software patch) to result in a different software configuration.

IREQ 51 The profile shall be able to model software that the user uses to change
the software configuration (e.g. software used to change a memory bit or
load a lookup table).

IREQ 52 The profile shall be able to model multiple-version dissimilar software.

IREQ 53 The profile shall be able to model software comparators, or voters, for
multiple version dissimilar software

IREQ 54 The profile shall be able to specify the voting policy parameters for

software comparators, or voters.

The requirements traceability matrix in Table 3 describes how the information
requirements trace back to the original high-level requirements presented in section 2.6.3.
This explains how the original-high level requirements are met by a UML profile meeting
the information requirements. If a “Yes” exists in a particular cell, this means that the
information requirement identified by its row traces back to the high-level requirement
identified by its column. Each information requirement may trace back to more than one
high-level requirement. As the table illustrates, there is an n-to-n relationship between

high-level requirements and information requirements.

The requirements traceability matrix answers the following question: Which information
requirements (IREQ) are required in order to meet a particular high-level requirement
(REQ)? Conversly, it can also be used to answer the following question: For a particular
information requirement (IREQ), which high-level requirements (REQ) does it help
meet? Therefore, it is useful if the reader is interested in knowing additional details about
how a particular profile meets the original requirements (REQ). Therefore, all the
information requirements trace to both the safety-related concepts, which form the basis

for the information requirements, and are justified by the high-level requirements.
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The rest of this document focuses on the information requirements (IREQ) rather than the

high-level requirements (REQ) because they are easier to use for assessing UML profiles.

Furthermore, information requirements are the true requirements that the profile must

meet because they specify the particular information that must be modeled in UML

models.
REQ 1 REQ 2 REQ 3 REQ 4 REQ 5 REQ 6 REQ 7 Total
IREQ 1 Yes Yes Yes 3
IREQ 2 Yes Yes Yes 3
IREQ 3 Yes Yes Yes 3
IREQ 4 Yes Yes Yes 3
IREQ 5 Yes Yes 2
IREQ 6 Yes Yes 2
IREQ 7 Yes Yes 2
IREQ 8 Yes Yes 2
IREQ 9 Yes Yes Yes Yes Yes 5
IREQ 10 Yes Yes Yes Yes Yes 5
IREQ 11 Yes Yes Yes Yes 4
IREQ 12 Yes Yes Yes Yes 4
IREQ 13 Yes Yes Yes 3
IREQ 14 Yes Yes Yes 3
IREQ 15 Yes Yes Yes Yes Yes 5
IREQ 16 Yes Yes Yes Yes Yes 5
IREQ 17 Yes Yes Yes Yes 4
IREQ 18 Yes Yes Yes 3
IREQ 19 Yes Yes Yes Yes 4
IREQ 20 Yes Yes 2
IREQ 21 Yes Yes Yes Yes 4
IREQ 22 Yes Yes Yes 3
IREQ 23 Yes Yes Yes 3
IREQ 24 Yes Yes Yes Yes Yes 5
IREQ 25 Yes Yes Yes 3
IREQ 26 Yes Yes Yes Yes 4
IREQ 27 Yes Yes Yes 3
IREQ 28 Yes Yes Yes 3
IREQ 29 Yes Yes Yes 3
IREQ 30 Yes Yes Yes Yes 4
IREQ 31 Yes Yes Yes Yes 4
IREQ 32 Yes Yes Yes 3
IREQ 33 Yes Yes 2
IREQ 34 Yes Yes 2
IREQ 35 Yes Yes Yes Yes 4
IREQ 36 Yes Yes Yes 3
IREQ 37 Yes Yes 2
IREQ 38 Yes Yes 2
IREQ 39 Yes Yes 2
IREQ 40 Yes Yes 2
IREQ 41 Yes Yes 2
IREQ 42 Yes Yes 2
IREQ 43 Yes Yes 2
IREQ 44 Yes Yes 2
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REQ 1 REQ 2 REQ 3 REQ 4 REQ 5 REQ 6 REQ 7 Total
IREQ 45 Yes Yes Yes 3
IREQ 46 Yes Yes Yes 3
IREQ 47 Yes Yes Yes Yes 4
IREQ 48 Yes Yes Yes Yes 4
IREQ 49 Yes Yes Yes 3
IREQ 50 Yes Yes Yes 3
IREQ 51 Yes Yes Yes 3
IREQ 52 Yes Yes Yes 3
IREQ 53 Yes Yes Yes 3
IREQ 54 Yes Yes 2
Total 54 8 18 33 18 34 2 167

Table 3: Tracing information requirements to the original high-level requirements.
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4 EXISTING UML PROFILES

This section introduces existing UML profiles and approaches and evaluates each one of
them with respect to the information requirements identified in section 3.3. This is
required to determine whether a suitable profile already exists or not, which would
determine whether an existing profile should be extended (if necessary) or a completely
new profile should be defined. Details of the evaluations are reported in Appendix F and

summarized in the following sections.
4.1 Quality of Service and Fault Tolerance OMG Profile

OMG released a profile to model Quality of Service (QoS) for high-quality and Fault-
Tolerant (FT) systems. The profile, presented in [5], includes frameworks to describe

quality of service, risk assessment, and fault tolerance.

The framework to describe quality of service includes mechanisms to describe generic
quality of service driven from quality-based requirements. It is not specific to any kind of
quality of service, such as safety. Its mechanisms focus on characteristics, constraints,
and levels of quality of service. The risk assessment framework includes support for
model-based risk assessment. It provides mechanisms for modeling risk contexts,
stakeholders, assets, strengths, weaknesses, opportunities and threats, unwanted incidents,
risk quantification, and risk mitigation and treatments. The fault tolerance framework
includes mechanisms for describing fault-tolerant software architectures in general as a
technical solution to reliability requirements. It focuses on modeling software

redundancy, or software replication.

Table 18 in Appendix F presents an analysis of the profile with respect to each of the
information requirements described in section 3.3. The table concludes that this profile is
not adequate for extension to meet the information requirements since only 17 of the

information requirements (out of 54) are fulfilled.
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4.2 Schedulability, Performance, and Time OMG Profile

OMG released a profile, the Schedulability, Performance, and Time (SPT) profile, which
provides mechanisms to model concepts of importance to real-time systems. Real-time
systems are those where there exist timing requirements on when the responses to events
occur. Soft real-time systems are those were late responses may be acceptable if they are
not within a specified range, whereas hard real-time systems are those where late
responses are unacceptable and may be fatal [6]. The profile, presented in [6], includes
frameworks to model resources, time, concurrency, schedulability, performance, and
CORBA schedulability properties. Using it allows developers to perform performance

analysis of the model.

The resource modeling framework includes mechanisms to model resources, components
that acquire and release them, and their deployment on hosts. The time modeling
framework includes mechanisms to model clocks, timers, timeouts, and actions that are
applied on them such as delays, interrupts, events, pause, reset, start, and stop. The
concurrency modeling framework includes mechanisms to model synchronous and
asynchronous actions, and event queues for immediate and deferred event processing.
The schedulability analysis framework includes mechanism to model actions, engines,
responses, scheduling resources, triggers, action schedulers, and scheduling hosts. The
performance analysis framework includes mechanism to model performance contexts,
open and closed workloads, and steps. The CORBA schedulability framework includes
mechanisms to model CORBA channels, connections, clients, servers, and Object
Resource Brokers (ORBSs).

Table 19 in Appendix F presents an analysis of the profile with respect to each of the
information requirements described in section 3.3. The table concludes that this profile is
not adequate for extension to meet the information requirements since only 6 of the
information requirements (out of 54) are fulfilled. The profile does not meet many of the

information requirements because it does not cover safety and reliabity topics.
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4.3 HIDOORS Profile

The High Integrity Distributed Object-Oriented Real-Time Systems (HIDOORS) was a
joint research project by several European companies and research institutions. One of
the goals of HIDOORS was to introduce mechanisms for modeling safety-critical and
embedded real-time applications. Those mechanisms were required to be compliant with
OMG’s SPT profile (see section 4.2), provide mechanisms for modeling the Rate
Monotonic Analysis (RMA) scheduling strategy, and provide specific concepts relating
to inter-task communication. The researchers involved in this project felt that UML’s
SPT profile was too general and too fundamental to provide mechanisms for specifying
RMA and some inter-task communication concepts [26]. The profile therefore specializes
some SPT concepts such as triggers, actions, resources, and scheduling jobs.
Furthermore, it provides mechanisms to model inter-task communication styles such as

buffers, black boards, and events.

Table 20 in Appendix F presents an analysis of the profile with respect to each of the
information requirements described in section 3.3. The table concludes that this profile is
not adequate for extension to meet the information requirements since only 6 of the
information requirements (out of 54) are fulfilled. The profile included only few
stereotypes so it does not meet most of the information requirements. In fact, it did not

meet any information requirements that were not already met by the SPT profile.
4.4 Effects of Message Loss, Delay, and Corruption

Jan Jurjens presented a UML profile in [27] that aimes at addressing safety issues from a
fault-tolerant point of view. Jirjens argued that safety goals are often expressed
quantitatively via the maximum failure rate, and then presented some possible failures
that served as the basis of the proposed UML profile. Thus, his profile assumes that those
failures are based on the concept of transmitting messages on links and between nodes.
The profile included mechanisms to model risks, crashes, guarantees, redundancy, safe
links, safe dependencies, safety critical elements, safe behaviours, containment, and error
handling.
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Table 21 in Appendix F presents an analysis of the profile with respect to each of the
information requirements described in section 3.3. The table concludes that this profile is
not adequate for extension to meet the information requirements since only 7 of the
information requirements (out of 54) are fulfilled. In fact, it does not meet many of the
information requirements because assuming the airworthiness standard does not make the
assumption that unsafe states result from failures of transmitting messages because safety

is a bigger issue than that.
4.5 Patterns for Reliability and Safety

Hansen and Gullesen presented in [28] a series of UML patterns that can be used to
model some aspects of safety-critical systems. They presented patterns for modeling
safety quality of service, software diversity and voting, partial diversity with built-in
diagnostic or monitoring, “safe” communication protocols, and some other topics such as
testing, hazard analysis and quality development. Their work was driven by the IEC
61508 standard in [24]. They have therefore used the concept of Safety Integrity Level
(SIL), which is similar to the concept of software level presented in the airworthiness
standard [4]. The patterns include mechanisms to model the SIL levels, and other patterns
that could be used to explicitly model, in use cases, redundancy, monitoring, and voting

based on multiple output comparisons.

Table 22 in Appendix F presents an analysis of the profile with respect to each of the
information requirements described in section 3.3. The table concludes that the patterns
presented in this paper are not adequate for extension to meet the information
requirements since only 1 of the information requirements (out of 54) are fulfilled. The
patterns mostly focus on reliability and software replication issues, whereas the

information requirements cover a bigger concern.
4.6 Summary

Table 23 in Appendix F summarizes how each of those existing UML profiles scores

with respect to addressing the information requirements identified in section 3.3. Each
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profile’s score is calculated based on how many information requirements it meets.

Therefore, the maximum score is 54 (100%).

As it can be noticed from previous sections, which results are summarized in Table 23,
none of the existing profiles that were evaluated achieves more than 31% of the
maximum score. In fact, all of the profiles combined only meet 44% of the information

requirements.

The two OMG profiles are useful, but only within their intended domain. The OMG QoS
and FT profile is suitable for modeling fault tolerance and software redundancy. The
OMG SPT profile is suitable for modeling schedulability, performance, and concurrency
concepts. However, it was evident in section 3 that safety and airworthiness are
dependent on many domains. Therefore, those two OMG profiles would be
complimentary, but not complete enough. It should also be noticed that the SPT profile
included more details than the QoS and FT profile, but it was centred on domains that are
somehow less important to safety (resources, time, concurrency, performance, and
schedulability) than those covered by the QoS and FT profile (quality of service, risk

assessment, fault tolerance).

Furthermore, the profile for the “effects of messages on safety” introduces some useful
stereotypes such as <<safe behaviour>>,  <<guarantee>>,  <<critical>>,
<<containment>>and <<redundancy>>. However, some of them are too general to be
effective, such as <<critical>> which does not tell us the criticality level (e.g.
airworthiness level) of the software. Neverthless, it meets some information requirements

that are not met by the 2 OMG profiles such as the ability to model exception handlers.

The “HIDOORS” profile did not meet any information requirements that were not

already met by the SPT profile.

The “Patterns” paper did not fulfil any information requirements that were not fulfilled

by the other profiles.

Because none of the existing UML profiles and patterns comes close to fulfilling the

information requirements, a new UML profile is proposed instead of extending an
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existing one. This has the advantage that the resultant profile will be coherent and
specifically designed to meet the information requirements instead of “patching” an

existing profile that was originally designed for some other purpose.
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5 PROPOSED UML PROFILE

Since no suitable UML profile was found, this section introduces a new UML profile that
meets all of the information requirements. Section 5.1 describes the template we use to
describe the profile whereas section 5.2 describes the profile proper. Examples are then
presented in section 5.3 to explain in detail how to use this proposed UML profile.

Section 5.4 suggests a methodology to be followed when using the profile.
5.1 UML Profile—Template Description

This section introduces a UML profile that satisfies all of the information requirements
specified in section 3.3. The discussion on how this proposed profile meets all of the

information requirements is presented in section 8.1.

Each of the subsections of section 5.2 describes a single stereotype and associated tagged
values. Most of the stereotypes correspond to some refined concepts. However, some
additional stereotypes, which do not correspond to any refined concepts, were deemed
helpful for modeling purposes are introduced. The stereotypes’ tagged values correspond
to the refined concepts’ attributes and relationships. The following information is

presented for each stereotype:

1. Definition: This presents a definition for the stereotype. It describes the stereotype

and gives its general purpose.

2. Related Concept: This identifies, if applicable, the concept from section 3.2.2 that

the stereotype represents.

3. Base Classes: This lists the UML meta-classes on which the stereotype may be
applied. The explanation on how and why the stereotype may be applied on each
meta-class is also presented. This does not identify meta-classes on which the
stereotype may not be applied to allow future extenstions of this profile to be
backwards compatible. This is because future extension may permit the
application of the stereotypes on meta-classes that are not explicit here. This is
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necessary because extending UML, such as in the form of UML profiles, permits

adding new rules but does not allow removing existing rules.

4. Tags: This lists the tags that the stereotype has. For each tag, the type,

multiplicity, and a description is presented.

The base classes of each stereotype are presented in a table. For example, the base classes
of the <<SafetyCritical>> (5.2.17) stereotype are presented as follows:

Base Class Usage Rationale

Class To indicate that the class is safety-critical (3.2.3.10) and specify

its safety (e.g. airworthiness) level

Operation To indicate that invoking the operation is safety-critical (3.2.3.10)

and specify its safety (e.g. airworthiness) level

Relationship To indicate that the relationship is safety-critical (3.2.3.10) and

specify its safety (e.g. airworthiness) level

The first column lists the UML meta-classes on whose instances the stereotype can be
applied. The UML classes are specified as defined in the UML meta-model in [29] and

[30]. This profile uses only the following base classes in the first column:

1. Collaboration: Used to represent instances of class

“CompositeStructures::Collaborations::Collaboration”.

2. Class: Used to represent instances of class “Kernel::Class” and class

“BasicComponents::Component”.
3. Operation: Used to represent instances of class “Kernel::Operation”.
4. Relationship: Used to represent instances of class “Kernel::Relationship”.
The second column describes why the stereotype can be applied on each base class.

Thus, the above table is read as follows: The <<SafetyCritical>> stereotype can be

applied on all UML model classes that are instances of the following meta-classes (first

86



Carleton University, TR SCE-06-19 Decermber 2006

column): Class, Operation, and Relationship. It is applied on each of the base classes as

follows (second column):

1. Class: To indicate that the class is safety-critical (3.2.3.10) and specify its safety

(e.g. airworthiness) level

2. Operation: To indicate that invoking the operation is safety-critical (3.2.3.10) and

specify its safety (e.g. airworthiness) level

3. Relationship: To indicate that the relationship is safety-critical (3.2.3.10) and

specify its safety (e.g. airworthiness) level

The tags of each stereotype are presented in a table. For example, the tags of the
<<SafetyCritical>> (5.2.17) stereotype are presented as follows:

Name Type Multiplicity Description
CriticalityLevel Enumeration [0..1] See attribute: Criticality Level
ConfidenceLevel Enumeration [0..1] See attribute:  Confidence

Level
TriggeredEvent Reference to a | [0..*] See relationship: Triggers

model  element
stereotyped
<<Event>>
(5.2.15) (or its
subclass
<<Reaction>>
(5.2.16))

The first column specifies the tag name, the second column specifies the type of the tag,
the third column specifies its multiplicity, and the fourth column provides a description of
the tag. In most cases, the fourth column will refer the reader to an attribute or a

relationship of the related concept.

This example tells us that this stereotype has the following tags and they are described as

follows:
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1.

The “CriticalityLevel” tag (first column) of the <<SafetyCritical>> stereotype is
specified through an enumeration (second column). It can be specified zero or one
time (third column) for each stereotype. Its description is the same as the
“Criticality Level” attribute of the related concept (“Safety Critical” (3.2.3.10)
concept in this case) (fourth column).

The “ConfidenceLevel” tag (first column) of the <<SafetyCritical>> stereotype is
specified through an enumeration (second column). It can be specified zero or one
time (third column) for each stereotype. Its description is the same as the
“Confidence Level” attribute of the related concept (“Safety Critical” (3.2.3.10)
concept in this case) (fourth column).

The “TriggeredEvent” tag (first column) of the <<SafetyCritical>> stereotype is
specified through a reference to a model element stereotyped with <<Event>> or
<<Reaction>> (second column). It can be specified zero or as many times as one
wishes (third column) for each stereotype. Its description is the same as the
“Triggers” relationship of the related concept (“SafetyCritical” (3.2.3.10) concept

in this case) (fourth column).

5.2 Profile Description

5.21

<<SafetyContext>>

Definiton:

The <<SafetyContext>> stereotype is used to indicate that there is safety-related
information of interest such as information representing the original primarily

safety concepts listed in Appendix C.1.

Related Concept:

None
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Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains safety information

Tags:
None

5.2.2 <<ReliabilityContext>>

Definiton:
The <<ReliabilityContext>> stereotype is used to indicate that there is reliability-
related information of interest such as information representing the original
primarily reliability concepts listed in Appendix C.2. In one specific usage, it could
also be used to describe or identify a specific replication group (see related

concept).

Related Concept:
ReplicationGroup (3.2.3.27)

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains reliability information,
or to identify a particular replication group (3.2.3.27) composed
of replicated (3.2.3.25) design elements and a comparator
(3.2.3.26)

Tags:

Name Type Multiplicity Description

ID String [0..1] See attribute: ID

89



Carleton University, TR SCE-06-19 Decermber 2006

5.2.3 <<lIntegrityContext>>

Definiton:
The <<IntegrityContext>> stereotype is used to indicate that there is safety-related
information of interest such as information representing the original primarily

integrity concepts listed in Appendix C.3.

Related Concept:

None

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains integrity information

Tags:
None

5.2.4 <<PerformanceContext>>

Definiton:
The <<PerformanceContext>> stereotype is used to indicate that there is
performance-related information of interest such as information representing the

original primarily performance concepts listed in Appendix C.4.

Related Concept:

None

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains performance

information

Tags:
None
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5.2.5 <<ConcurrencyContext>>

Definiton:
The <<ConcurrencyContext>> stereotype is used to indicate that there is
concurrency-related information of interest such as information representing the

original primarily concurrency concepts listed in Appendix C.5.

Related Concept:

None

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains concurrency

information

Tags:

None
5.2.6 <<CertificationContext>>

Definiton:
The <<CertificationContext>> stereotype is used to indicate that there is
certification-related information of interest such as information representing the

original primarily certification concepts listed in Appendix C.6.

Related Concept:

None

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains certification

information

Tags:

None
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5.2.7 <<DesignContext>>
Definiton:

The <<DesignContext>> stereotype is used to indicate that there is specific design-

related information of interest such as information representing the original

primarily design concepts listed in Appendix C.7.

Related Concept:

None

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains specific design

information such as design constraints and design decisions

Tags:
None

5.2.8 <<ConfigurationContext>>

Definiton:
The <<ConfigurationContext>> stereotype is used to indicate that there is
configuration-related information of interest such as information representing the
original primarily configuration concepts listed in Appendix C.8. In one specific
usage, it could also be used to describe or identify a specific configuration (see

related concept).

Related Concept:
Configuration (3.2.3.21)
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Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains configuration
(3.2.3.21) information, or to identify a particular configuration
(3.2.3.21)

Tags: (refer to section 3.2.3.21 for details)

Name Type Multiplicity Description

ID String [0..1] See attribute: ID

5.2.9 <<Requirement>>

Definiton:

See related concept.

Related Concept:
Requirement (3.2.3.1)

Base Classes:

Base Class Usage Rationale
Collaboration To specify a requirement that the design in the collaboration
fulfills
Class To specify a requirement that the class fulfills
Operation To specify a requirement that the operation fulfills
Relationship To specify a requirement that a relationship fulfills

Tags: (refer to section 3.2.3.1 for details)

Name Type Multiplicity Description
ID String [0..1] See attribute: ID
Kind Enumeration [0..1] See attribute: Kind
Specification Expression [1.1] See attribute: Specification
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Name Type Multiplicity Description
OfRequirement Reference to a | [0..*] See relationship: Is

model element
stereotyped
<<Requirement>>
(5.2.9)

Requirement Of

5.2.10 <<Deviation>>

Definiton:

See related concept.

Related Concept:
Deviation (3.2.3.2)

Base Classes:

Base Class

Usage Rationale

Collaboration

To specify that the collaboration’s design and/or implementation

deviates from a requirement (3.2.3.1), standard, or plan

Class To specify that the class’ design and/or implementation deviates
from a requirement (3.2.3.1), standard, or plan

Operation To specify that the operation’s design and/or implementation
deviates from a requirement (3.2.3.1), standard, or plan

Relationship To specify that the relationship’s design and/or implementation

deviates from a requirement (3.2.3.1), standard, or plan

Tags: (refer to section 3.2.3.2 for details)

Name

Type

Multiplicity

Description

Kind

Enumeration

[0..1]

See attribute: Kind
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Name Type Multiplicity Description

Reference Reference to a | [1..*] See relationship: References
model element
stereotyped
<<Requirement>>
(5.2.9)

Explanation String [0..%] See attribute: Explanation

5.2.11 <<ImplementationStyle>>

Definiton:
See related concept.

Related Concept:
ImplementationStyle (3.2.3.4)

Base Classes:

Base Class Usage Rationale
Class To identify an implementation style (3.2.3.4) (e.g. dynamic
memory, recursive algorithms, ... etc) that is followed in the

implementation of the class

Operation To identify an implementation style (3.2.3.4) (e.g. dynamic
memory, recursive algorithms, ... etc) that is followed in the

implementation of the operation

Tags: (refer to section 3.2.3.4 for details)

Name Type Multiplicity Description
Kind Enumeration [0..1] See attribute: Kind
Parameter Expression [0..*] See attribute: Parameters
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Name Type Multiplicity Description

Reference Reference to a | [0..*] See relationship: References
model element
stereotyped

<<Requirement>>
(5.2.9), or a String

Explanation String [0..%] See attribute: Explanation

5.2.12 <<BehaviouralStyle>>

Definiton:
See related concept.

Related Concept:
BehaviouralStyle (3.2.3.5)

Base Classes:

Base Class Usage Rationale

Collaboration To identify a behavioural style (3.2.3.5) (e.g. state-related such as
state machines, ... etc) that is followed in the implementation of

the design specified in the collaboration

Class To identify a behavioural style (3.2.3.5) (e.g. state-related as in
class attributes, time-related as in filters, ... etc) that is followed

in the implementation of the class

Operation To identify a behavioural style (3.2.3.5) (e.g. state-related as in
static operations, time-related as in filters) that is followed in the

implementation of the operation

Tags: (refer to section 3.2.3.5 for details)

Name Type Multiplicity Description
Kind Enumeration [0..1] See attribute: Kind
Parameter Expression [0..*] See attribute: Parameters
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Name Type Multiplicity Description
Reference Reference to a | [0..*] See relationship: References
model element
stereotyped
<<Requirement>>
(5.2.9), or a String
Explanation String [0..%] See attribute: Explanation

5.2.13 <<Nature>>

Definiton:
See related concept.

Related Concept:
Nature (3.2.3.6)

Base Classes:

Base Class Usage Rationale

Class To identify the nature (3.2.3.6) (e.g. COTS, previously developed,
deactivated, ... etc) of the class

Operation To identify the nature (3.2.3.6) (e.g. deactivated, ... etc) of the
operation

Tags: (refer to section 3.2.3.6 for details)
Name Type Multiplicity Description

Kind Enumeration [0..1] See attribute: Kind

Reference Reference to a | [0..*] See relationship: References
model element
stereotyped
<<Requirement>>
(5.2.9), or a String

Explanation String [0..*] See attribute: Explanation
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5.2.14 <<Rationale>>

Definiton:

See related concept.

Related Concept:

Base

Rationale (3.2.3.7)

Classes:

Decermber 2006

Base Class

Usage Rationale

Collaboration

To explain the rationale (3.2.3.7) or explain the design decisions

for the design specified in the collaboration

Class To explain the rationale (3.2.3.7), explain the design decisions, or
identify the reason for defining and developing the class

Operation To explain the rationale (3.2.3.7), explain the design decisions, or
identify the reason for defining and developing the operation

Relationship To explain the rationale (3.2.3.7), explain the design decisions, or

identify the reason for defining the relationship

Tags:

(refer to section 3.2.3.7 for details)

Name Type Multiplicity Description
Reference Reference to a | [1..*] See relationship: References
model element
stereotyped
<<Requirement>>
(5.2.9), or a String
Explanation String [0..*] See attribute: Explanation

5.2.15 <<Event>>

Defin

iton:

See related concept.
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Related Concept:
Event (3.2.3.8)

Base Classes:
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Base Class Usage Rationale
Class To indicate that the class contains information that constitutes and
describes an event (3.2.3.8) of interest
Operation To indicate that invoking the specified operation is an event

(3.2.3.8) of interest, and to further describe the operation’s effect

on safety

Tags: (refer to section 3.2.3.8 for details)

EffectOnSafetyContext

Name Type Multiplicity Description

Kind Enumeration [0..1] See attribute: Kind

When Expression [0..%] See attribute: When

EffectOnSafetyDirection | Enumeration [0..%] See attribute: Effect On
Safety Direction

EffectOnSafetyValue Expression [0..%] See attribute: Effect On
Safety Value

EffectOnSafetyContext | Expression [0..%] See attribute:

5.2.16 <<Reaction>>

Definiton:

See related concept.

Related Concept:
Reaction (3.2.3.9)
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Base Classes:

Base Class Usage Rationale

Class To indicate that the class contains the logic (e.g. hardware or
executable software code) that constitutes and describes a reaction
(3.2.3.9)

Operation To indicate that invoking the specified operation is a reaction
(3.2.3.9) to one or more events (3.2.3.8) of interest, and to further

describe the operation’s effect on safety

Tags: (refer to section 3.2.3.9 for details)

Name Type Multiplicity Description

Kind Enumeration [0..1] See attribute: Kind

ConsequenceOf Reference to a | [1..*] See relationship: Is
model element Consequence Of
stereotyped
<<Event>>
(5.2.15) (or its
subclass

<<Reaction>>

(5.2.16))
When Expression [0..%] See attribute: When
EffectOnSafetyDirection | Enumeration [0..%] See afttribute: Effect On
Safety Direction
EffectOnSafetyValue Expression [0..%] See attribute: Effect On
Safety Value
EffectOnSafetyContext | Expression [0..%] See attribute:

EffectOnSafetyContext

5.2.17 <<SafetyCritical>>

Definiton:
See related concept.
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Related Concept:

Base Classes:

SafetyCritical (3.2.3.10)

Decermber 2006

Base Class Usage Rationale
Class To indicate that the class is safety-critical (3.2.3.10) and specify
its safety (e.g. airworthiness) level
Operation To indicate that invoking the operation is safety-critical (3.2.3.10)
and specify its safety (e.g. airworthiness) level
Relationship To indicate that the relationship is safety-critical (3.2.3.10) and

specify its safety (e.g. airworthiness) level

Tags:

(refer to section 3.2.3.10 for details)

Name Type Multiplicity Description
CriticalityLevel Enumeration [0..1] See attribute: Criticality Level
ConfidenceLevel Enumeration [0..1] See attribute:  Confidence

Level
TriggeredEvent Reference to a | [0..*] See relationship: Triggers

model  element
stereotyped
<<Event>>
(5.2.15) (or its
subclass
<<Reaction>>

(5.2.16))

5.2.18 <<Partition>>

Definiton:

See related concept.

Related Concept:

Partition (3.2.3.11)
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Base Classes:
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Base Class Usage Rationale
Class To indicate that the class is has been partitioned (3.2.3.11) from
some other (usually more safety-critical (3.2.3.10)) class
Tags: (refer to section 3.2.3.11 for details)
Name Type Multiplicity Description
PartitionedFrom Reference to a| [1.*] See relationship: Is
class model Partitioned From
element
stereotyped
<<SafetyCritical>>
(5.2.17)
Reference Reference to a| [0..*] See relationship: References
model element
stereotyped
<<Requirement>>
(5.2.9), or a String
Explanation String [0..%] See attribute: Explanation
5.2.19 <<Handler>>
Definiton:
See related concept.
Related Concept:
Handler (3.2.3.12)
Base Classes:
Base Class Usage Rationale
Class To indicate that the class is an event (3.2.3.8) handler (3.2.3.12)
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Tags: (refer to section 3.2.3.12 for details)
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Name

Type

Multiplicity Description

HandleableEvent

Reference to a
model  element
stereotyped
<<Event>>
(5.2.15) (or its
subclass
<<Reaction>>

(5.2.16))

[1..%] See relationship: Handles

PerformedReaction

Reference to a
model  element
stereotyped
<<Reaction>>

(5.2.16)

[1.%] See relationship: Performs

5.2.20 <<Monitor>>

Definiton:

See related concept.

Related Concept:

Monitor (3.2.3.13)

Base Classes:

Base Class

Usage Rationale

Class

To indicate that the class is a monitor (3.2.3.13) that monitors

some other class

Tags:

(refer to section 3.2.3.13 for details)
Name Type Multiplicity Description
Kind Enumeration [0..1] See attribute: Kind
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Name Type Multiplicity Description
MonitoredEntity Reference to a | [1.*] See relationship: Monitors
class model
element
stereotyped
<<SafetyCritical>>
(5.2.17)
DetectableEvent Reference to a | [1.*] See relationship: Detects
model element
stereotyped
<<Event>>
(5.2.15) (or its
subclass
<<Reaction>>
(5.2.16))
EventHandler Reference to a | [0..*] See relationship: Notifies
model element
stereotyped
<<Handler>>
(5.2.19)
5.2.21 <<Simulator>>
Definiton:
See related concept.
Related Concept:
Simulator (3.2.3.14)
Base Classes:
Base Class Usage Rationale
Class To indicate that the class is a simulator (3.2.3.14) for some other

class or operation
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Tags: (refer to section 3.2.3.14 for details)

Name Type Multiplicity Description

SimulatedEntity Reference to a | [l.*] See relationship: Simulates

class or operation

model element
stereotyped
<<SafetyCritical>>
(5.2.17)
Parameter Expression [0..%] See attribute: Parameters
5.2.22 <<Strategy>>
Definiton:
See related concept.
Related Concept:
Strategy (3.2.3.15)
Base Classes:
Base Class Usage Rationale
Collaboration To specify and describe a particular strategy (3.2.3.15) that is used

throughout the collaboration

Class To specify and describe a particular strategy (3.2.3.15) that the

class implements

Tags: (refer to section 3.2.3.15 for details)

Name Type Multiplicity Description
Kind Enumeration [0..1] See attribute: Kind
Parameter Expression [0..%] See attribute: Parameters
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Name

Type

Multiplicity

Description

DesignOf

Reference to a
class or operation
model element
stereotyped
<<SafetyCritical>>
(5.2.17)

[1.%]

See relationship: Describes
Design Of

5.2.23 <<Formalism>>

Defin

iton:

See related concept.

Related Concept:

Formalism (3.2.3.16)

Base Classes:

Base Class

Usage Rationale

Collaboration

To indicate that the collaboration is designed or verified by the
use of formal methods (3.2.3.16)

Class To indicate that the class is designed or verified by the use of
formal methods (3.2.3.16)
Operation To indicate that the operation is designed or verified by the use of

formal methods (3.2.3.16)

Tags:

(refer to section 3.2.3.16 for details)
Name Type Multiplicity Description
Method Enumeration [0..%] See attribute: Methods
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Name Type Multiplicity Description
FormalismOf Reference to a | [1.*] See relationship: Describes
class or operation Formalism Of
model element
stereotyped
<<SafetyCritical>>
(5.2.17)

5.2.24 <<Complexity>>

Definiton:

See related concept.

Related Concept:
Complexity (3.2.3.17)

Base Classes:

Base Class

Usage Rationale

Collaboration

To describe a complexity (3.2.3.17) aspect (e.g. coupling using a

specific measure, ... etc) of a collaboration

specific measure, ... etc) of a relationship

Class To describe a complexity (3.2.3.17) aspect (e.g. number of entry
points of code, ... etc) of a class

Operation To describe a complexity (3.2.3.17) aspect (e.g. level of nesting,
... etc) of an operation

Relationship To describe a complexity (3.2.3.17) aspect (e.g. coupling using a

Tags: (refer to section 3.2.3.17 for details)

Name Type Multiplicity Description
Measure Enumeration [0..1] See attribute: Measure
Value Expression [0..1] See attribute: Value
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Name

Type

Multiplicity

Description

ComplexityOf

Reference to a
class or operation
model element
stereotyped

<<SafetyCritical>>

(5.2.17)

[1.*]

See relationship: Describes

Complexity Of

5.2.25 <<Interface>>

Definiton:

See related concept.

Related Concept:

Interface (3.2.3.18)

Base Classes:

Base Class

Usage Rationale

Class

Indicates that the class acts as an interface (3.2.3.18) to some

other class

Tags:

(refer to section 3.2.3.18 for details)

Name Type Multiplicity Description
IsBetweenHardwareAndSoftware | Boolean [0..1] See attribute: Is
Between
Hardware  And
Software
InterfaceFor Reference to a|[1.*] See relationship:
class model Is Interface For
element
stereotyped

<<SafetyCritical>>
(5.2.17)
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Name

Type

Multiplicity

Description

ProtocollD

String

[0..1]

See attribute:
Protocol ID

InputFunctionParameter

Expression

[0..*]

See attribute:
Input  Function

Parameters

OutputFunctionParameter

Expression

[0..*]

See attribute:
Output  Function

Parameters

5.2.26 <<Concurrent>>

Definiton:

See related concept.

Related Concept:

Concurrent (3.2.3.19)

Base Classes:

Base Class

Usage Rationale

Class

To identify the concurrency (3.2.3.19) role (e.g. active, passive,

resource, ... etc) that a specific class assumes in the model

Tags: (refer to section 3.2.3.19 for details)

Name Type Multiplicity Description
Role Enumeration [0..1] See attribute: Role
IsShared Boolean [0..1] See attribute: Is Shared
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Name

Type

Multiplicity

Description

TriggeredEvent

Reference to a
model  element
stereotyped
<<Event>>
(5.2.15) (or its
subclass
<<Reaction>>
(5.2.16))

[0..*]

See relationship: Triggers

Parameter

Expression

[0..*]

See attribute: Parameters

5.2.27 <<Defensive>>

Definiton:

See related concept.

Related Concept:
Defensive (3.2.3.20)

Base Classes:

defended against

Base Class Usage Rationale
Class To specify that the class employs a defensive programming
approach (3.2.3.20) and describes the reactions to actions that are
defended against
Operation To specify that the operation employs a defensive programming

approach (3.2.3.20) and describes the reactions to actions that are

Tags: (refer to section 3.2.3.

20 for details)

Name

Type

Multiplicity

Description

Defendablelnput

Expression

[1.%]

See

Inputs

attribute:  Defendable
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Name Type Multiplicity Description

Reaction Reference to a | [1..*] See relationship: Performs

model element

stereotyped
<<Reaction>>
(5.2.16)
5.2.28 <<Configurable>>
Definiton:
See related concept.
Related Concept:
Configurable (3.2.3.22)
Base Classes:
Base Class Usage Rationale
Class To specify that the class can be configured (3.2.3.22) to produce a

different configuration (3.2.3.21) with a different behaviour

Tags: (refer to section 3.2.3.22 for details)

Name Type Multiplicity Description
Kind Enumeration [0..1] See attribute: Kind
When Enumeration [0..1] See attribute:
When
DefaultConfiguration Reference to a model | [1..1] See relationship:
element stereotyped Is Defaulted To

<<ConfigurationContext>>

(5.2.8)
ProducibleConfiguration | Reference to a model | [1..*] See relationship:
element stereotyped Is Configurable To

<<ConfigurationContext>>
(5.2.8)
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5.2.29 <<lLoadable>>

Definiton:

See related concept.

Related Concept:
Loadable (3.2.3.23)

Base Classes:

Base Class Usage Rationale

Class To specify that the class can be loaded (3.2.3.23) on some other
configurable (3.2.3.22) class to produce a different configuration
(3.2.3.21)

Tags: (refer to section 3.2.3.23 for details)

Name Type Multiplicity Description
LoadableOn Reference to a model | [1..*] See relationship: Is
element stereotyped Loadable On

<<Configurable>> (5.2.28)

BaseConfiguration Reference to a model | [0..*] See relationship:
element stereotyped Requires

<<ConfigurationContext>>

(5.2.8)
ResultantConfiguration | Reference to a model | [1..*] See relationship:
element stereotyped Produces

<<ConfigurationContext>>
(5.2.8)

5.2.30 <<Configurator>>

Definiton:
See related concept.
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Related Concept:
Configurator (3.2.3.24)

Base Classes:

Base Class Usage Rationale

Class To specify that the class can configure configurable (3.2.3.22)
classes to change the configuration (3.2.3.21) (and thus produce a

different behaviour)

Operation To specify that the invoking the operation can configure
configurable (3.2.3.22) classes to change the configuration
(3.2.3.21) (and thus produce a different behaviour)

Tags: (refer to section 3.2.3.24 for details)

Name Type Multiplicity Description

ConfigurableEntity Reference to a | [1..*] See relationship: Configures

model element

stereotyped
<<Configurable>>
(5.2.28)
ConfigurationEntity Reference to a | [1..*] See relationship: Loads

model element
stereotyped
<<Loadable>>
(5.2.29)

5.2.31 <<Replicated>>

Definiton:

See related concept.

Related Concept:
Replicated (3.2.3.25)
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Base Classes:
Base Class Usage Rationale

Class To indicate that class is replicated (3.2.3.25)

Tags: (refer to section 3.2.3.25 for details)
Name Type Multiplicity Description
ID String [0..1] See attribute: ID (Replicated)
ReplicationGrouplD String [0..1] Identifies the ReplicationGroup

(3.2.3.27), specified using the
<<ReliabilityContext>> (5.2.2)
stereotype, which owns this
replicated instance.

See relationship: owns

(ReplicationGroup)

5.2.32 <<Comparator>>

Definiton:
See re

lated concept.

Related Concept:

Comp

arator (3.2.3.26)

Base Classes:

Base Class Usage Rationale
Class To indicate that the class is a comparator (3.2.3.26) that compares
the outputs of replicated (3.2.3.25) classes
Operation To indicate that invoking the operation compares (3.2.3.26) the
outputs of replicated (3.2.3.25) classes
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Tags: (refer to section 3.2.3.26 for details)

Name Type Multiplicity Description
ReplicationGrouplD | String [0..1] Identifies the
ReplicationGroup  (3.2.3.27),
specified using the

<<ReliabilityContext>> (5.2.2)
stereotype, which owns this
replicated instance.

See relationship: Owns

(ReplicationGroup)

PolicyParameter Expression  or | [0..*] See attribute: Policy
Enumeration Parameters (Comparator)
ComparedEntity Reference to a | [2..*] See relationship: Compares
model  element (Comparator)
stereotyped

<<Replicated>>
(5.2.31)

5.3 Examples

This section presents examples of software models using the proposed UML profile. The
examples are explained in detail, and they serve to help the reader better understand the
UML profile and how it can be used.This thesis discusses a total of nine examples (plus a
case study in section 7). Three of those examples are discussed below as they primarily
use concepts (and stereotypes) that are key to the airworthiness standard (e.g., the notion
of software level) or that are not supported by other UML profiles. The reminaing six
examples are discussed in . Appendix G. The examples are also stereotyped according to

Gomaa’s class classification as presented in [7] and summarized in Appendix E.
5.3.1 Hardware/Software Interfaces

The example in Figure 8 shows a Kalman filter and how it connects to the radar that

provides its input and a simulator of the outside world’s events.
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Kalman filters are recursive functions. Therefore, xalmanrilter IS Stereotyped with

<<ImplementationStyle>> (5.2.11) whose “Kind” tagged value is set to “Recursive”.

The project in which this system is developed has a coding standard requirement that says
that “recursive algorithms shall not be used”. Therefore the kalmanFilter class is also a
deviation, or a violation, of the coding standard requirement, and is stereotyped with
<<Deviation>>  (5.2.10) whose  “Kind” tagged value is set to
“UsingRecursiveAlgorithm”. The “Reference” tagged value is set to “CodingStandard” to
indicate that using recursive algorithms is a deviation from, or a violation of, the project’s

coding standard.

Furthermore, filters are time-related functions. Therefore, KalmanFilter IS also
stereotyped with <<BehaviouralStyle>> (5.2.12) whose “Kind” tagged value is set to

“Time-Related”.

Now, Kalman filters process radar outputs. Since this example has a software
implementation for the Kalman filter, it has to interface with the actual radar hardware on
the aircraft. For this reason, RadarInterface is available to provide an interface between
the software Kalman filter and the hardware radar device. Thus, RadarInterface IS
stereotyped with <<Interface>> (5.2.25) whose “IsBetweenHardwareAndSoftware”
tagged value is set to “true”. The “InterfaceFor” tagged value indicates that

RadarInterface IS an interface for the actual radar hardware.

The testing of such systems is often performed in system integration labs. In other words,
the software is not loaded on the aircraft and the aircraft flown just to perform software
unit or integration testing. That would just be too expensive! Therefore, a software
simulator is developed to simulate world events that happen outside of the aircraft. This
simulator is RealwWorldEventSimulator and is stereotyped with <<Simulator>>
(5.2.21). The “SimulatedEntity” tagged value indicates that it simulates the input to
RadarInterface. Furthermore, the “SimulationParameter” tagged value indicates that
the inputs exhibit a stochastic Poisson process with an average inter-arrival time of 20

milliseconds.
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All the information described above is relevant for two purposes. First, it describes how
software was designed to improve the development process - this was achieved, as
described above, by using a simulator to improve the testing process and a
hardware/software interface to provide communication between radar hardware and
Kalman filter software. Simulators are often used to test systems [1]. Therefore, the
whole diagram is stereotyped with <<DesignContext>> (5.2.7) to indicate that this design
setup is of special interest. Secondly, the modeled classes contain information that is
relevant for the software certification aspects. For example, the airworthiness standard
specifies that the certification authorities need to know about all hardware/software
interfaces and deviations from plans or standards. Therefore, the diagram is stereotyped
with <<CertificationContext>> (5.2.6) to indicate that it contains information relevant for

the certification of the software in this diagram.

<<DesignContext>>
<<CertificationContext>>
<<ImplementationStyle>> {Kind=Recursive} <<Simulator>>
{SimulatedEntity="Radarlnput”,
SimulatorParameter=(Poisson, Lamba=20ms)}

<<algorithm>> <<algorithm>>

<<Deviation>>
{Kind=UsingRecursiveAlgorithm
Reference=CodingStandard} RealWorldEventSimulator

<<BehaviouralStye>> {Kind=Time-Related} 1

KalmanFilter Reads Simulator Outputs

1

1 ) L
<<input device interface>>

Reads Radar Outputs 1 <<Interface>>
{IsBetweenHardwareAndSoftware=true
InterfaceFor=RadarHardware}

Radarlnterface

Figure 8: Kalman filter processing input, through an interface, from a simulator

(structure).
5.3.2 Contributions to Failure Conditions
The example Figure 9 shows software that controls the landing wheels of the aircraft.

PilotKeyboardInterface IS an interface to the keyboard used by the aircraft’s pilots to
deploy or hide the landing wheels when desired. An aircraft normally has two pilots, so it
is likely that there will be several Kkeyboards that can command

LandingWheelsController t0 deploy or hide the landing wheels.
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LandingWheelsController communicates with the landing wheel hardware, through
LandingWheelsInterface, and can command it to hide or deploy the wheels. The
wheels are deployed when the aircraft is on the ground or about to land. Since
LandingWheelsInterface IS an interface for the landing wheel hardware, it is
stereotyped with <<Interface>> (5.2.25), its “IsBetweenHardwareAndSoftware” tagged
value is set to “true”, and its “InterfaceFor” tagged value is set to “LandingWheels”.

LandingWheelsController IS a safety-critical element as well because it must ensure
that the landing wheels are deployed when the aircraft is on the ground or it is at a low
altitude because it is landing. If the landing wheels are not deployed when the aircraft is
on the ground or is landing, then this could result in fatal injuries to the aircraft
occupants. In the context of airworthiness, such software is assigned is assigned level B.
Therefore, LandingWheelsController iS Stereotyped with <<SafetyCritical>> (5.2.17)
and its “CriticalityLevel” tagged value is set to “B”. This is also why this diagram was
stereotyped  with  <<SafetyContext>> (5.2.1). Because it depends on
LandingWheelsInterface, the airworthiness rules specify that
LandingWheelsInterface Must also be safety-critical and have a software level equal to
at least the highest level of all classes that depend on it. In this example,
LandingWheelsInterface IS Stereotyped with <<SafetyCritical>> (5.2.17) and is
assigned “CriticalityLevel” equal to that of r.andingwheelscontroller, namely level
“B”.

To ensure a higher level of safety, Landingwheelscontroller implements defensive
programming mechanisms by ensuring that the pilot does not attempt to hide the landing
wheels when they shouldn’t. Defensive programming is common when developing user
interfaces. In this example, LandingWheelsController defends against the pilot’s
attempt to hide the landing wheels when the aircraft’s altitude is less than 100 meters by
keeping the landing wheels deployed. This is explicitly specified by stereotyping
LandingWheelsController With the <<Defensive>> (5.2.27) stereotype and specifying
its “Defendablelnput” and “Reaction” tagged values. (The KeepWheelsDeployed model
element stereotyped <<Reaction>> is not shown in the diagram: It would be an operation

of the LandingWheelsInterface class.)
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LandingWheelsController determines the aircraft’s altitude by reading the radar output
from RadarInterface. RadarInterface Was explained in detail in section 5.3.1.
However, it has also been stereotyped here with <<SafetyCritical>> (5.2.17) to explicitly
specify the fact that some  safety-critical  functionality, such as
LandingWheelsController, depends on it. Moreover, it has also been stereotyped with
<<Complexity>> (5.2.24) and its “Measure” and “Value” tagged values indicate that the
implementation must not have a “Big-O” larger than “n? (where the meaning of “n” is
dependent on the algorithm in context). This is because radars usually have high

frequency inputs, so the code of the corresponding interfaces must be optimized.

Furthermore,  RadarInterface IS  monitored by  RadarbataValidator.
RadarDataValidator IS @ monitor whose purpose is to ensure that RadarInterface
produces high-integrity information (i.e. high precision and accuracy). This is specified
through the <<Monitor>> (5.2.20) stereotype that is applied on rRadarbDatavalidator.
Because the purpose of RadarvalidatorDatavalidator IS t0 ensure the integrity of the
data, its “Kind” tagged value is set to “Integrity”. Furthermore, the “MonitoredEntity”
tagged value explicitly identifies the class that is monitored, namely RadarInterface.

This is also why this diagram was stereotyped <<IntegrityContext>> (5.2.3).

Finally, this diagram was also stereotyped with <<ReliabilityContext>> (5.2.2) because it
is crucial that the modeled classes be reliable to the requirements. For example, the
requirements  specified by the <<Defensive>> (5.2.27) stereotype on
LandingWheelsController must be correctly implemented (e.g. it must not allow hiding

the wheels for altitudes less than 100 meters, and not greater than 100 meters!).
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<<SafetyContext>>

out device infert <<ReliabilityContext>> <<algorithm>>
<<input device interface>> ; . . ’
P <<IntegrityContext>> <<Monitor>> {Kind=Integrity
PilotKeyboardinterface MonitoredEntity=RadarInterface}
RadarDataValidator

* 1

Commands Monitors 1
1

<<input device interface>>
<<state dependent control>>
P <<SafetyCritical>> {CriticalityLevel=B}
<<SafetyCritical>> {CriticalityLevel=B}
) <<Complexity>> {Measure=Big-O, Value="n?"},
1 1
<<Defensive>> Reads Radar Outputs ComplexityOf=Radarlnterface}
{Defendablelnput=
‘Altitude < 100 m && Command="HideWheels™ <<Interface>>
Reaction=KeepWheelsDeployed} {IsBetweenHardwareAndSoftware=true
. InterfaceFor=RadarHardware
LandingWheelsController }

Radarlnterface

1

<<output device interface>>

<<Interface>>
Commands 1 {IsBetweenHardwareAndSoftware=true
InterfaceFor=LandingWheels}

<<SafetyCritical>> {CriticalityLevel=B}

LandingWheelsInterface

Figure 9: Landing wheel controller processing user and radar inputs (structure).
5.3.3 Software Configurations

The diagram in Figure 10 shows a configurable user interface. The user interface interacts
with the users by displaying text in their language of preference. userinterface itself is
language-independent. It reads and displays textual strings in any of three languages:
English, French, and German. This is achieved through userinterfaceDictionary,
which is stereotyped with <<Configurable>> (5.2.28) to indicate that the user can change
its configuration. The “Kind” tagged value is set to “Lookup-Table” and the “When”
tagged value is set to “Run-Time” to indicate that look-up tables can be loaded into it at
run-time to change its configuration. The “DefaultConfiguration” tagged value specifies
that the “Englishinterface” is the default configuration for userInterfacebictionary.
The possible configurations that can result from such a load are listed in the
“ProducibleConfiguration” tagged values. In this example, we have three possible
configurations that can result from such a load: “Englishinterface”, “Frenchinterface”,

and “Germanlinterface”.
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DictionaryLoader IS the actual software than can perform the software load and
the Thus, it
<<Configurator>> (5.2.29). The “ConfigurableEntity” tagged value identifies the class

therefore change software configuration. is stereotyped with
that can be configured, namely UserInterfaceDictionary. The “ConfigurationEntity”
tagged values identify the classes that can be loaded on the “ConfigurableEntity”, namely

EnglishDictionaryTable, FrenchDictionaryTable, and GermanDictionaryTable,

which are stereotyped with <<Loadable>> (5.2.29) to indicate that they can be loaded in

appropriate  situations. The  “LoadableOn” tagged values are set to
“UserinterfaceDictionary”  to indicate  that  they are loadable  on
UserInterfaceDictionary, and the “ResultantConfiguration” specifies which

configuration is produced loading EnglishDictionaryTable,

by

FrenchDictionaryTable, and GermanDictionaryTable, which are

EnglishInterface, FrenchInterface, and GermanInterface, respectively.

<<user interface>> ) .
<<ConfigurationContext>>

Userlnterface
1

Reads
1

<<entity>> .
k% <<coordinator>>

<<Configurable>>
{Kind=Lookup-Table, When=Run-Time,
DefaultConfiguration="Englishinterface’,
ProducibleConfiguration="Englishinterface’,
ProducibleConfiguration="Frenchinterface’,
ProducibleConfiguration="Germanlnterface’,

<<Configurator>>
{ConfigurableEntity="UserInterfaceDictionary’,
ConfigurationEntity="EnglishDictionaryTable’,
ConfigurationEntity="FrenchDictionaryTable’,
ConfigurationEntity="GermanDictionaryTable’}

1 Configures 1

DictionaryLoader

UserlnterfaceDictionary

1 1
Reads Loads
1 <<entity>> 1
DictionaryTable
<<entity>> <<entity>> <<entity>>

<<Loadable>> <<Loadable>> <<Loadable>>

{LoadableOn=UserlInterfaceDictionary,
ResultantConfiguration=Englishinterface}

EnglishDictionaryTable

{LoadableOn=UserInterfaceDictionary,
ResultantConfiguration=Frenchinterface}

FrenchDictionaryTable

{LoadableOn=UserInterfaceDictionary,
ResultantConfiguration=Germaninterface

GermanDictionaryTable

Figure 10: User interface language configurations (structure).
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The diagram is stereotyped with <<ConfigurationContext>> (5.2.8) to indicate that it
contains information that is relevant to changing software configurations.

5.4 Development Methodology

The proposed UML profile provides a mechanism to model safety information in UML
models. However, such mechanism is only a part of an overall process for developing
airworthiness-compliant software. A methodology for developing airworthiness-
compliant software products is shown in Figure 11. In practice, it is likely that a step
starts before its previous step is fully completed and closed. The different steps are
further described below.

S-1: Define the system’s S-3: Develop the detailed
Y S-2: Define the system functional and non-functional,
Start high-level functional N
architecture excluding safety,
requirements ]
requirements

S-4: Perform a safety
S-5: Perform a critical review assessment and develop

safety requirements

S-7: Develop the subsystems’
detailed design while S-8: Certify system
monitoring safety

Figure 11: Development methodology of airworthiness-compliant software products.

S-6: Are any
issues
identified?

Each step in Figure 11 is explained in Table 4.

Step Description

S-1 | Define the system’s high-level functional requirements

Activity: The system boundaries, behaviour, and high-level requirements are
defined. The system’s boundaries define what consistutes part of the system, and
what does not. This is an important aspect for analysing the safety aspects of the
system, as whether a system is safe or not depends on what is considered part of
the system and what is not. In addition, the system’s general behaviour, along with
the high-level functional requirements, are defined. At the end of this step, the
system’s behaviour is understood and documented.

Output: The documented behaviour of the system, usually presented as the
system’s high-level functional requirements based on the definition of the system
boundaries.
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Step

Description

S-2

Define the system architecture

Activity: The system architecture is defined based on its high-level functional
requirements. The various subsystems are defined, and the role of each subsystem
in implementing the system’s high-level functional requirements are defined and
documented. As a result, the high-level functional requirements for each subsystem
are defined. The proposed UML profile may be used to model the system
architecture.

Output: The system architecture, including the identification and definition of its
subsystems.

S-3

Develop the detailed functional and non-functional, excluding safety, requirements

Activity: Detailed functional requirements are developed for the system and its
subsystems. In addition, non-functional requirements, excluding safety
requirements, are developed.

Output: Detailed functional and non-functional, excluding safety, requirements of
the system and its subsystems.

Perform a safety assessment and develop safety requirements

Activity: By this stage, the behaviour of the system and its subsystems is already
understood. In this step, therefore, a safety assessment of the system is performed
based on its architecture and intended behaviour, and using one or more safety
assessment methods such as the ones identified in section 2.1. The results of the
safety assessment are translated into safety requirements, and then the safety
requirements are assigned to the various subsystems. This step includes USAGE 1
as defined in section 2.4.

Output: Safety hazards identified in the safety assessment, and safety
requirements for the system and its subsystems.

S-5

Perform a critical review

Activity: The output of steps S-1 — S-4 are checked for consistency among each
other. Areas of interest in this step are whether the safety requirements are
complete with respect to the functional and non-functional requirements, and
whether there are any ambiguous, missing, or conflicting requirements. In addition,
the system architecture is analysed to determine whether there exists a more
suitable architecture for the identified safety requirements. Thus, the results of the
previous S1 — S4 steps iteration are analysed, which will be later used to determine
whether another iteration is necessary or not. In practice, such critical reviews are
common to hold with the project’s customer at selected milestones.

Output: A list of identified issues to be fixed. This list may be empty, but this will

be surprising unless steps S-1 — S-5 have already gone through at least two
iterations.
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Step

Description

S-6

Are any issues identified?

Activity: The results from step S-5 are analysed. If any issues are encountered,
step S-1 is revisited to correct all identified issues. Otherwise, development is
progressed to step S-7.

Output: The decision on whether to perform another iteration of steps S-1 — S-5 or
not.

Develop the subsystems’ detailed design while monitoring safety

Activity: The subsystems’ detailed design is developed. The detailed design will
also include the specification of the system’s events of interest, and the desired
reactions to those events. The definition of the events and reactions will depend on
the safety requirements of the system. The proposed UML profile is used to design
the subsystems (USAGE 2 in section 2.4), and the design decisions are justified
(USAGE 3 in section 2.4). The design elements are traced back to the requirements
using the proposed UML profile’s stereotypes. While the subsystems are being
designed, the design’s conformance to the safety requirements is continuously
monitored (USAGE 4 in section 2.4). In practice, software implementation also
occurs in this step.

Output: The detailed design of the subsystems, the system events and reactions,
the justifications of the design decisions, and the safety monitoring information.

S-8

Certify system

Activity: The project’s safety and airworthiness engineers are engaged with the
certification authority to demonstrate the project’s compliance with the
certification requirements. In this step, safety information is obtained from the
software (USAGE 5 in section 2.4), and evidence of performing relevant activities
(such as USAGE 1, USAGE 2, USAGE 3, and USAGE 4 in section 2.4) are
presented. Any issues identified by the certification authority are corrected and the
certification is ensured to completion.

Output: Successful certification of the system.

Table 4: Details of the development methodology steps.
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6 GENERATION OF CERTIFICATION INFORMATION

Now that a UML profile is defined, it can be used to model software that requires
certification according to the airworthiness standard. This section shows how a UML
model using the proposed UML profile can be used to automatically generate information
that can either be submitted to the certification authorities, or can be used to track issues
of relevance to the certification authorities. In either case, this information improves
communication between airworthiness engineers and software engineers. The
information required for submission to the certification authorities for each software level
is listed in section 11 and annex A in the airworthiness standard, RTCA DO-178B [4].

6.1 Technological Requirements

In order to be able to generate certification information from UML models, there are
technological requirements that software development tools must support. Those
requirements can be summarized in one requirement, namely the ability to search UML
models based on the stereotypes that are applied to model elements and the values of the

stereotypes’ tagged values.

For example, consider a scenario when one needs to identify all safety-critical model
elements. In this case, the modeling tool must be able to search the UML model and
identify all model elements, such as classes in class diagrams, that have been stereotyped
with <<SafetyCritical>> (5.2.17). If the user of the tool needs to identify all safety-
critical model elements that are assigned software level A, for example, then the tool
must be able to read the “CriticalityLevel” tagged value of the <<SafetyCritical>>
(5.2.17) stereotype and identify when it is set to “A”. This is why the proposed UML

profile emphasizes specifying information in machine-readable language.

In practice, there are several possible methods to achieve this technological requirement
of being able to search UML models. Below is a list of some methods to guide the users

of the proposed UML profile.
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6.1.1 Integrated Support in UML Modeling Tools

One convenient method to extract safety information from UML models is to provide a
mechanism to do so in the UML modeling tool itself. UML modeling tools already offer
some sort of search capabilities for the designers. For example, ARTiSAN Studio [31],
which is a UML modeling tool from ARTISAN Software Inc., allows designers to
identify where specific model elements are used. That is one example of ARTISAN’s
search capabilities. Another example of a modeling tool is International Business
Machines Corporation’s (IBM) Rational Software Architect [32]. A third example is
Telelogic’s Rhapsody [33]. This UML model-driven development tool allows designers
to search UML models for uses of specific stereotypes. In addition, it supports the Visual
Basic for Applications (VBA) scripting language, which allows modelers to write their

own scripts and execute them on models. This could be used to perform search queries.

The Eclipse Modeling Framework (EMF) for Java [34] is a popular, and easily
extensible, software development framework. Some of EMF’s extensions include the
capability to use the Object Constraint Language (OCL) [35] to specify search queries on
UML models, and then write Java code to execute them. Examples of the search
capabilities of this technology include the capability to search for all objects that are
instances of a specific class. However, the current state of this technology does not
support searching UML models based on the stereotypes applied to model elements and
the values assigned to the tagged values. Nevertheless, the integration of EMF and OCL
is a promising approach that should be easibly extensible to support search queries based

on stereotypes and tagged values.
6.1.2 Exporting UML Models using XMl

XMI [36] is an OMG standard for representing, and therefore exchanging, models and

metadata in an XML-based language.

In practice, UML modeling tools can export UML models in the XMI language. This
would create an XML file containing all the model data. Since XMl is a standard format,

it can be imported by any other tool, thus establishing a common format across different
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tools. For example, imagine project A that is using Rational Software Architect to model
its software. Further, assume that project A is similar in nature to a previously completed
project B that used ARTISAN Studio to model its software. Project A now wants to reuse
the software model from project B. To achieve this, one would use a feature from
ARTISAN Studio that would export an XMI file containing all the software model for
project B. Then, project A can import this XMl file using an import XMI file feature in
Rational Software Architect. Thus, the model would be transfered from project B to

project A.

In our case of generating certification information, the model would be exported from the
modeling tool by generating an XMI file. Once an XMI file containing the software
model is available, it can be easily parsed and searched. This is possible in many ways,
but the most appropriate method would probably involve the use of the Extensible
Stylesheet Language (XSL) [37]. XSL is used to parse and transform XML-based files,
such as XMl files, to any desired format. Such transformation is achieved by using XSL
files called stylesheets. The purpose of XSL stylesheets is then to display the same model
data in different formats or views, just like the Model-View-Controller (MVC) software
pattern displays the same model information in different views. Using this approach, XSL
stylesheets can be developed to execute search queries on the model data in the XMl
files.

6.2 Examples

The examples presented below are specified in a high-level Structured Query Language
(SQL)-like language. It is intended to be pseudocode-like, result in shorter text (see
below), and be implementation-independent. Developers can also use them to implement
using existing development tools and frameworks (refer to documentation of the existing
tools and frameworks for more detail). It does not require the reader to have any
knowledge of other tools or frameworks. The grammar for the language used is specified
in an extension of the Extended Backus-Naur Form (EBNF), which is a popular syntax

for specifiying languages [38]. The EBNF language itself is specified in the EBNF
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standard [39]. One popular example of a language specified in EBNF is the Ada language
as specified in the Ada 95 Language Reference Manual [40].

The EBNF meta-symbols used in this section are:
1. “:="means “is defined as”.
2. “” means “or”.
3. Literal strings are enclosed in double-quotes “”.
4. Angle brackets “<>" are used around category names.
5. Optional items (zero or one) are enclosed in square brackets “[]”.

6. Repetitive items (zero or more) are enclosed in braces “{}”.

The grammar for the search language used in this section, represented in EBNF form, is:

<search-query> ::= "SEARCH FOR " <subject> [" " <stereotype-criteria>]
<subject> ::== "all model elements"

<stereotype-criteria> ::= "STEREOTYPED WITH (" <stereotype-criterion> ")
{" AND STEREOTYPED WITH (" <stereotype-criterion> } ")"
<stereotype-criterion> ::= "<<" <stereotype-name> ">>" [<tagged-value-
criteria]

<stereotype-name> ::= <string>

<tagged-value-criteria> 1= "WITH TAGGED VALUE (" <tagged-value-
criterion> ") " {"AND WITH TAGGED VALUE (" <tagged-value-criterion> ")"}
<tagged-value-criterion> ::= <tagged-value-name> "=" <tagged-value>

<tagged-value-element-dereference> "IS " <stereotype-criteria>
<tagged-value-element-dereference> ::= <tagged-value-name> ".Element"

<tagged=value-name> ::= <string>

The <tagged-value-element-dereference> IS Used to obtain the model element to

which a tagged value refers.
6.2.1 Hardware/Software Interfaces

Section 11.1 bullet a. in the airworthiness standard RTCA DO-178B [4] requires that the
project’s Plan for Software Aspects of Certification (PSAC), which is submitted to the
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certification authority, include a description of hardware/software interfaces in the
system. Furthermore, section 11.9 bullet f. in the airworthiness standard RTCA DO-178B
[4] requires that hardware/software interfaces be documented and the requirements of

their protocols, frequency of input, and frequency of outputs be presented.

A list of hardware/software interfaces can be extracted from the model using the

following search query:

SEARCH FOR all model elements STEREOTYPED WITH (<<Interface>>
WITH TAGGED VALUE (IsBetweenHardwareAndSoftware = true))

From the results of this query, the “ProtocollD”, “InputFunctionParameter”, and
“QOutputFunctionParameter” tagged values of the <<Interface>> (5.2.25) stereotype can
be read to present the information described above. For example, executing this search

query on the model in Figure 8 gives the following results: RadarInterface.
6.2.2 Contributions to Failure Conditions

Section 11.1 bullet c. in the airworthiness standard RTCA DO-178B [4] requires that the
project’s PSAC include a description of software’s contributions to failure conditions.

A list of software that can contribute to failure conditions, along with the severity of the

failure conditions, can be extracted from the model using the following search query:
SEARCH FOR all model elements STEREOTYPED WITH
(<<SafetyCritical>>)

From the results of this query, the “CriticalityLevel” tagged value of the

<<SafetyCritical>> (5.2.17) stereotype can be read to identify the failure condition levels

that each safety-critical software component contributes to. For example, executing this

search query on the model in Figure 9 gives the following results:

LandingWheelsController, LandingWheelsInterface, RadarInterface.
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6.2.3 COTS Software

Section 11.1 bullet g. in the airworthiness standard RTCA DO-178B [4] requires that the
project’s PSAC include a description of COTS software used.

A list of COTS software can be extracted from the model using the following search

query:

SEARCH FOR all model elements STEREOTYPED WITH (<<Nature>>
WITH TAGGED VALUE (Kind = COTS))

For example, executing this search query on the model in Figure 17 (discussed in

Appendix G.1) gives the following results: safeF1ightPaths.
6.2.4 Software Partitioning

Section 11.3 bullet f. in the airworthiness standard RTCA DO-178B [4] requires that the
project specify which methods are used to verify the integrity of partitions performed.
Furthermore, section 11.9 bullet h. requires that partitioning requirements allocated to

software, as well as the software level(s) for each partition, be specified.

A list of partitions can be extracted from the model using the following search query:

SEARCH FOR all model elements STEREOTYPED WITH

(<<Partition>>)

From the results of this query, the “PartitionedFrom” tagged value of the <<Partition>>
(5.2.18) stereotype can be read to determine which software component this partition was
partitioned from. Furthermore, the “Reference” tagged value of the <<Partition>>
(5.2.18) stereotype can be read to determine the requirement that resulted in this partition.
For example, executing this search query on the model in Figure 18 (discussed in
Appendix  G.2) gives the following  results: AutoPilotController,

ConvertibleSteeringInformation.

A list of partitions that have been assigned software levels, along with the software level

for each partition, can be extracted from the model using the following search query:
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SEARCH FOR all model elements STEREOTYPED WITH
(<<Partition>>) AND STEREOTYPED WITH (<<SafetyCritical>>)

From the results of this query, the *“CriticalityLevel” tagged value of the
<<SafetyCritical>> (5.2.17) stereotype can be read to determine the software level for
each partition. For example, executing this search query on the model in Figure 18 gives

the following results: autoPilotController.
6.2.5 Requirements and Traceability

Section 11.9 in the airworthiness standard RTCA DO-178B [4] requires that the software
requirements data be available. Furthermore, the airworthiness standard RTCA DO-178B
[4] requires that the software design (e.g. UML model) be traced to the software
requirements for software assigned level D or above. It also requires that the source code
be traceable to the requirements for software assigned level C or above.

A list of model elements traceable to software requirements can be extracted from the

model using the following search query:

SEARCH FOR all model elements STEREOTYPED WITH

(<<Requirement>>)

For example, executing this search query on the model in Figure 19 (discussed in
Appendix G.3) gives the following results: pilotkeyboardInterface, Commands, and
the diagram itself. Those are stereotype with <<Requirement>> (5.2.9) whose IDs,

respectively, are: LREQ 1, LREQ 2, HREQ 1.

For requirements that are only relevant for safety purposes, the following search query
can be used:

SEARCH FOR all model elements STEREOTYPED WITH
(<<Requirement>> WITH TAGGED VALUE (Kind = Safety))

For example, executing this search query on the model in Figure 19 (discussed in
appendix G.3) gives the following results: pilotkeyboardInterface, Commands, and the
diagram itself. Those are stereotype with <<Requirement>> (5.2.9) whose IDs,

respectively, are: LREQ 1, LREQ 2, HREQ 1.

131



Carleton University, TR SCE-06-19 Decermber 2006

For a list of all design decisions that are a result of safety-related requirements, the
following search query can be used:

SEARCH FOR all model elements STEREOTYPED WITH (<<Rationale>>
WITH TAGGED VALUE (Reference.Element IS STEREOTYPED WITH
(<<Requirement>> WITH TAGGED VALUE (Kind = Safety))))

The search query can be read as follows: Find all model elements that are stereotyped
with <<Rationale>> (5.2.14). Then, pick only those elements where the “Reference”
tagged value points to safety requirements (as indicated in the model with the
<<Requirement>> (5.2.9) stereotype and its “Kind” tagged value). Thus, the above
search query specifies that the results are all model elements that are stereotyped with
<<Rationale>> (5.2.14), and where the “Reference” tagged value of the <<Rationale>>
(5.2.14) stereotype is a reference to another model element stereotyped with
<<Requirement>> (5.2.9) whose “Kind” tagged value is “Safety”. For example,
executing this search query on the model in Figure 19 gives the following result:

SafeFlightPaths.
6.2.6 Multiple-Version Dissimilar Software

Section 11.1 bullet g. in the airworthiness standard RTCA DO-178B [4] requires that the
project’s PSAC include a description of the multiple-version dissimilar software used.
Furthermore, section 11.3 bullet j. in the airworthiness standard RTCA DO-178B [4]
requires that a description of the software verification process activities used to verify

multiple-version dissimilar software be presented.

A list of multiple-version dissimilar software can be extracted from the model using the

following search query:

SEARCH FOR all model elements STEREOTYPED WITH

(<<Replicated>>)

For example, executing this search query on the model in Figure 20 (discussed in
Appendix G.4) gives the following results: RadarFilterl, RadarFilter2,

RadarFilter3.
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6.2.7 Recursive Software

Section 11.7 bullet e. in the airworthiness standard RTCA DO-178B [4] requires that the
software design standards specify which constraints on the software design exist. Such

design constraints could require the exclusion of software recursion.

If software recursion is used, then its use can be identified in the model. A list of
recursive software can then be extracted from the model using the following search
query:

SEARCH FOR all model elements STEREOTYPED WITH
(<<ImplementationStyle>> WITH TAGGED VALUE (Kind =

Recursive))

For example, executing this search query on the model in Figure 8 gives the following

results: kalmanFilter.

If recursive software is not permitted by the software design standard but this rule was
broken for some reason in some place, then a list of similar deviations from the standard

can be extracted using the following search query:

SEARCH FOR all model elements STEREOTYPED WITH (<<Deviation>>
WITH TAGGED VALUE (Kind = UsingRecursiveAlgorithm))

From the results of this query, the “Reference” and “Explanation” tagged values of the
<<Deviation>> (5.2.10) stereotype can be read to determine the standard from which this
deviation existed and the rationale for this deviation. For example, executing this search

query on the model in Figure 8 gives the following results: kalmanFilter
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7 CASE STUDY - NAVIGATION CONTROLLER

In this section, an aircraft’s navigation system is analysed, and its navigation controller
subsystem is designed using the proposed UML profile (section 5.1). The goal is to
demonstrate, through a realistic case study the usefulness of the profile in the context of
the usage scenarios we defined (section 2.4). In order to be complete and provide enough
insights about the system to the reader, we also go through the development methodology

described in section 5.4.

Here is a mapping between the steps of the development methodology (Figure 11 in

section 5.4) and the subsections where they are addressed:

S-1 Define the system’s high-level functional requirements: In section 7.1, an
overview of the system is introduced, which describes in high-level language

the major functionalities of the system.

S-2 Define the system architecture: The system architecture is presented and

explained in section 7.2.

S-3 Develop the detailed functional and non-functional requirements (excluding
safety): The functional requirements of the subsystem under study are presented

and explained in section 7.3.

S-4 Perform a safety assessment and develop safety requirements: A safety
assessment is performed in section 7.4 using four standard, complementary
methods. Its results are presented in sections 7.4.1 — 7.4.4, from which the

safety requirements are derived and presented in section 7.4.5.

S-5 Perform a critical review: Due to space constraints, only the final results are
presented in this case study rather than the actual iterations used to develop the

system. Therefore, the results of this step are not presented.
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Are any issues identified?: For the same reasons as above, the results of this
step are not presented.

Develop the subsystems’ detailed design while monitoring safety: The design of
the subsystem under study, including aspects related the defined safety

requirements, is presented in section 7.5.

Certify system: In section 7.6, the usage scenarios of our proposed UML profile
are discussed in the context of our case study. Their results are generally
submitted to the certification authorities to certify the system, particularly the
results of usage USAGE 5 (Get Safety Information), which are discussed in
section 7.6.5.

7.1 Overview

The navigation controller subsystem is used to control the aircraft’s flight paths through

both automatic pilot and manual input from the pilots.

It is worth reviewing the following terminology before proceeding with the case study:

1.

Fly-To-Point (FTP): An FTP specifies a location on earth that the aircraft plans to
fly to. For example, an aircraft flying from London to Paris will have at least one
FTP, which is Paris.

Latitude/Longitude (LAT/LONG): A LAT/LONG specifies a particular
geographic position on earth in latitude and longitude. LAT/LONG values are the
standard measures for specifying geographic positions in navigation systems. The
unit of both LAT and LONG are degrees, with LAT ranging from 90 South to 90
North, and Longitude ranging from 180 Westward to 180 Eastward. LAT/LONG

values are generally used to specify FTP positions.

Bearing: The bearing on an aircraft is the direction in which it is flying. The

bearing is generally specified in degrees, with a range of [0, 360[. A bearing of
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zero is in a direction starting from the aircraft’s position and towards the North

Pole.

4. Dead-Reckoning: Dead-reckoning an aircraft’s position means that the aircraft’s
position is being approximated using a previously known position at a given point
of time, the current speed and bearing (direction). Ideally, the navigation system
uses a Global Positioning System (GPS) to determine the aircraft’s LAT/LONG
position. If the GPS system fails, however, the navigation system can then

approximate the position by dead-reckoning it.
The aircraft’s navigation controller subsystem has the following primary responsibilities:

1. Autopilot (Automatic): Based on the source and destination of the aircraft, this
subsystem can choose an appropriate flight path. During the entire flight period, it
can also guide the aircraft by generating appropriate commands to the aircraft’s

wings and engines to change the speed and bearing (i.e. direction) as required.

2. Supporting Custom Flight Paths (Semi-Automatic): This subsystem can accept
commands from the pilots such as a specific position’s latitude and longitude
(LAT/LONG). Then, it controls the aircraft’s speed and bearing to get to the
desired FTP that was indicated by the pilot.

In order to perform such functionality, this subsystem needs to have continuous input
from the aircraft’s navigation system, which reports the current position and altitude of
the aircraft at all time. In addition, it needs to be able to command the aircraft’s wings

and engines to change the speed and bearing.
7.2 System Architecture

Recall that software safety is only meaningful within the context of the system in which
the software is used. As a result, it is mandatory to consider the system architecture as a
whole to determine the safety aspects of NavigationControllerSubsystem. The System

architecture, in which NavigationControllerSubsystem appears, is shown in Figure
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12, and is discussed below. In the discussion, the rationale for assigning each software

level is explained. The software levels were defined in section 2.2.

<<SafetyContext>>

<<Subsystem>>
<<SafetyCritical>> {CriticalityLevel=B}

MechanicalSteeringWheelSubsystem

<<Subsystem>>
<<SafetyCritical>> {CriticalityLevel=D}

NavigationUserlInterfaceSubsystem

—

<<Subsystem>>
<<SafetyCritical>> {CriticalityLevel=D}

LEDDisplaySubsystem

8

<<Subsystem>>
<<SafetyCritical>> {CriticalityLevel=C}

<<Partition>>
{PartitionedFrom=NavigationSubsystem}

NavigationControllerSubsystem

Ta\ E (Y
N4 9 N
| S
<<Subsystem>> <<Subsystem>> <<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=A}

WingsAndEnginesSubsystem

<<SafetyCritical>> {CriticalityLevel=C}

NavigationDatabaseSubsystem

<<SafetyCritical>> {CriticalityLevel=B}

NavigationSubsystem

Figure 12: System architecture (structure).

The system is composed of the following subsystems:

1. wingsAndEnginesSubsystem: This subsystem represents the wings and the

engines of the aircraft, and is used to control them. Therefore, it is the most

important element to control the aircraft’s speed and bearing. Thus, it is safety-

critical and is assigned level A, as the <<SafetyCritical>> (5.2.17) stereotype

illustrates, because its failure prevents the continued safe flight and landing. This

subsystem will not be considered any further in this case study.

2. MechanicalSteeringWheelSubsystem: This subsystem represents the pilots’

mechanical steering wheel. They can use it to manually change the aircraft’s

speed and bearing. Thus, it is safety-critical and is assigned level B, as the

<<SafetyCritical>> (5.2.17) stereotype illustrates, because its failure prevents the

pilots from performing their tasks correctly and accurately, but the aircraft’s speed
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and bearing can still be controlled by other subsystems. This subsystem will not
be considered any further in this case study.

3. NavigationSubsystem: This subsystem represents the navigation system that
determines the current position, altitude, speed, and bearing of the aircraft through
a GPS system and other technologies. Thus, it is safety-critical and is assigned
level B, as the <<SafetyCritical>> (5.2.17) stereotype illustrates, because its
failure prevents the pilots from performing their tasks correctly and accurately,
but the pilots can approximate the aircraft’s navigation information by observing
ground landmarks. This subsystem will not be considered any further in this case

study.

4. LEDDisplaySubsystem: This subsystem represents a simple Light-Emitting
Diode (LED) display to the pilots showing continuous navigation information as
it is read from the “Navigation” subsystem. LEDs are a classical kind of
information display technology. Thus, it is safety-critical and is assigned level D,
as the <<SafetyCritical>> (5.2.17) stereotype illustrates, because its failure
increases the pilots’ workload and discomfort, but they can still read the
navigation information from NavigationUserInterfaceSubsystem. INn case
LEDDisplaySubsystem fails, they can approximate navigation information
through ground landmarks or through radio communication with ground stations
or other aircrafts. This subsystem will not be considered any further in this case

study.

5. NavigationDatabaseSubsystem: This subsystem stores and manages all the
possible flight paths relevant to this aircraft. It is safety-critical and is assigned
level C, as the <<SafetyCritical>> (5.2.17) stereotype illustrates, because the
NavigationControllerSubsystem Subsystem (at level “C”) depends on it. This
is a rule in the airworthiness standard — components are assigned to the highest
level of the components whose operations depend on it. This subsystem will not

be considered any further in this case study.
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6. NavigationControllerSubsystem: This subsystem is in charge of automatically
guiding the aircraft through pre-determined flight paths and FTPs. The pilots can
use it for the autopilot feature, or to fly to specific points. It is safety-critical and
is assigned level C, as the <<SafetyCritical>> (5.2.17) stereotype illustrates,
because its failure increases the pilots’ workload and discomfort and may cause
injuries because the pilots will not necessarily be able to safely fly the aircraft
without it as this would require them to use the mechanical steering wheels. It is
partitioned away from NavigationSubsystem, as indicated by the <<Partition>>
(5.2.18) stereotype, because it has a software level that is lower than that of
NavigationSubsystem (i.e. level C is lower than level B). This partitioning
allows NavigationSubsystem t0 continue providing information to other relevant
subsystems such as LEDDisplaySubsystem even if
NavigationControllerSubsystem fails. This subsystem is the topic of this case

study, and is the only subsystem considered further here.

7. NavigationUserInterfaceSubsystem: This subsystem serves as the pilots’
interface t0 NavigationControllersubsystem. It can be used to read navigation
information including flight paths, and to command
NavigationControllerSubsystem t0 use the autopilot feature or to fly to
specific FTPs. It is safety-critical and is assigned level C, as the
<<SafetyCritical>> (5.2.17) stereotype illustrates, because its failure increases the
pilots’ workload and discomfort and may cause injuries because the pilots will
only be able to control the aircraft through
MechanicalSteeringWheelSubsystem. This subsystem will not be considered

any further in this case study.
7.3 Functional Requirements

The following functional requirements are assigned to

NavigationControllerSubsystem:

FREQ1 NavigationControllerSubsystem Shall be able to list pre-determined

flight paths for a requested source/destination pair.
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FREQ 2 ©NavigationControllerSubsystem Shall provide an autopilot feature

where it flies the aircraft through a requested flight path.

FREQ3 NavigationControllersSubsystem Shall be able to fly the aircraft to a
requested FTP.

FREQ4 nNavigationControllerSubsystem Shall provide the capability to guide
the pilots through a requested flight path when the pilot is controlling the

aircraft through MechanicalSteeringWheelsSubsystem.

FREQ5 NavigationControllersubsystem Shall be able to provide navigation

information received from NavigationSubsystem.
7.4 Safety Assessment

A safety assessment of NavigationControllerSubsystem Was performed based on the
functional requirements listed in section 7.3 and the system architecture presented in
Figure 12. This is common practice because such a safety assessment on the system helps
identify potential hazards and their causes. This results in developing safety requirements
to treat the hazards, which in turn impact the system and software design. Therefore, the
safety assessment is performed at the early stages of the design because, unlike risk
assessment, it emphasizes designing the system and software with safety in mind rather

than adding safety features to a completed design.

The safety assessment in this case study was performed using various methods to identify
additional safety-related requirements. Each one of the following sections (7.4.1 — 7.4.4)
first presents and explains a safety assessment method. A description and analysis of the
various safety assessment methods can be found in [1]. Several safety assessment
methods are used in practice because they are complementary. Safety assessment
methods differ in terms of inputs, outputs, objectives, and scalability. (Refer to section
2.1 for more detail.) Then, in each section, we apply the corresponding safety assessment
method on the system, and only report on the results that are relevant to our case study

(i .e., NavigationControllerSubsystem).
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Section 7.4.5 then presents safety requirements for NavigationControllerSubsystem

based on the safety assessments performed in sections 7.4.1 — 7.4.4.
7.4.1 Action Error Analysis (AEA)

AEA is a qualitative safety-analysis technique used to analyse human behaviour and
identify actions that can potentially cause accidents. It focuses on potential deviations of
human behaviour from the normal or intended behaviour. Examples of scenarios
considered in this analysis include forgetting to do a step, doing a step at the wrong time,
incorrect ordering of steps, taking too long to do a step, or doing an unintended step.
Therefore, it uses a forward search strategy to identify what could result from such errors
in human behaviour. It is very similar to FMEA, but it is applied to human behaviour
instead [1]. More detailed discussions of AEA can be found in [1] and [42].

The following potentially unsafe human actions, which could result in hazards, were

analysed using this method:

AEA1 A pilot attempts to manually control the aircraft through
MechanicalSteeringWheelSubsystem While the aircraft is in autopilot

mode.
AEA 2 A pilot requests flying to an FTP that is in an unsafe area.

AEA 3 A pilot requests flying to an FTP where the path to it requires passing
through an unsafe area.

AEA 4 A pilot requests a long flight path or a far FTP that would cause the aircraft

to run out of fuel before landing.
7.4.2 Failure Modes and Effects Analysis (FMEA)

FMEA is a popular analysis technique, which was developed by reliability engineers.
Therefore, it focuses on the failures of components and, using a forward search approach,
analyses the effects of such failures. It is also used in safety assessments because the

effects of such failures could include potential hazards and risks. When applied to safety
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assessments, however, it is important to realize that not all failures result in hazards or
accidents. In addition, it pays little attention to human errors because it focuses on the
failure of components. Therefore, FMEA and AEA complement each other. More
detailed discussions of FMEA can be found in [1] and [43].

Using FMEA, failures  that  would result in  the  failure of
NavigationControllerSubsystem Were identified. Such failures could potentially result
in hazards because NavigationControllerSubsystem IS Safety-critical. They include
the potential failure of NavigationControllerSubsystem itself and any of the

subsystems on which it depends.
The following failures, which could result in hazards, were identified using this method:
FMEA 1 NavigationControllerSubsystem fails.
FMEA 2 wingsAndEnginesSubsysten fails.
FMEA 3 NavigationDatabaseSubsystemn fails.
FMEA 4 NavigationSubsysten fails.
7.4.3 Hazards and Operability Analysis (HAZOP)

HAZOP is an analysis technique that assumes that accidents are caused by deviations
from the design or operating intentions. Therefore, it encourages creative thinking about
all the possible ways in which hazards or operating problems may arise as a result of
using the system in a mode other than its intended operating conditions. Because HAZOP
considers a design and investigates what hazards could be caused by each design and
operating deviation, it can discover new hazards that were not previously identified. More
detailed discussions of HAZOP can be found in [1] and [44].

The following deviation from the operating intention, which could result in hazards, was

identified using this method:
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HAZOP 1 The autopilot mode is being used when NavigationSubsystem iS unable
to use the GPS feature and is instead dead-reckoning (i.e. periodically

approximating) the aircraft’s position.
7.4.4 Interface Analyses (1A)

IA is an analysis method that is used to evaluate connections and relationships between
components. It examines the interfaces between components and determines whether
failures can be propagated between components. The types of problems that are often
examined include, but are not limited to, failure to receive inputs from the connection,
unstable connection, and erroneous output. IA is similar in use to HAZOP because
interface problems are deviations from the intended design operation, but it is more
general because it considers other types of problems. More detailed discussions of IA can
be found in [1] and [45].

The following connection problems, which could result in hazards, were identified using
this method:

IA1l NavigationControllerSubsystem Can no longer communicate with

WingsAndEnginesSubsystem.

IA2 NavigationControllerSubsystem Can no longer communicate with

NavigationSubsystem.
7.4.5 Safety Requirements

The following safety requirements are assigned t0 NavigationControllerSubsystem
based on the results of the safety assessment performed above. Notice that sections 7.4.1
- 7.4.4 describe the events that could occur and the hazards that could result from them,
whereas this section describes the positive reactions to those events, which would
eliminate or reduce the hazards. The parenthesis specify the hazards that each safety

requirement guards against:

SREQ1l NavigationControllersubsystem Shall disable autopilot and FTP

features when the pilot is using MechanicalSteeringWheelSubsysten,
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SREQ 2

SREQ 3

SREQ 4

SREQ 5

SREQ 6

and re-enable them when the pilot stops using

MechanicalSteeringWheelSubsystem (AEA 1).

NavigationControllerSubsystem Shall be able to identify whether a
specific LAT/LONG position is in a safe area or not, and not fly the
aircraft to unsafe positions unless explicitly confirmed by the pilot (AEA
2).

NavigationControllerSubsystem Shall be able to determine whether
flying to a specific LAT/LONG position requires flying through unsafe
areas or not, and not fly the aircraft through unsafe areas unless explicitly
confirmed by the pilot (AEA 3).

NavigationControllerSubsystem Shall alert the pilot when the next
FTP cannot be reached without having to refuel the aircraft (AEA 4).

When NavigationControllerSubsystem fails, an alert shall be raised
and, until NavigationControllerSubsystem IS Operational again, the
pilot shall be required to manually fly the aircraft using

MechanicalSteeringWheelsSubsystem (FMEA 1).

NavigationControllerSubsystem Shall ensure that the autopilot and

FTP features are enabled only when all of the following conditions hold:

SREQ 6.1 WingsAndEnginesSubsystem is functional (FMEA 2).

SREQ 6.2 NavigationDatabaseSubsysten i$ functional (FMEA 3).

SREQ 6.3 NavigationSubsystem is functional (FMEA 4).

SREQ 6.4 NavigationControllerSubsystem IS able to communicate with

WingsAndEnginesSubsystem (|A 1).

SREQ 6.5 NavigationControllerSubsystem IS able to communicate with

NavigationSubsystem (A 2).
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SREQ7 NavigationControllersSubsystem Shall require explicit confirmation to
continue autopilot or FTP flight modes every 5 minutes until
NavigationSubsystem indicates that the GPS feature is functional again.
If the confirmation is not performed for a period of 7 consecutive minutes,
then NavigationControllersSubsystem Shall signal an emergency to the
pilots (HAZOP 1).

7.5 Subsystem Design

This section further defines NavigationControllerSubsystem, and then it introduces
its UML model. Sections 7.5.1 — 7.5.4 aim at further defining the subsystem by
understanding its events of interest, and how the subsystem should react to those events.
Section 7.5.1 explains how the events and reactions can be derived from the safety
requirements. Section 7.5.2 defines the events that are of interest to the subsystem, and
section 7.5.3 defines how the subsystem behaves, or reacts, in response to those events.
Thus, they provide an event-reaction relationship that defines the system behaviour. To
ensure that the system’s behaviour is complete with respect to the events and reactions,

the reactions are traced to the events that caused them. This is explained in section 7.5.4.

Once the subsystem’s behaviour is understood, its software design in presented in section
7.5.5. While the limited space in the diagrams makes it difficult to list all the possible
stereotypes and tagged values that could be used, the safety information that is modeled
is varied enough to show different kinds of safety information, stereotypes, and tagged
values. It is important to note that, in practice, a UML modeling tool would allow the
designers to specify as many stereotypes and tagged values while giving them the choice
to show or hide specific stereotypes (or stereotype categories such as a particular profile’s
stereotypes) on diagrams while retaining the information in the tool’s database.
Furthermore, the model is also stereotyped according to Gomaa’s class classification as

presented in [7] and summarized in Appendix E.

The discussions in the sections below will often cross-reference events and reactions
through their numbers, prefixed by either an “E” for events or “R” for reactions.
Whenever an event is cross-referenced, the number between parenthesis represents its
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number as listed in section 7.5.2. Whenever a reaction is cross-referenced, similarly, the
number between parenthesis represents its number as listed in section 7.5.3. For example,
the controllerFailed (E5) event is described in section 7.5.2, but the

DisableController (R4) reaction is described in section 7.5.3.
7.5.1 Ildentification of Events and Reactions

To design safety into the system, it is important to identify all events (3.2.3.8) that could
have safety implications, and the reactions (3.2.3.9) to those events. To identify the
events, one needs to ask: Which inputs to the system, or changes in its state, should the
system respond to because they may impact its safety? To identify the reactions, one
needs to ask: How should the system behave when any of the identified events occurs?
The answers to those questions are found in the safety requirements. For example,

consider safety requirement SREQ 1 from section 7.4.5:

NavigationControllerSubsystem shall disable autopilot and FTP features
when the pilot is using MechanicalSteeringWheelSubsystem, and re-
enable them when the pilot stops using
MechanicalSteeringWheelSubsystem (1091HAEA 1).

From this requirement, one can identify at least two events of interest: (1) The event of
when the pilot starts using MechanicalSteeringWheelSubsystem; (2) The event of
when the pilot stops using MechanicalSteeringWheelSubsystem. Also from this
requirement, and from the identified events, one can identify at least the following
reactions: (1) The reaction of disabling the autopilot and FTP features when the pilot
starts using MechanicalSteeringWheelSubsystem; (2) The reaction of enabling the
autopilot and FTP features when the pilot stops using

MechanicalSteeringWheelSubsystem.
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7.5.2 Events

<<Event>>

SystemEvent (E1)

<<Event>>
{EffectOnSafetyDirection=Negative}
I l NavigationDatabaseFailed (E12)
<<Event>> <<Event>> <<Event>>
IndependentSubsystemEvent (E2) DependentSubsystemEvent (E10) NavigationDatabaseEvent (E11) <<Event>>
A {EffectOnSafetyDirection=Positive}
ZF NavigationDatabaseRestored (E13)
<<Event>> <<Event>> <<Event>>
PilotinputEvent (E7) WingsAndEnginesEvent (E14) NavigationEvent (E21)
<<Event>> <<Event>> <<Event>>

{EffectOnSafetyDirection=Negative} {EffectOnSafetyDirection=Negative}

ChangeFlightPath (E8)

WingsAndEnginesFailed (E15) NavigationFailed (E22)
<<Event>>
<<Event>> <<Event>>
EditFTPList (E9) | | {EffectOnSafetyDirection=Positive} | {EffectOnSafetyDirection=Positive}
WingsAndEnginesRestored (E16) NavigationRestored (E23)
<<Event>>
{EffectOnSafetyDirection=Negative,
H  When="Aircraft is expected to run out of fuel’} <<Event>> <<Event>>

{EffectOnSafetyDirection=Negative} {EffectOnSafetyDirection=Negative}

FuelShortageExpected (E3)

WingsAndEnginesConnectionLost (E17) NavigationConnectionLost (E24)

<<Event>>

{EffectOnSafetyDirection=Negative} <<Event> <<Event>

{EffectOnSafetyDirection=Positive} {EffectOnSafetyDirection=Positive}

FuelShortageNotExpected (E4) WingsAndEnginesConnectionEstablished (E18) NavigationConnectionEstablished (E25)

<<Event>>
{EffectOnSafetyDirection=Negative}

<<Event>>
{EffectOnSafetyDirection=Negative,
M When="Aircraft is not expected to run out of fuel’}

<<Event>
{EffectOnSafetyDirection=Negative, 1

—|EffectOnSafetyContext="Autopilot or FTP Mode is ON’} StartDeadReckoningAircraftPosition (E26)

ControllerFailed (ES)

WingsAndEnginesControlledByOtherSubsystem (E19)

<<Event>>
<<Event>> <<Event> L | {EffectOnSafetyDirection=Positive}
LI {EffectOnSafetyDirection=Positive} | {EffectOnSafetyDirection=Positive} UseGPSForAircraftPosition (E27)
ControllerRestored (E6) WingsAndEnginesNotControlled
ByOtherSubsystems (E20)

Figure 13: NavigationControllerSubsystem’s events (structure).

Figure 13 shows all the system events of interest. Each concrete class (i.e., leaf class in
the generalization hierarchy) represents a unique event type, and an instantiation of a
concrete event class represents a unique event. Each event class is stereotyped with
<<Event>> (5.2.15) to indicate that it is an event of interest, and its
“EffectOnSafetyDirection” and “Context” tagged values are set where applicable.This
figure is primarily used here to arrange events in a hierachy and therefore facilitate
discussion and analysis. During design, these events may not necessarily tranlate into
actual classes in the subsystem class diagram (and implementation).
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Here is a description of each event class:

El

E2

E3

E4

ES

E6

SystemEvent: This event represents any event that occurs in the system. It can
be raised by any class in the system. It is abstract and it serves as a parent class
for other event classes. A direct or indirect subclass of systemEvent may have
a negative, neutral, or positive effect on the overall safety level. However, we
limit the discussion here to only those events that can have a positive or

negative effect on safety.

IndependentSubsystemEvent: ThiS event represents any event that originates
In NavigationControllerSubsystem, excluding the interface classes to other
subsystems that it uses. It is abstract and it serves as a parent class for other

event classes.

FuelShortageExpected: This event is raised when the
InvestigateFuelShortage (R6) reaction executes and it determines that the
aircraft is expected to run out of fuel during the flight according to the current
flight and navigation information (i.e. the flight path, list and sequence of FTPs,

wind speed and bearing, ... etc).

FuelShortageNotExpected:  This event is raised when the
InvestigateFuelShortage (R6) reaction executes and it determines that the
aircraft is not expected to run out of fuel during the flight according to the
current flight and navigation information. This is of importance when, just
before the TnvestigateFuelshortage (R6) reaction executes, the aircraft was

expected to run out of fuel during the flight.

ControllerFailed: This event is raised when the main controller class has

failed and is not functioning correctly or at all.

ControllerRestored: This event is raised when the main controller class has
transitioned from a failure state to a functional state and is now functioning

correctly.
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E7

E8

E9

E10

Ell

E12

E13

El4

PilotInputEvent: This event represents any event that occurs as a direct result
of the pilot’s usage of the subsystem through the user interface, namely
NavigationUserInterfaceSubsystem. It is abstract and it serves as a parent

class for other event classes.

ChangeFlightPath: This event is raised when the pilot has requested, through
NavigationUserInterfaceSubsystem, that the flight path for autopilot mode

be changed.

EditFTPList: This event is raised when the pilot has requested that, through
NavigationUserInterfaceSubsystem, the list of FTPs be changed (such as

changing an FTP’s position or resequencing a list of more than one FTP).

DependentSubsystemEvent: ThiS event represents any event that originates in
a subsystem on which NavigationControllerSubsystem depends, namely
WingsAndEnginesSubsystem, NavigationDatabaseSubsystem, and
NavigationSubsystem. It is abstract and it serves as a parent class for other

event classes.

NavigationDatabaseEvent: This event represents any event that originates in
NavigationDatabaseSubsystem. It IS abstract and it serves as a parent class

for other event classes.

NavigationDatabaseFailed. This event is raised when
NavigationDatabaseSubsystem has failed and is not functioning correctly or

at all.

NavigationDatabaseRestored: This event is raised when
NavigationDatabaseSubsystem has transitioned from a failure state to a

functional state and is now functioning correctly.

WingsAndEnginesEvent: ThiS event represents any event that originates in
WingsAndEnginesSubsystem. It IS abstract and it serves as a parent class for

other event classes.
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E15

E1l6

El7

E18

E19

E20

E21

E22

WingsAndEnginesFailed: This event is raised when
WingsAndEnginesSubsystem has failed and is not functioning correctly or at

all.

WingsAndEnginesRestored: This event is raised when
WingsAndEnginesSubsystem has transitioned from a failure state to a

functional state and is now functioning correctly.

WingsAndEnginesConnectionLost: This event is raised when connection to

WingsAndEnginesSubsystem has been lost.

WingsAndEnginesConnectionEstablished: This event is raised when
connection t0 wWingsAndEnginesSubsystem Was lost but has now been
established.

WingsAndEnginesControlledByOtherSubsystem. This event is raised when
WingsAndEnginesSubsystem IS NOw being controlled by a subsystem other
than NavigationControllerSubsystem. Based on the system architecture in
Figure 12, this means that MechanicalSteeringWheelSubsystem IS NOW

controlli Ng WingsAndEnginesSubsystem.

WingsAndEnginesNotControlledByOtherSubsystem: ThiS event is raised
when wingsAndEnginesSubsystem IS N0 longer being controlled by a
subsystem other than NavigationControllerSubsystem. Based on the system
architecture in Figure 12, this means that
MechanicalSteeringWheelSubsystem has  just  stopped  controlling

WingsAndEnginesSubsystem.

NavigationEvent: ThiS event represents any event that originates in
NavigationSubsystem. It is abstract and it serves as a parent class for other

event classes.

NavigationFailed: This event is raised when NavigationSubsystem has

failed and is not functioning correctly or at all.
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E23

E24

E25

E26

E27

NavigationRestored: This event is raised when NavigationSubsystem has
transitioned from a failure state to a functional state and is now functioning

correctly.

NavigationConnectionLost: This event is raised when connection to

NavigationSubsystem has been lost.

NavigationConnectionEstablished: This event is raised when connection to

NavigationSubsystem Was lost but has now been established.

StartDeadReckoningAircraftPosition: This event is raised when the
position of the aircraft is now being periodically estimated by the computer
based on the knowledge of the current aircraft’s position, speed, and bearing
and the wind’s speed and bearing. This occurs if the aircraft’s
NavigationSubsystem iS no longer able to continuously determine the
aircraft’s position based on the GPS signals, most likely because it is no longer
able to receive the GPS satelittes signals.

UseGPSForAircraftPosition: This event is raised when the position of the
aircraft is now being determined by the signals received from the GPS satelittes.
This occurs when the aircraft’s position was being dead-reckoned (see
StartDeadReckoningAircraftPosition (E26) event), but the aircraft is now able
to determine its position based on the GPS satellite signals, most likely because

it is again able to receive the GPS satellite signals.

7.5.3 Reactions

Figure 14 shows all the system reactions to events of interest. Each class represents a

unique reaction type, and an instantiation of a concrete reaction class (leaf class in the

generalization hierarchy) represents a unique reaction. Each reaction class is stereotyped

with <<Reaction>> (5.2.16) to indicate that it is a reaction to an event of interest, and its

tagged values are set where applicable. Like for events, the figure is primarily used to

facilitate discussion and analysis. During design, these reactions will unlikely translate
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into actual subsystem classes, but rather will likely translate into class operations

stereotyped <<Reaction>>.

<<Reaction>>

SystemReaction (R1)

A

<<Reaction>>

ReactionToDependentSubsystemEvent (R2)

JAN

<<Reaction>>

ReactionTolndependentSubsystemEvent (R5)

N

<<Reaction>> {ConsequenceOf=WingsAndEnginesRestored,
ConsequenceOf=NavigationRestored,
ConsequenceOf=NavigationDatabaseRestored,
ConsequenceOf=WingsAndEnginesConnectionEstablished,
ConsequenceOf=NavigationConnectionEstablished,
ConsequenceOf=WingsAndEnginesNotControlledByOtherSubsystems,
When=‘Connections Available to Functional Subsystems’,
EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference="SREQ 1", Reference="SREQ 6"}

EnableController (R3)

<<Reaction>>
{ConsequenceOf=WingsAndEnginesFailed,
ConsequenceOf=NavigationFailed,

ConsequenceOf=NavigationDatabaseFailed,
ConsequenceOf=WingsAndEnginesConnectionLost,

ConsequenceOf=NavigationConnectionLost,
ConsequenceOf= WingsAndEnginesControlledByOtherSubsystem,

EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference="SREQ 1", Reference="SREQ 6"}

DisableController (R4)

<<Reaction>>
{ConsequenceOf=ChangeFlightPath,
ConsequenceOf=EditFTPList,
EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference="SREQ 4"}

InvestigateFuelShortage (R6)

<<Reaction>>
{ConsequenceOf=DisableController,
ConsequenceOf=ControllerFailed,
EffectOnSafetyDirection=Positive}

<<Rationale>>
{Reference="SREQ 5",
Reference="SREQ 6"}

RaiseSubsystemFailureAlert (R9)

<<Reaction>>
{ConsequenceOf=EnableController,
ConsequenceOf=ControllerRestored,
EffectOnSafetyDirection=Positive}

<<Rationale>>
{Reference="SREQ 5",
Reference="SREQ 6"}

HideSubsystemFailureAlert (R10)

<<Reaction>>
{ConsequenceOf=ChangeFlightPath,
ConsequenceOf=EditFTPList,
EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference="SREQ 2",
Reference="SREQ 3"}

EnsureFlightPathOverSafeAreas (R7)

<<Reaction>>

{ConsequenceOf=StartDeadReckoningAircraftPosition,

ConsequenceOf=UseGPSForAircraftPosition,
When=‘(Controller in Autopilot or FTP mode) AND (Every 5 Minutes
Until UseGPSForAircraftPosition Event Occurs),

EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference="SREQ 7"}

RequirePilotConfirmation (R8)

<<Reaction>>
{ConsequenceOf=FuelShortageExpected,
EffectOnSafetyDirection=Positive}

<<Rationale>>
{Reference="SREQ 4"}

RaiseFuelShortageExpectedAlert (R11)

<<Reaction>>
{ConsequenceOf=FuelShortageNotExpected,
EffectOnSafetyDirection=Positive}
<<Rationale>> {Reference="SREQ 4"}

HideFuelShortageExpectedAlert (R12)

Figure 14: NavigationController subsystem reactions (structure).

Here is a description of each reaction class:

R1

SystemReaction: This represents any reaction that occurs in the system, which

generally occurs in response to an event that is a subclass of systemevent (E1).

It is abstract and it serves as a parent class for other reaction classes. A direct or

indirect subclass of systemrReaction may have negative, neutral, or positive

effect on the overall safety level. However, all the concrete class reactions

presented in this section have positive effect on safety, as indicated by the

“EffectOnSafetyDirection”

tagged value of the <<Reaction>> (5.2.16)
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R2

R3

R4

stereotype, because they implement the safety requirements described in section
7.4.5.

ReactionToDependentSubsystemEvent: ThiS represents any reaction that
occurs in response to an event class that is a subclass of the abstract
DependentSubsystemEvent (E10) event. It is abstract and it serves as a parent

class for other event classes.

EnableController: This reaction enables the main controller class to start
functioning. As the “ConsequenceOf” tagged values of the <<Reaction>>
(5.2.16) stereotype indicate, this reaction can be triggered by the occurrence of
any of the foIIowing events: WingsAndEnginesRestored (ElG),
NavigationRestored (E23), NavigationDatabaseRestored (E13),
WingsAndEnginesConnectionEstablished (E18), NavigationConnection-
Established (E25), WingsAndEnginesNotControlledByOtherSubsystems
(E20). Furthermore, the “When” tagged value indicates that this reaction (i.e.
enabling the controller) only executes when connections are available to all
functional subsystems on which the main controller class depends, namely
WingsAndEnginesSubsystem, NavigationDatabaseSubsystem, and
NavigationSubsystem. The <<Rationale>> (5.2.14) stereotype and its
“Reference” tagged values indicate that this reaction class helps implement
safety requriements SREQ 1 and SREQ 6.

DisableController: This reaction disables the main controller class. As the
“ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) stereotype
indicate, this reaction can be triggered by the occurrence of any of the following
events:  wingsAndenginesFailed (E15), NavigationFailed (E22),
NavigationDatabaseFailed (E12), wWingsAndEnginesConnectionLost
(E17), NavigationConnectionLost (E24), wingsAndEnginesControlledBy-
othersubsystems (E19). The <<Rationale>> (5.2.14) stereotype and its
“Reference” tagged values indicate that this reaction class helps implement
safety requriements SREQ 1 and SREQ 6.
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R5

R6

R7

R8

ReactionToIndependentSubsystemEvent: ThiS represents any reaction that
occurs in response to an event that is a subclass of the abstract
IndependentSubsystemEvent (E2) event. It is abstract and it serves as a parent

class for other event classes.

InvestigateFuelShortage: This represents a reaction that calculates the fuel
quantity needed to fly the aircraft according to the current settings, which
include the aircraft’s position, flight path, list of FTPs, and wind speed and
bearing. As the “ConsequenceOf” tagged values of the <<Reaction>> (5.2.16)
stereotype indicate, this reaction is triggered by either the changeFlightprath
(E8) or raitrrprist (E9) events. The “Reference” tagged value of the
<<Rationale>> (5.2.14) stereotype indicates that this reaction implements safety
requirement SREQ 4. If the execution of this reaction determines that the
aircraft is expected to run out of fuel, then a FuelshortageExpected (E3)
event is raised. Otherwise, a FuelShortageNotExpected (E4) event is raised.
This is specified in the diagram using the “When” tagged value of the
<<Event>> (5.2.15) stereotype applied on the FuelshortageExpected (E3)

and FuelshortageNotExpected (E4) events.

EnsureFlightPathOverSafeAreas: This represents a reaction that ensures that
the aircraft flies only over safe areas. As the “ConsequenceOf” tagged values of
the <<Reaction>> (5.2.16) stereotype indicate, this reaction is triggered by
either the changeFlightrath (E8) or EditrrrList (E9) events. The
“Reference” tagged values of the <<Rationale>> (5.2.14) stereotype indicate
that this reaction implements safety requirements SREQ 2 and SREQ 3.

RequirePilotConfirmation: ThiS represents a reaction that prompts the pilot
to confirm the use of autopilot or FTP mode every 5 minutes as long as the pilot
is in autopilot or FTP mode and the aircraft’s position is being dead-reckoned
instead of calculated using the GPS satellite signals, i.e. the
UseGPSForAircraftPosition (E27) event has not been raised yet. As the

“ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) stereotype
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R9

R10

R11

indicate, this reaction is triggered by two events, namely
StartDeadReckoningAircraftPosition (E26) Or UseGPSForAircraft-
rosition (E27). The “Reference” tagged value of the <<Rationale>> (5.2.14)

stereotype indicates that this reaction implements safety requirement SREQ 7.

RaiseSubsystemFailureAlert: ThiS represents a reaction that raises an alert
to the pilots indicating that NavigationControllersubsystem has failed,
possibly because one of the subsystems on which it depends has failed as well.
As the “ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) stereotype
indicate, this reaction is triggered by the pisablecontroller (R4) reaction or
the controllerrailed (E5) event. The “Reference” tagged value of the
<<Rationale>> (5.2.14) stereotype indicates that this reaction implements safety
requirements SREQ 5 and SREQ 6.

HideSubsystemFailureAlert: This represents a reaction that hides an alert,
which  was previously raised to the pilots as part of the
RaiseSubsystemFailureAlert (R9) reaction, because
NavigationControllerSubsystem has recovered from a previous failure. As
the “ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) stereotype
indicate, this reaction is triggered by the Enablecontroller (R3) reaction or
the controllerRestored (E6) event. The “Reference” tagged values of the
<<Rationale>> (5.2.14) stereotype indicate that this reaction implements safety
requirements SREQ 5 and SREQ 6.

RaiseFuelShortageExpectedAlert: This represents a reaction that raises an
alert to the pilots indicating that the aircraft is expected to run out of fuel before
the final destination of the selected flight path or FTPs is reached. As the
“ConsequenceOf” tagged value of the <<Reaction>> (5.2.16) stereotype
indicates, this reaction is triggered by the FuelshortageExpected (E3) event.
The *“Reference” tagged values of the <<Rationale>> (5.2.14) stereotype

indicate that this reaction implements safety requirement SREQ 4.
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R12 HideFuelShortageExpectedalert: This represents a reaction that hides an

7.5.4

alert, which was previously raised to the pilots as part of the
RaiseFuelShortageExpectedalert (R11) reaction, because the flight path or
FTPs have changed and it is not expected that they will cause fuel shortage
anymore. As the “ConsequenceOf” tagged values of the <<Reaction>> (5.2.16)
stereotype indicate, this reaction is triggered by the FuelShortageNotExpected
(E4) event. The “Reference” tagged values of the <<Rationale>> (5.2.14)

stereotype indicate that this reaction implements safety requirement SREQ 4.

Event-Reaction Relationships

A traceability matrix can be constructed as follows:

1.

Identify the Events and Reactions: If the events (resp. reactions) are not explicitly
identified and listed, then search for all model elements stereotyped with
<<Event>> (5.2.15) (resp. <<Reaction>> (5.2.16)). In general, only concrete

events (resp. reactions) are those of interest here.

Create the Traceability Matrix: Create an (N+M) x M matrix, where N is the
number of unique events, and M is the number of unique reactions. Recall from

section 3.2.3.9 that reactions are events by inheritance.

Identify Relationships: For every <<Reaction>> (5.2.16) stereotype, look at the
“ConsequenceOf” tagged values. This tagged value identifies the events that can
cause this reaction to occur. Therefore, this traces each reaction to the events that

can cause it.

Analyse Traceability: In general, each event must trigger at least one reaction.

Each reaction may trigger zero or more reactions.

The relationships and traceability between the events described in section 7.5.2 and the

reactions in section 7.5.3 are shown in Table 5 in the form of a traceability matrix, as

described above. If a “Yes” exists in a particular cell, this means that the event identified
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by its row may trigger the reaction identified by its column. Only concrete events and

reactions appear in the table.

Events

Reactions

R3 R4

R6

R7

R8

R9

R10

R11

R12

Total

E3

Yes

[E=Y

E4

Yes

E5

Yes

E6

Yes

ES8

Yes

Yes

E9

Yes

Yes

E12

Yes

E13

Yes

E15

Yes

El6

Yes

E1l7

Yes

E18

Yes

E19

Yes

E20

Yes

E22

Yes

E23

Yes

E24

Yes

E25

Yes

E26

Yes

E27

Yes

R3

Yes

R4

Yes

R6

R7

R8

R9

R10

R11

R12

allel=]l=ll=] =] =l T o T P P TN T e e T e N N N I LI NI S G

Total

6 6

2

2

1

3

2

1

N
~

Table 5: Relationships between events and reactions.

By analysing Table 5 we notice that there is an n-to-n relationship between events and

reactions. More specifically:

1. Every event causes at least one reaction: Since all the reactions described in

section 7.5.3 have a positive effect on safety, every event that may introduce

hazards is being handled in a way that increases the level of safety by masking,
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reducing, or removing the hazard. Note, however, that reactions do not always

cause other reactions to occur.

2. Every reaction can be triggered by at least one event: In essence, this means that
none of the reactions will result in dead code that is never executed. In addition, a
reaction’s code may occur if any of a number of events occur (e.g.
ChangeFlightPath (E8) occurs if either rnvestigateFuelShortage (R6) or

EnsureFlightPathOverSafeAreas (R7) OCCU[’S).

3. Some reactions are triggered by other reactions: the raiseSystemFailureAlert
(R9) reaction is triggered by the pisablecontroller (R4) reaction; the
HideSystemFailureAlert (R10) reaction is triggered by the EnableController

(R3) reaction.

4. Every event causes a finite number of reactions: In other words, it is guaranteed
that the triggering of an event would eventually cause a reaction that does not
trigger other reactions. If that was not the case, then the system could never

restore itself to a steady-state.

Note that we have initially defined our stereotypes (and associated tagged values) for a
subset of the UML metamodel, specifically for metaclasses Class, Operation, and
Relationship. The behavior suggested by these event-reaction relationships would, during
a complete realistic design, also be modeled by one or several statechart diagrams. These
statechart diagrams would specify which reactions (i.e., actions on transitions and states)
result from which events (triggering transitions). The transitions’ guard conditions would
then correspond to the “When” tagged value of the <<Reaction>> (5.2.16) stereotype
above. This suggests that our UML profile needs to be extended to model elements of
UML statechart diagrams. This will be considered in future work, and we do not foresee

any major difficulty for doing so.
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Figure 15 illustrates the NavigationControllerSubsystem high-level design, which

contains safety information indicating requirements traceability, certification information,

and safety monitoring. This will be elaborated further in the remainder of this section.

<<coordinator>>
<Monitor>> {Kind=Safety, MonitoredEntity=Controller,
DetectableEvent=IndependentSubsystemEvent,
EventHandler=ControllerMonitorAndHandler}

<<Handler>> {Har vent=IndependentSub: nEvent,
PerformedReaction=ReactionTolndependentSubsystemEvent}

<<SafetyContext>>

<<Requirement>> {Kind=Functional, Specification="Fulfills all FREQs"}
<<Requirement>> {Kind=Safety, Specification="Fulfills all SREQs'}

Monitors Executes

<Rationale>> {Reference="SREQ 4, SREQ 5, SREQ 7"}

ControllerMonitorAndHandler

<<algorithm>>

<<system interface>>

Queries and

<<SafetyCritical>> {CriticalityLevel=C} Commands

<<Interface>>
{InterfaceFor=NavigationControllerSubsystem}

Controllerinterface

I

<<state dependent control>>
<<SafetyCritical>> {CriticalityLevel=C}

<<Handler>> {HandelableEvent=PilotinputEvent,
PerformedReaction=InvestigateFuelShortage}

<<Rationale>> {Reference="FREQ 1, FREQ 2, FREQ 3,
FREQ 4, FREQ 5, SREQ 2, SREQ 3, SREQ 47}

Controller

Executes

<<SafetyCritical>> {CriticalityLevel=C}
<<Rationale>> {Reference="SREQ 2, SREQ 3"}

SafePointDeterminator

Executes

<<algorithm>>

SREQ 3}

PathProjector

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference="FREQ 2, FREQ 3,

\l,Commands and Reads Status

Reads and Writes

Reads Status \l,

Reads Status

<<system interface>>
<<SafetyCritical>> {CriticalityLevel=C}
<<Rationale>> {Reference="FREQ 2, FREQ 3™}

<<Interface>> ‘HardwareAndSc ue,
InterfaceFor=WingsAndEnginesSubsystem}

WingsAndEnginesinterface

<<system interface>>
<<SafetyCritical>> {CriticalityLevel=C}
<<Rationale>> {Reference="FREQ 1"}

<<Interface>> {IsBetweenHardwareAndSoftware=false,
InterfaceFor=NavigationDatabaseSubsystem}

NavigationDatabaselnterface

<<system interface>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference="FREQ 2, FREQ 3,
FREQ 4, FREQ 5, SREQ 4}

<<Interface>> {IsBetweenHardwareAndSoftware=true,
InterfaceFor=NavigationSubsystem}

NavigationInterface

’T‘ Monitors

'T‘ Monitors

'T‘ Monitors

<<coordinator>>

<<Monitor>> {Kind=Safety,
MonitoredEntity=WingsAndEnginesinterface,
DetectableEvent=WingsAndEnginesEvent,
EventHandler=ExternalSubsystemsEventHandler}

<<Rationale>>
{Reference="SREQ 1, SREQ 6.1, SREQ 6.4"}

WingsAndEnginesMonitor

<<coordinator>>

<<Monitor>> {Kind=Safety,
MonitoredEntity=NavigationDatabaselnterface,
Detectabl ent=NavigationDatat vent,

EventHandler=ExternalSubsystemsEventHandler}

<<Rationale>
{Reference="SREQ 6.2"}

NavigationDatabaseMonitor

<coordinator>>

<<Monitor>> {Kind=Safety,
MonitoredEntity=Navigationinterface,
DetectableEvent=NavigationEvent,
EventHandler=ExternalSubsystemsEventHandler}

<<Rationale>>

{Reference="SREQ 6.3, SREQ 6.5, SREQ 7’}

NavigationMonitor

Notifies

\l, Notifies

Commands

<<state dependent control>>

<<Handler>> {HandleableEvent=DependentSubsystemEvent,
PerformedReaction=ReactionToDependentSubsystemEvent}

<<Rationale>>
{Reference="SREQ 1, SREQ 6, SREQ 7"}

ExternalSubsystemsEventHandler

Notifies

Figure 15: NavigationController subsystem’s high-level design (structure).

One key area of interest is tracing model elements, or classes, to requirements as

described in section 2.5. This will be discussed in detail here as each classes contributing

to the implementation of a requirement will be explained. The discussion will say that a

class crass1 implements requirement reo1 if, as a minimum, class crassi partially

implements requirement REQ1.

159



Carleton University, TR SCE-06-19 Decermber 2006

The diagram is stereotyped with <<SafetyContext>> (5.2.1) to indicate that it contains
information that is relevant to safety. Furthermore, it is also stereotyped with
<<Requirement>> (5.2.9) twice. The first <<Requirement>> (5.2.9) stereotype has a
“Kind” tagged value equal to “Functional” to indicate that it is a functional requirement,
and its “Specification” tagged value is set to “Fulfills all FREQs” to indicate that the
design in this diagram must fulfill all the FREQ functional requirements of the subsystem
(section 7.3). The second <<Requirement>> (5.2.9) stereotype has a “Kind” tagged value
equal to “Safety” to indicate that it is a safety requirement, and its “Specification” tagged
value is set to “Fulfills all SREQs” to indicate that the design in this diagram must fulfill
all SREQ safety requirements of the subsystem (section 7.4.5).

Most classes in Figure 15 use the <<Rationale>> (5.2.14) stereotype and its “Reference”
tagged value. For clarity and brevity, the “Reference” tagged value was used once to list
more than one requirement. For example, controller has a <<Rationale>> (In 5.2.14)
stereotype with a “Reference” tagged value set to “FREQ 1, FREQ 2, FREQ 3, FREQ 4,
FREQ 5, SREQ 2, SREQ 3”. This abbreviation is used in this , we say that a class cr.ass1
depends on class crassz2 if there is an association between crass1 and crass2 in which
crass1 Is the source end of the uni-directional association and crass2 is the target end.
Additionally, we say that cr.ass1 depends on crass2 if a usage dependency exists for
cLass1 on crass2, which would be the case study to indicate that the sterotype actually
has several “Reference” tagged values, and each “Reference” tagged value identifies only
if cLass2 is a parameter to at least one requirement. Therefore, the {Reference="FREQ
1, FREQ 2, FREQ 3, FREQ 4, FREQ 5, SREQ 2, SREQ 3"} string is actually identical to
{Reference="FREQ 17, Reference="FREQ 2", Reference="FREQ 3”7,
Reference="FREQ 4”, Reference="FREQ 5”, Reference="SREQ 2”, Reference="SREQ
3”}. Whereas the latter format is what the proposed UML profile defines and therefore
would be used when the design is modeled in a UML modeling tool, we have used the
former abbreviated format in the figuremethod in this section to make the UML diagram

clearer and easier to understand.

Similarly, the “Explanation” tagged value of the <<Rationale>> (5.2.14) stereotype is not

shown in Figure 15 because the explanation text is large and would have cluttered the
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diagram. Instead, the explanation can be found below in the subsections describing each
class: each time we provide the text (i.e., the value of the “Explanation” tagged value)

that would be used by a UML CASE tool supporting our profile.

The different classes in the class diagram of Figure 15 are now described in sections
7.5.5.11t07.5.5.10.

7.5.5.1  Description of class controller

controller is the key and central element of the subsystem. It is stereotyped with
<<SafetyCritical> (5.2.17) and assigned software level C, as indicated by the
“CriticalityLevel” tagged value, because its failure results in the failure of the entire
subsystem, which is assigned software level C itself. Furthermore, controller is
stereotyped with <<Handler>> (5.2.19) whose “HandleableEvent” tagged value is set to
“PilotinputEvent” to indicate that it handles all concrete events that are subclasses of
PilotInputEvent (E7). In addition to normal code execution (e.g. changing the flight
path in response t0 a changeFlightpPath (E8) input event), controller also executes
the InvestigateFuelshortage (R6) reaction to decide whether the changes requested
by the pilots will result in a fuel shortage or not. This reaction results in sending one of
two events (discussed later): FuelShortageExpected (E3) and
FuelShortageNotExpectedEvent (E4). There is not a separate monitor shown here,
using the <<Monitor>> (5.2.20) stereotype, because those events are explicit invocation

calls through NavigationInterface.

WingsAndEnginesInterface is NavigationControllerSubsystem’S interface to
WingsAndEnginesSubsystemSubsystem. Therefore, it is stereotyped with <<Interface>>
(5.2.25). Its “IsBetweenHardwareAndSoftware” tagged value is set to “true” to indicate
the class interfaces directly with hardware, and its “InterfaceFor” tagged value is set to
WingsAndEnginesSubsystemSubsystem {0 Specify the subsystem for which this class is

an interface for.

controller implements all the functional requirements assigned to the subsystem,
namely FREQ 1, FREQ 2, FREQ 3, FREQ 4, and FREQ 5. This is explicitly indicated in
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the diagram by stereotyping controller with <<Rationale>> (5.2.14) and identifying
the functional requirements through the “Reference” tagged value. Furthermore,
controller also implements three safety requirements, namely SREQ 2, SREQ 3, and
SREQ 4, which are also listed in the “Reference” tagged value of the <<Rationale>>

(5.2.14) stereotype. The “Explanation” tagged value for each requirement is:

1. FREQ 1: To implement this functional requirement, controller USES
NavigationDatabaseInterface (See section 7.5.5.10) to read pre-determined

flight paths from NavigationDatabaseSubsystem.

2. FREQ 2: To implement this functional requirement, controller needs to provide
an autopilot functionality, which requires continuously controlling the aircraft’s
wings and engines through wingsAndeEnginesInterface, as Well as using
NavigationInterface t0 read the navigation parameters and determine the
correct input parameters to the wings and engines (section 7.5.5.10). If the
requested flight path is not pre-determined (i.e. loaded from the navigation
database), then controller USES PathProjector (Section 7.5.5.9) to determine

the most appropriate flight path based on the pilots’ input parameters.

3. FREQ 3: To implement this functional requirement, controller needs to be able
to fly the aircraft to a specific FTP, which requires continuously controlling the
aircraft’s wings and engines through wingsAndEnginesInterface , as well as
using NavigationInterface t0 read the navigation parameters (section 7.5.5.10).
To determine the flight path from the aircraft’s current position to the requested
FTP, controller USeS PathProjector t0 determine what the most appropriate
flight path based on the pilots’ requested FTP (section 7.5.5.9).

4. FREQ 4: To implement this functional requirement, controller needs to be able
to guide the pilots with navigation directions by tracking the aircraft’s position
and bearing, following the flight path, without controlling the aircraft’s wings and
engines through wingsandenginesInterface. In this mode, the pilot manually
controls the aircraft through MechanicalSteeringWheelSubsystem. HOwever,

Controller USES NavigationInterface t0 read the navigation parameters and
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be able to provide correct flight guidance to the pilots (section 7.5.5.10). This
operating mode requires controller to calculate the required inputs to
WingsAndEnginesSubsystem, Which is then displayed to the pilots. Such
calculations take various factors into account, including the aircraft’s navigation

information, wind navigation information, and unsafe areas.

5. FREQ 5: To implement this functional requirement, controller needs to be able
to read the navigation information (e.g., aircraft’s and the wind’s position and

speed) from NavigationSubsystem (Section 7.5.5.10).

6. SREQ 2: To implement this safety requirement, controller needs to be able to
execute an algorithm that determines whether a specific LAT/LONG position is in
safe area or not. This is the responsibility of saferPointbDeterminator (Section
7.5.5.8).

7. SREQ 3: To implement this safety requirement, controller needs to be able to
execute an algorithm that projects a flight path based on the current aircraft’s
position and the target FTP, and then determines whether this path includes flying
in unsafe areas. This algorithm is the responsibility of pathprojector (section
7559). Once a path is determined, then an algorithm in
safePointDeterminator IS executed to determine whether the flight path is safe
or not (section 7.5.5.8).

8. SREQ 4: To implement this safety requirement, controller needs to be able to
investigate whether a fuel shortage is expected, based on the current navigation
information and flight information, or not. The navigation information is available
through NavigationInterface (Section 7.5.5.10). The determination of whether
fuel shortage is expected or not occurs in the execution of the
InvestigateFuelShortage (R6) reaction. As a result of this execution, it raises
either the FuelshortageExpected (E3) event or the FuelShortageNotExpected
(E4) event. Raising an event is the explicit indication that a particular event has

occurred, which would normally result in the detection of the event and its
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appropriate handing by executing the corresponding reactions. The event is then

detected and handled by controllerMonitoraAndHandler (Section 7.5.5.6).
7.5.5.2 Description of class WingsAndEnginesMonitor

WingsAndEnginesMonitor i$ a safety monitoring class as indicated by the <<Monitor>>
(5.2.20) stereotype and its “Kind” tagged value, which is set to “Safety”. The purpose of
this class is to continuously monitor wingsAndEnginesSubsystem through
WingsAndEnginesInterface t0 detect any event that may impact safety. This is
specified in the “MonitoredEntity” tagged value, which is set to
“WingsAndEnginesInterface” because, as far as NavigationControllerSubsystem IS
concerned, wingsAndEnginesInterface IS the single point of interface with
WingsAndEnginesSubsystem. The safety-related events that wingsandEnginesMonitor
detects are specified in the “DetectableEvent” tagged value, which is set to
“WingsAndEnginesEvent” to indicate that it detects all events of type
WingsAndEnginesEvent and its subclasses. Furthermore, the “EventHandler” tagged
value is set to  “ExternalSubsystemsEventHandler” to indicate  that
ExternalSubsystemsEventHandler IS the event handler for the events that

WingsAndEnginesMonitor detects.

The requirements that wingsandEnginesMonitor implements are indicated by the
“Reference” tagged value of the <<Rationale>> (5.2.14) stereotype, namely SREQ 1,
SREQ 6.1, and SREQ 6.4. The “Explanation” tagged values of stereotype <<Rationale>>

are.

1. SREQ 1: It implements this safety requirement by monitoring
WingsAndEnginesInterface for the following two events:
WingsAndEnginesControlledByOtherSubsystem (Elg) and
WingsAndEnginesNotControlledByOtherSubsystem (EZO). If any of them is
detected, ExternalSubsystemsEventHandler IS notified accordingly to handle
the event (section 7.5.5.5).
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2. SREQ 6.1: It implements this safety requirement by monitoring
WingsAndEnginesInterface for the wingsandEnginesFailed (E15) and
WingsAndEnginesRestored (E16) events. If any of them is detected,
ExternalSubsystemsEventHandler IS notified accordingly to handle the event
(section 7.5.5.5).

3. SREQ 6.4: It implements this safety requirement by monitoring
WingsAndEnginesInterface for the wingsAndEnginesConnectionLost (E17)
and wingsAndEnginesConnectionEstablished (E18) events. If any of them is
detected, ExternalSubsystemsEventHandler IS notified accordingly to handle
the event (section 7.5.5.5).

7.5.5.3 Description of class NavigationbDatabaseMonitor

NavigationDatabaseMonitor IS a safety monitoring class as indicated by the
<<Monitor>> (5.2.20) stereotype and its “Kind” tagged value, which is set to “Safety”.
The purpose of this class is to continuously monitor NavigationDatabaseSubsystem
through NavigationDatabaseInterface t0 detect any events that may impact safety.
This is specified in the “MonitoredEntity” tagged value, which is set to
“NavigationDatabaselnterface” because, as far as NavigationControllerSubsystem IS
concerned, NavigationDatabaseInterface IS the single point of interface with
NavigationDatabaseSubsystem. The safety-related events that NavigationDatabase-
Monitor detects are specified in the “DetectableEvent” tagged value, which is set to
“NavigationDatabaseEvent” to indicate that it detects all events of
NavigationDatabaseEvent and its subclasses. Furthermore, the “EventHandler” tagged
value is set to  “ExternalSubsystemsEventHandler” to indicate  that
ExternalSubsystemsEventHandler IS the event handler for the events that

NavigationDatabaseMonitor detects.

The requirements that NavigationDatabaseMonitor implements are indicated by the
“Reference” tagged value of the <<Rationale>> (5.2.14) stereotype, namely SREQ 6.2.
The  detectable  events are  NavigationDatabaseFailed  (E12) and

NavigationDatabaseRestored  (E13). If any of them is  detected,
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ExternalSubsystemsEventHandler IS notified accordingly to handle the event (section
7.5.5.5). The “Explanation” tagged value of the <<Rationale>> (5.2.14) stereotype is

exactly the explanation provided in this paragraph.
7.5.5.4  Description of class NavigationMonitor

NavigationMonitor IS a safety monitoring class as indicated by the <<Monitor>>
(5.2.20) stereotype and its “Kind” tagged value, which is set to “Safety”. The purpose of
this class is to continuously monitor NavigationSubsystem through
NavigationInterface t0 detect any events that may impact safety. This is specified in
the “MonitoredEntity” tagged value, which is set to “Navigationinterface” because, as far
as NavigationControllerSubsystem IS CONCerned, NavigationInterface IS the single
point of interface with NavigationsSubsystem. The safety-related events that
NavigationMonitor detects are specified in the “DetectableEvent” tagged value, which
is set to “NavigationEvent” to indicate that it detects all events of NavigationEvent and
its subclasses. Furthermore, the “EventHandler” tagged value is set to
“ExternalSubsystemsEventHandler” to indicate that ExternalSubsystemsEventHandler
is the event handler for the events that NavigationMonitor detects. This is an example
of using the same class as both a monitor and an event handler, which may be more
appropriate in cases where the events and reactions are relatively simple, possibly
because the “MonitoredEntity” is a single class, namely, controlier. Each of the other
monitors in the subsystem monitors an entire subsystem, through its interface. Those
monitored subsystems reside on different nodes, and therefore there are several other

factors that monitors need to be aware of, such as communication through data buses.

The requirements that NavigationMonitor implements are indicated by the “Reference”
tagged value of the <<Rationale>> (5.2.14) stereotype, namely SREQ 6.3, SREQ 6.5, and
SREQ 7. The “Explanation” tagged values of the <<Rationale>> (5.2.14) stereotype are:

1. SREQ 6.3: It implements this safety requirement by monitoring
NavigationInterface for the NavigationFailed (E22) and

NavigationRestored (E23) events.
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2. SREQ 6.5: It implements this safety requirement by monitoring
NavigationInterface for the NavigationConnectionLost (E24) and

NavigationConnectionEstablished (E25) events.

3. SREQ 7: It implements this safety requirement by monitoring
NavigationInterface for the startbDeadReckoningAircraftPosition (E26)

and UseGPSForAircraftPosition (E27) events.

If any of these events is detected, ExternalSubsystemsEventHandler IS notified

accordingly to handle the event (section 7.5.5.5).
7.55.5 Description of class ExternalSubsystemsEventHandler

ExternalSubsystemsEventHandler IS an event handler as indicated by the
<<Handler>> (5.2.19) stereotype. Thus, the “HandleableEvent” tagged value is set to
“DependentSubsystemEvent”, which is the event class, and its subclasses, that
ExternalSubsystemsEventHandler can recognize and handle. All the events that are
passed 10 ExternalSubsystemsEventHandler from wingsAndEnginesMonitor,
NavigationDatabaseMonitor, OF NavigationMonitor are subclasses of the
DependentSubsystemEvent (E20). The reactions that
ExternalSubsystemsEventHandler performs in response to those events are the
concrete subclasses of ReactionToDependentSubsystemEvent (R2) and its subclasses.
The “Reference” tagged value of the <<Rationale>> (5.2.14) stereotype specifies the
requirements that ExternalSubsystemsEventHandler fulfills by performing the
reactions to the event, namely* SREQ 1, SREQ 6 (and its sub-requirements), and SREQ
7. Specifically, it implements each requirement by invoking the corresponding reaction
for each event it is notified with. As before, the “Explanation” tagged value of the

<<Rationale>> (5.2.14) stereotype is not shown in the diagram because it is large and

. WingsAndEnginesMonitor, NavigationDatabaseMonitor, and NavigationMonitor send events
that are handled by ExternalSubsystemsEventHandler to implement requirements SREQ 1,
SREQ 6.1, and SREQ 6.4 (WingsAndEnginesMonitor-section 7.5.5.2), SREQ 6.2
(NavigationDatabaseMonitor—section 7.5.5.3), SREQ 6.3, SREQ 6.5, and SREQ 7
(NavigationMonitor—section 7.5.5.4).
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would have cluttered the diagram, but the explanation provided in this paragraph is
actually the value of the “Explanation” tagged value and is what would be captured in a
UML tool.

7.5.5.6 Description of class controllerMonitorAndHandler

ControllerMonitorAndHandler IS a safety monitoring class that monitors controller.
Unlike the monitoring classes discussed above, this class is also the handler for the events
it detects. It was a design decision to combine those two functionalities in one class
because all of the events detected, and reactions performed, by this class are simple
enough to combine both in one class. On the other hand, wingsAndEnginesMonitor,
NavigationDatabaseMonitor, and NavigationMonitor are designed to detect more
complex events. Those complex events require the monitors to continuously interact with
the subsystems they monitor by sending and receiving inter-subsystem messages through

their interface classes.

The <<Monitor>> (5.2.20) stereotype on controllerMonitorAndHandler explicitly
indicates that the class is a monitor, and the “Kind” tagged value, which is set to
“Safety”, indicates that its purpose is to monitor safety. The “MonitoredEntity” tagged
value is set to “Controller” to indicate controllerMonitorAndHandler MONItOrs
controller for safety-related events. The “DetectableEvent” tagged value is set to
“IndependentSubsystemEvent” to indicate that it detects all events of
IndependentSubsystemEvent and its subclasses. Furthermore, the “EventHandler”
tagged wvalue is set to “ControllerMonitorAndHandler” to indicate that

ControllerMonitorAndHandler itself is the event handler for the events that it detects.

The <<Handler>> (5.2.19) stereotype explicitly indicates that
ControllerMonitorAndHandler also handles the events that it detects. The
“HandleableEvents” tagged value is set to “IndependentSubsystemEvent” to indicate that
the class can handle all IndependentsubsystemEvent events and its subclasses.
Furthermore, the “PerformedReaction” tagged value IS set to

“ReactionTolndependentSubsystemEvent” to indicate that controllerMonitor-
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AndHandler performs all reactions of ReactionToIndependentSubsystemEvent and its

subclasses in response to the events.

ControllerMonitorAndHandler iS also stereotyped with <<Rationale>> (5.2.14) whose
“Reference” tagged value is set to “SREQ 4, SREQ 5, SREQ 7”. The “Explanation”
tagged values of the <<Rationale>> (5.2.14) stereotype are:

1. SREQ 4: It implements this safety requirement by monitoring controller for the
FuelShortageExpected (E3) and FuelShortageNotExpected (E4) events
(section 7.5.5.1). Since controllerMonitorAndHandler iS also an event handler,
it executes the RaiseFuelShortageExpectedalert (R11) reaction in response to
the FuelShortageExpected (E3) event, and the
HideFuelShortageExpectedalert (R12) reaction in response to the

FuelShortageNotExpected (E4) event.

2. SREQ 5: It implements this safety requirement by monitoring controller for the
ControllerFailed (E5) and controllerRestored (E6) events (section 7.5.5.1).
It iS controllerMonitorAndHandler that creates those events based on how it
observes the behaviour of Controller to be. Since
ControllerMonitorAndHandler IS also an event handler, it executes the
RaiseSubsystemFailureAlert (R9) reaction in response to the
FuelShortageExpected (E5) event, and the HideSubsystemFailureAlert

(R10) reaction in response to the controllerRestored (E6) event.

3. SREQ 7: It implements this safety requirement by monitoring controller, and
by being sensitive to the startDeadReckoningAircraftPosition (E26) and
UseGPSForAircraftPosition (E27) events (section 7.5.5.1). Since
ControllerMonitorAndHandler IS also an event handler, it executes the
RequirePilotConfirmation (R8) reaction, which periodically requires the
pilot’s confirmation as long as the aircraft’s position is being dead-reckoned, in
response to the SstartDeadReckoningAircraftPosition (E26) and

UseGPSForAircraftPosition (E27) events.
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755.7 Description of class controllerInterface

ControllerInterface Serves as the facade of NavigationControllerSubsystem t0 the
other subsystems. This has two implications. First of all, it is safety-critical and has a
software level equal to that of NavigationControllerSubsystem. This is indicated by
stereotyping it with <<SafetyCritical>> (5.2.17) and setting its “CriticalityLevel” tagged
value to “C”. Secondly, it is stereotyped with <<Interface>> (5.2.25) and has its
“InterfaceFor” tagged value set to “NavigationControllerSubsystem” to indicate that it
serves as an interface for NavigationControllersubsystem. The services this interface
provides is quering controller, and consequently other classes that it depends on, and
commanding controller to perform certains functionalities such as activating autopilot
or FTP mode. Notice that controllerInterface is not stereotyped with <<Rationale>>
(5.2.14) in this diagram because it iS controller that implements the functional
requirements. In the class diagram for some other subsystem, such as
NavigationUserInterfaceSubsystem, ControllerInterface Serves as the fagade of
NavigationControllerSubsystem and its classes, including controller. In that
context, it is likely to include controllerInterface and stereotype it with
<<Rationale>> (5.2.14) and include all the FREQ ans SREQ requirements in its
“Reference” tagged value. This is what was done here for the interfaces for other
subsystems  (wingsAndEnginesInterface, NavigationDatabaseInterface, and

NavigationInterface).
7.5.5.8  Description of class safePointDeterminator

SafePointDeterminator implements an algorithm that determines whether a specific
LAT/LONG position is in a safe area or not. Similarly, it implements an algorithm that
determines whether a flight path is safe or not. These services are provided to
Controller to implement requirements SREQ 2 and SREQ 3 (see section 7.5.5.1).
Therefore saferointDeterminator participates in the implementation of this
requirement and is stereotyped with <<Rationale>> (5.2.14) whose “Reference” tagged
value includes “SREQ 2” and “SREQ 3”.
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Additionally, saferointDeterminator IS Stereotyped with <<SafetyCritical>> (5.2.17)
whose “CriticalityLevel” tagged value is set to “C” because’ it is used by controller

which is itself safety critical at level “C”.
7.5.5.9  Description of class pathpProjector

PathProjector Provides services to controller, Such as obtaining the source and
destination LAT/LONG positions, specific intermediate flight points, ... of a path, when
controller does not have a pre-determined flight path (see section 7.5.5.1). Therefore,
PathProjector participates in implementing requirement FREQ 2. Similarly,
PathProjector participates in implementing requirement FREQ 3 (see section 7.5.5.1).
Additionally, pathrrojector implements an algorithm that projects a flight path based
on the current aircraft’s position and the target FTP. This service is also used by
controller to implement requirement SREQ 3. pathProjector iS therefore stereotyped
with <<Rationale>> (5.2.14) whose “Reference” tagged value includes “FREQ 2”,
“FREQ 3”, and “SREQ 3.

Additionally, pathpProjector is stereotyped with <<SafetyCritical>> (5.2.17) whose
“CriticalityLevel” tagged value is set to “C” because? it is used by controller which is

itself safety critical at level “C”.

7.5.5.10 Description of wingsAndEnginesInterface, NavigationDatabase-

Interface, and NavigationInterface classes

Finally, the class diagram for NavigationControllerSubsystem includes three
interface classes that communicate with other subsystems. For each one of those interface
(client) classes, there exists a server class in the corresponding subsystem that

communicates with it by receiving messages, usually known as requests in such

2 According to the rules for determining software levels described in the airworthiness standard RTCA DO-
178B [4], when a safety critical component has a specific criticality level, then all the components it
depends on are safety critical and have at least this criticality level (‘A’ is more critical than ‘B’, which is
more critical than ‘C’, ...). In our case, components are classes, and a class depends on another class if the
former class requires services from the latter class, which is specified in the class diagram as an association
that can be navigated from the former to the latter.
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distributed systems, from the interface and then responding to them. Those interface

classes are:

1. wingsAndEnginesInterface, Which belongs to0 wingsAndEnginesSubsystem. It
IS NavigationControllerSubsystem’S interface t0 wingsAndEngines-
Subsystem. Therefore, it is stereotyped with <<Interface>> (5.2.25). Its
“IsBetweenHardwareAndSoftware” tagged value is set to “true” to indicate the
class interfaces directly with hardware, and its “InterfaceFor” tagged value is set
t0 WingsAndEnginesSubsystemSubsystem {0 Specify the subsystem for which
this class is an interface for. wingsandEnginesInterface IS Stereotyped with
<<Rationale>> (5.2.14) whose “Reference” tagged value includes “FREQ 2” and
“FREQ 3” because it is used by class controller to implement these

requirements (see section 7.5.5.1).

2. NavigationDatabaseInterface, which belongs to the
NavigationDatabaseSubsystem. It IS NavigationControllerSubsystem’S
interface t0 NavigationDatabaseSubsystem. Therefore, it is stereotyped with
<<lInterface>> (5.2.25). Its “IsBetweenHardwareAndSoftware” tagged value is set
to “false” to indicate the class does not interface with hardware, and its
“InterfaceFor” tagged value is set to “NavigationDatabaseSubsystem” to specify
the  subsystem for which this «class is an interface for.
NavigationDatabaseInterface IS Stereotyped with <<Rationale>> (5.2.14)
whose “Reference” tagged value includes “FREQ 1” because it is used by class

controller to implement this requirement (see section 7.5.5.1).

3. NavigationInterface, Which belongs to the NavigationSubsystem. It is
NavigationControllerSubsystem’S interface 10 NavigationSubsystem.
Therefore, it is  stereotyped with  <<Interface>> (5.2.25). Its
“IsBetweenHardwareAndSoftware” tagged value is set to “true” to indicate the
class interfaces directly with hardware, and its “InterfaceFor” tagged value is set
to “NavigationSubsystem” to specify the subsystem for which this class is an

interface for. NavigationInterface is Stereotyped with <<Rationale>> (5.2.14)
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whose “Reference” tagged value includes “FREQ 27, “FREQ 3”, “FREQ 47,
“FREQ 5”, and “SREQ 4” because it provide navigation parameters, such as the
aircraft’s and the wind’s bearing and speed, the aircraft’s and the wind’s position
and speed, to the controller class to implement these requirements (see section
7.5.5.1).

Last, these three classes are stereotyped with <<SafetyCritical>> (5.2.17) whose
“CriticalityLevel” tagged value is set to “C” because® they are used by controller

which is itself safety critical at level “C”.
7.5.6 Low-Level Design of Events and Reactions

There are several possible ways to design and implement the events and reactions in
software. One approach would be to design them as classes. In this case, the class
diagram for each the events would be exactly the one shown in Figure 13, and the class
diagram for reactions would be exactly the one shown in Figure 14. A concrete event
instance is simply an instantiation of its corresponding class. This object instance would
then be passed from a monitor, stereotyped with <<Monitor>> (5.2.20), to a handler
<<Handler>> (5.2.19). A reaction would also be an instantiation of a reaction class.
Executing it would simply correspond to passing an event object instance to a procedure
in the reaction object instance. For example, here is a sample code for
ControllerMonitorAndHandler illustrating how reactions to the changeFlightPath

(E8) event are executed:

ChangeFlightPath event = new ChangeFlightPath (params) ;
InvestigateFuelShortage reactionl =

new InvestigateFuelShortage (params) ;
EnsureFlightPathOverSafeAreas reaction2 =

new EnsureFlightPathOverSafeAreas (params) ;
reactionl.handle (event) ;

reaction2.handle (event);

However, it is not necessary to have a separate class for each reaction. In fact, only one
procedure, in a Handler (3.2.3.12) class, is generally needed to describe and execute a
reaction instead of an entire class, although this is dependent on the application details

and the sizes of the events and reactions (i.e. it is up to the designers to ensure that events
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and reactions are appropriately defined). Therefore, it is often feasible to group all related
reaction procedures together and include them in the class that is stereotyped with
<<Handler>> (5.2.19). That way, the handler does not need to keep track on which
reactions should occur in response to which events. This would simplify the design and

implementation. Here is a sample code illustrating this concept:

switch (event.Kind)
{
case CHANGE_FLIGHT_ PATH:
investigateFuelShortage (event);
ensureFlightPathOverSafeAreas (event) ;
break;
case ...:

. etc.

Either way, the Handler class would be invoked as follows:

ChangeFlightPath event = new ChangeFlightPath (params) ;

PersistentEventHandler.handle (event);

Thus, the persistentEventHandler static class would know exactly that it should
execute the InvestigateFuelShortage (R6) and EnsureFlightPathOverSafeAreas
(R7) reactions. This is a better approach as it would relief the clients from knowing the
reaction specifics. In other words, they can call the handie procedure of the event

handler without needing to know what the event is and what its reactions are.

The concepts of events and reactions in this research are related to the UML concepts of
signals and operations. A signal is intended to indicate the occurrence of an event of
interest. The occurrence of a signal could result in the occurrence of another signal, or in
the invocation of an operation. Therefore, either a signal or an operation may be the
response to a signal. Thus, signals and operations may be reactions to other signals

(“events” in the safety analysis domain).

In summary, structuring and interpreting events and reaction is an implementation detail
rather than a significant design decision. Therefore, it will not be pursued any further in

this case study.
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7.6 Design Analysis

Now that NavigationControllerSubsysten IS designed according to the functional and
safety requirements, the design model is analysed according to the UML profile’s usage
scenarios identified in section 2.4. This section will illustrate the usefulness of modeling
safety information in the UML model using the proposed UML profile.

7.6.1 USAGE 1: Provide Safety Requirements

Safety requirements are provided by the safety and airworthiness engineers. In this case
study, the safety requirements resulted from the safety assessment performed in section
7.4, and the safety requirements were listed in section 7.4.5.

Two general requirements were specified in the class diagram for
NavigationControllerSubsystem Iin Figure 15 (see the top of the diagram). One of
them was a functional requirement, which indicated that the class diagram must fulfill all
FREQ requirements of the subsystem. The second one was a safety requirement, which
indicated that the class diagram must fulfill all SREQ requirements of the subsystem. To
ensure that every functional and safety requirement is addressed by at least one class, one
needs to ensure that every functional and safety requirement is referenced by at least one
class using an appropriate stereotype and its tagged values. The <<Rationale>> (5.2.14)
stereotype is the most common for such usage. This is a step towards ensuring that the

diagram fulfills those two high-level diagram requirements.

In addition, safety (and functional) requirements were referenced in the UML model
using the <<Rationale>> (5.2.14) stereotype. Each model element that implemented at
least one safety (or functional) requirement was stereotyped with <<Rationale>> (5.2.14).
Thus, the design was explicitly and precisely related to the safety requirements. This had
several advantages. One particular advantage that is relevant for this usage scenario is
that software engineers better consider safety requirements if they have to explicitly
relate the design model elements to them. This improves the communication between
software and airworthiness/safety engineers because software engineers are now better

able to relate the safety requirements to their software designs.
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7.6.2 USAGE 2: Design Safety Requirements in Systems

Safety requirements were decomposed into events and reactions in section 7.5, which
helped design the safety requirements in the software. Event handlers, which perform
reactions to events, were designed and stereotyped with <<Handler>> (5.2.19). When
events and reactions were modeled, either as a class or as an operation, they were

stereotyped with <<Event>> (5.2.15) and <<Reaction>> (5.2.16), respectively.

As a result of decomposing safety requirements into events and reactions, designing
safety requirements in the system reduces to ensuring that safety-related events are
detected and that the relevant reactions are properly executed. The events are listed and
described in section 7.5.2, and the reactions are listed and described in section 7.5.3. This
can be ensured by analysing event handling classes in Figure 15, which were stereotyped
with <<Handler>> (5.2.19), and ensuring that the “HandleableEvent” tagged values
include all previously identified safety-related events. In addition, it must be ensured that
all previously identified safety-related reactions are included in the “PerformedReaction”
tagged values, and that all such reactions are properly executed in response to the events
that trigger them. This helps ensure that all previously identified safety requirements are

accounted for in the design.

All classes that implement safety requirements are stereotyped with <<Rationale>>
(5.2.14) and their “Reference” tagged values explicitly identify all the requirements that
they implement. Therefore, another way to ensure that the safety requirements are
accounted for in the design is to analyse the UML model and identify all <<Rationale>>
(5.2.14) stereotypes. Then, their “Reference” tagged values are analysed to ensure that
every safety requirement is referenced by at least one class. A class references a safety

requirement if it implements it or at least helps implement it.

One particular use of the <<Rationale>> (5.2.14) stereotype and its “Reference” tagged
value is to associate reactions to the safety requirements that they implement. This is
evident in Figure 14 as each modeled reaction is stereotyped with <<Rationale>> (5.2.14)

to identify the safety requirements that it implements.
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Since this is a highly-safety critical subsystem that has almost as many safety
requirements as functional requirements, safety-monitoring is emphasized. Safety
monitors are needed to design the safety requirements in the software. Thus, that
subsystem has several safety monitors, one for each subsystem on which it depends and
one for itself. The monitors can be identified by analysing the model and identifying all
classes that are stereotyped with <<Monitor>> (5.2.20). Each monitor class explicitly
identifies what it monitors through the “MonitoredEntity” tagged value. Therefore,
NavigationControllersSubsystem Will be able to track subsystem and class failures and
ensure that this does not cause any safety hazards. In fact, once a monitor detects an event
of interest, it notifies an appropriate event handler, which is stereotyped with
<<Handler>> (5.2.19) itself.

The monitors were designed to detect the safety-critical events of interest to the safety
requirements. Once such an event is detected, the appropriate event handler is notified.
Once notified, the event handler executes the corresponding reaction for each event. The
reactions are intended to alleviate the safety hazards introduced by each event, which is
indicated by stereotyping each reaction with <<Reaction>> (5.2.16) and setting its
“EffectOnSafetyDirection” tagged value to “Positive”. The safety monitoring classes,
which are stereotyped with <<Monitor>> (5.2.20) in the design are
WingsAndEnginesMonitor, NavigationDatabaseMonitor, NavigationMonitor, and
ControllerMonitorAndHandler. The event handlers, stereotyped with <<Handler>>
(5.2.19) in the design are  ExternalSubsystemsEventHandler  and

ControllerMonitorAndHandler.

7.6.3 USAGE 3: Justify Design Decisions

Justifying design decisions is captured in the “Explanation” tagged value of the
<<Rationale>> (5.2.14) stereotype. In this case study, a detailed explanation on how the
class implements each safety requirement, and often even functional requirement,
assigned to it was discussed. This explanation was presented in section 7.5.5 and each

occurrence was explicitly identified as the value of an “Explanation” tagged value.
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7.6.4 USAGE 4: Monitor Safety

There are many approaches to monitoring the design and ensuring that it fulfills safety
requirements. One way is to ensure that each safety requirement has design elements
traceable to it. This case study has used the <<Rationale>> (5.2.14) stereotype to trace
design elements to safety requirements and provide justifications for this. The following
search query can be executed to determine which model elements. Including classes and

reactions, are traceable to (e.g. implement) safety requirements:
SEARCH FOR all model elements STEREOTYPED WITH (<<Rationale>>)

The results can be analysed to determine how safety requirements were designed into the
system in USAGE 2, and the “Explanation” tagged value of the <<Rationale>> (5.2.14)
stereotype can be read to determine the justifications, performed in USAGE 3, for the

design decisions performed in USAGE 2.

Executing this search query and then sorting the results per software requirement (i.e.
according to the “Reference” tagged value of the <<Rationale>> stereotype) tells us
which classes and reactions implement each safety requirement. Notice that we do not
have events stereotyped with <<Rationale>> (5.2.14) because they do not contain
executable code that implements safety requirements. The results (classes and reactions)
of the above query for each safety requirement are:

SREQ 1 WingsAndEnginesMonitor, ExternalSubsystemsEventHandler,
EnableController (R3), DisableController (R4)

SREQ 2 Controller, SafePointDeterminator,
EnsureFlightPathsOverSafeareas (R7)

SREQ 3 Controller, SafePointDeterminator,

PathProjector, EnsureFlightPathsOverSafeAreas (R7)

SREQ 4 ControllerMonitorAndHandler, InvestigateFuelShortage (RG),
RaiseFuelShortageExpectedAlert (R11),
HideFuelShortageExpectedAlert (R12)

SREQ5  controllerMonitorAndHandler, RaiseSubsystemFailureAlert (R9),
HideSubsystemFailureaAlert (R10).

SREQ 6 WingsAndEnginesMonitor, NavigationDatabaseMonitor,
NavigationMonitor, ExternalSubsystemsEventHandler,
EnableController (R3), DisableController (R4),
RaiseSubsystemFailureAlert (R9), HideSubsystemFailurealert (R10)

SREQ 7 NavigationMonitor, ExternalSubsystemsEventHandler,
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ControllerMonitorAndHandler, and RequirePilotConfirmation (R8)

Furthermore, monitoring safety includes ensuring that each event that can have negative
effect on safety has one or more appropriate reactions that have a positive effect on
safety. This basically means that all hazards caused by events must be treated, and
technically removed, by reactions. Thus, each class stereotyped with <<Event>> (5.2.15)
must be referenced at least once by a “ConsequenceOf” tagged value of a <<Reaction>>
(5.2.16) stereotype of some class. In this case study, this was presented in sections 7.5.4

and 7.5.4, specifically in Figure 14 and Table 5, respectively.

Furthermore, one must ensure that all the safety-related events are detectable by
monitors. This is ensured through the “DetectableEvent” tagged value of the
<<Monitor>> (5.2.20) stereotype. Notice that a monitor can recognize events, but it does
not know which reactions may execute in response to each event. In fact, this is the
responsibility of an event handler. The following search query can be executed to obtain

a list of monitors:
SEARCH FOR all model elements STEREOTYPED WITH (<<Monitor>>)

Executing this query on the design in Figure 15 gives the following result:
ControllerMonitorAndHandler, WingsAndEnginesMonitor, NavigationDatabase-

Monitor, and NavigationMonitor.

Then, looking into the “DetectableEvent” tagged value of the <<Monitor>> (5.2.20)
stereotype for each of the classes in the result above tells us which events are detected by
the identified monitors. This tells us whether all events of interest are detectable (i.e. the

design of monitors is complete) or not.

In addition, events detected by monitors must be handled by event handlers. The
“EventHandler” tagged value of the <<Monitor>> (5.2.20) stereotype for each monitor
class identifies the classes that the monitor notifies when any of the events represented by

the “DetectableEvent” tagged value occurs.

This case study contained two event handlers, each of which explicitly specifies the

events it can handle and the reactions that it performs in response to those events. This
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information was presented in the “HandleableEvent” and “PerformedReaction” tagged
values, respectively, of the <<Handler>> (5.2.19) stereotype. A list of event handlers can

be obtained by executing the following search query:
SEARCH FOR all model elements STEREOTYPED WITH (<<Handler>>)

Executing this search query on the design model in Figure 15 gives the following result:

ExternalSubsystemsEventHandler,andControllerMonitorAndHandleL

Then, one needs to ensure that the “HandleableEvent” and “PerformedReaction” of the
<<Handler>> (5.2.19) stereotype for all handler classes reference all the previously
determined events and their reactions. This tells us whether all safety-related events of

interest are properly handled, through the execution of appropriate reactions, or not.
7.6.5 USAGE 5: Get Safety Information

Safety information that is required to prove compliance with airworthiness requirements
includes ensuring that each safety requirement is implemented. This was discussed in
sections 7.6.1 - 7.6.4.

In addition, safety information that is required by the certification authorities also
includes determining hardware/software interfaces as explained in section 6.2.1. This can
be obtained by executing the search query described in section 6.2.1. The search query is:

SEARCH FOR all model elements STEREOTYPED WITH (<<Interface>>
WITH TAGGED VALUE (IsBetweenHardwareAndSoftware = true))

Executing it oOn NavigationControllerSubsystem (Section 7.5.5) gives:

WingsAndEnginesInterface,andNavigationInterface

Furthermore, the certification authorities require that software levels be specified and
submitted as explained in section 6.2.2. This can be obtained by executing the search
query in section 6.2.2. This search query is:

SEARCH FOR all model elements STEREOTYPED WITH

(<<SafetyCritical>>)
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Executing it on the system architecture in section 7.2 gives all the subsystems, namely:
MechanicalSteeringWheelSubsystem, NavigationUserInterfaceSubsystem,
LEDDisplaySubsystem, NavigationControllerSubsystem, WingsAndEngines-

Subsystem, NavigationDatabaseSubsystem, NavigationSubsystem.

The software levels can be obtained from the “CriticalityLevel” tagged value of the
<<SafetyCritical>> (5.2.17) stereotype for each of the above subsystems.

Other information that is required by the certification authorities includes the partitions in
the system as explained in section 6.2.4. This can be obtained by executing the search

query described in section 6.2.4. The search query is:

SEARCH FOR all model elements STEREOTYPED WITH

(<<Partition>>)

Executing it on the system architecture in  section 7.2  gives:

NavigationControllerSubsystem.

Furthermore, the airworthiness rules specify that the software level for each subsystem or
class be equal to at least that of the highest software level for all subsystems or classes
that depend on it>. This can be automatically verified in the model by executing the

following pseudocode:

for each CLIENT model element stereotyped with <<SafetyCritical>
if CLIENT has a “CriticalityLevel” assigned then
for each SERVER model element on which it depends
ensure that SERVER is stereotyped with
<<SafetyCritical>> and has a “CriticalityLevel”
assigned equal to at least the “CriticalityLevel”
of the CLIENT model element
end loop
end if

end loop

Moreover, the certification authorities require a list and description of all safety monitors.

The monitors and handlers were discussed in sections 7.6.2 and 7.6.4.
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8 CONCLUSION

This research has proposed a UML profile for developing software to be compliant with
the airworthiness standard, RTCA DO-178B [4]. The profile was based on the safety-
related concepts that were extracted from the airworthiness standard as well as their
refined concepts. As a result, the UML extensions provided by this profile are a

consequence of the concepts emphasized by the airworthiness standard.

For example, the airworthiness standard emphasized traceability across requirements,
design, and source code. The proposed profile provides specific extensions to model
traceability of design elements to requirements, deviation of design elements from
original requirements, requirements in the UML model, justification of design and
implementation styles according to requirements, and partitioning of the architecture
according to the requirements. A detailed analysis on how the UML profile can be used

to fulfill each information requirement is presented in section 8.1.

Furthermore, this research has shown how a software model using an appropriate UML
profile can be used to effectively generate airworthiness-related information. Such
information can be submitted to the certification authorities, or it can be used by the
airworthiness engineers to track how software evolves over the lifetime of a project from

an airworthiness point of view.

The profile’s completeness and usefulness was validated by performing a case study. An
aircraft’s navigation subsystem was defined and analysed by performing a safety
assessment. It was then modeled using the proposed UML profile. Analysing the model
showed that the UML profile effectively supported the previously identified usage
scenarios for safety information. In addition, it is effective in tracing model elements to
safety requirements and in automatically generating certification information from a
UML model.

To achieve the results presented above, this research had to define the used safety-related

concepts precisely. The original safety-related concepts that were extracted from the
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airworthiness standard were refined into concepts that better grouped related concepts.
Furthermore, each safety related concept was described in detail, and attributes were
defined to describe the various aspects and dimensions of each concept. A conceptual
model (class diagram) was also defined and presented, which precisely defined the
relationships across safety-related concepts and modeled them as associations and
inheritance relationships. Furthermore, the profile precisely defined the tagged values for
each stereotype including its type and multiplicity, and mapped each stereotype and its

tagged values to the refined concepts and their attributes and relationships.

It is also important to note that this UML profile builds on top of existing UML model
diagrams within a project. In other words, using this UML profile does not require the
software engineers to create new diagrams but they must stereotype model elements
accordingly. Therefore, the amount of effort involved in using this profile is minimal.
This also contribute towards improving communication between safety and airworthiness

engineers on the one hand, and software engineers on the other hand.
8.1 Fulfilling Requirements

The proposed UML profile was defined based on the refined safety-related concepts
specified in section 3.2. As section 5 illustrates, there exists a stereotype for each of the
refined concepts. Therefore, the proposed UML profile is able to model all the refined
concepts. Table 6 illustrates how each information requirement is fulfilled by the

proposed UML profile.

IREQ # How to Fulfill the Information Requirement

IREQ 1 | Use <<SafetyContext>> (5.2.1) stereotype

IREQ 2 | Use <<ReliabilityContext>> (5.2.2) stereotype

IREQ 3 | Use <<IntegrityContext>> (5.2.3) stereotype

IREQ 4 | Use <<PerformanceContext>> (5.2.4) stereotype

IREQ5 | Use <<ConcurrencyContext>> (5.2.5) stereotype

IREQ 6 | Use <<CertificationContext>> (5.2.6) stereotype

IREQ 7 | Use <<ConfigurationContext>> (5.2.8) stereotype

IREQ 8 | Use <<DesignContext>> (5.2.7) stereotype

IREQ 9 | Use <<Requirement>> (5.2.9) stereotype and its “Kind” and “Specification” tags

IREQ 10 | Use <<Requirement>> (5.2.9) stereotype and its “OfGoal” tag
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IREQ # How to Fulfill the Information Requirement

IREQ 11 | Use <<Deviation>> (5.2.10) stereotype

IREQ 12 | Use <<ImplementationStyle>> (5.2.11) stereotype and its “Kind” tag

IREQ 13 | Use <<BehaviouralStyle>> (5.2.12) stereotype with its “Kind” tag equal to “Time-
Related”

IREQ 14 | Use <<BehaviouralStyle>> (5.2.12) stereotype with its “Kind” tag equal to “State-
Related”

IREQ 15 | Use <<Nature>> (5.2.13) stereotype and its “Reference” and “Explanation” tags with
its “Kind” tag equal to “COTS”

IREQ 16 | Use <<Nature>> (5.2.13) stereotype and its “Reference” and “Explanation” tags with
its “Kind” tag equal to “Previously Developed”

IREQ 17 | Use <<Nature>> (5.2.13) stereotype and its “Reference” and “Explanation” tags with
its “Kind” tag equal to “Deactivated”

IREQ 18 | Use <<Rationale>> (5.2.14) stereotype

IREQ 19 | Use <<Rationale>> (5.2.14) stereotype and its “Reference” and “Explanation” tags

IREQ 20 | Use <<Event>> (5.2.15) stereotype

IREQ 21 | Use <<Event>> (5.2.15) stereotype and its “EffectOnSafetyDirection” and
“EffectOnSafetyValue” tags

IREQ 22 | Use <<Reaction>> (5.2.16) stereotype

IREQ 23 | Use <<Reaction>> (5.2.16) stereotype and its “ConsequenceOf” tag

IREQ 24 | Use <<Reaction>> (5.2.16) stereotype and its “EffectOnSafetyDirection” and
“EffectOnSafetyValue” tags

IREQ 25 | Use <<SafetyCritical>> (5.2.17) stereotype

IREQ 26 | Use <<SafetyCritical>> (5.2.17) stereotype and its “CriticalityLevel” tag

IREQ 27 | Use <<Partition>> (5.2.18) stereotype

IREQ 28 | Use <<Handler>> (5.2.19) stereotype

IREQ 29 | Use <<Monitor>> (5.2.20) stereotype

IREQ 30 | Use <<Monitor>> (5.2.20) stereotype with its “Kind” tag equal to “Safety”

IREQ 31 | Use <<Monitor>> (5.2.20) stereotype with its “Kind” tag equal to “Fault Tolerance”

IREQ 32 | Use <<Monitor>> (5.2.20) stereotype with its “Kind” tag equal to “Integrity”

IREQ 33 | Use <<Simulator>> (5.2.21) stereotype

IREQ 34 | Use <<Simulator>> (5.2.21)stereotype and its “SimulatedEntity” and
“SimulationParameter” tags

IREQ 35 | Use <<Strategy>> (5.2.22) stereotype with its “Kind” tag equal to “Safety”

IREQ 36 | Use <<Strategy>> (5.2.22) stereotype with “Kind” tag equal to “Scheduling”

IREQ 37 | Use <<Formalism>> (5.2.23) stereotype

IREQ 38 | Use <<Complexity>> (5.2.24) stereotype and its “Measure” and “Value” tags

IREQ 39 | Use <<Interface>> (5.2.25) stereotype with its “IsBetweenHardwareAndSoftware”

tag equal to “true”
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IREQ # How to Fulfill the Information Requirement

IREQ 40 | Use <<Interface>> (5.2.25) stereotype and its “ProtocollD”,
“InputFunctionParameter”, and “OutputFunctionParameter” tags

IREQ 41 | Use <<Concurrent>> (5.2.26) stereotype with its “Role” tag equal to “Active”

IREQ 42 | Use <<Concurrent>> (5.2.26) stereotype with its “Role” tag equal to “Passive”

IREQ 43 | Use <<Concurrent>> (5.2.26) stereotype with its “Role” tag equal to “Resource”

IREQ 44 | Use <<Concurrent>> (5.2.26) stereotype and its “IsShared” tag with its “Role” tag
equal to “Resource”

IREQ 45 | Use <<Defensive>> (5.2.27) stereotype

IREQ 46 | Use <<Defensive>> (5.2.27) stereotype and its “Defendablelnput” tag

IREQ 47 | Use <<Configurable>> (5.2.28) stereotype

IREQ 48 | Use <<Configurable>> (5.2.28) stereotype and its “Kind” tag

IREQ 49 | Use <<Configurable>> (5.2.28) stereotype and its “When” tag

IREQ 50 | Use <<Loadable>> (5.2.29) stereotype

IREQ 51 | Use <<Configurator>> (5.2.30) stereotype

IREQ 52 | Use <<Replicated>> (5.2.31) stereotype

IREQ 53 | Use <<Comparator>> (5.2.32) stereotype

IREQ 54 | Use <<Comparator>> (5.2.32) stereotype and its “PolicyParameter” tag

Total All 54 information requirements are fulfilled

Table 6: Using the proposed UML profile to fulfill the information requirements.
8.2 Open Issues and Future Work

This research has defined a software safety UML profile and demonstrated how it can
help solve the identified challenges. Numerous examples of its usage have been presented
(section 5.3). Furthermore, the profile has been applied in a case study (section 7)
involving an aircraft navigation controller system — a key software element in every
aircraft. Future work could include applying the profile for other systems in diverse
organizations, and then soliciting the engineers participating in those projects to identify
the strengths and weaknesses of this profile. Such solicitations can be used to generate

qualitative and quantitative results in an approach similar to the one used in [46].

This research has focused on modeling safety information in class diagrams. It
demonstrated how the proposed UML profile’s stereotypes and tagged values can be used
to model information in class diagrams. There was little discussion of other types of
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diagrams, such as dynamic diagrams including object diagrams and statecharts. This has
been left for future work. However, the proposed UML profile should be easily

transferable for dynamic diagrams.

The proposed UML profile lists the UML meta classes on which each stereotype may be
applied (section 5.1). This list may not necessarily be sufficient for all usages. More
specifically, certain applications of this profile may determine that it is useful to apply
certain stereotypes on UML meta classes that are not listed here. Nevertheless, this will

form the path in which this profile can evolve in the future.

The refined safety-related concepts (section 3.2), which formed the basis of the UML
profile, are mostly based on the general safety-related concepts identified in the
airworthiness standard [4]. A standard is normally written in a high-level language as to
not restrict the developers following it. Different projects have different airworthiness
requirements and/or technical solutions to airworthiness requirements, and hence may
have additional refined concepts. This is because UML models can be used as an
interface between safety engineers and software developers. This may introduce the need

for additional profile stereotypes and tagged values.

Although airworthiness is a subset of safety, it is specific to the aerospace industry. Many
other industries exist where safety-critical software is used such as the medical, nuclear,
transport, and defence industries. This research was based on the airworthiness standard,
and therefore is intended to meet requirements of the aerospace industry. Those
requirements may or may not be sufficient in other industries that use different safety-
related standards. However, an attempt has been made in this research to generalize
results as much as possible without compromising the ability to model specific
airworthiness concepts and needs. Therefore, this UML profile should be easily tailorable

and applicable to other industries.

It was initially thought that it would be best to propose a UML profile that would be as
compliant as possible with existing OMG UML profiles. However, it was found that it
was better to define concepts for which similar stereotypes existed in other profiles (e.g.

<<Requirement>> (5.2.9) stereotype is similar to the <<QoSConstraint>> and its
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subtypes in the QoS and FT OMG UML profile [5]). This redefinition allowed this
profile to be simple, clear, and most importantly self-contained and independent of other
existing profiles. This is important from a maintainability point of view because we may
not necessarily need to modify this profile if other OMG UML profiles are revised and

newer versions are available.

While some of its stereotypes and tagged values can be used to model safety-related
information for systems, this UML profile has focused on modeling them for software.
This is jusitified by the fact that the airworthiness standard [4] focuses on software itself.
Nevertheless, it may be useful to model such information for systems in future work. In
that regard, the OMG System Modeling Language [47], which resuses and extends a
subset of UML [30] to model systems, may be helpful. In fact, it may be merged with
UML to constitute the base modeling language for a new systems and software UML

profile.

Certain extension mechanisms that describe the code were added. Examples of these
include using <<ImplementationStyle>> (5.2.11) to identify recursive code, or code that
dynamically allocates memory. Another example is using the <<Complexity>> (5.2.24)
stereotype to identify constraints on the level of code nesting. While they were provided
here for completeness and their need in software certification, some of them are generally
better addressed by a software code analysis tool that could parse software code, analyse
it, and extract this information. The later approach would provide more complete and
accurate results, and it would relieve the developers from maintaining this information in
the model. Therefore, it may be more appropriate to use such stereotypes and tagged
values as placeholders for data entered by software analysis tools. This UML profile does
not specify the source of the information entered by the software engineers. Thus, a
possible future extension could explicitly address this distinction and potentially provide
two different values for each piece of information — a specified value, which is entered by
the engineers to indicate requirements, and an analysis value, which is entered by a tool
to indicate a predicted or measured value. Then, a tool can compare those two sets of

values to detect violations.
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Most enumeration tagged values for some stereotypes were left open for extension by the
users of this profile. This recognizes the fact that each software application may have
specific needs or usages whose level of detail that is not addressed here. Therefore, this
gives flexibility in a seemingly open UML profile. However, this UML profile lists
sample values for each enumeration type that are deemed most useful. Thus, users of this
UML profile do not need to do extra work in defining the enumeration values unless they

truly need to.

Search queries on UML models were used to illustrate how certification-relevant
information can be extracted from a UML model. Those search queries were specified in
a Structured Query Language (SQL)-like textual language. This could be refined and
eventually lead into the development of an SQL-variant language that is used specifically
to search and query UML models. Such a language should be defined such as it is

independent of the UML profiles used.

Alternatively, the integration of EMF and OCL seems to be a promising integration of
technologies to query UML models. The current state of this technology does not support
querying UML models for model elements according to criteria specifying the
stereotypes and tagged values applied on the model elements. However, EMF and OCL
should be easily extensible to support this because it already supports some form of
querying UML models and class objects. Such an extension would be supportive of this

UML profile as it will allow developers to dynamically query this information.
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9 SUMMARY

This research has investigated the relationship between UML and software safety. The
airworthiness standard [4] is widely considered as the de-facto safety standard in the
aerospace industry. Therefore, modeling software that has to be developed in an
environment satisfying the airworthiness standard was considered. Since UML has
become the de-facto software modeling language, it was fitting to define a UML profile
for modeling safety-critical software. Therefore, even high-level requirements were
identified for a UML profile to be able to effectively model safety-critical software

developed under the airworthiness standard.

The airworthiness standard was analysed to determine safety-related concepts of interest.
A list of 65 safety-related concepts was formed, and the concepts were categorized in
eight different but related categories: safety, reliability, integrity, performance,

concurrency, certification, design, and configuration.

Given the language difference between standards and UML modeling techniques, the 65
safety-related concepts were refined into 27 concepts that were more appropriate from a
software modeling perspective. This refined list of concepts removed duplication across
similar concepts, and it defined additional concepts that were not covered by the original
65. The 27 refined safety-related concepts were explained in detail and their inter-concept
relationships were formalized through a conceptual model. This allowed us to define 54
information requirements for a candidate UML profile to model those concepts. Those 54

information requirements were traced back to the original 7 high-level concepts.

After analyzing several existing UML profiles and concluding that they did not fulfill an
acceptable percentage of the 54 information requirements, a UML profile was proposed.
The profile, composed of 32 stereotypes and their tagged values, was presented in detail.
Several examples of using the profile were presented and explained in detail. The profile
fulfilled the 54 information requirements and guidance was presented on how it can be

used to fulfill each one of the information requirements.
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One specific usage of the profile was the ability to automatically provide airworthiness
and certification information from a UML model. Therefore, examples of such usage
were presented. Each example identified a specific need from the airworthiness standard,
and then it presented search queries that a UML modeling tool can execute on a model
employing the proposed profile to automatically generate the required information. This
is handy for submitting software-related information to the certification authority as well
as continuous project monitoring and control by managers and airworthiness engineers

that are likely to be less experienced with software.

The UML profile was validated by using it to design and analyse an aircraft’s navigation
controller subsystem — a key element in every aircraft. The overall system’s architecture
was presented and explained, and then the navigation controller’s subsystem’s functional
requirements were defined. Then, a safety assessment using the AEA, FMEA, HAZOP,
and IA methods was performed, which identified 11 safety hazards relevant to the
subsystem under study. Those resulted in 7 safety requirements for the subsystem’s
software. The subsystem was then designed using the UML profile, and an analysis of the
model was performed. The analysis showed that the resultant UML model contained
information on how the model elements were traceable to the safety requirements, as well

as additional information relevant to the certification authorities.

Future work in this area could include using the profile in real-life projects and soliciting

participating stakeholders for improvement information.
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Appendix A Examples of Safety/Risk Assessment Methods

Method Analyzed Subjects Output Comments
Action Error | Human-machine Consequences of | Similar to FMEA but is
Analysis (AEA) interactions actions that operators | applied to steps in human

perform at the wrong | procedures rather than
time, or do not perform | hardware or components
when they should
Cause- Critical events Causes and | Unlike fault trees, it
Consequence consequences of critical | explicitly  shows the
Analysis (CCA) events sequence  of  events.
Unlike event trees, it
allows the representation
of time delays, alternative
consequence paths, and
combination of events
Event Tree | Critical events Consequences of | Is a version of FTA that
Analysis (ETA) critical events is tailored to large and

complex systems. Breaks

large  problems into
smaller ones to which

FTA may be applied

Failure Modes and
Effects
(FMEA)

Analysis

Possible failures

Probabilities of failures.
Overall probability that
the product will operate
without a failure for a

specific period of time

Reliability-oriented rather

than safety-oriented.

Emphasizes correct
functioning rather than
hazards and risks.

Concentrates on single

events of failures
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Method Analyzed Subjects Output Comments
Failure Modes, | Possible failures Same as FMEA but it | Is an extended FMEA
Effects, and includes the criticalities | that examines the
Criticality of failures criticality of each event in
Analysis more detail. Concentrates
(FMECA) on single events of
failures
Fault Hazard | Possible  failures | Similar to FMEA or | Causes of failures are

Analysis (FHA)

that may result in

FMECA, but it

considered over a wide

accidents considers a different | scope that even includes
scope human errors, procedural
deficiencies, and
environmental conditions.
Concentrates on single
events of failures that
may cause accidents
Fault Tree | Previously- Causes of the | Hazards should have
Analysis (FTA) identified hazards previously-identified already been identified by
hazards, fault trees and | other methods. A popular
Boolean  expressions | method but not scalable
for them to large and complex
systems. Considers
relationships across
events that cause hazards
Hazards and | System design and | Possible deviations | Uses a qualitative
Operability operating intentions | from the design and | approach. Labour
Analysis operating intentions, | intensive.  Does  not
(HAZOP) and hazards that result | require that the hazards

from them

be previously identified

Interface Analyses
(1A)

Inter-component

interfaces

Connection failures that

can lead to failure

propagations

Similar to HAZOP but is

more general
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Method Analyzed Subjects Output Comments
Management Managerial Problems, defects, and | Checklist-based
Oversight and | functions, human | oversights that create
Risk Tree Analysis | behaviour, and | hazards or prevent their

(MORT)

environmental

factors

early identification by
poor planning,
inadequate operational
checks, or limited
information-exchange

within the organization.

State Machine
Hazard  Analysis

(SMHA)

Hazardous states in
software state

machines

Conditions that cause
the software to enter

the hazardous states

software.
the

Intended for
Works on model
rather than the design

itself

Table 7: Examples of safety or risk assessment methods.
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Appendix B Examples of Safety-Related Standards

Industry Owner Standard

Aerospace Radio Technical | DO-178B, Software Considerations in Airborne
Commission for | Systems and Equipment Certification
Aeronautics (RTCA)
European Space Agency | Set of Several Standards — ECSS-Q-00A, ECSS-Q-
(ESA) 20A, ECSS-Q-30A, ECSS-Q-40A, ECSS-Q-80A,

ECSS-Q-80-2, ECSS-Q-80-3, ECSS-Q-80-4

National Aeronautics and | NASA-STD-8719.13A -  Software  Safety,
Space Administration | September 1997
(NASA)
National Aeronautics and | NASA-GB-1740.13-96 — NASA Guidebook for
Space Administration | Safety Critical Software - Analysis and
(NASA) Development, September 1997
American  Institute  of | R-013-1992 — Recommended Practice: Software
Aeronautics and | Reliability, 1992
Astronautics (AIAA)

Biomedical International 601-1-4(1996-06) — Medical Electrical Equipment
Electrotechnical - Part 1: General Requirements for Safety - 4.
Commission (IEC) Collateral ~ Standard: Programmable  Electric

Medical Systems, June 1996
Defence u.S. Department of | MIL-STD-882D — Standard Practice for System

Defense (DoD)

Safety, February 2000

U.K. Ministry of Defence
(MoD)

DEF STAN 00-55 - Requirements for Safety
Related Software in Defence Equipment, August
1997

North  Atlantic  Treaty
Organization (NATO)

Commercial Off-the-Shelf (COTS) Software
Acquisition Guidelines and COTS Policy Issues,

January 1996
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Industry

Owner

Standard

Nuclear Power

International
Electrotechnical

Commission (IEC)

61508:1986-09 — Software for Computers in Safety
Systems of Nuclear Power Stations, including the
First Supplement, 60880-1 (FDIS), 1977

Ontario Hydro Nuclear and
Atomic Energy Canada,

Ltd. (AECL)

CE-1001-STD -
Engineering of Safety Critical Software, January
1995

Standard  for  Software

Transportation

European Committee for
Electrotechnical

Standardisation

EN 50128:2001 — Railway Applications: Software

for Railway Control and Protection Systems

(CENELEC)

Motor Industry Software | Development  Guidelines for Vehicle-Based
Reliability Association | Software, November 2001

(MISRA)

Society of Automotive | JA 1002 — Software Reliability Program Standard,

Engineers (SAE)

July 2004

Non-Industry
Specific

International
Electrotechnical

Commission (IEC)

61508-3:1998-12 -  Functional  Safety of
Electrical/Electronic/Programmable Electronic
Safety-Related Systems - Part 3. Software

Requirements, December 1998

International
Electrotechnical

Commission (IEC)

300-3-9:1995-12 — Dependability Management -
Part 3: Application Guide - Section 9: Risk
Analysis of Technological Systems, December
1995

International Organization

for Standardization (1SO)

15026:1998-04-29 - System and Software

Integrity Levels, April 1998

Institution of Electrical

Engineers (IEE)

Software  Engineering Methods for  Safe
Programmable Logic Controllers (SEMSPLC)
Guidelines — Safety-Related Application Software
for Programmable Logic Controllers, September

1996
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Industry

Owner

Standard

Institute of Electrical &

Electronic
(IEEE)

Engineers

Std. 982.1-1989 and 982.2-1989 — Measures to

Produce Reliable Software

Institute of Electrical &

Electronic
(IEEE)

Engineers

Std. 1228-1994 - Standard for Software Safety
Plans, 1994

Table 8: Some of the many safety-related standards that exist for several industries.
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Appendix C Concept Identification and Categorization from

the Airworthiness Standard

C.1 Primarily Safety Concepts

Concept

Description

RTCA DO-
178B Section

Failure Condition

The effect that one or more failures cause on, or
contribute to, the aircraft and its occupants, directly or
indirectly, considering relevant adverse operational and

environmental conditions [4].

2.2

Failure  Condition | Failure conditions are categorized according to the | 2.2

Category severity of their effects as defined in some standard [4]. | 2.2.1

Level of Confidence | In the context of software safety, the level of confidence | 4.1
is the extent of the assurance to which the software is | 6.4
believed to exhibit the desired behaviour of safety, with
respect to the system in which it is deployed.

Loadable Software | A hardware or software that is used to indicate the status | 2.5

Indicator of the field-loadable software (see section C.7). This
indicator should be able to detect incorrect software
and/or hardware and/or aircraft combinations and should
provide protection appropriate to the failure condition of
the function [4].

Safeguard A technical contrivance to prevent accident [13]. 7.2.8

11.4

Safety Feature A prominent part or characteristic [13], which is | 4.4

intended to increase the safety of the system. 11.1
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Concept

Description

RTCA DO-
178B Section

Safety Monitoring

Safety monitoring is a means of protecting against
specific failure conditions by directly monitoring a
function for failures which would contribute to the
failure condition. Monitoring is usually associated with
activities done over an extended period of time where
100% witnessing is considered impractical or
unnecessary. Monitoring permits authentication that the
claimed activity was performed as planned [4].
Examples of safety-monitors include watchdog timers,

reasonableness checks, and cross-channel comparisons

[4]

211
2.3.2
11.9

Safety Objective

A safety-related goal, which often results in safety

requirements and safety constraints.

4.1

Safety Requirement

A safety requirement is a non-functional requirement
whose objective is to increase the level of safety. And
while functional requirements often focus on what the
system shall do, safety-related requirement focus on

both what the system shall and shall not do [1].

2.1.1
51

Safety Response

A safety response is an action that a software component
performs as a result of detecting the occurrence of some
safety-related failure condition that it provides immunity

to.

2.11

Safety Strategy

A strategy is the art of devising or employing plans or
stratagems toward a goal [13]. The goal of a safety
strategy is to increase the safety of a system, which is

often done through design decisions.

2.11
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Concept

Description

RTCA DO-
178B Section

Safety-Critical

A safety-critical system is any system that can directly
or indirectly cause a loss of human life [1]. Examples of
such systems include transportation vehicles, air traffic
controllers, medical devices, nuclear reactors, and
military equipment and vehicles. A loss of human life
may be caused by accidents, which may be the results of

hazards introduced by the system.

Software Level

Assigning different levels to software components is a
means of classifying software components according to
their contribution to potential failure conditions as
determined by the system safety assessment process.
Having different software levels imply different levels
of effort are required to show compliance with different

failure condition categories [4].

2.2
2.2.2

Unsafe Action

An action that can directly or indirectly contribute to the
occurrence of a hazardous system state, which may
result in an accident. Such an action may occur with or
without an explicit action by the software or system

user.

Table 9: Safety-related concepts that are classified as “primarily safety”.
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C.2 Primarily Reliability Concepts
Concept Description RTCA DO-

178B Section

Comeparator (Voter)

When multiple-version dissimilar software is used,
voting refers to detecting faults caused by some
dissimilar versions of the software. This is done by
assuming that the majority of the dissimilar software
versions produce a correct output [14]. A voter or a
comparator is a software component that analyzes the
results of the multiple software versions and outputs the

result of the voting.

2.3.2

Defensive

Programming

Defensive programming is based on the principle that
the programmer makes as few assumptions as
reasonably possible. Extra code is written to check that
the software is in correct state at selected checkpoints,
such as the beginning or end of an operation. This
allows the software to detect incorrect states and react
appropriately to ensure the continued execution of the

system.

4.5

Error Detection

The process of realizing that an error has occurred [15].
In a fault-tolerant design, this may be implemented as

part of the software or hardware.

4.2

Exception Handling

Exception handling is a programming technique of most
modern programming languages to handle situations
where abnormal conditions arise. When an exception
occurs, the software flow of control resumes in an
exception handler, which generally handles selected
exceptions and allows the software execution to

continue.

11.7
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Concept

Description

RTCA DO-
178B Section

Failure

A failure is the inability of a system or system
component to perform a required function within
specified limits. It may be produced when a fault is

encountered [4].

2.2

Fault

A fault is a manifestation of an error in software that, if
it occurs, may cause a failure [4], which is a deviation in

the expected performance of the system [15].

211

Fault Containment

In designing and implementing fault tolerant systems,
fault containment is the process of preventing an error
from propagating within a system. Fault containment is
one of four steps required to reconfigure a system from
a faulty state back to some operational state. The other
three steps are fault detection, fault location, and fault

recovery [15].

2.1.2

Fault Detection

The process of realizing that a fault has occurred [15]. In
a fault-tolerant design, this may be implemented as part

of the software or hardware.

211
11.9

Fault Tolerance

The built-in capability of a system or software to
provide continued correct execution in the presence of a

limited number of hardware or software faults [4].

211
4.4
111

Immunity

The quality or state of being immune [13]. A system or
software is immune to some failure condition if it can
detect it and perform an appropriate safety response that

renders it harmless.

211

Multiple-Version

Dissimilar Software

A form of fault tolerance design technique where a set
of two or more programs developed separately to satisfy
the same functional requirements are used. Errors
specific to one of the versions are detected by

comparison of the multiple outputs [4].

2.11
2.3.2
111
11.3
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Concept Description RTCA DO-
178B Section
Software Redundancy is the use of redundant components, which | 2.1.1
Redundancy is exceeding what is necessary or normal [13]. Software | 11.1

redundancy implies using multiple-version dissimilar

software.

Table 10: Safety-related concepts that are classified as “primarily reliability”.

C.3 Primarily Integrity Concepts

Concept Description RTCA DO-
178B Section
Accuracy Degree of conformity of a measure to a standard or a | 11.9

true value [13].

Discontinuity

A mathematical discontinuity is the property of not
being continuous. A continuous function has the
property that the absolute value of the numerical
difference between the value at a given point and the
value at any point in a neighbourhood of the given point
can be made as close to zero as desired by choosing the
neighbourhood small enough [13].

6.3.2

Integrity Check

The act of testing or verifying the integrity of an object.
Integrity is the quality or state of being complete [13],

accurate, and precise.

11.16

Precision

The degree of refinement with which an operation is

performed or a measurement stated [13].

11.9

Software Protector

Software that provides protection for user modifications
in user-modifiable software, option-selectable software,

and commercial-off-the-shelf software [4].

2.4

Table 11: Safety-related concepts that are classified as “primarily integrity”.
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C.4 Primarily Performance Concepts
Concept Description RTCA DO-

178B Section

Scheduling Strategy

A strategy is the art of devising or employing plans or
stratagems toward a goal [13]. The goal of a scheduling
strategy is to determine how various active components
share resources. Examples of scheduling strategies
include round robin, rate monotonic, and -earliest
deadline first [6].

111

Time-Related

Software functionality whose output or behaviour is a

function of time such as filters, integrators, and delays.

6.4.2.1

Table 12: Safety-related concepts that are classified as “primarily performance”.

C.5 Primarily Concurrency Concepts

Concept

Description

RTCA DO-
178B Section

Active

An active component is a component that is capable of
generating stimuli concurrently or pseudo (seemingly)
concurrently without being prompted by an explicit
stimulus instance (i.e., devices that appear capable of
“spontaneous” unprompted behaviour such as hardware,
operating system processes and threads, etc.) [6]. In
terms of a software component, package, or object,
activeness implies that a thread is continually executing
within the context of that software component, package,

or object.

12.3.3

Multi-Tasking

Software that runs with more than one flow of control,
i.e. concurrent software. Different flows of control may
interact at which point their interactions need to be

managed.

11.7
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Concept Description RTCA DO-
178B Section

Passive A passive component is a component that cannot | 11.7

generate its own behaviour, but only reacts when
prompted by a stimulus [6]. In terms of a software
component, package, or object, passiveness implies that
there is no thread that is continually executing within the
context of that software component, package, or object,
but its code is executed as a result of some other active
software component, package, or object. A passive

element is generally event-driven.

12.3.3

Shared Resource

A resource that is shared across multiple software
modules or flows of control (software threads or
processes). Examples of resources include memory,

CPU cycles, network, and others.

111

Table 13: Safety-related concepts that are classified as “primarily concurrency”.
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C.6 Primarily Certification Concepts
Concept Description RTCA DO-

178B Section

Certification

Certification is the legal recognition by the certification
authority that a product, service, organization or person
complies with some requirements. Such certification
comprises the activity of technically checking the
product, service, organization or person and the formal
recognition of compliance with the applicable
requirements by issue of a certificate, license, approval
or other documents as required by national laws and
procedures. In particular, certification of a produt
involves: (a) the process of assessing the design of the
product to ensure that it complies with a set of standards
to that type of product so as to demonstrate an
acceptable level of safety; (b) the process of assessing
the product to ensure that it conforms with the certified
type design; (c) the issuance of a certificate required by
national laws to declare that compliance or conformity
has been found with standards in accordance with items
(a) or (b) above [4]. Certified software is software that is
legally recognized to be compliant with some
certification criteria by a certification authority as it is

used in a particular system context.

543
9

10
111

Certification

Requirement

A requirement that needs to be fulfilled in order for a
product, service, organization, or person to be certified
by a certification authority according to some

certification criteria.

2.11

Derived

Requirement

Additional requirement resulting from the software
development process, which may not be directly
traceable to higher level requirements [4]. Derived
requirements often appear in the form of implementation

constraints [4].

511
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Concept Description RTCA DO-
178B Section
Deviation Difference in the output or execution of a process, such | 8.2

as the design or implementation processes, from its plan.

Hardware / Software | The boundary at which software and hardware directly | 6.4.3

Interface communicate with each other. This is usually done at | 11.1
the bit or byte level. 11.9

Traceability The evidence of an association between items, such as | 5.3.1
between process outputs, between an output and its | 5.5

originating process, or between a requirement and its
implementation [4]. Horizontal traceability expresses
relationship between items in different phases of the
development life cycle, such as the relationship between
a design component and software requirements. On the
other hand, vertical traceability expresses relationship
between items in the same phase of the development life
cycle, such as the relationship between two software

requirements.

Table 14: Safety-related concepts that are classified as “primarily certification”.

C.7 Primarily Design Concepts

Concept Description RTCA DO-
178B Section
COTS Software Commercially available applications sold by vendors | 2.4
through public catalogue listings. COTS software is not | 11.1
intended to be customized or enhanced. Contract-
negotiated software developed for a specific application
is not COTS software [4].
Compacted A shorter, but equal, form of an expression such as a | 11.7
Expression mathematical expression.
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Concept

Description

RTCA DO-
178B Section

Complexity

The degree to which a system, software, or component
has a design and implementation that is difficult to
understand and verify [16]. Increasing the complexity
level of software makes it harder to formulate its overall
behaviour, even when given almost complete
information about its atomic components and their inter-
relations [17]. It also makes it harder to verify the
software design and the fulfilment of the safety
objectives [4]. Examples of complexity measures
include level of nesting, cyclomatic complexity,
conditional structure, unconditional branches, number of
entries into a code component, and number of exits from

a code component.

522
6.3.4
11.7

Coupling

Coupling is a factor of the inter-module complexity of
software [18], which represents the strength of
connection between two modules [19], [20]. Myers
identified several types of coupling in [21], namely,
content coupling, common coupling, external coupling,

control coupling, stamp coupling, and data coupling.

11.8

Data Alias

In software, a data alias is a name for a software
variable, which is also accessible through another
different name. Essentially, the same data is known and
accessed under different names. Although allowed by
programming languages, this technique is generally
avoided in safety-critical software as they may introduce

confusion.

11.7
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Concept

Description

RTCA DO-
178B Section

Deactivated Code

Executable object code (or data) which by design is
either (a) not intended to be executed (code) or used
(data), for example, a part of a previously developed
software component, or (b) is only executed (code) or
used (data) in certain configurations of the target
computer environment, for example, code that is
enabled by a hardware pin selection or software

programmed option [4].

4.2
543
11.10

Design by Contract

Design by contract is a technique for software
development where inter-module interactions are
constrained by an agreement, or contract, which defines
the requirements and obligations of each interacting
software entity. A contract is composed of three parts
[22]: (a) class (module) invariants, which define
conditions that are always true (in steady-state), (b)
operation preconditions, which define conditions that
are true before calling the operation, and (c) operation
postconditions, which define conditions that are true

after an operation finishes execution.

Dynamic Memory

Memory that is allocated during the execution of the
software through special calls to the underlying
operating system, rather than at compile-time by pre-
reserving its memory space. The use of dynamic
memory is generally avoided in safety-critical software.
A dynamic object is an object that resides in dynamic

memory space.

11.7

Error

A software error is a mistake in its requirements, design,
or code [4].

4.2

Error Prevention

A technigue that attempts to avoid or prevent the
occurrence of errors. Error prevention and error

avoidance are used interchangeably.

4.2
4.4
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Concept

Description

RTCA DO-
178B Section

Field-Loadable

Software

Field-loadable software refers to software or data tables
that can be loaded without removing the system or

equipment from its installation [4].

2.5
6.4.3
111

Formal Method

A formal method of software development is a process
for developing software that exploits the power of
mathematical notation and mathematical proofs [23]. It
involves the use of formal logic, discrete mathematics,
and computer readable languages to improve the

specification and verification of software [4].

12.31

Loader

A hardware or software that is used to load field-

loadable software.

2.5

Partitioning

Software partitioning is a technique for providing
isolation between functionally independent software
components to contain and/or isolate faults and
potentially reduce the effort of the software verification
process. It prevents specific interactions and cross-

coupling interference [4].

2.11
2.3.1
5.2.2
6.3.3
11.3
11.9
11.10

Previously

Developed Software

Software that was developed in a previous project. It
may or may not have been previously certified for use in

one or more systems.

111
11.3
121

Recursion

Recursion is a software implementation approach to
solve a problem by breaking it into a smaller problem
that is easier to solve. Recursion is generally avoided in
airborne and safety-critical software due to their high

demand of resources.

6.3.3
11.7
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Concept

Description

RTCA DO-
178B Section

Simulator

A device that enables the operator to reproduce or
represent under test conditions phenomena likely to
occur in actual performance [13]. A simulator may be an
actual device, computer program, or a system, which
interfaces to other software or hardware system in the
same manner as the actual devices, which will be
eventually used in the final system. Simulators are often

used when testing software.

12.3.35

Software Patch

A maodification to an object program, in which one or
more of the planned steps of re-compiling, re-
assembling or re-linking is bypassed. This does not
include identifiers embedded in the software product,

for example, part numbers and checksums [4].

543

State-Related

Related to a state machine or its states or transitions.

6.4.2.1

Table 15: Safety-related concepts that are classified as “primarily design”.

C.8 Primarily Configuration Concepts

Concept

Description

RTCA DO-
178B Section

Configuration

A system can have multiple configurations, not all of
which are intended to be used in every application.
Therefore, a configuration represents a set of enabled
and disabled functionality. This can lead to deactivated

code that cannot be executed or data that is not used [4].

543

Option-Selectable
Software

Software that contains software-programmed options,
which may be configured by the user to produce

different possible configurations.

2.4
111
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Concept

Description

RTCA DO-
178B Section

User-Modifiable

Software

Software that is designed to be modifiable by its users.
Examples include a single memory bit used to select one
of two equipment options, a table of messages, or a
memory area that can be programmed, compiled, and

linked for aircraft maintenance functions [4].

2.4
4.2
5.2.3
111

Table 16: Safety-related concepts that are classified as “primarily configuration™.
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Appendix D Conceptual Model—Concept Relationships

Source End

Relationship Analysis

Destination End

Requirement
[0..%]

Is Requirement Of: Each Requirement may be
traceable to zero or more higher-level Requirements.
Conversely, a Requirement may have zero or more

lower-level Requirements (traceable to it).

Requirement
[0..%]

Deviation
[0..%]

References: Each Deviation must deviate from at
least one, potentially more, Requirement. Moreover,
there may exist more than one Deviation from a
particular Requirement. However, not every
Requirement may have Deviations from it, which
would be the case when the design fully conforms to

the Requirements.

Requirement

[1.*]

ImplementationStyle

Is Child Class Of: Each ImplementationStyle is a
Style.

Style

ImplementationStyle
[0..%]

References: Each  ImplementationStyle  may
conform to, or deviate from, zero or more
Requirements. Conversely, a Requirement may
require zero or more ImplementationStyles. In the
case where an ImplementationStyle is not associated
with any Requirements, the ImplementationStyle
signifies a design decision rather than an obligation

or a requirement.

Requirement
[0..%]

BehaviouralStyle

Is Child Class Of: Each BehaviouralStyle is a Style.

Style
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Source End

Relationship Analysis

Destination End

BehaviouralStyle
[0..%]

References: Each BehaviouralStyle may conform to,
or deviate from, zero or more Requirements.
Conversely, a Requirement may require zero or more
where a

BehaviouralStyles. In the case

BehaviouralStyle is not associated with any
Requirements, the BehaviouralStyle signifies a
design decision rather than an obligation or a

requirement.

Requirement
[0..%]

Nature
[0..%]

References: A Nature may have been used solely as
a design decision, in which case it is not associated
with any Requirements, or it may have been used to
conform to one or more Requirements. Conversely, a
Requirement may exist but not cause any Natures, or

it may cause one or more Natures.

Requirement
[0..¥]

Rationale
[0..*]

References: Each Rationale must be associated with

at least one, potentially more, Requirement.
Moreover, there may exist more than one Rationale
associated with a particular Requirement. However,
not every Requirement may have Rationales

associated with it. However, such a case is
uncommon because it would mean that there are no

design elements traceable to this Requirement.

Requirement

[1.%]

Reaction

Is Child Class Of: Each Reaction is an Event.

Event

Reaction
[0..%]

Is Consequence Of: Each Reaction is a consequence
of one or more Events because it is executed in
response to the Events. However, each Event may
not cause any reactions at all, or it may cause one or
several Reactions. Since Reactions are Events by
inheritance, then a terminal Reaction, which is the
last Reaction in a chain of Reactions, does not cause

any more Reactions.

Event

[1.%]
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Source End Relationship Analysis Destination End
SafetyCritical Triggers: A SafetyCritical entity may trigger zero or Event
[1.%] or more Events. A particular Event may not be [0..*]
triggered by any SafetyCritical entity, or it may be
triggered by one or more SafetyCritical entities.
Partition References: A Partition may exist to fulfill one or Requirement
[0..%] more Requirements, or it may exist as a design [0..*]
decision to isolate functionally independent elements
such that a failure in one component does not cause
the other to fail. Conversely, a Requirement may or
may not require one or more Partitions to be
performed.
Partition Is Partitioned From: By definition, a Partition is SafetyCritical
[0..%] always Partitioned from one or more SafetyCritical [1..%]
entities. However, a SafetyCritical entity may not
necessarily have one or more Partitions from it.
Handler Handles: A Handler handles at least one Event, and Event
[0..%] it usually handles more than one Event. However, [1..%]
one or more Events may not necessarily be handled
by a Handler. The latter case may occur for Events
that are not of interest in the system, such as non-
safety-critical events. In addition, it usually occurs
for many Reactions, which are Events by
inheritance.
Handler Performs: A Handler performs one or more Reaction
[0..%] Reactions. However, a Reaction may not necessarily [1..%]

be performed by a Handler, or it may be performed

by one or more Handlers.
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Source End Relationship Analysis Destination End
Monitor Monitors: A Monitor monitors one or more SafetyCritical
[0..%] SafetyCritical  entities. However, not every [1..%]
SafetyCritical entity is monitored by a monitor. It is
also possible for a SafetyCritical entity to be
monitored by more than one Monitor.
Monitor Detects: A Monitor detects at least, but usually more Event
[0..%] than, one Event. However, an Event may go [1..%]
undetected by Monitors, or it may be detected by one
or more Monitors.

Monitor Notifies: Each Handler is notified by at least one Handler
[1.%] Monitor. However, some Monitors may not [0..*]
necessarily notify any Handlers, and a Monitor may

notify more than one Handler.

Simulator Simulates: A Simulator simulates at least one SafetyCritical
[0..%] SafetyCritical entity. A SafetyCritical entity may not [1..%]

have any Simulators, or it may have one or more

Simulators. For example, a radar may have two

simulators, with each one simulating the radar’s

behaviour under different environmental conditions.

Another example is having two different versions for

a particular Simulator.

Strategy Describes Design Of: A Strategy describes the SafetyCritical
[0..1] design of one or more SafetyCritical entities. In [1..%]
addition, a SafetyCritical entity’s design may, or

may not, be described by a Strategy.
Formalism Describes Formalism Of: A Formalism describes SafetyCritical
[0..1] the formalism of one or more SafetyCritical entities. [1..%]

In addition, a SafetyCritical entity’s formalism may,

or may not, be described by a Formalism.
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Source End Relationship Analysis Destination End
Complexity Describes Complexity Of: A Complexity describes SafetyCritical
[0..1] the complexity of one or more SafetyCritical entities. [1..%]

In addition, a SafetyCritical entity’s complexity may,

or may not, be described by a Complexity.

Interface Is Interface For: Each Interface is for one or more SafetyCritical
[0..%] SafetyCritical entities or components. In addition, a [1..%]
specific SafetyEntity may have one or more
Interfaces. An example of the latter case would be
where a subsystem has one Interface to it in each of

the other subsystems in the complete system.

Concurrent Triggers: Each Concurrent entity may trigger zero Event
[0..%] or more Events. Conversely, each Event may be [0..*]
triggered by zero or more Concurrent entities. A
Concurrent entity may not trigger any Events if it is

passive.
Defensive Performs: A Defensive entity protects against Reaction
[0..1] unusual inputs by performing one or more Reactions [1..%]

to such unusual inputs, or Events. However,

Reactions are not necessarily performed by

Defensive entities.

Configurable
[1..1]

Is Defaulted To: Each Configurable entity must be

defaulted to a particular Configuration.

Configuration
[1..1]

Configurable

Is Configurable To: Each Configurable entity may

Configuration

[1.%] be configured to produce one or more [1..%]
Configurations. In addition, each Configuration can
be produces by configuration one or more
Configurable entities in a particular way.
Loadable Is Loadable On: Each Loadable entity is loadable Configurable
[1.%] on one or more Configurable entities. Conversely, [1..%]

every Configurable entity can be configured by

loading one or more Loadables on it.
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Source End Relationship Analysis Destination End
Loadable Requires: Loading a Loadble entity may require Configuration
[0..%] specific base Configurations for it to be Loaded. For [0..*]
example, loading a particular software patch may
require pre-loading earlier patches. However, there
may not be such a requirement if the patch is a
complete and comprehensive patch, rather than an
incremental  patch.  Conversely, not every
Configuration is required by Loadable entities.
Loadable Produces: A Configuration may be produced by Configuration
[1.%] loading a Loadable. A Loadable may produce more [1..%]

than Configuration if loaded on different base
Configurations. For a Configuration to be produced,

at least one Loadable must be loaded.

Configurator

Configures: A Configurator configures one or more

Configurable

[1.%] Configurable entities. A Configurable entity may be [1..%]
configured by more than one Configurator, such as
the case where the Configurators configure different
aspects of the Configurable entity.
Configurator Loads: A Configurator loads one or more Loadables. Loadable
[1.%] In addition, a Loadable is loaded by one or more [1..%]
Configurators.
Comparator Compares: A Comparator compares the outputs of Replicated
[1..1] at least two Replicated entities. The output of a [2..%]
Replicated entity is compared by exactly one
Comparator.
ReplicationGroup | Owns: Each ReplicationGroup has exactly one Comparator
[1..1] Comparator. [1..1]
ReplicationGroup | Owns: Each ReplicationGroup has at least two Replicated
[1..1] Replicated entities. [2..%]

Table 17: Analysis of conceptual model concept relationships.

221




Carleton University, TR SCE-06-19 Decermber 2006

Appendix E  Gomaa’s Class Classification

This section identifies Gomaa’s class classifications as described in [7]. Each
classification is represented by a unique stereotype. The stereotypes are shown in Figure
16.

<<application>>

I

<<application

<<interface>> <<entity>> <<control>> .
logic>>
<<user <<device <<system <<business <<algorithm>>
interface>> interface>> interface>> logic>>
<<|n'put <<ou_tput <<|nput{output <<timer>> <<state <<coordinators>
device device device dependent
interface>> interface>> interface>> control>>

Figure 16: Gomaa’s classification of application classes using stereotypes [7].
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Appendix F  Assessing Existing Profiles based on the

Information Requirements

F.1 Quality of Service and Fault Tolerance OMG Profile (discussed in

Section 4.1)

IREQ# | Fulfilled Comment

IREQ 1 Yes Use <<QoSContext>> stereotype

IREQ 2 Yes Use <<FTFaultTolerantDomain>> stereotype

IREQ 3 No Can reuse <<QoSContext>> stereotype, but then cannot differentiate it
from IREQ 1

IREQ 4 No Can reuse <<QoSContext>> stereotype, but then cannot differentiate it
from IREQ 1

IREQ 5 No Can reuse <<QoSContext>> stereotype, but then cannot differentiate it
from IREQ 1

IREQ 6 No Can reuse <<QoSContext>> stereotype, but then cannot differentiate it
from IREQ 1

IREQ 7 No

IREQ 8 No

IREQ 9 Yes Use <<QoSConstraint>> stereotype and its child classes

IREQ 10 No

IREQ 11 No

IREQ 12 No

IREQ 13 No

IREQ 14 Yes Use <<QoSLevel>> and <<QoSTransition>> stereotypes

IREQ 15 No

IREQ 16 No

IREQ 17 No

IREQ 18 No

IREQ 19 No

IREQ 20 No

IREQ 21 Yes Use <<QoSDimension>> stereotype

IREQ 22 No

IREQ 23 Yes Use <<Initiate>> stereotype

IREQ 24 Yes Use <<QoSDimension>>

IREQ 25 Yes Use <<Asset>> stereotype, but it is not suitable for all uses

IREQ 26 Yes Use <<QoSCharacteristic>> and <<QoSDimension>> stereotypes

IREQ 27 No

IREQ 28 No
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IREQ# | Fulfilled Comment

IREQ 29 Yes Use <<FTReplicationStyle>> and <<FTFaultTolerantDomain>>
stereotypes

IREQ 30 No

IREQ 31 Yes Use <<FTReplicationStyle>> and <<FTFaultTolerantDomain>>
stereotypes

IREQ 32 No

IREQ 33 No

IREQ 34 Yes The simulation parameters may be specified by using the
<<QoSValue>> stereotype and its child classes

IREQ 35 No

IREQ 36 No

IREQ 37 No

IREQ 38 Yes Can use <<QoSValue>> stereotype, but it may get confusing with others
such as IREQ 40

IREQ 39 No

IREQ 40 Yes Use <<QoSValue>> stereotype and its child classes

IREQ 41 No

IREQ 42 No

IREQ 43 No

IREQ 44 No

IREQ 45 No

IREQ 46 No

IREQ 47 No

IREQ 48 No

IREQ 49 No

IREQ 50 No

IREQ 51 No

IREQ 52 Yes Use Fault-Tolerance sub-profile

IREQ 53 Yes Use Fault-Tolerance sub-profile, and specifically the
<<FTReplicationStyle>> stereotype

IREQ 54 Yes Use Fault-Tolerance sub-profile, and specifically the
<<FTReplicationStyle>> and <<FTFaultTolerantDomain>> stereotypes

Total 17 Only 17 information requirements out of 54 are fulfilled

Table 18: Assessing the Quality of Service and Fault Tolerance OMG profile based

on the information requirements.
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F.2 Schedulability, Performance, and Time OMG Profile (discussed in

Section 4.2)
IREQ# | Fulfilled Comment
IREQ 1 No
IREQ 2 No
IREQ 3 No
IREQ 4 Yes Use <<PAcontext>> stereotype
IREQ 5 Yes Use <<SAsituation>> stereotype
IREQ 6 No
IREQ 7 No
IREQ 8 No
IREQ 9 No
IREQ 10 No
IREQ 11 No
IREQ 12 No
IREQ 13 No
IREQ 14 No
IREQ 15 No
IREQ 16 No
IREQ 17 No
IREQ 18 No
IREQ 19 No
IREQ 20 Yes Use <<SAtrigger>> stereotype
IREQ 21 No
IREQ 22 Yes Use <<SAresponse>> stereotype
IREQ 23 No
IREQ 24 No
IREQ 25 No
IREQ 26 No
IREQ 27 No
IREQ 28 No
IREQ 29 No
IREQ 30 No
IREQ 31 No
IREQ 32 No
IREQ 33 No
IREQ 34 No
IREQ 35 No
IREQ 36 No
IREQ 37 No
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IREQ# | Fulfilled Comment
IREQ 38 No
IREQ 39 No
IREQ 40 No
IREQ 41 Yes Use <<CRconcurrent>> stereotype
IREQ 42 No
IREQ 43 Yes Use <<PAresource>> and <<SAresource>> stereotypes
IREQ 44 No
IREQ 45 No
IREQ 46 No
IREQ 47 No
IREQ 48 No
IREQ 49 No
IREQ 50 No
IREQ 51 No
IREQ 52 No
IREQ 53 No
IREQ 54 No
Total 6 Only 6 information requirements out of 54 are fulfilled

Table 19: Assessing the Schedulability, Performance, and Time OMG profile based

on the information requirements.
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F.3 HIDOORS Profile (discussed in Section 4.3)

IREQ# | Fulfilled Comment

IREQ 1 No

IREQ 2 No

IREQ 3 No

IREQ 4 Yes Reuse <<PAcontext>> stereotype from SPT profile

IREQ 5 Yes Reuse << SAsituation>> stereotype from SPT profile

IREQ 6 No

IREQ 7 No

IREQ 8 No

IREQ 9 No

IREQ 10 No

IREQ 11 No

IREQ 12 No

IREQ 13 No

IREQ 14 No

IREQ 15 No

IREQ 16 No

IREQ 17 No

IREQ 18 No

IREQ 19 No

IREQ 20 Yes Use the <<HIEvent>> stereotype, or reuse <<SAtrigger>> stereotype
from SPT profile

IREQ 21 No

IREQ 22 Yes Reuse << SAresponse>> stereotype from SPT profile

IREQ 23 No

IREQ 24 No

IREQ 25 No

IREQ 26 No

IREQ 27 No

IREQ 28 No

IREQ 29 No

IREQ 30 No

IREQ 31 No

IREQ 32 No

IREQ 33 No

IREQ 34 No

IREQ 35 No

IREQ 36 No

IREQ 37 No

IREQ 38 No
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IREQ # | Fulfilled Comment

IREQ 39 No

IREQ 40 No

IREQ 41 Yes Use the <<HIConcurrent>> stereotype, or reuse <<CRconcurrent>>

stereotype from SPT profile
IREQ 42 No
IREQ 43 Yes Reuse <<PAresource>> and <<SAresource>> stereotypes from SPT
profile

IREQ 44 No

IREQ 45 No

IREQ 46 No

IREQ 47 No

IREQ 48 No

IREQ 49 No

IREQ 50 No

IREQ 51 No

IREQ 52 No

IREQ 53 No

IREQ 54 No

Total 6 Only 6 information requirements out of 54 are fulfilled

Table 20: Assessing the HIDOORS profile based on the information requirements.
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F.4 Effects of Message Loss, Delay, and Corruption (discussed in

Section 4.4)
IREQ# | Fulfilled Comment
IREQ 1 Yes Use <<safe behaviour>>, <<safe dependency>>, and <<safe links>>
stereotypes
IREQ 2 No
IREQ 3 No
IREQ 4 No
IREQ 5 No
IREQ 6 No
IREQ 7 No
IREQ 8 No
IREQ 9 Yes Use <<guarantee>> stereotype
IREQ 10 No
IREQ 11 No
IREQ 12 No
IREQ 13 No
IREQ 14 No
IREQ 15 No
IREQ 16 No
IREQ 17 No
IREQ 18 No
IREQ 19 No
IREQ 20 No
IREQ 21 No
IREQ 22 No
IREQ 23 No
IREQ 24 No
IREQ 25 Yes Use <<critical>> stereotype
IREQ 26 Yes Use <<critical>> stereotype and its “level” tagged value
IREQ 27 No
IREQ 28 Yes Use <<error handling>> stereotype
IREQ 29 Yes Use <<containment>> stereotype
IREQ 30 No
IREQ 31 No
IREQ 32 No
IREQ 33 No
IREQ 34 No
IREQ 35 No
IREQ 36 No
IREQ 37 No
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IREQ# | Fulfilled Comment
IREQ 38 No

IREQ 39 No

IREQ 40 No

IREQ 41 No

IREQ 42 No

IREQ 43 No

IREQ 44 No

IREQ 45 No

IREQ 46 No

IREQ 47 No

IREQ 48 No

IREQ 49 No

IREQ 50 No

IREQ 51 No

IREQ 52 Yes Use <<redundancy>> stereotype

IREQ 53 No

IREQ 54 No

Total 7 Only 7 information requirements out of 54 are fulfilled

Table 21: Assessing the Effects of Messages profile based on the information

requirements.
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F.5 Patterns for Reliability and Safety (discussed in Section 4.5)

IREQ# | Fulfilled Comment
IREQ 1 No
IREQ 2 No
IREQ 3 No
IREQ 4 No
IREQ 5 No
IREQ 6 No
IREQ 7 No
IREQ 8 No
IREQ 9 No
IREQ 10 No
IREQ 11 No
IREQ 12 No
IREQ 13 No
IREQ 14 No
IREQ 15 No
IREQ 16 No
IREQ 17 No
IREQ 18 No
IREQ 19 No
IREQ 20 No
IREQ 21 No
IREQ 22 No
IREQ 23 No
IREQ 24 No
IREQ 25 No
IREQ 26 Yes Use “qosSafety” constraint
IREQ 27 No
IREQ 28 No
IREQ 29 No Paper introduces some patterns to model this, but only for use cases
IREQ 30 No
IREQ 31 No
IREQ 32 No
IREQ 33 No
IREQ 34 No
IREQ 35 No
IREQ 36 No
IREQ 37 No
IREQ 38 No
IREQ 39 No
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IREQ# | Fulfilled Comment

IREQ 40 No

IREQ 41 No

IREQ 42 No

IREQ 43 No

IREQ 43 No

IREQ 46 No

IREQ 47 No

IREQ 48 No

IREQ 49 No

IREQ 50 No

IREQ 51 No

IREQ 52 No Paper introduces some patterns to model this, but only for use cases
IREQ 53 No

IREQ 54 No

Total 1 Only 1 information requirement out of 54 is fulfilled

Table 22: Assessing patterns for Reliability and Safety based on the information

requirements.
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F.6 Assessing Existing Profiles based on the Safety Information

Requirements—Summary (discussed in section 4.6)

IREQ # OMG OMG HIDOORS | Effects of Patterns All
QoS & SPT Messages Combined
FT
IREQ 1 Yes Yes Yes
IREQ 2 Yes Yes
IREQ 3
IREQ 4 Yes Yes Yes
IREQ 5 Yes Yes Yes
IREQ 6
IREQ 7
IREQ 8
IREQ9 Yes Yes Yes
IREQ 10
IREQ 11
IREQ 12
IREQ 13
IREQ 14 Yes Yes
IREQ 15
IREQ 16
IREQ 17
IREQ 18
IREQ 19
IREQ 20 Yes Yes Yes
IREQ 21 Yes Yes
IREQ 22 Yes Yes Yes
IREQ 23 Yes Yes
IREQ 24 Yes Yes
IREQ 25 Yes Yes Yes
IREQ 26 Yes Yes Yes Yes
IREQ 27
IREQ 28 Yes Yes
IREQ 29 Yes Yes Yes
IREQ 30
IREQ 31 Yes Yes
IREQ 32
IREQ 33
IREQ 34 Yes Yes
IREQ 35
IREQ 36
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IREQ # OoOMG OoOMG HIDOORS Effects of Patterns All
QoS & SPT Messages Combined
FT

IREQ 37
IREQ 38 Yes Yes
IREQ 39
IREQ 40 Yes Yes
IREQ 41 Yes Yes Yes
IREQ 42
IREQ 43 Yes Yes Yes
IREQ 44
IREQ 45
IREQ 46
IREQ 47
IREQ 48
IREQ 49
IREQ 50
IREQ 51
IREQ 52 Yes Yes Yes
IREQ 53 Yes Yes
IREQ 54 Yes Yes

Total (Max 17 6 6 7 1 24

=54)
Percentage 31% 11% 11% 13% 2% 44%
(%)

Table 23: Assessment summary of existing UML profiles based on the information

requirements.
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Appendix G Additional UML Profile Examples

G.1 COTS Software

The example in Figure 17 shows an aircraft navigation controller, which controls the

flight of the aircraft including all auto pilot programmes.

NavigationController controls the aircraft’s flight paths. Therefore, it is a safety-
critical element. This is marked explicitly on the diagram by stereotyping
NavigationController With a <<SafetyCritical>> (5.2.17) stereotype. Because the
failure of this system can result in conditions difficult to handle by the aircraft’s crew,
this class has been assigned software level C. This is indicated by the “CriticalityLevel”
tagged value of the <<SafetyCritical>> (5.2.17) stereotype.

NavigationController needs to know the allowed flight paths of the aircraft. In this
example, safeFlightPaths Serves as the database that contains all the navigation
information relevant to the currently needed flight paths. It is safety-critical because a
safety-critical class, namely NavigationController, depends on it. This is marked
explicitly on the diagram by stereotyping it with a <<SafetyCritical>> (5.2.17) stereotype
and assigning it a software level equal to at least that of the class that depends on it as
indicated by the “CriticalityLevel” tagged. The developers of this navigation controller
system decided to purchase COTS software and use it to store the flight paths. This is
indicated in the diagram by stereotyping safeFlightPaths With <<Nature>> (5.2.13)
and setting the “Kind” tagged value to “COTS”.

For the aircraft’s flight paths to be meaningful, maps of the world are needed. They are
necessary for verifying the safe flight paths as well as displaying them to the pilots.
Unlike the flight paths, they are static information that rarely change, and therefore they
are maintained as a separate class outside of saferFlightPaths. They are maintained in
CurrentlyUsedWorldMaps, Which contains the world maps that are needed for the
current flight. It is safety-critical because a safety-critical class, namely

SafeFlightPaths, depends on it. This is marked explicitly on the diagram by
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stereotyping it with a <<SafetyCritical>> (5.2.17) stereotype and assigning it a software
level equal to at least that of the class that depends on it as indicated by the

“CriticalityLevel” tagged.

This diagram shows safety-critical model elements. Hence, it is stereotyped with
<<SafetyContext>> (5.2.1). In addition, COTS software is a crucial element of the
software’s certification aspects in airworthiness. Therefore, they must be declared to the
certification authorities. For this reason, this diagram is stereotyped with
<<CertificationContext>> (5.2.6) to indicate that it contains information that is highly
relevant to the certification authorities.

<<SafetyContext>>
<<CertificationContext>>

<<entity>> .
<<state dependent control>> B <<entity>>
- 1 Reads 1 <<SafetyCritical>> 1 Based On 1 N
<<SafetyCritical>> {CriticalityLevel=C} <<SafetyCritical>>
{CriticalityLevel=C} CriticalityLevel=C
<<Nature>> {Kind=COTS} {CriticalityLevel=C}
NavigationController CurrentlyUsedWorldMaps
SafeFlightPaths Y Y P

Figure 17: Aircraft’s navigation controller using COTS software (structure).
G.2 Software Partitioning

Software partitioning is a technique for providing isolation between functionally
independent software components to contain and/or isolate faults and potentially reduce
the effort of the software verification process. It prevents specific interactions and cross-
coupling interference [1]. Its key advantages are in separating safety-critical software
elements that have different safety levels, so that the failure of the less critical software

does not result in the failure of the more critical software.

The example in Figure 18 shows another section of a navigation system. This system,
which can be put on auto-pilot, has a steering controller that is highly safety-critical.
SteeringController controls the steering of the aircraft and its movement. Therefore, it
is highly safety-critical and is assigned software level B. Thus, it is stereotyped
<<SafetyCritical>> (5.2.17) and its “CriticalityLevel” tagged value is set to level B.

Because it is highly safety-critical, it also employs defensive programming methods to
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protect against unsafe inputs, whether they are manual input from the pilot through
PilotKeyboardInterface, Or from the software’s auto pilot system through
AutoPilotController. SteeringController does not perform any action that requires
the aircraft to fly on an altitude below 100 meters unless the aircraft is in the process of
landing. Therefore, it is stereotyped with <<Defensive>> (5.2.27) and has a
“Defendablelnput” tagged value set to “Altitude < 100 m”. It also does not perform any
action that requires the aircraft to change its flight direction in angles of greater than 90
degrees. Thus, another instance of the “Defendablelnput” tagged value is set to “Angle >
90 deg”. In both cases, steeringController reports that an illegal operation has
occurred by exeuting the ReportIllegationOperation reaction procedure, as evident

from the “Reaction” tagged value that is set to “ReportlllegalOperation” .

AutoPilotController IS  also  safety-critical, but less  critical than
SteeringController. This is because the failure of Autorilotcontrolier only results
in inconvenience for the pilots rather than significantly compromising the level of safety.
If the auto pilot feature fails, the pilots can always manually control the aircraft through
PilotKeyboardInterface OF Some other mechanical device inputs. Therefore,
AutoPilotController Was assigned software level D. Thus, it is stereotyped with
<<SafetyCritical>> (5.2.17) and its “CriticalityLevel” tagged value is set to level D. The
interesting thing to note in this example is that autorilotController Was partitioned
from steeringController for this very reason — if the auto pilot feature fails, the
steering controller can still execute correctly and ensure the safe flight of the aircraft.
This is stated in the model by stereotyping autoPilotController With <<Partition>>
(5.2.18) and using its “PartitionedFrom” tagged value, set to “SteeringController”, and
“Explanation” tagged value, set to “Lower Criticality Level”, to specify this exact

information.

ConvertibleSteeringInformation IS USed by PilotDisplayInterface to display the
current aircraft steering information. What is special about this class is that it can read the
information from steeringcontroller and convert it to appropriate units for the pilots
such as conversion from metric units to imperial units, and vice-versa. Again,

ConvertibleSteeringInformation Was partitioned away from steeringController
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because it is only relevant for displaying the information to the pilots. If it fails, the
aircraft can still resume safe flight through either manual input through
PilotKeyboardInterface Or auto pilot through autoprilotcController. AS a result,
ConvertibleSteeringInformation Was stereotyped with <<Partition>> (5.2.18) and its
“PartitionedFrom” and “Explanation” tagged values were used to specify that it was

partitioned from steeringController because it was “Not Safety Critical”.

It is clear from this discussion that this example has emphasis on safety. Therefore, the
diagram was stereotyped with <<SafetyContext>> (5.2.1). It should also be noted that
partitioning information has to be submitted to the certification authorities. Therefore, the
diagram was also stereotyped with <<CertificationContext>> (5.2.6). Finally, we also
decided to stereotype it with <<DesignContext>> (5.2.7) because it is the result of design
decisions on how software classes are organized with respect to safety. In fact, the

partitioning concept was identified as a design concept in section C.7

<<SafetyContext>> <<input device interface>>
<<CertificationContext>> .
<<DesignContext>> PilotKeyboardinterface

Commands 1

<<coordinator>>

<<state dependent control>> - L
P <<SafetyCritical>> {CriticalityLevel=B}

<<SafetyCritical>> {CriticalityLevel=D} <<Defensives>
1 commands 1

<<Partition>> {Defendablelnput="Altitude < 100 m’,
{PartitionedFrom="SteeringController”, Defendablelnput="Angle > 90 deg’,
Explanation="Lower Criticality Level"} Reaction=ReportlllegalOperation}
AutoPilotController SteeringController
-ReportlllegalOperation() <<Reaction>> {...}
Reads 1
1
<<algorithm>>
<<output device interface>> 1 Uses 1 - <<Partition>>
o {PartitionedFrom="SteeringController”,
PilotDisplaylnterface Explanation="Not Safety Critical}
ConvertibleSteeringInformation

Figure 18: Aircraft steering controller (structure).

One final note is that the higher the software level is, the more expensive it is to develop
it. A direct positive result of the partitioning in this example is that

AutoPilotController and ConvertibleSteeringInformation 0O not have to go
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through the rigorous development and testing methods required for

SteeringController, Which is of level B.
G.3 Requirements and Traceability

The example in Figure 19 shows safety-related requirements in the aircraft steering
controller system presented in Figure 18. Most of the stereotypes on the classes were
explained in Appendix G.2. Therefore, only new stereotypes are explained here. Such
systems are generally safety-critical, and are often allocated safety requirements. As a

result, this diagram has been stereotyped with <<SafetyContext>> (5.2.1).

Generally, a project identifies high-level safety requirements that must be fulfilled. Then,
low-level safety requirements are developed to ensure that the high-level goals are
fulfilled. This diagram specifies and elaborates on a safety goal that was identified for
this model, namely to ensure that the aircraft always flies in “Safe Flight Paths”. This
goal is captured in the diagram by stereotyping it with <<Requirement>> (5.2.9). The
“ID” tagged value specified the unique ID of the requirement. The “Kind” tagged value is
set to “Safety” to identify that this is a safety-related requirement, and its “Specification”

tagged value states what the requirement is, namely ensuring “Safe Flight Paths”.

Because of its high software level, steeringcontroller IS checked for correctness
using a formal method, namely “Theorem-Proving”. Therefore, it is stereotyped with
<<Formalism>> (5.2.23) and its “Method” tagged value is set to “Theorem-Proving”. Its

“Kind” tagged value is set to “Full” to indicate that a fully formal method is used.

PilotKeyboardInterface Serves as an input interface to the pilot. The pilot can use it to
change the flight path of the aircraft. pilotkeyboardinterface has been assigned a
safety requirement to request confirmation from the pilots whenever they wish to change
the flight path. Therefore, it was stereotyped with <<Requirement>> (5.2.9). Its “ID”
tagged value specifies the unique ID of the requirement, which is “LREQ 1”. Its “Kind”
tagged value was set to “Safety” to indicate that it is a safety requirement. Its
“OfRequirement” tagged value specifies the high-level requirement that this low-level

requirement can be traced to. In this example, it is the “HREQ 1” high-level requirement
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that was applied as a stereotype on the diagram. The “Specification” tagged value
specifies that there must be a user confirmation for every path change.

The second safety requirement for “HREQ 1” was assigned to the association between
AutoPilotController and steeringController. The association was stereotyped with
<<Requirement>> (5.2.9) whose “Kind” tagged value is also set to “Safety”. Its “ID”
tagged value specifies the unique ID of the requirement. The “OfRequirement” tagged
value specifies that this requirement is traceable to the “HREQ 1” requirement. The
“Specification” tagged value specifies that the association must ensure that the “Chosen
Aircraft Flight Path is in Safe Flight Paths Set”. Therefore, AutorilotController must
not command steeringController to fly in a flight path that is not in the safe flight

paths set.

AutoPilotController determines whether a particular flight path is allowed or not by
reading the data managed by safer1ightpaths. The availability of such information is
the only reason for the existence of safer1lightpaths. Therefore, it was stereotyped with
<<Rationale>> whose “Reference” tagged value is set to “LREQ 2” to identify the

requirement whose existence resulted developing this class.

<<SafetyContext>>

<<Requirement>> <<input device interface>>

{ID="HREQ 1", Kind=Safety, Specification="Safe Flight Paths"} <<Requirement>>

{ID="LREQ 1", Kind=Safety,

<<entity>> OfRequirement="HREQ 1,
<<Rationale>> Specification="Exists User Confirmation
{Reference=LREQ 2} for every Path Change'}

SafeFlightPaths <<Requirement>> PilotKeyboardinterface

1 {ID="LREQ 2", Kind=Safety, *
Reads OfRequirement="HREQ 1", Commands 1

1 Specification="Chosen Aircraft Flight Path is

in Safe Flight Paths Set’} <<coordinator>>

<<state dependent control>> - - _
L Commands <<SafetyCritical>> {CriticalityLevel=B}

<<SafetyCritical>> <<Formalism>>
{CriticalityLevel=D} {Kind=Full, Method=Theorem-Proving,
FormalismOf=SteerinController}

AutoPilotController

SteeringController

Figure 19: Safety-requirements for an aircraft steering system (structure).

Finally, notice that the language used in the “Specification” tagged value for the
<<Requirement>> (5.2.9) stereotype is more detailed and specific for low-level

240



Carleton University, TR SCE-06-19 Decermber 2006

requirements than for the high-level requirements. In fact, the “Specification” tagged

values for the low-level requirements can be written as mathematical expressions.
G.4 Multiple-Version Dissimilar Software

Multiple-version dissimilar software is a common technical solution to reliability
challenges in highly reliable and safety-critical software. The example in Figure 20
shows three dissimilar software versions that function as a radar filter. Those three
dissimilar versions are RadarFilterl, RadarFilter2, and RadarFilter3. Each one of
them is stereotyped with <<Replicated>> to indicate that it is a dissimilar version for
some other class. The “ID” tagged value uniquely identifies the ID of that class within the
replication group that is specified in the “ReplicationGroup” tagged value. In this

example, the replication group is called “RadarFilter”.

Each version of the radar filter logs its output t0 RadarFilterResults.
RadarFilterResults compares all three outputs from RadarFilterl, RadarFilter2,
and radarFilter3, and determines what the accepted value should be and then it updates
the pilot’s display accordingly. Because of this behaviour, RadarFilterResults IS
stereotyped with <<Comparator>> (5.2.32) to indicate that it compares outputs from
dissimilar software versions. The “ReplicationGroup” tagged value identifies the
replication group of the multiple version dissimilar software. It is equal to the
“ReplicatedGroup” tagged values of the <<Replicated>> (5.2.31) stereotypes for each of
the replicated software versions. The “PolicyParameter” tagged value of the
<<Comparator>> stereotype indicates that RadarFilterResults determines the
accepted output based on a majority voting policy. This means that if two of the three
replicated classes agree on a value, their output is accepted as the correct one. The
“ReplicatedEntity” tagged values of the <<Comparator>> (5.2.32) stereotype identify the
classes whose outputs are considered for voting.

Since multiple-version dissimilar software is a reliability-related solution, the diagram

was stereotyped with <<ReliabilityContext>> (5.2.2).
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Notice that in this case, the classes stereotyped with <<Replicated>> (5.2.31) depend
(navigability of association) on the one stereotyped with <<Comparator>> (5.2.32). This
is only because of a design decision in this model where the radar filters are active
components that read the radar input and inform the comparator class accordingly.
However, this will not always be the case. There can be cases where the comparator class
depends on the replicated classes. Therefore, stereotypes <<comparator>> and
<<replicated>> do not suggest any specific association navigability between stereotyped

classes.

<<ReliabilityContext>>

<<aglorithm>> <<algorithm>> <<algorithm>>

<<Replicated>> {ID="0001", <<Replicated>> {ID="0002", <<Replicated>> {ID="0003",
ReplicationGroup="RadarFilter"} ReplicationGroup="RadarFilter"} ReplicationGroup="RadarFilter"}

RadarFiterl RadarFiter2 RadarFiter3

1
1 Log Result 1

Log Result v 1 Log Result
<<algorithm>>

<<Comparator>>
{ReplicationGroup="RadarFilter”,
1 _ | PolicyParameter=MajorityVoting, | 1
ReplicatedEntity=RadarFilter1, |
ReplicatedEntity=RadarFilter2,
ReplicatedEntity=RadarFilter3}

Update Display | <<output device interface>>

RadarFilterResults 1 1 PilotDisplayInterface

Figure 20: Multiple-version radar filter system (structure).
G.5 Concurrent Software

This example shows concurrent access to the database presented in Figure 19. As Figure
21 shows, safeFlightPaths IS COTS software as indicated by the <<Nature>>
stereotype and its “Kind” tagged value. This class is a resource that is subject to
concurrent access from other classes. Therefore, it is stereotyped with <<Concurrent>>
(5.2.26) to indicate that it is relevant from a concurrency point of view. Its “Role” tagged
value is set to “Resource” and its “IsShared” “tagged value is set to “true” to indicate that

it is a shared resource.

SafeFlightPaths is subject to concurrent access from

SatelliteCommunicationInterface, RadarInterface, and userInterface. Each one
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of those classes is an active class that may initiate action without explicit invocation from
other software classes in the system. Therefore, each one of them is stereotyped with
<<Concurrent>> (5.2.26) whose “Role” tagged value was set to “Active”. Each one of
them has an association to saferFlightPaths to show that it can read from and write to
it.

<<ConcurrencyContext>>
<<PerformanceContext>>

<<user interface>>

<<system interface>>
<<Concurrent>> {Role=Active}

SatelliteCommunicationinterface

<<system interface>>
<<Concurrent>> {Role=Active}

Radarlnterface

<<Concurrent>> {Role=Active}

Userlnterface

1
Reads and Writes

*

Reads and WriteSJ 1
y

*

Reads and Writes

<<entity>>

<<Nature>> {Kind=COTS}

A

A\ 4

<<Concurrent>>
{Role=Resource, IsShared=true}

SafeFlightPaths

Figure 21: Concurrent access to an aircraft’s COTS software (structure).

Because this diagram involves a concurrency discussion, it is stereotyped with
<<ConcurrencyContext>> (5.2.5). It is also stereotyped with <<PerformanceContext>>
(5.2.4) because concurrent access to a shared resource is also relevant from a
performance  point of view especially because RadarInterface and
SatelliteCommunicationInterface are likely to have high-frequency accesses to

SafeFlightPaths.
G.6 Software Monitoring

The example in Figure 22 shows safety-monitoring software. Its purpose is to detect
when the aircraft’s engine temperature becomes too high, and then to react by lowering

the temperature to an acceptable level.

EngineInterface Serves as an interface for the aircraft’s engine. Hence, it is stereotyped

with <<Interface>> (5.2.25) and its “InterfaceFor” tagged value is set to
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“AircraftEngine”. Because the aircraft’s engine is a hardware component, its
“IsBetweenHardwareAndSoftware” tagged value is set to “true”.

EngineInterface IS monitored by EngineMonitor, Which is stereotyped with
<<Monitor>> (5.2.20). Its “Kind” tagged value is set to “Safety” to indicate that the
purpose of the monitor is to increase the safety level of the system. The
“MonitoredEntity” tagged value is set to “Enginelnterface” to indicate that the class
being monitored is EngineInterface. The “DetectableEvent” tagged value specifies the
event that can be detected by EngineMonitor, Which iS EngineTooHot. The
“EventHandler” tagged value is set to “AircraftEngineController” to indicate that

AircraftEngineController Will be notified when this event occurs.

EngineTooHot represents the event that the engine’s temperature has risen to an
unacceptable level. Thus, it is stereotyped with <<Event>> (5.2.15) and its
“EffectOnSafetyDirection” tagged value is set to “Negative” to indicate that the

occurrence of this event can have unsafe consequences.

NormalizeEngineTemperature contains the reaction code that will be executed when
the EngineTooHot event occurs. Therefore, it is stereotyped with <<Reaction>> (5.2.16)
and its “ConsequenceOf” tagged value is set to “EngineTooHot”, which is the class name
of the event that triggers the reaction. The “EffectOnSafetyDirection” is set to “Positive”
to indicate that the reaction is intended to increase the safety level.

AircraftEngineController IS a safety-critical class because it determines how to
control the aircraft’s engine. Thus, it is stereotyped with <<SafetyCritical>> (5.2.17).
Moreover, it serves as an event handler by recognizing the EngineTooHot event and
executing the NormalizeEngineTemperature freaction code. Therefore, it is also
stereotyped with <<Handler>> (5.2.19) stereotype whose “HandleableEvent” tagged
value is set to the “EngineTooHot” event, and its “PerformedReaction” tagged value is

set to the “NormalizeEngineTemperature” reaction.

Because this diagram discusses safety aspects of the system, it is stereotyped with
<<SafetyContext>> (5.2.1). Furthermore, it is stereotyped with <<Strategy>> (5.2.22)
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and its “Kind” tagged value is set to “Safety” to indicate that it is a technical solution to

increase the safety level.

<<SafetyContext>>
<<Strategy>> <<input/output device interface>>
{Kind=Safety>,
DesignOf=EngineMonitor} 1 <<Interface>> 1
(seeneanrdumeancegiuare=ne
Sends Commands - 9
1

1

Enginelnterface

<<state dependent control>>
<<SafetyCritical>>
<<Handler>>

{HandelableEvent=EngineTooHot,
PerformedReaction=NormalizeEngineTemperature}

AircraftEngineController

1
1 Executes

<<algorithm>>

<<Reaction>>

<<coordinator>>
Posts
1 DEetectted 1 <<Monitor>> {Kind=Safety,
Vents MonitoredEntity=Enginelnterface,
DetectableEvent=EngineTooHot,
EventHandler=AircraftEngineController}
EngineMonitor
Creates 1
. 1
Recognizes 1
<<Event>>
{EffectOnSafetyDirection=Negative}
Processes 1 X
EngineTooHot

{ConsequenceOf=EngineTooHot,
EffectOnSafetyDirection=Positive}

NormalizeEngineTermperature

Figure 22: Monitoring the aircraft’s engine’s temperature (structure).
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