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Abstract 
Many safety-related and certification standards exist for developing safety-critical 
systems. Safety assessments are performed in practice, and system certification according 
to a standard requires the submitting information about the software. The airworthiness 
standard, RTCA DO-178B, is the software de-facto standard for commercial and military 
aerospace programmes. The objective of this research is to propose an approach to 
improve the line of communication between safety engineers and software engineers by 
proposing a Unified Modeling Language (UML) profile that allows software engineers to 
model safety related concepts and properties in UML, the de-facto software modeling 
language. In this research, the list of safety-related concepts is extracted from RTCA DO-
178B, and then a UML profile is presented to enable modeling them. Then, approaches to 
generate certification-related information from UML models are presented. This new 
approach is illustrated through a case study on developing an aircraft’s navigation 
controller subsystem. 
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1 INTRODUCTION 

1.1 Safety and UML 

Software’s role in various systems has been rapidly increasing over past several decades. 

Its purpose is no longer restricted to managing financial or mathematical data. Due to the 

technological advances of computer processors, memory and other components, discrete 

hardware components in many systems have been replaced by software. Putting software 

on aircrafts, for example, has become significantly more affordable than it used to be. As 

a result, software now directly affects human life by managing flights, airplanes, ships, 

nuclear reactors, medical systems, and many others. This led to increased emphasis on 

the quality of software used in such systems. This emphasis focused on many aspects. 

First, it led to improved software verification and testing methods to detect software bugs 

before the software is delivered and deployed in its target system. However, it was 

accepted that software can never be 100% correct and error free. Therefore, fault 

tolerance emerged as a design technique to increase the reliability of the software. The 

principles of fault tolerance focus on adding protection mechanisms to detect software 

failures within a specified software boundary such that the software is able to recover and 

continue execution despite the presence of software faults or bugs. Therefore, fault 

tolerance aims at reducing the likelihood that the software becomes unavailable due to 

software bugs. 

However, it was observed that highly reliable software is not necessarily safe within the 

context of the system in which it is used. Software is safe if it does not contribute to 

hazards within the context of the system in which it is used, and a system is safe if it does 

not cause accidents to or harm its environment. In particular, software may be reliable but 

unsafe when any of the following conditions occurs [1]: 

1. The software correctly implements the requirements, but the specified behaviour 

is unsafe for the system as a whole (i.e. some requirements are unsafe). 

2. Some safety-related requirements are missing (i.e. requirements are incomplete). 
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3. The software implements unintended and unsafe behaviour that is not specified in 

the requirements. 

As a result, emphasis increased on developing safety requirements, whose goal is to 

ensure the safety of the environment in which the system is used. Safety requirements 

and constraints are generally the output of safety assessments that are performed on the 

system in which the software will be used. As a result, proper requirements development 

is vital towards ensuring safety. 

Furthermore, safety-related standards generally require gathering information about the 

software that is not necessarily related to the implementation of safety-related 

requirements. Examples of such information include the use of COTS software and time-

related functions such as filters. 

UML is the de-facto standard language for specifying, modeling, analyzing, and 

documenting software [2]. It is also used in other areas such as modeling systems, 

hardware, and even business contexts. UML represents a collection of best engineering 

techniques and practices that have proven successful in modeling large and complex 

software systems. It is a very important part of the software development process, and is 

particularly well-suited for developing object-oriented software. It uses mostly graphical 

notations to express the design of software systems. The benefits of UML include helping 

project teams communicate, explore potential designs, and validate the software 

architecture. It also increases the formalism of the software model, which makes the 

analysis process easier. Furthermore, it is the heart of the Model-Driven Architecture 

(MDA) initiative [3], whose supporters claim that it is the future of developing software.  

UML is an extensible modeling language; it allows developers to add semantics to the 

UML language that are applicable in a particular domain, area, or industry. Such added 

semantics are called a “UML Profile”, which in effect tailor the UML language to a 

specific area of interest such as, for example, fault tolerance, distributed computing, and 

Common Object Resource Broker Architecture (CORBA). A UML profile extends the 

core UML language by defining additional modeling mechanisms of the following types: 
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1. Stereotypes: A stereotype is used to describe a UML element in a platform or 

domain specific language. 

2. Constraints: A constraint is a condition or a restriction that is applied to a UML 

element. It can be expressed in any language, regardless on whether it is machine-

readable or not. 

3. Tagged Value: A tagged value is used to further describe a stereotyped-element 

through parameterization of the stereotype in a platform or domain specific 

language. 

1.2 Research Problem 

Safety assessments are performed on the system as a whole regardless of which of its 

features will be implemented in software. As a result, safety requirements are first 

developed for the system itself. Once it is determined which functionality will be 

implemented in software, the safety requirements associated with that functionality are 

allocated to the software that implements it.  

Moreover, software certification authorities require information about the software that is 

not necessarily captured within the safety requirements. Such information could include 

the use of COTS software, time-related functions as filters, state machines, and others. 

The certification authorities consider this information along with the safety requirements 

when determining whether the software is safe or not. 

Generally, safety engineers that perform the safety assessments and collect certification 

information are not the software engineers that design and implement the software. In 

fact, it is uncommon to find software engineers that are experienced with the safety and 

certification aspects of systems and software. Conversely, safety engineers are often 

inexperienced with software engineering’s development techniques, including UML. This 

creates a critical gap that must be bridged – safety engineers need to have better insight 

into the software and to what extent it is compliant with the safety and certification 

requirements, and software engineers need to have better understanding of the safety and 
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certification requirements so that they develop safe software that can run in a certified 

system. 

In this research, the airworthiness standard [4], which is the de-facto safety-related 

standard in the aerospace industry, is analyzed to extract a list of safety-related concepts 

that are of interest to both safety engineers and software engineers. It is argued that if 

those concepts are properly represented in UML models of software, then a tool can 

automatically generate reports containing safety and certification-related information 

about the software. This gives the safety engineers better insight into the software’s 

safety and compliance aspects, which they can easily track over time. Those reports could 

also be used as evidence of software compliance with the airworthiness requirements, and 

then presented to the external certification authority. Furthermore, this will increase 

software engineers’ knowledge of safety-related concepts, which will enable them to 

implement safer software and better communicate with safety engineers. 

To model the safety-related concepts in UML, this research proposed a UML profile that 

can be used to model the safety-related information that is extracted from the 

airworthiness standard [4]. The proposed profile contains stereotypes and tagged values 

that correspond to the safety-related concepts, their attributes that capture the concept 

details, and the relationships among safety-related concepts. The focus here is modeling 

safety and certification information in structural diagrams, specifically class diagrams, 

but the stereotypes and tagged values should be easily transferable to dynamic diagrams 

such as object diagrams and state charts. 

1.3 Document Organization 

Section 1.4 of this document describes the research method that was followed in this 

research. 

Section 2 describes the industrial view of this research. Section 2.1 describes safety 

assessments in general, and then provides examples of safety requirements and safety 

assessment techniques. Section 2.2 lists several safety-related industrial standards and 

then provides a high-level description of the Radio Technical Commission for 
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Aeronautics (RTCA) DO-178B [4] airworthiness standard. Section 2.3 presents research 

findings on the challenges of developing safety-critical software that has certification 

requirements. Section 2.4 presents and describes usage scenarios for safety information, 

and proposes using UML to model the safety information. Section 2.5 identifies 

traceability between software concepts that needs to be tracked. Section 2.6 discusses the 

rationale, disadvantages, advantages, and requirements of using a UML profile to model 

safety information.  

Section 3 introduces safety-related concepts that are extracted from the airworthiness 

standard, RTCA DO-178B [4]. Section 3.1 identifies, describes, and categorizes the 

safety-related concepts as extracted from the airworthiness standard. Each category is 

prefixed with “primarily” to indicate that its concepts are related to other categories as 

well. The concepts are then refined in section 3.2. Section 3.2.1 introduces the conceptual 

model describing the refined concepts. Section 3.2.2 describes each concept in detail, 

presents their attributes and relationships with other concept, and explains which original 

safety-related concept from section 3.1 can be represented using each of the refined 

concepts. Section 3.2.4 explains how the refined concepts, and their conceptual model, 

satisfy the required traceability explained in section 2.5. Section 3.3 identifies precise 

information requirements that a suitable UML profile should be able to model. 

Section 4 presents some of the existing UML profiles and patterns and assesses each one 

of them versus the information requirements identified in section 3.3. Section 4.1 

introduces the “UML Profile for Modeling Quality of Service and Fault Tolerance 

Characteristics and Mechanism” [5], which is an Object Management Group’s (OMG) 

UML profile that enables modeling some safety and fault tolerance concepts. Section 4.2 

introduces the “UML Profile for Schedulability, Performance, and Time Specification” 

[6], which enables modeling some concepts that are usually important in safety-critical 

software such as performance and concurrency. Section 4.3 introduces a UML profile 

that was developed by a European research project that specialized in developing high-

integrity real-time systems [26]. Section 4.4 introduces a UML profile that was developed 

by a researcher who argued that safety is often related to messages across software 

components [27]. Section 4.5 introduces patterns that can be used to model some 
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reliability and safety concepts such as software redundancy. Section 4.6 summarizes the 

overall suitability of each profile with respect to the information requirements identified 

in section 3.3. 

Section 5 presents a new UML Profile, one for modeling safety-related concepts listed in 

section 3.2, and provides examples of its usage. Section 5.1 presents the UML profile, 

section 5.3 provides numerous examples of its usage, and section 5.4 describes a 

development methodology for safety-critical systems within which the proposed UML 

profile can be used.  

Section 6 describes how safety certification information can be generated from a UML 

model where the new UML profile is applied. Section 6.1 describes the technological 

requirements that are needed to be able to generate such safety and certification 

information, with sections 6.1.1 and 6.1.2 providing guidance on how such requirements 

can be achieved. Section 6.1.1 describes how UML modeling tools can be extended to 

support generation of certification information, an section 6.1.2 introduces another 

approach that uses XML Metadata Interchange (XMI) to obtain the safety and 

certification information. Section 6.2 presentes examples of search queries that can be 

executed on a UML model to generate safety and certification information from the 

software model. 

Section 7 presents a case study of an aircraft’s navigation controller subsystem, which 

controls the movement of an aircraft by performing autopilot and custom Fly-To-Point 

(FTP) positions from the pilots. Section 7.1 provides an overview of the system and 

presents some navigation terminology. Section 7.2 describes the aircraft’s system 

architecture in which the navigation controller subsystem appears. Section 7.3 lists the 

functional requirements of the navigation controller subsystem. Section 7.4 discussed the 

safety assessment that was performed on the system and lists the identified safety hazards 

that are relevant to the subsystem under study. Section 7.4.1 lists safety hazards that were 

identified using the Action Error Analysis (AEA) safety assessment method, section 7.4.2 

lists those that were identified using the Failure Modes and Effects Analysis (FMEA) 

method, section 7.4.3 lists those that were identified using the Hazards and Operability 
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Analysis (HAZOP) method, and section 7.4.4 lists those that were identified using the 

Interface Analyses (IA) method. Section 7.4.5 lists safety requirements that were 

assigned to the navigation controller subsystem based on the hazards identified in 

sections 7.4.1 - 7.4.4. Section 7.5 presents the UML model for the subsystem design 

using the proposed UML profile, with section 7.5.2 showing the subsytem’s safety-

related events of interest, section 7.5.3 showing the subsystem’s reactions to those events, 

section 7.5.4 explicitly listing all the relationships between events and reactions, section 

7.5.5 showing the subsystem’s high-level design, and section 7.5.6 presenting approaches 

to low-level design of events and reactions. Section 7.6 discusses the benefits of the 

proposed UML profile by analysis the UML model of the subsystem according to the 

usage scenarios identified in section 2.4. 

Section 8 concludes this research by describing the use of the proposed UML profile and 

identifying open issues for future work. Section 8.1 assesses the UML profile according 

to the requirements identified in section 2.6.3 the same way existing UML profiles were 

assessed in section 4. Section 8.2 lists open issues and improvement opportunities for 

future work. 

Section 9 provides a summary of this document. 

1.4 Research Method 

This research was performed according to the method described in Figure 1. There is no 

input or entry criterion for the first step, S-1. The input of each of the other steps is all the 

outputs from all of its previous steps. The entry criterion of those steps is the exit 

criterion of its previous step. Notice, however, that the input to step S-2 includes the 

outputs of both steps S-1 and S-7 when it is entered from step S-7. The exit criterion for 

each step is that its output becomes available. The activity, output, and reference sections 

of each step are presented in Table 1 below. 
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Start
S-1: Select a relevant 
industrial standard for 

analysis

S-2: Identify a list of relevant 
safety-related concepts and 

define their relationships

S-3: Identify requirements for 
a suitable UML profile

S-5: Define a safety-related 
UML profile based on the 

safety-related concepts and 
information requirements

S-7: Are the 
results 

satisfactory?

End

Yes

No

S-6: Demonstrate how the 
defined UML profile improves 

the process of developing 
safe software

S-4: Assess existing UML 
profiles based on the 

information requirements

 

Figure 1: Research method.  

Step Description 

S-1 Select a relevant industrial standard for analysis 
Activity: A safety-related standard is identified for analysis. 
Output: A list of one or more standards that are selected for further analysis. 
Reference: Section 2.2. 

S-2 Identify a list of relevant safety-related concepts and define their relationships 
Activity: Safety-related concepts that are emphasized in the standard selected in S-
1 are identified. Those safety-related concepts are then refined into terms that are 
friendlier from a software modeling perspective. Relationships across the refined 
safety-related concepts are defined through a conceptual model. 
Output: A detailed list of safety-related concepts and their definitions, which 
includes the definition of each concept as it is used in the selected standard, and a 
list of refined safety-related concepts including a conceptual model describing their 
inter-concept relationships. 
Reference: Sections 3.1 and 3.2. 

S-3 Identify requirements for a suitable UML profile 
Activity: The safety-related concepts identified in S-2 are further analyzed. 
Requirements for developing software under the identified standard, as well as 
software-related requirements for certifying systems, are understood. Information 
that a suitable UML profile should be able to model are developed into information 
requirements. 
Output: A list of high-level requirement, and a list of information requirements 
specifying which information a suitable UML profile should be able to model. 
Reference: Sections 2.6.3 and 3.3. 



Carleton University, TR SCE-06-19  Decermber 2006 

 18

Step Description 

S-4 Assess existing UML profiles based on the information requirements 
Activity: Identify existing UML profiles that are related to the development of 
safety-critical software. Assess each one of them based on the information 
requirements identified in S-3. 
Output: An assessment of existing UML profiles and how they perform versus the 
identified information requirements. 
Reference: Section 4. 

S-5 Define a safety-related UML profile based on the safety-related concepts and 
information requirements  
Activity: A safety-related UML profile that fulfils the information requirements is 
defined. This UML profile is able to represent the refined safety-related concepts 
on UML designs, thus enabling engineers to better meet the challenges and 
requirements identified in S-2. A system and software development methodology 
for using the UML profile is presented. 
Output: A safety-related UML profile, examples of its usage, and a development 
methodology for using the UML profile. 
Reference: Section 5. 

S-6 Demonstrate how the defined UML profile improves the process of developing safe 
software 
Activity: The degree to which a software model using this profile describes the 
safety and certification aspects of the system is considered. An analysis of how the 
requirements in section 3.3 are fulfilled is presented. Approaches are proposed on 
how a UML modeling tool can be used to extract certification information from a 
UML model using this profile are presented. A case study using the profile is 
performed. 
Output: A proposed approach on how a UML modeling tool can extract safety and 
certification-related information from a UML model using this profile, an analysis 
of the profile versus the information requirements identified in section 3.3, and a 
case study using the profile. 
Reference: Sections 6, 7, and 8.1. 

S-7 Are the results satisfactory? 
Activity: The results of steps S-5 and S-6 are assessed. If they satisfactorily 
improve the development process of safety-critical software, then the process is 
complete. If not, then step S-2 is revisited for another iteration of this process. 
Output: The decision on whether to perform another iteration of this process, 
starting with step S-2, the strengths of the defined UML profile, and a list of open 
issues in this work. 
Reference: Section 8. 

Table 1: Details of the research method steps. 
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2 INDUSTRIAL PRESPECTIVE 

2.1 Safety Assessments 

Safety-critical software must exhibit safe behaviour that does not contribute to hazards 

within the context in which it is used. For example, an aircraft must only allow the pilot 

to hide the landing wheel if it is flying in the air. If the landing wheel was hidden while 

the aircraft is on ground, then there would be a hazard of damaging the aircraft and 

hurting its occupants. A hazard is a state of the system that could ultimately lead to an 

accident that may result in a loss in human life.  

Because of such added requirements and constraints, developing safety-critical software 

is more expensive than developing non-safety-critical software. In fact, it is generally 

well accepted that developing safety-critical software is at least 10 times more expensive 

than non-safety-critical software, and some sources claim that it can be 20 to 30 times 

more expensive [8]. 

Many standards require that a safety assessment be performed for each safety-critical 

system. Safety assessments, which have some similarities with risk assessments [1] and 

are performed using similar methods, produce a list of safety requirements and 

constraints that the system developers must adhere to. Performing a safety assessment is a 

mandatory and critical element to developing a safety-critical system. Table 2 provides 

examples of safety requirements and the potential accidents they protect against. 

Safety Requirement Accident Protected Against 

A submarine detection aircraft may only 

release a sonobuoy while it is flying above 

water 

The sonobuoy is dropped on unintended 

locations and causes unintended damages 

An aircraft’s automatic flight pilot programme 

may only fly the aircraft to a particular 

destination after explicit confirmation from the 

pilot 

The automatic flight pilot programme flies the 

aircraft to incorrect destinations, possibly 

through hazardous flight paths 

Table 2: Examples of safety requirements and the accidents they protect against. 
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There exist many methods for performing a safety or risk assessment. Those methods 

differ, for instance, in terms of what factors they consider as possible causes of accidents 

(e.g., operator actions, environment state), the subjects they analyze (e.g., critical events, 

possible failures), their outputs (e.g., a tree), their scalability. Furthermore, some methods 

target reliability issues (e.g., Failure Modes and Effects Analysis (FMEA), Failure 

Modes, Effects, and Criticality Analysis (FMECA), Interface Analyses (IA)) whereas 

others solely consider safety issues (e.g., State Machine Hazard Analysis (SMHA)), and 

some consider both (e.g., Event Tree Analysis (ETA)). Most of those methods originated 

in hardware or system analysis, and some were developed for software. Some consider 

single events at a time (e.g., FMEA and FMECA), whereas others consider relationships 

across events (e.g., Fault Tree Analysis (FTA)). Furthermore, some are used to identify 

potential hazards (e.g., Action Error Analysis (AEA)), whereas others are used to analyze 

previously identified hazards (e.g., ETA).  

Therefore, some of these methods are complimentary to each other, whereas others are 

similar and overlap. As a result, a project is likely to use several of those methods rather 

than just one. Examples of those methods are listed in Table 7 of Appendix A. Those 

methods are discussed in many references, and a summary of them is presented in [1]. 

2.2 Safety-Related Standards 

Many industrial standards exist for system and software safety. Some are common to all 

industry sectors (e.g., IEC 61508-3 on software requirements for the functional safety of 

electrical/electronic/programmable electronic systems) whereas others are industry 

specific (e.g., CENELEC 50128 for Railway applications). Table 8 of Appendix B lists 

some of these standards that relate to safety, or reliability due to its relation to safety. 

Hermann provided a high-level summary for those standards, or some of their earlier 

versions, in [9]. 

RTCA DO-178B [4] is the de-facto safety-related standard for developing software to run 

in aerospace systems. It is also known as the “airworthiness” standard. Consequently, 

engineers whose responsibilities includes ensuring compliancy with the airworthiness 

standard are known as “airworthiness engineers”. 
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In addition to developing safety-related requirements, standards usually have additional 

certification-related requirements. Those requirements are not necessarily implemented in 

software, but rather they represent information about the software that must be submitted 

to the certification authorities. For example, the airworthiness standard requires that 

developers submit information regarding the COTS software used in the system. 

Moreover, it requires that the developers specify time-related functions, such as filters, 

that are used in the system. Therefore, it is important to be able to gather such 

information easily about the software. 

DO-178B realizes that not all software components in an airborne system have the same 

impact on the safety of the aircraft and its occupants. For example, the failure of software 

that controls the altitude of an aircraft is much less acceptable than the failure of the 

software that controls the aircraft VCR for watching movies. This is because the failure 

of the former may significantly reduce the aircraft’s chances of a safe flight. The failure 

of the latter, however, does not have such effects as long as the VCR is isolated from 

other safety-critical software. As a result, DO-178B classifies software failure conditions 

into the following five categories [4]: 

1. Catastrophic: A failure condition of this type would prevent continued safe flight 

and landing of the aircraft. A software component whose failure may result in 

failure condition of this category is known as a level A software component, and 

is said to have airworthiness level A. 

2. Hazardous/Severe-Major: A failure condition of this type would introduce 

operating conditions that would severely reduce the ability of the aircraft crew to 

cope with them to the extent where there would be large reductions in system 

safety, the inability of the crew to perform tasks accurately and completely, and 

potential fatal injuries. A software component whose failure may result in failure 

condition of this category is known as a level B software component, and is said 

to have airworthiness level B. 

3. Major: A failure condition of this type would introduce operating conditions that 

would severely reduce the ability of the aircraft crew to cope with them to the 
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extent where there would be significant reductions in system safety and crew 

efficiency, significant increase in crew workload and occupant discomfort, and 

potential injuries. A software component whose failure may result in failure 

condition of this category is known as a level C software component, and is said 

to have airworthiness level C. 

4. Minor: A failure condition of this type would introduce operating conditions that 

can be handled by the crew, but may include a slight increase in the crew’s 

workload or occupant discomfort, and a slight reduction in safety. A software 

component whose failure may result in failure condition of this category is known 

as a level D software component, and is said to have airworthiness level D. 

5. No Effect: A failure condition of this type does not impact the system safety of the 

aircraft, nor does it increase the aircraft crew’s workload. A software component 

whose failure may result in failure condition of this category is known as a level E 

software component, and is said to have airworthiness level E. 

It should be noted, however, that there exists a difference between the concepts of 

“airworthiness” and “safety”. The airworthiness standard, like many other safety-related 

standards, defines different levels of impact on safety called “failure condition 

categories” and “software levels”. However, it defines the failure condition categories 

and the software levels based on the “severity of failure conditions on the aircraft and its 

occupants” [4]. This is different from Leveson’s definition of safety, which was stated as 

“the freedom from accidents or losses” [1]. While safety is the freedom from accidents or 

losses, airworthiness is therefore the freedom from accidents or losses with respect to the 

aircraft and its occupants. Thus, airworthiness is a subset of safety, and safe software is 

airworthy but airworthy software is not necessarily safe. For example, the first safety 

requirement in Table 2 of page 19 is not necessarily an airworthiness requirement, 

whereas the second one is. 
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2.3 Challenges in Software Safety 

The NASA Langley Research Center, which has long cooperated with the Federal 

Aviation Administration (FAA) on research about software engineering methods for 

aerospace applications, conducted a research programme called Streamlining Software 

Aspects of Certification (SSAC). This programme included an extensive survey to 

identify the challenges in developing safety-critical software for aerospace systems. 

Hayhurst and Holloway have documented results of this research in [10].  

Hayhurst and Holloway of the NASA Langley Research Center identified “the challenge 

of accurately communicating requirements between groups of people” as “the root of 

many of the current challenges” in software safety [10]. They presented the 

communication challenge as a combination of the following two major communication 

channels: 

1. Between regulatory people (e.g. certification authorities) and systems people (e.g. 

systems engineers and airworthiness engineers).  

2. Between systems people (e.g. systems engineers and airworthiness engineers) and 

software people (e.g. software engineers). 

Since systems engineers and safety/airworthiness engineers need to communicate with 

the certification authorities, they need to have insight into the software and its sfety 

compliance aspects. The fact that they are unlikely to be experienced in software 

engineering makes their responsibilities even more challenging. Moreover, software is 

continuously changing and it is likely that the software engineers significantly outnumber 

safety engineers. Therefore, it is essential to be able to achieve insight into the software’s 

compliance aspects at relatively low costs. Such insight could be the ability to easily 

monitor the software engineers’ progress with respect to the safety requirements and the 

compliance with the certification requirements of the software. 

Hayhurst’s and Holloway’s survey also found out that “requirements definition is 

difficult” [10]. This undoubtedly contributes to the communication challenges between 
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the various people groups. For example, systems engineers may define requirements that 

software engineers find unusual or expensive. If software engineers better understand the 

needs behind the requirements, then they may be able to propose solutions that are more 

cost effective. The software engineers’ misinterpretation of the requirements may also be 

due to their lack of experience in safety. In fact, their lack of experience in safety often 

causes them to confuse safety with reliability. In many instances, software engineers 

cannot clearly define software safety without having prior background knowledge or 

experience. 

2.4 Usage Scenarios for Safety Information 

Based on the discussion in sections 2.1 - 2.3, safety information is used by many 

stakeholders as described in the use case diagram in Figure 2. 

Usage Scenarios for Safety Information

USAGE 1
Provide Safety 
Requirements

Certification Authorities
(3rd Parties)

Safety Engineers
Airworthiness Engineers

Software Engineers

USAGE 2
Design Safety 

Requirements in 
Systems

USAGE 3
Record and Justify 
Design Decisions

USAGE 4
Monitor Safety

USAGE 5
Get Safety 
Information

 
Figure 2: Usage scenarios for safety information.  

The usage scenarios are: 

USAGE 1 Provide Safety Requirements: Safety and airworthiness engineers 

perform a safety assessment of the system being designed or modified. 

As discussed in section 2.1, such a safety assessment results in safety 

requirements, a subset of which will be allocated to software and 

communicated to the software engineers. The software engineers will 

then design and implement the software according to the safety 
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information and requirements. Thus, this usage scenario represents the 

process of communicating safety information from the safety and 

airworthiness engineers to the software engineers. 

USAGE 2 Design Safety Requirements in Systems: Once the software engineers are 

informed with the safety requirements allocated to software, they design 

the software system with the safety requirements in mind. Then, they 

implement it such that it meets all the safety requirements. Thus, this 

usage scenario represents the process of designing and implementing the 

software system according to the safety requirements. 

USAGE 3 Justify Design Decisions: Not only must the software engineers design 

the software to meet the safety requirements, but they must justify their 

design decisions as well. Such justification should explain the rationale 

for the architecture and design details. In practice, architectural and 

major design decisions are documented in separate documents, which 

makes it separate from the software model. Furthermore, detailed design 

decisions normally appear as plain text comments in the source code, 

which makes it hard for safety and airworthiness engineers to obtain 

justifications for the various design decisions. Thus, this usage scenario 

represents the process of justifying and documenting design decisions so 

that they can be easily obtained in the future. 

USAGE 4 Monitor Safety: The safety and airworthiness engineers continuously 

monitor the safety of the system, including the software, over the 

project’s lifecycle. In order to do so, they need to consider how the 

software engineers designed the software (USAGE 2) according to the 

safety requirements they were provided with (USAGE 1). The software 

engineers’ justifications for the design decisions (USAGE 3) will also be 

considered. Then, the safety and airworthiness engineers can assess this 

information and discuss any issue with the software engineers. This 

ensures that the software’s safety is continuously improving during the 
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software’s lifecycle so that it meets the final safety objectives of the 

system. In addition, this usage scenario provides additional confidence 

that the system certification process will go more smoothly. Thus, this 

usage scenario represents the process of continuously monitoring the 

design and implementation of the software in accordance with the 

system’s overall safety requirements. 

USAGE 5 Get Safety Information: Once it is time to certify the system, which is 

usually towards the end of the development lifecycle, safety and 

certification information is submitted to the certification authorities. This 

information includes the safety requirements (USAGE 1), the software 

design (USAGE 2), the justification of the software design (USAGE 3) 

given the safety requirements of the software, and the process used to 

continuously monitor the system and software safety over the 

development lifecycle (USAGE 4). If safety and airworthiness engineers 

continuously and appropriately monitor safety over time (USAGE 4), 

then certification should be a much easier experience. Thus, this usage 

scenario represents the process of obtaining the appropriate safety 

information, system and software design, justification of the design from 

a safety perspective, and the method used for monitoring safety during 

the development lifecycle for the purpose of submitting this information 

to the certificatrion authorities. 

If the safety information is captured in a UML model, then this would easily facilitate the 

above mentioned usage scenarios. UML models are developed for software systems 

anyways, so using it to facilitate the usage scenarios and address the challenges in 

software safety fits well (this is rationalized further in section 2.6). Therefore, a UML 

model can serve a central role as shown in Figure 3. 
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Figure 3: A UML model serves as a central role for stakeholders.  

As Figure 3 shows, a UML model can serve as a central role and a key element in the 

communication of safety information across engineering groups. Software engineers 

record safety information in UML models. Then, safety and airworthiness engineers can 

monitor the safety information by automatically generating reports about it, using a tool, 

from the UML model. Therefore, they need not understand the UML model because any 

tool that extracts the safety information from the model can format it in a model-

independent way. When it is time to certify the system, certification authorities can get 

the safety and certification information from the UML model, again, using a tool which 

could produce the safety and certification information in a format that is suitable for 

submission to the certification authorities. 

2.5 Traceability Requirements 

Proper traceability is key in the development of large systems, and it is even more 

important for the development of safety-critical systems. For example, the airworthiness 

DO-178B standard [4] requires traceability across the development lifecycle. In fact, it 

requires that at least the software design be traceable to the original high-level 

requirements for all software of level D or higher. Therefore, it is important to be able to 

trace design elements to the requirements.  

Another important traceability requirement relates to the analysis of safety requirements. 

For example, the first requirement in Table 2 states: A submarine detection aircraft may 

only release a sonobuoy while it is flying above water. This can be rephrased to: The 
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ordnance (sonobuoy release) subsystem shall not release a sonobuoy if it is requested to 

do so when the aircraft is not flying above water. This results in identifying the following 

event of interest: The ordnance subsystem is requested to release a sonobuoy when the 

aircraft is not flying above water. Furthermore, this also results in identifying a reaction 

to this event, namely: The ordnance subsystem verifies that the aircraft is flying above 

water, and forbids the sonobuoy from being released if it is not flying above water. Since 

reactions are caused by events, it is important to ensure that every reaction is traceable to 

the appropriate events 

In summary, two important traceability requirements are: 

1. Tracing software design elements to software requirements. 

2. Tracing software reactions to software events. 

2.6 UML APPROACH 

Because the results of safety assessments are an important part of software developers’ 

work, they need to be appropriately communicated and implemented in the technical 

designs. Furthermore, certification information about the software is required for the 

certification authorities. It is appropriate and useful to be able to represent the results of 

safety assessments and certification information in UML diagrams because it is the 

standard modeling language used by software developers throughout the world [2]. 

Currently, there does not seem to be a comprehensive UML profile specifically targeted 

towards modeling safety-related concepts driven from safety standards (see section 4). If 

it existed, such a UML profile would help bridge the gap between the system’s safety 

assessment (performed by safety engineers) and the software design (performed by 

software engineers). The safety engineers need not necessarily understand the UML 

profile, but they will need the information that is reprented by the profile. See Figure 4 

for an illustration. 
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Safety and Airworthiness engineers 
produce a list of safety requirements 
and certification information
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UML to model their systems, which 
must conform to the safety and 
certification requirements

An appropriate UML safety profile bridges this gap by allowing software and 
system engineers to include safety requirements and certification 
information in their UML models. In turn, they may discover additional safety 
or certification information that are communicated back to the safety and 
airworthiness engineers.

 
Figure 4: Role of a UML safety profile in the development process.  

2.6.1 Disadvantages 

Using this approach has the following disadvantages: 

1. Is an extra step to the development process: Most software development 

processes do not require documenting safety-related properties on design models. 

Therefore, this approach will be an additional step to most software development 

processes.  

2. Requires that software engineers consider a topic they are likely to have little 

experience in – safety: Safety is a specialized topic of software engineering. Since 

software engineers may come from backgrounds where they were developing 

non-safety-critical systems, they may not have sufficient knowledge and 

experience in this topic. 

2.6.2 Advantages 

Using this approach has the following advantages: 

1. Results in safer and higher quality software: By representing safety requirements 

and constraints on UML diagrams, the engineers are forced to consider them and 

use them to design and implement the systems. 
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2. Enables the possibility of reusing the results of a safety assessment through 

software models: Performing a safety assessment, like a risk assessment, is costly 

and time consuming. Therefore, representing the results of a safety assessment on 

UML diagrams allows it to be reused whenever the design is reused instead of 

reassessing the new or modified system from scratch. This is important when an 

organization is designing similar systems. 

3. Improves communication between safety engineers and software engineers: 

Software developers will have a better understanding of the safety engineers’ 

requirements. This will allow software engineers to better understand and review 

the results of the safety assessment. As a result, software engineers will be able to 

provide feedback regarding the safety assessment. 

4. Improves documentation of safety-related properties: Appropriate documentation 

is required by many standards including the MIL-STD-498 [11], and its 

replacement IEEE/EIA 12207 [12], which is one of the most referenced software 

development documentation standards. Documenting the results of a safety 

assessment in UML provides a step in that direction. 

5. Increases participation of software engineers in the safety assessment: This 

approach drives software engineers to think about the results of the safety 

assessment because it is represented in UML. Therefore, they will implicitly 

perform additional analyses as part of their job to design and implement the 

software. As a result, they may discover additional safety requirements and 

constraints, which can then be communicated back to the safety assessment 

process. 

6. Increases level of formalism: The results of the safety assessment will be 

represented using methods that are more formal than plain text English. This helps 

introduce the benefits of using formal methods, such as being able to detect 

conflicting or ambiguous requirements. In addition, this will make it easier for 

tools to use this information to help the engineers design, implement, and verify 

systems. 
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7. Maps safety-related properties to source code: This approach allows safety-

related properties to be represented in UML models. In the software development 

process, the source code is directly traceable to UML models. Therefore, this 

approach allows safety-related properties to be mapped to the source code through 

the UML designs. This improves traceability, which is often required by many 

standards and is critical in large programmes. 

8. Lower cost to use since UML is known in the software community: A UML safety 

profile builds on the engineers’ knowledge of UML. Therefore, there is no 

additional cost to train the software engineers to use UML. They only need to be 

aware of the UML profile specifics and how it builds on top of UML. This should 

be inexpensive as software engineers should already be experienced with UML 

and the tools that support it.  

9. Emphasizes a “develop in safety” culture: In her book on software safety [1], 

Nancy Leveson stressed the need for a “develop in safety” culture in 

organizations. This UML approach emphasizes Leveson’s point as it involves the 

software engineers and developers in the safety aspects of the software. 

10. Supports the MDA initiative: The MDA initiative [3] is a promising approach 

that, in conjunction with UML, seems to be the future of software development. It 

argues that design should be modeled appropriately first, which then allows the 

engineers to forward-generate the implementation (e.g. software code) from the 

high-level designs using appropriate computer tools. This is a very active research 

area that is projected to be the future of the development process as it will 

increase the level of automation. Such a UML profile allows describing the safety 

aspects in the software model, which would in turn be used in the MDA approach. 

11. Makes life of engineers easier: For the engineers, this means that relevant safety 

information will be represented in a language that they understand, namely UML, 

rather than having to read other informal documents that risk being ambiguous.  
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2.6.3 Requirements of an Effective UML Profile 

Based on the previous discussion, we identify that the requirements of an effective UML 

profile are: 

REQ 1 The profile shall provide insight into the software’s compliance aspects with 

airworthiness, and such evidence of compliance shall be obtainable at low 

costs: In essence, the cumulative cost of training the engineers to use the 

profile and extracting regular software compliance reports for progress 

tracking shall be less than the cost of collecting software compliance 

evidence when the profile is not used. 

REQ 2 The profile shall allow the software engineers to relate technical solutions 

to the specific airworthiness requirements: Therefore, it shall be possible to 

exactly determine the software design and source code units that are 

responsible for satisfying each airworthiness requirement. 

REQ 3 The profile shall have clear language semantics with respect to safety and 

airworthiness: For example, the profile shall not assume that safety is 

simply reliability or some other concept – it shall recognize safety and 

airworthiness as a separate quality domain. This will enable better 

representation of requirements as well as improve the software engineers’ 

understanding and ability to distinguish between safety and other concepts 

such as reliability. 

REQ 4 The profile shall model technical solutions using machine-readable 

extension mechanisms that increase the level of formalism: In other words, 

specific domain stereotypes, tags, and constraints shall be preferable to 

general purpose comments. In addition, the extensions shall allow software 

engineers to identify various kinds of technical solutions. Examples of 

technical solutions include safety monitors and multiple-version dissimilar 

software. This is particularly useful when developing software under high 
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software airworthiness (see section 2.2) levels when formal methods are 

more likely to be used, and when models are reused across projects. 

REQ 5 The profile shall support, or be easily scalable to, developing software 

under high airworthiness levels: Different airworthiness levels have 

different compliance requirements. For example, level C and above require 

tracing source code to low-level requirements and tracing low-level 

requirements to high-level requirements, whereas levels D and E do not 

have such requirements [4]. As another example, high software levels 

require checking that requirements are compatible with the target computers 

on which the software is deployed. Refer to annex A in [4] for a list of 

objectives per software level.  

REQ 6 The profile shall favour language semantics that are meaningful to both 

software engineers and airworthiness engineers for concepts that both 

engineering groups need to discuss: Therefore, it will improve 

communication between the two groups. 

REQ 7 The profile shall favour representing airworthiness requirements using 

machine-readable extension mechanisms: Thus, it shall define some 

airworthiness-specific stereotypes, tags, and constraints that are 

parameterizable. Again, this is particularly useful when developing software 

under high-software levels because that is when formal methods are more 

likely to be used due to their ability to prove correctness. In addition, this is 

also useful when models are to be reused across projects. 
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3 SAFETY-RELATED CONCEPTS 

This section describes airworthiness-related concepts that were extracted from the 

airworthiness standard, RTCA DO-178B [4]. Since airworthiness is a subset of safety 

(see end of section 2.2), all of the identified airworthiness-related concepts are safety-

related concepts. This does not necessarily mean that those concepts are the only ones 

needed for all safety-critical applications including transportation, medical, nuclear, and 

other industries. However, they should be enough for any development under the 

airworthiness standard [4], which is the goal of this research. 

Since airworthiness is a subset of safety, airworthiness-related concepts will be referred 

to with their general term, safety-related concepts, in the remainder of this document. 

This is to emphasize that they are not restricted to airworthiness even though they 

resulted from analysing the airworthiness standard. 

Ensuring software safety has many concerns that impact other qualities of service. As a 

result, the extracted safety-related concepts form a long list of concepts related to many 

concerns and qualities of service. Hence, it is important to group concepts that are most 

related together, which will also improve clarity and give the reader the general goal of 

each concept. For example, consider the following safety-related requirement: 

An aircraft shall ensure that its landing wheels are deployed when the 

aircraft’s altitude is less than 100 meters 

The following concerns are relevant for designing and implementing the safety-critical 

software assigned with the above requirement: 

1. It must be safe so that the aircraft does not hit the ground with the landing wheels 

not deployed (i.e. when they are in their compartments). Software safety is the 

ability of the software to execute within its system context without contributing to 

hazards, which may lead to accidents or losses [1]. 
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2. It must be reliable so that it correctly implements the requirement by ensuring 

that landing wheels are deployed when the altitude is less than 100 meters. 

Software reliability is the capability of the software system to offer continued 

service, or more specifically to maintain a specified level of performance when 

used under specified conditions [5]. 

3. It must have high integrity by providing precise and accurate results so that an 

altitude of less than 100 meters is not interpreted to be larger than 100 meters (and 

thus causing the aircraft not to deploy its wheels when it should). Software 

integrity is the capability of the software system to produce the expected quality 

of service of the correct functionality delivered by the software [5]. 

4. It must have high performance capabilities, so that the landing wheels are 

deployed when the aircraft’s altitude drops to less than 100 meters even when it 

does so quickly in a fast descent such as the case in an emergency. Software 

performance refers to the timeliness aspects of how software systems behave, and 

sometimes it refers to the relationship between the services provided and the 

utilization of resources [5]. 

5. It must provide concurrent control so that the landing wheels are deployed even if 

pilot is already using the system to perform other functionality through the user 

interface. Software concurrency refers to the concurrent and temporal consistency 

of data and software elements [5]. 

6. It must be certifiable as vendors of such safety-critical systems often require them 

to be certified by an external third-party certification authority. Certification is the 

legal recognition by the certification authority that a product, service, organization 

or person complies with the requirements [4]. 

7. It must be properly designed so that non-critical software, such as a language 

dictionary, is decoupled from highly safety-critical software, such as the software 

interfacing with the landing wheels and the altitude sensors, to ensure that 

software bugs in non-critical software do not cause the critical software to fail. 
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8. It must be independent of the various software configurations that may be loaded 

into the system to configure it such as English and French dictionaries to 

customize the user interface. Software configuration, which is not the same as 

software configuration management, is the concept of having multiple software 

configurations or settings, each of which has a different set of functionalities and 

behaviours than the others. 

Notice that while the concerns above describe various software quality categories, they 

all contribute to safety in some way. With that in mind, it is important to classify all of 

the extracted safety-related concepts into quality categories that best describe each related 

group of concepts. Those categories help the reader have a better understanding of the 

general goal of each concept, and they provide guidance on what to look for when 

attempting to describe a specific concept. 

3.1 Concept Identification and Categorization 

The selected standard, the airworthiness RTCA DO-178B standard [4], was analysed and 

a list of safety-related concepts was extracted. Those safety-related concepts are not 

solely safety concepts, and hence the rationale behind using the term “safety-related 

concepts” rather than simply “safety concepts” – in fact, many of those concepts are 

primarily non-safety concepts, such as reliability concepts, fault-tolerance concepts, 

certification concepts, and others. The “primarily” keyword identifies the category with 

which a concept is most associated. For example, fault tolerance is associated with 

reliability and, therefore, is a primarily reliability concept that also affects safety in some 

way.  

To clarify and group related concepts together, the extracted safety-related concepts are 

classified in this research into the following safety-related quality categories: 

1. Primarily safety concepts: The concepts listed in this category are software 

concepts that describe the software’s safety aspects in the context of the system in 

which it is used. Software safety is the ability of the software to execute within its 

system context without contributing to hazards, which may lead to accidents or 
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losses [1]. Examples of these concepts include safety-monitoring techniques and 

software levels. These concepts are listed and described in section C.1 of 

Appendix C. 

2. Primarily reliability concepts: The concepts listed in this category are software 

concepts that describe the software’s reliability aspects. However, they also 

impact the safety of the software because of the relationship between software’s 

reliability and safety – reliability measures the probability of failure, whereas 

safety measures the consequences of those failures [5]. Software reliability is the 

capability of the software system to offer continued service, or more specifically 

to maintain a specified level of performance when used under specified conditions 

[5]. Examples of primarily reliability concepts include exception handling and 

fault tolerance. These concepts are listed and described in section C.2 of 

Appendix C. 

3. Primarily integrity concepts: The concepts listed in this category are software 

concepts that describe the software’s integrity aspects. However, they also impact 

the safety of the software because of the relationship between software’s integrity 

and safety. Software integrity is the capability of the software system to produce 

the expected quality of service of the correct functionality delivered by the 

software [5]. Examples of primarily integrity concepts include accuracy and 

precision: Inaccurate data may cause the safety-critical system to behave in a non-

safe way. As an example, consider an aircraft the needs to know when to deploy 

the landing wheels – it must have an accurate value of the altitude so that it 

deploys the landing wheels when it should. These concepts are listed and 

described in section C.3 of Appendix C. 

4. Primarily performance concepts: The concepts listed in this category are software 

concepts that describe the software’s performance aspects. However, they also 

impact the safety of the software because of the relationship between software’s 

performance and safety. Software performance refers to the timeliness aspects of 

how software systems behave, and sometimes it refers to the relationship between 
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the services provided and the utilization of resources [5]. In this document, 

performance concepts include schedulability and time concepts. Examples of 

primarily performance concepts include scheduling strategies (e.g. round robin, 

rate monotonic) and time-related (e.g. filters) functions. For example, an aircraft’s 

scheduling software must schedule safety-critical tasks with priorities higher than 

non safety-critical tasks. These concepts are listed and described in section C.4 of 

Appendix C. 

5. Primarily concurrency concepts: The concepts listed in this category are software 

concepts that describe the software’s concurrency aspects. However, they also 

impact the safety of the software because of the relationship between software’s 

concurrency and safety. Software concurrency refers to the concurrent and 

temporal consistency of data and software elements [5]. Examples of primarily 

concurrency concepts include multi-tasking and active software components, 

which may be safety-critical. These concepts are listed and described in section 

C.5 of Appendix C. 

6. Primarily certification concepts: The concepts listed in this category are software 

concepts that describe the software’s certification aspects. However, they also 

impact the safety of the software because of the relationship between software’s 

certification and safety. Certification is the legal recognition by the certification 

authority that a product, service, organization or person complies with some 

requirements. Such certification comprises the activity of technically checking the 

product, service, organization or person and the formal recognition of compliance 

with the applicable requirements by issue of a certificate, license, approval or 

other documents as required by national laws and procedures [4]. Examples of 

primarily certification concepts include certification requirements (e.g. specifying 

hardware/software interfaces) and software traceability. These concepts are listed 

and described in section C.6 of Appendix C. 

7. Primarily design concepts: The concepts listed in this category are software 

concepts that describe the software’s design aspects. However, they also impact 
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the safety of the software because of the relationship between software’s design 

and safety. These generally impact areas such as the quality, clarity, and 

maintainability of the model and the source code. The impact of these decisions 

on the use of the end product is usually less defined than those of other quality 

categories. Examples of primarily design concepts include software coupling and 

software complexity. These concepts are listed and described in section C.7 of 

Appendix C. 

8. Primarily configuration concepts: The concepts listed in this category are 

software concepts that describe the software’s configuration aspects. However, 

they also impact the safety of the software because developing multiple-

configuration software is more challenging than developing single configuration 

software due to the changing behaviour. As a result, it is more challenging to fully 

predict the behaviour of the software, especially when the user of the software can 

change the configuration (e.g. by changing memory bits or loading customized 

look up tables). Software configuration, which is not the same as software 

configuration management, is the concept of having multiple software 

configurations or settings, each of which has a different set of functionalities and 

behaviours than the others. Choosing the desired software configuration is usually 

performed by the user rather than the software developer. Examples of primarily 

configuration concepts include option-selectable software and user-modifiable 

software. These concepts are listed and described in section C.8 of Appendix C. 

An 8-dimensional space is needed to fully describe the relationships across all safety-

related quality categories identified above. For simplicity, let us assume that reliability, 

integrity, performance, concurrency, certification, design, and configuration concepts sets 

form mutually exclusive sets. If we fix values for 6 dimensions, then we can arrive at a 2-

dimensional view that shows the relationship between safety and each of the other 

identified safety-related quality categories independently of their cross relationships. This 

view is somehow simplistic but it is useful for illustration purposes. It is shown in Figure 

5 below.  
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Figure 5 shows that the identified quality categories are related to safety. In other words, 

there exist concepts that are present in more than one quality category, one of which is 

the safety quality category. All of the concepts extracted from the airworthiness standard 

belong to at least the safety quality category. In addition, some of those concepts also 

belong to categories other than the safety category. For example, a “shared resource” is a 

“concurrency” concept because multiple flows of control may be competing for access to 

it. This will also impact the performance aspects of the software. Moreover, it is also 

relevant to the “design” aspects of the software because the way it will be used is a result 

of design decisions. Finally, all of these aspects might impact the “safety”-aspects if one 

or more of the competing flows of control are executing a safety-critical software section. 
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Figure 5: Relationship between safety and other safety-related quality categories 

assuming that those categories form mutually exclusive sets.  

Regardless of its category, each concept can be one of three different kinds: 

1. It can be a “safety entity”, which is software that may contribute, positively or 

negatively, to the overall safety level of the system or software. Furthermore, a 

safety entity can interact with another safety entity. An example of a safety entity 

would be identifying a particular software component as a fault monitor. A fault 

monitor (one safety entity) is used to monitor particular functions (other safety 

entities) to detect faults that could occur and cause the system to enter a 

hazardous state. If a fault monitor detects such a fault, it could then perform 

appropriate actions to prevent the system from entering hazardous states. 
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Therefore, the fault monitor is a safety entity whose purpose is to increase the 

overall level of safety of the system. 

2. It can be a “safety attribute”, which is a concept that describes a safety property, 

such as the safety level or impact on safety, of safety entities. For example, the 

fault monitor described above may be used to detect specific faults or unusual 

results and behaviours. For example, what if a particular software function that is 

used to indicate the altitude of the aircraft provides output that says that the 

aircraft has a negative altitude? This is clearly an incorrect result. Assume that a 

fault resulting in this scenario is detectable by the fault monitor described earlier. 

In this case, this specific fault can be used as a safety attribute of the fault 

monitor. In other words, the complete specification of the fault monitor safety 

entity will explicitly state through one of its safety attributes that it can detect this 

fault. 

3. It can be a “safety method”, which is an activity, technique, or a process that may 

measure or impact, positively or negatively, the safety level of safety entities. For 

example, a scenario that describes the fault monitoring example above covers 

many concepts such as fault monitoring, faults, and possibly many others that are 

related to the ability of monitoring software against faults that they may cause. 

Therefore, all that discussion is centred around one concept, namely “fault 

monitoring”. Thus, that scenario describes one “safety method” that is fault 

monitoring. 

The use of the word “safety” in safety entity, safety attribute, and safety method only 

means that those concepts are safety-related. It does not assume that they increase the 

level of safety.  

Figure 6 (a) formalises those definitions through a conceptual conceptual model. Notice 

that each safety entity is described through safety attributes. Safety entities may interact 

with each other, and they may implement safety methods (usually those that positively 

impact safety). Safety methods may measure or impact, positively or negatively, the 
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safety level of safety entities. Figure 6 (b) describes the fault monitoring example 

presented above, which is an instance of the conceptual model in Figure 6 (a). 
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Figure 6: Relationship across safety entities, attributes, and methods.  

The safety-related concepts for each category are listed in Appendix C. They are 

described according to the context in which they appear within the airworthiness 

standard, RTCA DO-178B [4]. Those concepts are then refined into a terminology that is 

more suitable for modeling software. The refined concepts, along with their descriptions 

and their inter-concept relationships, are presented in section 3.2. 

3.2 Concept Refinement 

Section 3.1 and Appendix C introduced 65 safety-related concepts that were found 

relevant for developing airworthiness-compliant software. They were then grouped 

according to their software quality category. In this section, those concepts are refined for 

the following reasons: 

1. Removing duplicate concepts: In some instances, seemingly different concepts 

appeared in the airworthiness standard where, in reality, they can be represented 

using a single concept or term. This is because the same fundamental software 

concept can appear in different forms in airworthiness-related applications. 

Examples are presented below.  

Consider, for example, the two following primarily reliability concepts exactly as 

they appear in the airworthiness standard: Multiple-Version Dissimilar Software 



Carleton University, TR SCE-06-19  Decermber 2006 

 43

and Software Redundancy (see Appendix C.2 for definitions). They revolve 

around the same software concept, which is that of using multiple software 

components that have the same functionality but different implementations. It 

would be unnecessarily confusing to use two different terms to denote the same 

concept. As a result, a single refined term is provided to model both of those 

concepts, which is the “replicated” concept to denote software replication or 

redundancy. 

2. Grouping concepts: Some concepts are in fact examples of a more general 

concept.  

Consider the following concepts: Safety Monitoring, Loadable Software 

Indicator, Safeguard, Safety Feature (primarily safety concepts defined in 

Appendix C.1); Error Detection, Fault Detection, Fault Containment (primarily 

reliability concepts defined in Appendix C.2); Integrity Check, Software Protector 

(primary integrity concepts defined in Appendix C.3); Error Prevention 

(primarily design concept defined in Appendix C.7). They are applications of a 

single software-concept that is “Monitor”. A “monitor” monitors the activity of 

other software components to detect unusual, potentially hazardous, events. 

3. Precise definition of details: Presenting each concept is a single entry in a list may 

be misleading by giving the impression that it is the smallest level of detail. In 

reality, each concept has many attributes that describe it, with each attribute 

describing a single aspect of the concept. Examples are presented below.  

For example, “Safety Requirement” is identified as a (primarily safety) safety-

related concept (Appendix C.1). However, it does not mention the specification of 

safety requirements. When refining the “Safety Requirement” concept, we give it 

an attribute called “specification” that can be used to specify the details of the 

requirement. Therefore, a concept’s attribute is used to describe a specific aspect 

or detail of it. 

The rest of this section shows how the concepts and their relationships have been 

formalized under the form of a conceptual model, i.e., a UML class diagram (section 
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3.2.1), describes the template we use to specify the concepts (section 3.2.2), and then 

actually specifies the concepts (section 3.2.3). Appendix D provides additional details on 

the relationships between concepts. 

3.2.1 Conceptual Model 

Before describing the details of the concepts, we introduce a conceptual model to list the 

refined concepts and formalize the relationships among them (Figure 7—its elements are 

further described in section 3.2.3). Thus, the motivations for defining a conceptual model 

for the refined concepts are: 

1. It introduces a high-level presentation of the concepts and their relationships, thus 

leaving out most attributes that are considered low-level details. This helps the 

reader better understand the concepts and their relationships. 

2. It formalises the relationships across the concepts, for instance by specifying 

multiplicities on relationships. 

3. It makes the definition and the use of the UML profile’s extensions (stereotypes, 

tagged values, and constraints) in section 5 easier because the refined concepts are 

designed to be more appropriate from a modeling point of view. Thus, many of 

the profile’s extensions refer back to the refined concepts. In fact, the profile’s 

stereotypes and tagged values are based on the refined concepts, their attributes, 

and their relationships. 

3.2.2 Concept Details 

In this section, we describe the template we use in section 3.2.3 to define the concepts in 

Figure 7. Each of the following describes one characteristic of a concept: 

1. Definition: This presents a definition for the concept. It describes the concept and 

gives its general purpose. 
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2. Attributes: This lists and describes the attributes for the concept. Each attribute 

describes a specific aspect of the concept. A name, description, and examples are 

provided for each concept.  

3. Relationships: This lists and describes the relationships that the concept has with 

other concepts. A name and a description, which includes the end multiplicities, 

are provided for each concept’s relationships. 

4. Original Safety-Related Concepts: This lists the original safety-related concepts, 

which were extracted from the airworthiness standard, RTCA DO-178B [4], and 
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Figure 7: Meta-model for the refined safety-related concepts.  
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presented in section 3.1 (and Appendix C), that this concept represents. Thus, this 

information serves as additional justification for the concept, its attributes, and its 

relationships. 

The attributes of each concept are presented in a table. For example, the attributes of the 

“Safety Critical” (section 3.2.3.10) refined concept are presented as follows: 

Name Description Examples 

Criticality Level Indicates the level of criticality (e.g. 

airworthiness level, Safety Integrity 

Level (SIL)), on some pre-defined 

scale, such as the software level or 

the failure condition category 

For RTCA DO-178B [4]: 

“A”, “B”, “C”, “D”, “E” 

For IEC 61508 [24]:  

“SIL 1”, “SIL 2”, “SIL 

3”, “SIL 4” 

… etc 

Confidence Level Indicates the level of confidence, on 

some pre-defined scale, that the 

criticality level is satisfied 

“High”, “Medium”, 

“Low”, “80%”, “50%”, 

… etc 

Each row describes a single concept attribute. The first column (Name) specifies the 

name of the attribute, the second column (Description) describes the attribute, and the 

third column (Examples) provides examples for the value of the attribute.  

Similarly, the relationships of each concept are presented in a table. For example, the 

relationships of the “Safety Critical” (section 3.2.3.10) refined concept are presented as 

follows: 

Name Description 

Triggers Identifies zero or more “Event” instance that the “Safety Critical” 

instance triggers 

Each row describes a single concept relationship. The first column (Name) specifies the 

name of the relationship, and the second column (Description) describes the relationship. 

The description of the relationship identifies the concept at the other end of the 

relationship as well as its multiplicity. 
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3.2.3 Concepts Specifications 

The refined concepts are listed below in sections 3.2.3.1 to 3.2.3.27 in an order, different 

from the alphabetical order, that we think will help the reader better understand them and 

their relationships. For example, concept A is listed before concept B if concept B 

references or depends on concept A. 

Some of the concepts’ attributes presented below are specific to the developed system or 

the development project. This is common for attributes whose type is an enumeration. In 

such cases, this research does not attempt to define all the possible values. However, it 

does present examples on what they could be. It is up to the software developers to define 

the enumeration values that are relevant to the system being developed. 

The term “design element” is used to indicate “a portion of the design” such as a class, 

operation, collaboration (i.e. diagram), or relationship between classes. The design 

element can be either hardware or software. 

3.2.3.1 Requirement 

Definiton: 

The “Requirement” concept specifies a requirement that must be met. The 

requirement need not necessarily be a safety requirement – it can be any functional 

or non-functional requirements. It may be traceable to another requirement, which 

is often a higher level one. This enables the concept of requirements traceability, 

which is a key element in the software development process.  

Attributes: 

Name Description Examples 

ID A unique ID for this requirement “REQ 1”, “REQ 2”, 

“FREQ 1”, “SREQ 10”, 

… etc 
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Name Description Examples 

Kind The kind of this requirement “Functional”, “Safety”, 

“Reliability”, “Integrity”, 

“Performance”, 

“Concurrency”, 

“Certification”, “Design”, 

“Configuration”, 

“Derived”, … etc 

Specification The actual requirement’s 

specification 

“Radar Output is Poisson 

with Lambda = 20 ms”, 

“Levels of Code Nesting 

< 5”, … etc 

Relationships: 

Name Description 

Is Requirement Of Identifies zero or more, usually higher-level, “Requirement” 

instances to which this “Requirement” instance can be traced 

Original Safety-Related Concepts: 

Safety Requirement, Certification Requirement, Derived Requirement, Design by 

Contract 

3.2.3.2 Deviation 

Definiton: 

The “Deviation” concept identifies a design deviation from a plan, standard, or 

requirement (3.2.3.1). Deviations are important to note as they must be submitted to 

the certification authorities according to the airworthiness standard RTCA DO-

178B [4]. 
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Attributes: 

Name Description Examples 

Kind The kind of this deviation. This 

generally specifies the deviation 

action or decision 

“Using Recursive 

Algorithm”, “Using 

Dynamic Memory", … 

etc 

Explanation Specifies how, or why, this is a 

deviation from the reference 

requirements (see relationships 

below) 

“Kalman filter is 

recursive so using 

recursive algorithm for 

the implementation”, … 

etc 

Relationships: 

Name Description 

References Identifies one or more “Requirement” (3.2.3.1) instances from 

which the “Deviation” instance deviates 

Original Safety-Related Concepts: 

Deviation 

3.2.3.3 Style 

Definiton: 

The “Style” concept is an abstract concept indicating an implementation or a 

behavioural style. It does not capture any information, but it serves as a base class 

for other concepts. 

Attributes: 

None 

Relationships: 

None 
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Original Safety-Related Concepts: 

Implementation Style, Time-Related, State-Related 

3.2.3.4 ImplementationStyle 

Definiton: 

The “ImplementationStyle” concept identifies a style that is used to implement a 

design. A development standard should define which styles are permitted and which 

ones are not. 

Attributes: 

Name Description Examples 

Kind The kind of this implementation style “Recursive”, “Unbounded 

Loop”, “Compacted 

Expression”, “Dynamic 

Memory”, “Data Alias”, 

… etc 

Parameters Describes additional details of the 

implementation style. It is generally 

an expression whose meaning is 

dependent on the Kind of the 

implementation style 

“Dynamic memory 

allocation frequency = 

Poisson with Lambda = 

15 seconds”, … etc 

Explanation Specifies how this implementation 

style conforms to, or deviates from, 

the reference requirements (see 

relationships below) 

“Using dynamic memory 

here because static 

because 90% of the time 

only 10% of the 

maximum memory space 

will be needed (which 

would be required if static 

memory is used). This 

improves performance”, 

… etc 
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Relationships: 

Name Description 

Is Child Class Of States that all “ImplementationStyle” instances are “Style” 

(3.2.3.3) instances 

References Identifies zero or more “Requirement” (3.2.3.1) instances 

indicating that the “ImplementationStyle” instance conforms to or 

deviates from 

Original Safety-Related Concepts: 

Recursion, Compacted Expression, Dynamic Memory, Data Alias 

3.2.3.5 BehaviouralStyle 

Definiton: 

The “BehaviouralStyle” concept identifies and describes a behavioural style of a 

design. A development standard should define which styles are permitted and which 

ones or not.. 

Attributes: 

Name Description Examples 

Kind The kind of thie behavioural style “Time-Related”, “State-

Related”, … etc 

Parameters Describes additional details of the 

behavioural style. It is generally an 

expression whose meaning is 

dependent on the Kind of the 

behavioural style 

“Number of state machine 

states = 10”, “Number of 

state transitions = 20”, 

“Frequency of state 

changes = Periodic every 

1 minute”, … etc 

Explanation Specifies how this behavioural style 

conforms to, or deviates from, the 

reference requirements (see 

relationships below) 

“Frequency of state 

changes is less than the 

maximum value permitted 

by REQ 23”, … etc 
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Relationships: 

Name Description 

Is Child Class Of States that all “BehaviouralStyle” instances are “Style” (3.2.3.3) 

instances 

References Identifies zero or more “Requirement” (3.2.3.1) instances 

describing that the “BehaviouralStyle” instance conforms to or 

deviates from 

Original Safety-Related Concepts: 

Time-Related, State-Related 

3.2.3.6 Nature 

Definiton: 

The “Nature” concept describes the source for the design such as whether the actual 

software is purchased to meet the requirements, whether it was previously 

developed as part of another project or software system, or whether it is deactivated 

and does not get executed. 

Attributes: 

Name Description Examples 

Kind The kind of the software’s nature. It 

is the primary attribute that describes 

the actual software represented by 

this concept 

“COTS”, “Deactivated”, 

“Previously Developed”, 

… etc 

Explanation Specifies how the referenced 

requirements are met by the nature of 

this design (see relationships below) 

“This is a COTS software 

component purchased 

according to document 

number 1234567 to meet 

requirements REQ 1 – 

REQ 10”, … etc 
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Relationships: 

Name Description 

References Identifies zero or more “Requirement” (3.2.3.1) instances that are 

the reasons for the “Nature” instance’s existence 

Original Safety-Related Concepts: 

COTS Software, Deactivated Code, Previously Developed Software 

3.2.3.7 Rationale 

Definiton: 

The “Rationale” concept specifies that a specific design exists to support another 

design element, or to fulfill specific requirements. It explicitly allows modelers to 

trace the design to specific requirements (3.2.3.1). 

Attributes: 

Name Description Examples 

Explanation Specifies how the design decision is a 

solution for the referenced 

requirements 

“This class lists safe flight 

paths for an aircraft, 

which is used to satisfy 

safety requirements 

SREQ 1, SREQ 2, and 

SREQ 3”, … etc 

Relationships: 

Name Description 

References Identifies one or more “Requirement” (3.2.3.1) instances that are 

the reasons for the “Rationale” instance’s existence 

Original Safety-Related Concepts: 

Traceability 
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3.2.3.8 Event 

Definiton: 

The “Event” concept describes an event or action that may occur. An event may 

impact safety by either causing or removing hazards. It may also be caused 

internally by the system or it may be an external event. It does not need another 

event to trigger it.  

Attributes: 

Name Description Examples 

Kind The kind of this event “External”, “Internal”,… 

etc 

When Describes the conditions under which 

this event occurs. This may be 

specified in a formal language 

“Event occurs when a 

sonobuoy is released from 

the aircraft”, … etc 

Effect On Safety 

Direction 

Specifies the direction of its impact 

on safety, i.e. whether it removes 

some hazards, does not impact safety, 

or causes additional hazards to occur. 

Therefore, this attribute provides 

qualitative information 

“Positive”, “Neutral”, 

“Negative”, …etc 

Effect On Safety 

Value 

Specifies the severity of its impact on 

safety. This is also used to quantify 

the impact on safety, possibly be 

identifying the effect of the event on 

the number of hazards in the system. 

Therefore, this attribute provides 

quantitative information 

“+5”, “0”, “-5”, … etc 
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Name Description Examples 

Effect on Safety 

Context 

Identifies the context within which 

the “Effect On Safety Direction” and 

“Effect On Safety Value” attributes 

are valid. This attribute is necessary 

because understanding the context is 

essential to safety [1] 

“Aircraft is flying above 

water”, “Aircraft is on the 

ground”, “Aircraft is in 

autopilot mode”, …etc 

Relationships: 

None 

Original Safety-Related Concepts: 

Unsafe Action, Failure, Failure Condition, Fault, Error, Integrity Check 

3.2.3.9 Reaction 

Definiton: 

The “Reaction” concept describes a reaction to one or more events (3.2.3.8) that 

may occur. A reaction may impact safety by either causing or removing hazards. It 

is an event (3.2.3.8) in itself, but it always occurs in response to other events 

(3.2.3.8). It is a subclass of the event (3.2.3.8) concept to allow the possibility of 

chain reactions (i.e. there could be a reaction for a reaction).  

Attributes: 

Name Description Examples 

Kind Inherited from “Event” (3.2.3.8) See “Event” (3.2.3.8) 

When Inherited from “Event” (3.2.3.8). In 

effect, this attribute filters out 

situations when the reaction will not 

be performed as a result of the event 

(3.2.3.8) occurrence. This may be 

specified in a formal language 

See “Event” (3.2.3.8) 
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Name Description Examples 

Effect On Safety 

Direction 

Inherited from “Event” (3.2.3.8) See “Event” (3.2.3.8) 

Effect On Safety 

Value 

Inherited from “Event” (3.2.3.8) See “Event” (3.2.3.8) 

Effect on Safety 

Context 

Inherited from “Event” (3.2.3.8) See “Event” (3.2.3.8) 

Relationships: 

Name Description 

Is Child Class Of States that all “Reaction” instances are also “Event” instances 

Is Consequence Of Identifies one or more “Event” (3.2.3.8) instances to which the 

“Reaction” instance is a consequence of 

Original Safety-Related Concepts: 

Safety Response 

3.2.3.10 SafetyCritical 

Definiton: 

The “SafetyCritical” concept represents a safety-critical design or element that 

impacts safety. It also identifies the safety or airworthiness level of design elements.  

Attributes: 

Name Description Examples 

Criticality Level Indicates the level of criticality (e.g. 

airworthiness level, Safety Integrity 

Level (SIL)), on some pre-defined 

scale, such as the software level or 

the failure condition category 

For RTCA DO-178B [4]: 

“A”, “B”, “C”, “D”, “E” 

For IEC 61508 [24]:  

“SIL 1”, “SIL 2”, “SIL 

3”, “SIL 4” 

… etc 
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Name Description Examples 

Confidence Level Indicates the level of confidence, on 

some pre-defined scale, that the 

criticality level is satisfied 

“High”, “Medium”, 

“Low”, “80%”, “50%”, 

… etc 

Relationships: 

Name Description 

Triggers Identifies zero or more “Event” (3.2.3.8) instance that the 

“SafetyCritical” instance may trigger 

Original Safety-Related Concepts: 

Safety-Critical, Software Level, Level of Confidence, Failure Condition Category 

3.2.3.11 Partition 

Definiton: 

The “Partition” concept identifies a design partition that resulted from separating 

some design element from other design elements. Partitioning is a technique for 

providing isolation between functionally independent entities to contain and/or 

isolate faults and potentially reduce the effort of the verification process. It prevents 

specific interactions and cross-coupling interference [1]. Its key advantages are in 

separating safety-critical design elements that have different safety levels, so that 

the failure of the less critical entity does not result in the failure of the more critical 

entities. 

Attributes: 

Name Description Examples 

Explanation Provides further details on the 

reasons for the partitioning 

“Partitioned away from a 

software component with 

a higher airworthiness 

level”, … etc 
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Relationships: 

Name Description 

References Identifies zero or more “Requirement” (3.2.3.1) instances that 

specify the reasons for the “Partition” instance’s existence 

Is Partitioned From Identifies one or more “Safety Critical” (3.2.3.10) instances from 

which this “Partition” instance was partitioned 

Original Safety-Related Concepts: 

Partitioning 

3.2.3.12 Handler 

Definiton: 

The “Handler” concept identifies a design element that handles events (3.2.3.8) that 

are detected by a monitor (3.2.3.13). A handler handles the events (3.2.3.8) by 

performing specific reactions (3.2.3.9) in response to the events (3.2.3.8). 

Attributes: 

None 

Relationships: 

Name Description 

Handles Identifies one or more “Event” (3.2.3.8) instances that the 

“Handler” instance can handle by performing certain reactions 

Performs Identifies one or more “Reaction” (3.2.3.9) instances that the 

“Handler” instance performs to handle events 

Original Safety-Related Concepts: 

Exception Handling, Fault Containment, Immunity, Software Protector, Safety 

Feature 
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3.2.3.13 Monitor 

Definiton: 

The “Monitor” concept identifies a design element that monitors other safety-

critical (3.2.3.10) design elements for events (3.2.3.8). Detected events (3.2.3.8) are 

passed to handlers (3.2.3.12) for processing, which in turn invoke the appropriate 

reactions (3.2.3.9). 

Attributes: 

Name Description Examples 

Kind The kind of this monitor, indicating 

the quality of service that it monitors 

“Safety”, “Reliability”, 

“Integrity”, 

“Performance”, 

“Concurrency”, 

“Configuration”,… etc 

Relationships: 

Name Description 

Monitors Identifies one or more “Safety Critical” (3.2.3.10) instances that 

the “Monitor” instance monitors for events 

Detects Identifies one or more “Event” (3.2.3.8) instances that the 

“Monitor” instance detects 

Notifies Identifies zero or more “Handler” (3.2.3.12) instances that the 

“Monitor” instance notifies when it detects events 

Original Safety-Related Concepts: 

Safety Monitoring, Error Detection, Fault Detection, Fault Containment, Error 

Prevention, Integrity Check, Software Protector, Loadable Software Indicator, 

Safeguard, Safety Feature 
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3.2.3.14 Simulator 

Definiton: 

The “Simulator” concept identifies a design element that mimics the behaviour, 

usually in test mode, of another design element that will be used in the real system. 

For example, software simulators are common for hardware elements or other 

subsystems (hardware or software). Simulators are often used in developing large 

systems, they make the testing experience easier and more cost effective, and they 

play a key role in system integration labs [1]. 

Attributes: 

Name Description Examples 

Parameters Specifies which behaviours are 

simulated and how 

For a communication 

subsystem simulator (e.g. 

Radio Frequency (RF)): 

“Messages received as 

Poisson with Lambda = 

100ms”, “Message loss 

frequency is Poisson with 

Lambda = 250 messages”, 

… etc 

Relationships: 

Name Description 

Simulates Identifies one or more “Safety Critical” (3.2.3.10) instances that 

the “Simulator” instance simulates 

Original Safety-Related Concepts: 

Simulator 
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3.2.3.15 Strategy 

Definiton: 

The “Strategy” concept describes an approach used to achieve a set of 

requirements. This approach is a design decision that relates to some category (see 

Kind attribute below). 

Attributes: 

Name Description Examples 

Kind The kind of this strategy “Safety”, “Reliability”, 

‘Integrity”, 

“Performance”, 

“Concurrency”, 

“Certification”, “Design”, 

“Configuration”, 

“Scheduling”, … etc 

Parameters Specifies the strategy policy 

parameters 

For a scheduling strategy: 

“Round Robin”, “FIFO”, 

“LIFO”, … etc 

Relationships: 

Name Description 

Describes Design Of Identifies one or more “Safety Critical” (3.2.3.10) instances that is 

designed according to a strategy described by  the “Strategy” 

instance 

Original Safety-Related Concepts: 

Safety Strategy, Scheduling Strategy 
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3.2.3.16 Formalism 

Definiton: 

The “Formalism” concept indicates that formal methods were used to develop, or 

prove the correctness, of some design element. 

Attributes: 

Name Description Examples 

Methods Identifies the formal methods that 

were used 

“Natural Deduction”, 

“Linear Logical 

Framework (LLF)”, … 

etc 

Relationships: 

Name Description 

Describes Formalism 

Of 

Identifies one or more “Safety Critical” (3.2.3.10) instances that 

are designed according to some formal method as described in the 

“Formalism” instance 

Original Safety-Related Concepts: 

Formal Method 

3.2.3.17 Complexity 

Definiton: 

The “Complexity” concept describes the complexity of a design element. 

Complexity aspects, such as coupling between entities or complexity of a single 

entity, can be measured through a variety of measures. 
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Attributes: 

Name Description Examples 

Measure Identifies the kind of the measure that 

is used to quantify the complexity 

“Level of Nested Calls”, 

“Conditional Structures”, 

“Unconditional 

Branches”, “Number of 

Entry/Exit Points of 

Code”, “Big O”, … etc 

Value An expression specifying the value, 

or the permitted range, of the 

measure 

“n2”, “log n”, “25”, … etc 

Relationships: 

Name Description 

Describes 

Complexity Of 

Identifies one or more “Safety Critical” (3.2.3.10) instances for 

which there is a measure of complexity 

Original Safety-Related Concepts: 

Complexity, Coupling 

3.2.3.18 Interface 

Definiton: 

The “Interface” concept describes an interface between design elements. Interfaces 

are common between subsystems of the same system, between the system and some 

other external system, between software and hardware, and other situations. 

Attributes: 

Name Description Examples 

Is Between Hardware 

And Software 

Indicates whether the interface is 

between hardware and software 

“True”, “False” 
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Name Description Examples 

Protocol ID Identifies the protocol used “MIL STD 1553” [25], 

“Ethernet”, “CORBA”, … 

etc 

Input Function 

Parameters 

Specifies the expected input function 

and/or its frequency 

“Poisson with Lamba = 

20ms”, “Periodic every 1 

second”, … etc 

Output Function 

Parameters 

Specifies the expected output 

function and/or its frequency 

“Poisson with Lamba = 

20ms”, “Periodic every 1 

second”, … etc 

Relationships: 

Name Description 

Is Interface For Identifies one or more “Safety Critical” (3.2.3.10) instances that 

the “Interface” instance acts as an interface for 

Original Safety-Related Concepts: 

Hardware / Software Interface 

3.2.3.19 Concurrent 

Definiton: 

The “Concurrent” concept identifies a design element that participates in a 

concurrency model. There are several possible roles that the design element can 

assume in a concurrency model, such as being a resource or software execution 

code that can be either active or passive. An active design element is one that is 

capable of generating stimuli concurrently or pseudo (seemingly) concurrently 

without being prompted by an explicit stimulus instance, whereas a passive one is 

one that cannot generate its own behaviour but only reacts when prompted by a 

stimulus [6]. 
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Attributes: 

Name Description Examples 

Role The role of this entity  “Active”, “Passive”, 

“Resource” 

Is Shared Specifies whether this entity can be 

shared by more than one other entity 

or not 

“True”, “False” 

Parameters Specifies how this entity acts from a 

concurrency point of view, such as 

the frequency of events that an active 

entity can trigger, or the maximum 

frequency at which a passive entity or 

a resource can be accessed 

“Poisson with Lamba = 

20ms”, “Periodic every 1 

second”, … etc 

Relationships: 

Name Description 

Triggers Identifies zero or more “Event” (3.2.3.8) instance that the 

“Concurrent” instance triggers 

Original Safety-Related Concepts: 

Active, Passive, Shared Resource, Multi-Tasking 

3.2.3.20 Defensive 

Definiton: 

The “Defensive” concept specifies that a design element employs a defensive 

design model, and describes it. In a defensive design model (e.g. defensive 

programming model for software), a design element checks for illegal inputs and 

forbid execution using illegal inputs, thus avoiding a scenario where the design 

element may fail due to an unfulfilled assumption on the input variables. 
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Attributes: 

Name Description Examples 

Defendable Inputs Specifies illegal input conditions that 

this design element checks against 

“Division by Zero”, 

“Altitude < 0”, … etc 

Relationships: 

Name Description 

Performs Identifies one or more “Reaction” (3.2.3.9) instances that the 

“Defensive” instance performs to handle defendable (e.g. invalid) 

inputs 

Original Safety-Related Concepts: 

Defensive Programming 

3.2.3.21 Configuration 

Definiton: 

The “Configuration” concept represents a specific configuration. Software and/or 

hardware configurations may change by changing memory bits, changing lookup 

tables, loading a software patch, and others. 

Attributes: 

Name Description Examples 

ID Uniquely identifies a specific 

software configuration 

For a user interface 

software that can provide 

interface in many 

languages based on a 

string lookup table: 

“English Interface”, 

“French Interface”, 

“German Interface”, … 

etc 
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Relationships: 

None 

Original Safety-Related Concepts: 

Configuration 

3.2.3.22 Configurable 

Definiton: 

The “Configurable” concept identifies a design element that can be configured or 

altered to produce a different configuration (3.2.3.21) or behaviour. Such change is 

generally performed by the user or buyer of the software, not the by vendor or its 

development team.  

Attributes: 

Name Description Examples 

Kind The kind of this configurable design 

element 

“Memory Bits”, “Lookup 

Tables”, …etc 

When Specifies when this configurable 

design element can be configured to 

change configurations 

“Compile-Time”, “Link-

Time”, “Run-Time”, … 

etc 

Relationships: 

Name Description 

Is Defaulted To Identifies one default “Configuration” (3.2.3.21) instance for the 

“Configurable” instance 

Is Configurable To Identifies one or more “Configuration” (3.2.3.21) instances that 

can be produced by loading loadable instances on the 

“Configurable” instance 

Original Safety-Related Concepts: 

User Modifiable Software, Option Selectable Software 



Carleton University, TR SCE-06-19  Decermber 2006 

 68

3.2.3.23 Loadable 

Definiton: 

The “Loadable” concept identifies a design element that can be loaded by the user 

to change the configuration (3.2.3.21). Loadable design elements are loaded on 

configurable (3.2.3.22) design elements. 

Attributes: 

None 

Relationships: 

Name Description 

Is Loadable On Identifies one or more “Configurable” (3.2.3.22) instances on 

which the “Loadable” instance can be loaded 

Requires Identifies zero or more “Configuration” (3.2.3.21) instances in 

which the “Loadable” instance can be loaded 

Produces Identifies one or more “Configuration” (3.2.3.21) instances that 

result by loading the “Loadable” instance 

Original Safety-Related Concepts: 

Field Loadable Software, Software Patch 

3.2.3.24 Configurator 

Definiton: 

The “Configurator” concept identifies a design element that can configure 

configurable (3.2.3.22) design elements to change the configuration (3.2.3.21), 

possibly by loading loadable (3.2.3.23) design elements. 

Attributes: 

None 
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Relationships: 

Name Description 

Configures Identifies one or more “Configurable” (3.2.3.22) instances that can 

be configured by the “Configurator” instance 

Loads Identifies one or more “Loadable” (3.2.3.23) instances that can be 

loaded by a “Configurator” on configurable instances 

Original Safety-Related Concepts: 

Loader 

3.2.3.25 Replicated 

Definiton: 

The “Replicated” concept identifies a design element that participates in a 

replication group (3.2.3.27), such as multiple-version dissimilar software, and 

whose output is evaluated by a comparator (3.2.3.26). 

Attributes: 

Name Description Examples 

ID Specifies a unique identifier for this 

entity within its replication group 

“Filter Version 1”, “Filter 

Version 2”, “Filter 

Version 3”, … etc 

Relationships: 

None 

Original Safety-Related Concepts: 

Multiple-Version Dissimilar Software, Software Redundancy 
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3.2.3.26 Comparator 

Definiton: 

The “Comparator” concept identifies a design element that analyzes outputs of 

replicated (3.2.3.25) design elements and determines the formal output of the 

replication group (3.2.3.27).  

Attributes: 

Name Description Examples 

Policy Parameters Specifies how the comparator 

determines the formal output. Can 

include assignment of weights 

“Equal Weights”, 

“Majority Voting”, … etc 

Relationships: 

Name Description 

Compares Identifies two or more “Replicated” (3.2.3.25) instances whose 

outputs are compared by the “Comparator” instance 

Original Safety-Related Concepts: 

Comparator (Voter) 

3.2.3.27 ReplicationGroup 

Definiton: 

The “ReplicationGroup” concept identifies a software replication group composed 

of replicated (3.2.3.25) design elements and a comparator (3.2.3.26) that compares 

their outputs. For example, a replication group is an instance of software 

redundancy or multiple-version dissimilar software. It is a technical solution to 

reliability challenges and has been traditionally used in safety-critical systems. 
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Attributes: 

Name Description Examples 

ID Specifies the ID of this replication 

group 

“Radar Filter Replication 

Group”, “Controller 

Replication Group”, 

“REPLICATION 1”, … 

etc  

Relationships: 

Name Description 

Owns (with 

Comparator) 

Identifies one “Comparator” (3.2.3.26) instance that belongs to 

this “ReplicationGroup” instance 

Owns (with 

Replicated) 

Identifies two or more “Replicated” (3.2.3.25) instances that 

belong to this “ReplicationGroup” instance 

Original Safety-Related Concepts: 

Multiple-Version Dissimilar Software, Software Redundancy 

3.2.4 Providing Traceability 

The refined concepts and their conceptual model satisfy all the traceabilty requirements 

specified in section 2.5. 

First, software requirements can be specified using the “Requirement” (3.2.3.1) concept. 

Then, software design elements can be traced to software requirements using the 

“Rationale” (3.2.3.7) concept. There also exists other concepts that allow for specialized 

forms of traceability to requirements, namely the “Deviation” (3.2.3.2), Nature (3.2.3.6), 

Partition (3.2.3.11), Implementation Style (3.2.3.4), and Behavioural Style (3.2.3.5) 

concepts. 

In addition, the conceptual model explicitly identifies the “Event” (3.2.3.8) and 

“Reaction” (3.2.3.9) concepts, and establishes traceability links between those two 
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concepts and the “Handler” concept (3.2.3.12). Furthermore, it requires reactions to be 

traceable to events through the “Is Consequence Of” relationship.  

It is important to note that, while the traceability described above and in section 2.5 are 

commonly needed for developing software, this conceptual model satisfy many more 

traceability requirements than those. In fact, the “Rationale” (3.2.3.7) concept is a “one-

size-fits-all” traceability concept that can be used to trace any model element to any other 

model element or requirement. For example, the “Rationale” (3.2.3.7) concept allows 

traceability links from safety-critical design elements to requirements, from subsystems 

to requirements, and from classes to subsystems 

3.3 Information Requirements 

Section 3.1 identified detailed safety-related concepts as they appear in the airworthiness 

standard, which were refined in section 3.2. Therefore, a UML profile useful for safety 

purposes should be able to model at least this information. In other words, the refined 

concepts are central to defining information requirements for the definition of a UML 

profile, and one can transform every concept into an information requirement.  

However, the information requirements we present below are defined at a level lower 

than the refined concept and, therefore, a refined concept may correspond to more than 

one information requirements. This is done so in order to break down concepts that 

capture many details and recognize the fact that existing profiles may only satisfy parts of 

a concept. For example, the “Reaction” concept and its “Consequence Of” attribute can 

be considered a single concept, but they capture two different pieces of information. 

Therefore, they are represented as two different information requirements (IREQ 22 and 

IREQ 23 below) to recognize the fact that a UML profile can meet only one of those two 

requirements (and therefore partially, but not entirely, be able to model the concept). 

Moreover, there are terms that are useful from a modeling prespective but that are not 

really safety-related concepts. They were not mentioned in section 3.2 because they are 

not concepts. Nevertheless, they help the modeler specify safety-related information in 

the model. Their information requirements are IREQ 1 - IREQ 8 (see below). It is 
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common in UML profiles to provide stereotypes for such cases (see OMG UML profiles 

such as [5] and [6] for examples). Examples of those concepts include: Safety Context, 

which is used to provide high-level information about the safety of the software; 

Performance Context, which is used to provide high-level information about the 

performance aspects of the software. 

The information requirements we derived from the concepts presented in section 3.2.3 

are: 

IREQ 1 The profile shall be able to identify a safety-related software context. 

IREQ 2 The profile shall be able to identify a reliability-related software context. 

IREQ 3 The profile shall be able to identify an integrity-related software context. 

IREQ 4 The profile shall be able to identify a performance-related software 

context. 

IREQ 5 The profile shall be able to identify a concurrency-related software 

context. 

IREQ 6 The profile shall be able to identify a certification-related software 

context. 

IREQ 7 The profile shall be able to identify a configuration-related software 

context. 

IREQ 8 The profile shall be able to identify a design-related software context. 

IREQ 9 The profile shall be able to specify software requirements, including the 

kind of the requirements such as safety, certification, and derived. 

IREQ 10 The profile shall be able to relate software requirements to other 

requirements. 

IREQ 11 The profile shall be able to model a software model deviation from a plan, 

requirement, or a standard. 

IREQ 12 The profile shall be able to model specific software implementation styles 

of interest to airworthiness-related software such as recursion, dynamic 

memory, compacted expressions, and data aliases. 

IREQ 13 The profile shall be able to model time-related software such as filters. 

IREQ 14 The profile shall be able to model state-related software such as state 

machines. 
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IREQ 15 The profile shall be able to model COTS software, including the rationale 

for using it. 

IREQ 16 The profile shall be able to model previously-developed software, 

including the rationale for using it. 

IREQ 17 The profile shall be able to model software that has deactivated code and 

the rationale for including the deactivated code in the design. 

IREQ 18 The profile shall be able to provide traceability by relating model 

elements to other elements that caused related design decisions, such as 

relating a software comparator to a requirement element that says that a 

software comparator shall be used for multiple-version dissimilar 

software. 

IREQ 19 The profile shall provide the capability to specify a reference or 

explanation for a modeled traceability, possibly referring to non-model 

elements or documents. 

IREQ 20 The profile shall be able to model software events. 

IREQ 21 The profile shall be able to specify how a particular software event affects 

the level of safety. 

IREQ 22 The profile shall be able to model software reactions, or responses, to 

software events. 

IREQ 23 The profile shall be able to specify which reactions, or responses, occur 

for which events.  

IREQ 24 The profile shall be able to specify how a particular software reaction, or 

response, affects the level of safety. 

IREQ 25 The profile shall be able to model safety-critical elements. 

IREQ 26 The profile shall be able to specify the criticality level of safety-critical 

model elements, or the element’s contributions to failure conditions. 

IREQ 27 The profile shall be able to model a software partition. 

IREQ 28 The profile shall be able to model event handlers that perform reactions to 

unusual events that are detected by monitors. 

IREQ 29 The profile shall be able to model software monitors. 

IREQ 30 The profile shall be able to model safety monitoring software. 
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IREQ 31 The profile shall be able to model fault monitoring software. 

IREQ 32 The profile shall be able to model integrity monitoring software. 

IREQ 33 The profile shall be able to model a software simulator. 

IREQ 34 The profile shall be able to specify what a software simulator simulates 

and the parameters by which it does so. 

IREQ 35 The profile shall be able to model safety strategies. 

IREQ 36 The profile shall be able to model scheduling strategies. 

IREQ 37 The profile shall be able to specify the use of formal methods. 

IREQ 38 The profile shall be able to model and quantify an entity’s complexity on 

the design such as coupling and the level of code nesting. 

IREQ 39 The profile shall be able to model hardware/software interfaces. 

IREQ 40 The profile shall be able to describe an interface’s parameters or reference 

external documents describing the interface parameters. 

IREQ 41 The profile shall be able to model active software that can initiate a flow 

of control. 

IREQ 42 The profile shall be able to model passive software whose execution is 

triggered by external events. 

IREQ 43 The profile shall be able to model resources such as databases and 

semaphores.  

IREQ 44 The profile shall be able to indicate whether a modeled resource is shared 

or not. 

IREQ 45 The profile shall be able to distinguish software that uses defensive 

programming from others that do not. 

IREQ 46 The profile shall be able to describe the defensive programming 

parameters of software developed using defensive programming methods. 

IREQ 47 The profile shall be able to model software elements whose behaviour can 

be modified by the user (e.g. by changing memory bits or loading look-up 

tables). 

IREQ 48 The profile shall be able to specify what can be modified about 

modifiable software elements (e.g. is it a set of memory bits? A lookup 

table?). 
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IREQ 49 The profile shall be able to specify when a modifiable software element 

can be modified, such as at compile-time or run-time.  

IREQ 50 The profile shall be able to model software that can be loaded into a 

system (e.g. software patch) to result in a different software configuration. 

IREQ 51 The profile shall be able to model software that the user uses to change 

the software configuration (e.g. software used to change a memory bit or 

load a lookup table). 

IREQ 52 The profile shall be able to model multiple-version dissimilar software. 

IREQ 53 The profile shall be able to model software comparators, or voters, for 

multiple version dissimilar software 

IREQ 54 The profile shall be able to specify the voting policy parameters for 

software comparators, or voters. 

The requirements traceability matrix in Table 3 describes how the information 

requirements trace back to the original high-level requirements presented in section 2.6.3. 

This explains how the original-high level requirements are met by a UML profile meeting 

the information requirements. If a “Yes” exists in a particular cell, this means that the 

information requirement identified by its row traces back to the high-level requirement 

identified by its column. Each information requirement may trace back to more than one 

high-level requirement. As the table illustrates, there is an n-to-n relationship between 

high-level requirements and information requirements. 

The requirements traceability matrix answers the following question: Which information 

requirements (IREQ) are required in order to meet a particular high-level requirement 

(REQ)? Conversly, it can also be used to answer the following question: For a particular 

information requirement (IREQ), which high-level requirements (REQ) does it help 

meet? Therefore, it is useful if the reader is interested in knowing additional details about 

how a particular profile meets the original requirements (REQ). Therefore, all the 

information requirements trace to both the safety-related concepts, which form the basis 

for the information requirements, and are justified by the high-level requirements.  
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The rest of this document focuses on the information requirements (IREQ) rather than the 

high-level requirements (REQ) because they are easier to use for assessing UML profiles. 

Furthermore, information requirements are the true requirements that the profile must 

meet because they specify the particular information that must be modeled in UML 

models. 

 REQ 1 REQ 2 REQ 3 REQ 4 REQ 5 REQ 6 REQ 7 Total 
IREQ 1 Yes  Yes   Yes  3 
IREQ 2 Yes  Yes   Yes  3 
IREQ 3 Yes  Yes   Yes  3 
IREQ 4 Yes  Yes   Yes  3 
IREQ 5 Yes  Yes     2 
IREQ 6 Yes  Yes     2 
IREQ 7 Yes  Yes     2 
IREQ 8 Yes  Yes     2 
IREQ 9 Yes  Yes Yes  Yes Yes 5 
IREQ 10 Yes Yes   Yes Yes Yes 5 
IREQ 11 Yes Yes  Yes  Yes  4 
IREQ 12 Yes   Yes Yes Yes  4 
IREQ 13 Yes   Yes  Yes  3 
IREQ 14 Yes   Yes  Yes  3 
IREQ 15 Yes Yes  Yes Yes Yes  5 
IREQ 16 Yes Yes  Yes Yes Yes  5 
IREQ 17 Yes Yes   Yes Yes  4 
IREQ 18 Yes Yes   Yes   3 
IREQ 19 Yes Yes   Yes Yes  4 
IREQ 20 Yes     Yes  2 
IREQ 21 Yes  Yes  Yes Yes  4 
IREQ 22 Yes   Yes  Yes  3 
IREQ 23 Yes   Yes  Yes  3 
IREQ 24 Yes  Yes Yes Yes Yes  5 
IREQ 25 Yes  Yes   Yes  3 
IREQ 26 Yes  Yes  Yes Yes  4 
IREQ 27 Yes   Yes  Yes  3 
IREQ 28 Yes   Yes  Yes  3 
IREQ 29 Yes   Yes  Yes  3 
IREQ 30 Yes  Yes Yes  Yes  4 
IREQ 31 Yes  Yes Yes  Yes  4 
IREQ 32 Yes  Yes Yes    3 
IREQ 33 Yes     Yes  2 
IREQ 34 Yes     Yes  2 
IREQ 35 Yes  Yes Yes  Yes  4 
IREQ 36 Yes  Yes Yes    3 
IREQ 37 Yes    Yes   2 
IREQ 38 Yes   Yes    2 
IREQ 39 Yes     Yes  2 
IREQ 40 Yes Yes      2 
IREQ 41 Yes   Yes    2 
IREQ 42 Yes   Yes    2 
IREQ 43 Yes   Yes    2 
IREQ 44 Yes   Yes    2 
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 REQ 1 REQ 2 REQ 3 REQ 4 REQ 5 REQ 6 REQ 7 Total 
IREQ 45 Yes   Yes Yes   3 
IREQ 46 Yes   Yes Yes   3 
IREQ 47 Yes   Yes Yes Yes  4 
IREQ 48 Yes   Yes Yes Yes  4 
IREQ 49 Yes   Yes Yes   3 
IREQ 50 Yes   Yes Yes   3 
IREQ 51 Yes   Yes Yes   3 
IREQ 52 Yes   Yes  Yes  3 
IREQ 53 Yes   Yes  Yes  3 
IREQ 54 Yes   Yes    2 

Total 54 8 18 33 18 34 2 167 

Table 3: Tracing information requirements to the original high-level requirements. 
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4 EXISTING UML PROFILES 

This section introduces existing UML profiles and approaches and evaluates each one of 

them with respect to the information requirements identified in section 3.3. This is 

required to determine whether a suitable profile already exists or not, which would 

determine whether an existing profile should be extended (if necessary) or a completely 

new profile should be defined. Details of the evaluations are reported in Appendix F and 

summarized in the following sections. 

4.1 Quality of Service and Fault Tolerance OMG Profile 

OMG released a profile to model Quality of Service (QoS) for high-quality and Fault-

Tolerant (FT) systems. The profile, presented in [5], includes frameworks to describe 

quality of service, risk assessment, and fault tolerance.  

The framework to describe quality of service includes mechanisms to describe generic 

quality of service driven from quality-based requirements. It is not specific to any kind of 

quality of service, such as safety. Its mechanisms focus on characteristics, constraints, 

and levels of quality of service. The risk assessment framework includes support for 

model-based risk assessment. It provides mechanisms for modeling risk contexts, 

stakeholders, assets, strengths, weaknesses, opportunities and threats, unwanted incidents, 

risk quantification, and risk mitigation and treatments. The fault tolerance framework 

includes mechanisms for describing fault-tolerant software architectures in general as a 

technical solution to reliability requirements. It focuses on modeling software 

redundancy, or software replication. 

Table 18 in Appendix F presents an analysis of the profile with respect to each of the 

information requirements described in section 3.3. The table concludes that this profile is 

not adequate for extension to meet the information requirements since only 17 of the 

information requirements (out of 54) are fulfilled. 
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4.2 Schedulability, Performance, and Time OMG Profile 

OMG released a profile, the Schedulability, Performance, and Time (SPT) profile, which 

provides mechanisms to model concepts of importance to real-time systems. Real-time 

systems are those where there exist timing requirements on when the responses to events 

occur. Soft real-time systems are those were late responses may be acceptable if they are 

not within a specified range, whereas hard real-time systems are those where late 

responses are unacceptable and may be fatal [6]. The profile, presented in [6], includes 

frameworks to model resources, time, concurrency, schedulability, performance, and 

CORBA schedulability properties. Using it allows developers to perform performance 

analysis of the model. 

The resource modeling framework includes mechanisms to model resources, components 

that acquire and release them, and their deployment on hosts. The time modeling 

framework includes mechanisms to model clocks, timers, timeouts, and actions that are 

applied on them such as delays, interrupts, events, pause, reset, start, and stop. The 

concurrency modeling framework includes mechanisms to model synchronous and 

asynchronous actions, and event queues for immediate and deferred event processing. 

The schedulability analysis framework includes mechanism to model actions, engines, 

responses, scheduling resources, triggers, action schedulers, and scheduling hosts. The 

performance analysis framework includes mechanism to model performance contexts, 

open and closed workloads, and steps. The CORBA schedulability framework includes 

mechanisms to model CORBA channels, connections, clients, servers, and Object 

Resource Brokers (ORBs). 

Table 19 in Appendix F presents an analysis of the profile with respect to each of the 

information requirements described in section 3.3. The table concludes that this profile is 

not adequate for extension to meet the information requirements since only 6 of the 

information requirements (out of 54) are fulfilled. The profile does not meet many of the 

information requirements because it does not cover safety and reliabity topics. 



Carleton University, TR SCE-06-19  Decermber 2006 

 81

4.3 HIDOORS Profile 

The High Integrity Distributed Object-Oriented Real-Time Systems (HIDOORS) was a 

joint research project by several European companies and research institutions. One of 

the goals of HIDOORS was to introduce mechanisms for modeling safety-critical and 

embedded real-time applications. Those mechanisms were required to be compliant with 

OMG’s SPT profile (see section 4.2), provide mechanisms for modeling the Rate 

Monotonic Analysis (RMA) scheduling strategy, and provide specific concepts relating 

to inter-task communication. The researchers involved in this project felt that UML’s 

SPT profile was too general and too fundamental to provide mechanisms for specifying 

RMA and some inter-task communication concepts [26]. The profile therefore specializes 

some SPT concepts such as triggers, actions, resources, and scheduling jobs. 

Furthermore, it provides mechanisms to model inter-task communication styles such as 

buffers, black boards, and events. 

Table 20 in Appendix F presents an analysis of the profile with respect to each of the 

information requirements described in section 3.3. The table concludes that this profile is 

not adequate for extension to meet the information requirements since only 6 of the 

information requirements (out of 54) are fulfilled. The profile included only few 

stereotypes so it does not meet most of the information requirements. In fact, it did not 

meet any information requirements that were not already met by the SPT profile. 

4.4 Effects of Message Loss, Delay, and Corruption 

Jan Jürjens presented a UML profile in [27] that aimes at addressing safety issues from a 

fault-tolerant point of view. Jürjens argued that safety goals are often expressed 

quantitatively via the maximum failure rate, and then presented some possible failures 

that served as the basis of the proposed UML profile. Thus, his profile assumes that those 

failures are based on the concept of transmitting messages on links and between nodes. 

The profile included mechanisms to model risks, crashes, guarantees, redundancy, safe 

links, safe dependencies, safety critical elements, safe behaviours, containment, and error 

handling.  
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Table 21 in Appendix F presents an analysis of the profile with respect to each of the 

information requirements described in section 3.3. The table concludes that this profile is 

not adequate for extension to meet the information requirements since only 7 of the 

information requirements (out of 54) are fulfilled. In fact, it does not meet many of the 

information requirements because assuming the airworthiness standard does not make the 

assumption that unsafe states result from failures of transmitting messages because safety 

is a bigger issue than that. 

4.5 Patterns for Reliability and Safety 

Hansen and Gullesen presented in [28] a series of UML patterns that can be used to 

model some aspects of safety-critical systems. They presented patterns for modeling 

safety quality of service, software diversity and voting, partial diversity with built-in 

diagnostic or monitoring, “safe” communication protocols, and some other topics such as 

testing, hazard analysis and quality development. Their work was driven by the IEC 

61508 standard in [24]. They have therefore used the concept of Safety Integrity Level 

(SIL), which is similar to the concept of software level presented in the airworthiness 

standard [4]. The patterns include mechanisms to model the SIL levels, and other patterns 

that could be used to explicitly model, in use cases, redundancy, monitoring, and voting 

based on multiple output comparisons. 

Table 22 in Appendix F presents an analysis of the profile with respect to each of the 

information requirements described in section 3.3. The table concludes that the patterns 

presented in this paper are not adequate for extension to meet the information 

requirements since only 1 of the information requirements (out of 54) are fulfilled. The 

patterns mostly focus on reliability and software replication issues, whereas the 

information requirements cover a bigger concern. 

4.6 Summary 

Table 23 in Appendix F summarizes how each of those existing UML profiles scores 

with respect to addressing the information requirements identified in section 3.3. Each 
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profile’s score is calculated based on how many information requirements it meets. 

Therefore, the maximum score is 54 (100%). 

As it can be noticed from previous sections, which results are summarized in Table 23, 

none of the existing profiles that were evaluated achieves more than 31% of the 

maximum score. In fact, all of the profiles combined only meet 44% of the information 

requirements. 

The two OMG profiles are useful, but only within their intended domain. The OMG QoS 

and FT profile is suitable for modeling fault tolerance and software redundancy. The 

OMG SPT profile is suitable for modeling schedulability, performance, and concurrency 

concepts. However, it was evident in section 3 that safety and airworthiness are 

dependent on many domains. Therefore, those two OMG profiles would be 

complimentary, but not complete enough. It should also be noticed that the SPT profile 

included more details than the QoS and FT profile, but it was centred on domains that are 

somehow less important to safety (resources, time, concurrency, performance, and 

schedulability) than those covered by the QoS and FT profile (quality of service, risk 

assessment, fault tolerance). 

Furthermore, the profile for the “effects of messages on safety” introduces some useful 

stereotypes such as <<safe behaviour>>, <<guarantee>>, <<critical>>, 

<<containment>>and <<redundancy>>. However, some of them are too general to be 

effective, such as <<critical>> which does not tell us the criticality level (e.g. 

airworthiness level) of the software. Neverthless, it meets some information requirements 

that are not met by the 2 OMG profiles such as the ability to model exception handlers. 

The “HIDOORS” profile did not meet any information requirements that were not 

already met by the SPT profile. 

The “Patterns” paper did not fulfil any information requirements that were not fulfilled 

by the other profiles. 

Because none of the existing UML profiles and patterns comes close to fulfilling the 

information requirements, a new UML profile is proposed instead of extending an 
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existing one. This has the advantage that the resultant profile will be coherent and 

specifically designed to meet the information requirements instead of “patching” an 

existing profile that was originally designed for some other purpose. 
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5 PROPOSED UML PROFILE 

Since no suitable UML profile was found, this section introduces a new UML profile that 

meets all of the information requirements. Section 5.1 describes the template we use to 

describe the profile whereas section 5.2 describes the profile proper. Examples are then 

presented in section 5.3 to explain in detail how to use this proposed UML profile. 

Section 5.4 suggests a methodology to be followed when using the profile. 

5.1 UML Profile—Template Description 

This section introduces a UML profile that satisfies all of the information requirements 

specified in section 3.3. The discussion on how this proposed profile meets all of the 

information requirements is presented in section 8.1. 

Each of the subsections of section 5.2 describes a single stereotype and associated tagged 

values. Most of the stereotypes correspond to some refined concepts. However, some 

additional stereotypes, which do not correspond to any refined concepts, were deemed 

helpful for modeling purposes are introduced. The stereotypes’ tagged values correspond 

to the refined concepts’ attributes and relationships. The following information is 

presented for each stereotype: 

1. Definition: This presents a definition for the stereotype. It describes the stereotype 

and gives its general purpose. 

2. Related Concept: This identifies, if applicable, the concept from section 3.2.2 that 

the stereotype represents. 

3. Base Classes: This lists the UML meta-classes on which the stereotype may be 

applied. The explanation on how and why the stereotype may be applied on each 

meta-class is also presented. This does not identify meta-classes on which the 

stereotype may not be applied to allow future extenstions of this profile to be 

backwards compatible. This is because future extension may permit the 

application of the stereotypes on meta-classes that are not explicit here. This is 
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necessary because extending UML, such as in the form of UML profiles, permits 

adding new rules but does not allow removing existing rules. 

4. Tags: This lists the tags that the stereotype has. For each tag, the type, 

multiplicity, and a description is presented. 

The base classes of each stereotype are presented in a table. For example, the base classes 

of the <<SafetyCritical>> (5.2.17) stereotype are presented as follows: 

Base Class Usage Rationale 

Class To indicate that the class is safety-critical (3.2.3.10) and specify 

its safety (e.g. airworthiness) level 

Operation To indicate that invoking the operation is safety-critical (3.2.3.10) 

and specify its safety (e.g. airworthiness) level 

Relationship To indicate that the relationship is safety-critical (3.2.3.10) and 

specify its safety (e.g. airworthiness) level 

The first column lists the UML meta-classes on whose instances the stereotype can be 

applied. The UML classes are specified as defined in the UML meta-model in [29] and 

[30]. This profile uses only the following base classes in the first column: 

1. Collaboration: Used to represent instances of class 

“CompositeStructures::Collaborations::Collaboration”. 

2. Class: Used to represent instances of class “Kernel::Class” and class 

“BasicComponents::Component”. 

3. Operation: Used to represent instances of class “Kernel::Operation”. 

4. Relationship: Used to represent instances of class “Kernel::Relationship”. 

The second column describes why the stereotype can be applied on each base class.  

Thus, the above table is read as follows: The <<SafetyCritical>> stereotype can be 

applied on all UML model classes that are instances of the following meta-classes (first 
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column): Class, Operation, and Relationship. It is applied on each of the base classes as 

follows (second column): 

1. Class: To indicate that the class is safety-critical (3.2.3.10) and specify its safety 

(e.g. airworthiness) level 

2. Operation: To indicate that invoking the operation is safety-critical (3.2.3.10) and 

specify its safety (e.g. airworthiness) level 

3. Relationship: To indicate that the relationship is safety-critical (3.2.3.10) and 

specify its safety (e.g. airworthiness) level 

The tags of each stereotype are presented in a table. For example, the tags of the 

<<SafetyCritical>> (5.2.17) stereotype are presented as follows: 

Name Type Multiplicity Description 

CriticalityLevel Enumeration [0..1] See attribute: Criticality Level 

ConfidenceLevel Enumeration [0..1] See attribute: Confidence 

Level 

TriggeredEvent Reference to a 

model element 

stereotyped 

<<Event>> 

(5.2.15) (or its 

subclass 

<<Reaction>> 

(5.2.16)) 

[0..*] See relationship: Triggers 

The first column specifies the tag name, the second column specifies the type of the tag, 

the third column specifies its multiplicity, and the fourth column provides a description of 

the tag. In most cases, the fourth column will refer the reader to an attribute or a 

relationship of the related concept. 

This example tells us that this stereotype has the following tags and they are described as 

follows: 
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1. The “CriticalityLevel” tag (first column) of the <<SafetyCritical>> stereotype is 

specified through an enumeration (second column). It can be specified zero or one 

time (third column) for each stereotype. Its description is the same as the 

“Criticality Level” attribute of the related concept (“Safety Critical” (3.2.3.10) 

concept in this case) (fourth column). 

2. The “ConfidenceLevel” tag (first column) of the <<SafetyCritical>> stereotype is 

specified through an enumeration (second column). It can be specified zero or one 

time (third column) for each stereotype. Its description is the same as the 

“Confidence Level” attribute of the related concept (“Safety Critical” (3.2.3.10) 

concept in this case) (fourth column). 

3. The “TriggeredEvent” tag (first column) of the <<SafetyCritical>> stereotype is 

specified through a reference to a model element stereotyped with <<Event>> or 

<<Reaction>> (second column). It can be specified zero or as many times as one 

wishes (third column) for each stereotype. Its description is the same as the 

“Triggers” relationship of the related concept (“SafetyCritical” (3.2.3.10) concept 

in this case) (fourth column). 

5.2 Profile Description 

5.2.1 <<SafetyContext>> 

Definiton: 

The <<SafetyContext>> stereotype is used to indicate that there is safety-related 

information of interest such as information representing the original primarily 

safety concepts listed in Appendix C.1. 

Related Concept: 

None 
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Base Classes: 

Base Class Usage Rationale 

Collaboration To indicate that the collaboration contains safety information 

Tags: 

None 

5.2.2 <<ReliabilityContext>> 

Definiton: 

The <<ReliabilityContext>> stereotype is used to indicate that there is reliability-

related information of interest such as information representing the original 

primarily reliability concepts listed in Appendix C.2. In one specific usage, it could 

also be used to describe or identify a specific replication group (see related 

concept). 

Related Concept: 

ReplicationGroup (3.2.3.27) 

Base Classes: 

Base Class Usage Rationale 

Collaboration To indicate that the collaboration contains reliability information, 

or to identify a particular replication group (3.2.3.27) composed 

of replicated (3.2.3.25) design elements and a comparator 

(3.2.3.26) 

Tags: 

Name Type Multiplicity Description 

ID String [0..1] See attribute: ID 
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5.2.3 <<IntegrityContext>> 

Definiton: 

The <<IntegrityContext>> stereotype is used to indicate that there is safety-related 

information of interest such as information representing the original primarily 

integrity concepts listed in Appendix C.3. 

Related Concept: 

None 

Base Classes: 

Base Class Usage Rationale 

Collaboration To indicate that the collaboration contains integrity information 

Tags: 

None 

5.2.4 <<PerformanceContext>> 

Definiton: 

The <<PerformanceContext>> stereotype is used to indicate that there is 

performance-related information of interest such as information representing the 

original primarily performance concepts listed in Appendix C.4. 

Related Concept: 

None 

Base Classes: 

Base Class Usage Rationale 

Collaboration To indicate that the collaboration contains performance 

information 

Tags: 

None 
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5.2.5 <<ConcurrencyContext>> 

Definiton: 

The <<ConcurrencyContext>> stereotype is used to indicate that there is 

concurrency-related information of interest such as information representing the 

original primarily concurrency concepts listed in Appendix C.5. 

Related Concept: 

None 

Base Classes: 

Base Class Usage Rationale 

Collaboration To indicate that the collaboration contains concurrency 

information 

Tags: 

None 

5.2.6 <<CertificationContext>> 

Definiton: 

The <<CertificationContext>> stereotype is used to indicate that there is 

certification-related information of interest such as information representing the 

original primarily certification concepts listed in Appendix C.6. 

Related Concept: 

None 

Base Classes: 

Base Class Usage Rationale 

Collaboration To indicate that the collaboration contains certification 

information 

Tags: 

None 
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5.2.7 <<DesignContext>> 

Definiton: 

The <<DesignContext>> stereotype is used to indicate that there is specific design-

related information of interest such as information representing the original 

primarily design concepts listed in Appendix C.7. 

Related Concept: 

None 

Base Classes: 

Base Class Usage Rationale 

Collaboration To indicate that the collaboration contains specific design 

information such as design constraints and design decisions 

Tags: 

None 

5.2.8 <<ConfigurationContext>> 

Definiton: 

The <<ConfigurationContext>> stereotype is used to indicate that there is 

configuration-related information of interest such as information representing the 

original primarily configuration concepts listed in Appendix C.8. In one specific 

usage, it could also be used to describe or identify a specific configuration (see 

related concept). 

Related Concept: 

Configuration (3.2.3.21) 
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Base Classes: 

Base Class Usage Rationale 

Collaboration To indicate that the collaboration contains configuration 

(3.2.3.21) information, or to identify a particular configuration 

(3.2.3.21) 

Tags: (refer to section 3.2.3.21 for details) 

Name Type Multiplicity Description 

ID String [0..1] See attribute: ID 

5.2.9 <<Requirement>> 

Definiton: 

See related concept. 

Related Concept: 

Requirement (3.2.3.1) 

Base Classes: 

Base Class Usage Rationale 

Collaboration To specify a requirement that the design in the collaboration 

fulfills 

Class To specify a requirement that the class fulfills 

Operation  To specify a requirement that the operation fulfills 

Relationship To specify a requirement that a relationship fulfills 

Tags: (refer to section 3.2.3.1 for details) 

Name Type Multiplicity Description 

ID String [0..1] See attribute: ID 

Kind Enumeration [0..1] See attribute: Kind 

Specification Expression [1..1] See attribute: Specification 
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Name Type Multiplicity Description 

OfRequirement Reference to a 

model element 

stereotyped 

<<Requirement>> 

(5.2.9) 

[0..*] See relationship: Is 

Requirement Of 

5.2.10 <<Deviation>> 

Definiton: 

See related concept. 

Related Concept: 

Deviation (3.2.3.2) 

Base Classes: 

Base Class Usage Rationale 

Collaboration To specify that the collaboration’s design and/or implementation 

deviates from a requirement (3.2.3.1), standard, or plan 

Class To specify that the class’ design and/or implementation deviates 

from a requirement (3.2.3.1), standard, or plan 

Operation  To specify that the operation’s design and/or implementation 

deviates from a requirement (3.2.3.1), standard, or plan 

Relationship To specify that the relationship’s design and/or implementation 

deviates from a requirement (3.2.3.1), standard, or plan 

Tags: (refer to section 3.2.3.2 for details) 

Name Type Multiplicity Description 

Kind Enumeration [0..1] See attribute: Kind 
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Name Type Multiplicity Description 

Reference Reference to a 

model element 

stereotyped 

<<Requirement>> 

(5.2.9) 

[1..*] See relationship: References 

Explanation String [0..*] See attribute: Explanation 

5.2.11 <<ImplementationStyle>> 

Definiton: 

See related concept. 

Related Concept: 

ImplementationStyle (3.2.3.4) 

Base Classes: 

Base Class Usage Rationale 

Class To identify an implementation style (3.2.3.4) (e.g. dynamic 

memory, recursive algorithms, … etc) that is followed in the 

implementation of the class 

Operation To identify an implementation style (3.2.3.4) (e.g. dynamic 

memory, recursive algorithms, … etc) that is followed in the 

implementation of the operation 

Tags: (refer to section 3.2.3.4 for details) 

Name Type Multiplicity Description 

Kind Enumeration [0..1] See attribute: Kind 

Parameter Expression [0..*] See attribute: Parameters 
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Name Type Multiplicity Description 

Reference Reference to a 

model element 

stereotyped 

<<Requirement>> 

(5.2.9), or a String 

[0..*] See relationship: References 

Explanation String [0..*] See attribute: Explanation 

5.2.12 <<BehaviouralStyle>> 

Definiton: 

See related concept. 

Related Concept: 

BehaviouralStyle (3.2.3.5) 

Base Classes: 

Base Class Usage Rationale 

Collaboration To identify a behavioural style (3.2.3.5) (e.g. state-related such as 

state machines, … etc) that is followed in the implementation of 

the design specified in the collaboration 

Class To identify a behavioural style (3.2.3.5) (e.g. state-related as in 

class attributes, time-related as in filters, … etc) that is followed 

in the implementation of the class 

Operation To identify a behavioural style (3.2.3.5) (e.g. state-related as in 

static operations, time-related as in filters) that is followed in the 

implementation of the operation 

Tags: (refer to section 3.2.3.5 for details) 

Name Type Multiplicity Description 

Kind Enumeration [0..1] See attribute: Kind 

Parameter Expression [0..*] See attribute: Parameters 
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Name Type Multiplicity Description 

Reference Reference to a 

model element 

stereotyped 

<<Requirement>> 

(5.2.9), or a String 

[0..*] See relationship: References 

Explanation String [0..*] See attribute: Explanation 

5.2.13 <<Nature>> 

Definiton: 

See related concept. 

Related Concept: 

Nature (3.2.3.6) 

Base Classes: 

Base Class Usage Rationale 

Class To identify the nature (3.2.3.6) (e.g. COTS, previously developed, 

deactivated, … etc) of the class 

Operation To identify the nature (3.2.3.6) (e.g. deactivated, … etc) of the 

operation 

Tags: (refer to section 3.2.3.6 for details) 

Name Type Multiplicity Description 

Kind Enumeration [0..1] See attribute: Kind 

Reference Reference to a 

model element 

stereotyped 

<<Requirement>> 

(5.2.9), or a String 

[0..*] See relationship: References 

Explanation String [0..*] See attribute: Explanation 
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5.2.14 <<Rationale>> 

Definiton: 

See related concept. 

Related Concept: 

Rationale (3.2.3.7) 

Base Classes: 

Base Class Usage Rationale 

Collaboration To explain the rationale (3.2.3.7) or explain the design decisions 

for the design specified in the collaboration 

Class To explain the rationale (3.2.3.7), explain the design decisions, or 

identify the reason for defining and developing the class 

Operation To explain the rationale (3.2.3.7), explain the design decisions, or 

identify the reason for defining and developing the operation 

Relationship To explain the rationale (3.2.3.7), explain the design decisions, or 

identify the reason for defining the relationship 

Tags: (refer to section 3.2.3.7 for details) 

Name Type Multiplicity Description 

Reference Reference to a 

model element 

stereotyped 

<<Requirement>> 

(5.2.9), or a String 

[1..*] See relationship: References 

Explanation String [0..*] See attribute: Explanation 

5.2.15 <<Event>> 

Definiton: 

See related concept. 
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Related Concept: 

Event (3.2.3.8) 

Base Classes: 

Base Class Usage Rationale 

Class To indicate that the class contains information that constitutes and 

describes an event (3.2.3.8) of interest 

Operation To indicate that invoking the specified operation is an event 

(3.2.3.8) of interest, and to further describe the operation’s effect 

on safety  

Tags: (refer to section 3.2.3.8 for details) 

Name Type Multiplicity Description 

Kind Enumeration [0..1] See attribute: Kind 

When Expression [0..*] See attribute: When 

EffectOnSafetyDirection Enumeration [0..*] See attribute: Effect On 

Safety Direction 

EffectOnSafetyValue Expression [0..*] See attribute: Effect On 

Safety Value 

EffectOnSafetyContext Expression [0..*] See attribute: 

EffectOnSafetyContext 

5.2.16 <<Reaction>> 

Definiton: 

See related concept. 

Related Concept: 

Reaction (3.2.3.9) 
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Base Classes: 

Base Class Usage Rationale 

Class To indicate that the class contains the logic (e.g. hardware or 

executable software code) that constitutes and describes a reaction 

(3.2.3.9) 

Operation To indicate that invoking the specified operation is a reaction 

(3.2.3.9) to one or more events (3.2.3.8) of interest, and to further 

describe the operation’s effect on safety  

Tags: (refer to section 3.2.3.9 for details) 

Name Type Multiplicity Description 

Kind Enumeration [0..1] See attribute: Kind 

ConsequenceOf Reference to a 

model element 

stereotyped 

<<Event>> 

(5.2.15) (or its 

subclass 

<<Reaction>> 

(5.2.16)) 

[1..*] See relationship: Is 

Consequence Of 

When Expression [0..*] See attribute: When 

EffectOnSafetyDirection Enumeration [0..*] See attribute: Effect On 

Safety Direction 

EffectOnSafetyValue Expression [0..*] See attribute: Effect On 

Safety Value 

EffectOnSafetyContext Expression [0..*] See attribute: 

EffectOnSafetyContext 

5.2.17 <<SafetyCritical>> 

Definiton: 

See related concept. 
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Related Concept: 

SafetyCritical (3.2.3.10) 

Base Classes: 

Base Class Usage Rationale 

Class To indicate that the class is safety-critical (3.2.3.10) and specify 

its safety (e.g. airworthiness) level 

Operation To indicate that invoking the operation is safety-critical (3.2.3.10) 

and specify its safety (e.g. airworthiness) level 

Relationship To indicate that the relationship is safety-critical (3.2.3.10) and 

specify its safety (e.g. airworthiness) level 

Tags: (refer to section 3.2.3.10 for details) 

Name Type Multiplicity Description 

CriticalityLevel Enumeration [0..1] See attribute: Criticality Level 

ConfidenceLevel Enumeration [0..1] See attribute: Confidence 

Level 

TriggeredEvent Reference to a 

model element 

stereotyped 

<<Event>> 

(5.2.15) (or its 

subclass 

<<Reaction>> 

(5.2.16)) 

[0..*] See relationship: Triggers 

5.2.18 <<Partition>> 

Definiton: 

See related concept. 

Related Concept: 

Partition (3.2.3.11) 
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Base Classes: 

Base Class Usage Rationale 

Class To indicate that the class is has been partitioned (3.2.3.11) from 

some other (usually more safety-critical (3.2.3.10)) class 

Tags: (refer to section 3.2.3.11 for details) 

Name Type Multiplicity Description 

PartitionedFrom Reference to a 

class model 

element 

stereotyped 

<<SafetyCritical>> 

(5.2.17) 

[1..*] See relationship: Is 

Partitioned From 

Reference Reference to a 

model element 

stereotyped 

<<Requirement>> 

(5.2.9) , or a String 

[0..*] See relationship: References 

Explanation String [0..*] See attribute: Explanation 

5.2.19 <<Handler>> 

Definiton: 

See related concept. 

Related Concept: 

Handler (3.2.3.12) 

Base Classes: 

Base Class Usage Rationale 

Class To indicate that the class is an event  (3.2.3.8) handler (3.2.3.12) 
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Tags: (refer to section 3.2.3.12 for details) 

Name Type Multiplicity Description 

HandleableEvent Reference to a 

model element 

stereotyped 

<<Event>> 

(5.2.15) (or its 

subclass 

<<Reaction>> 

(5.2.16)) 

[1..*] See relationship: Handles 

PerformedReaction Reference to a 

model element 

stereotyped 

<<Reaction>> 

(5.2.16) 

[1..*] See relationship: Performs 

5.2.20 <<Monitor>> 

Definiton: 

See related concept. 

Related Concept: 

Monitor (3.2.3.13) 

Base Classes: 

Base Class Usage Rationale 

Class To indicate that the class is a monitor (3.2.3.13) that monitors 

some other class 

Tags: (refer to section 3.2.3.13 for details) 

Name Type Multiplicity Description 

Kind Enumeration [0..1] See attribute: Kind 
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Name Type Multiplicity Description 

MonitoredEntity Reference to a 

class model 

element 

stereotyped 

<<SafetyCritical>> 

(5.2.17) 

[1..*] See relationship: Monitors 

DetectableEvent Reference to a 

model element 

stereotyped 

<<Event>> 

(5.2.15) (or its 

subclass 

<<Reaction>> 

(5.2.16)) 

[1..*] See relationship: Detects 

EventHandler Reference to a 

model element 

stereotyped 

<<Handler>> 

(5.2.19) 

[0..*] See relationship: Notifies 

5.2.21 <<Simulator>> 

Definiton: 

See related concept. 

Related Concept: 

Simulator (3.2.3.14) 

Base Classes: 

Base Class Usage Rationale 

Class To indicate that the class is a simulator (3.2.3.14) for some other 

class or operation 
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Tags: (refer to section 3.2.3.14 for details) 

Name Type Multiplicity Description 

SimulatedEntity Reference to a 

class or operation 

model element 

stereotyped 

<<SafetyCritical>> 

(5.2.17) 

[1..*] See relationship: Simulates 

Parameter Expression [0..*] See attribute: Parameters 

5.2.22 <<Strategy>> 

Definiton: 

See related concept. 

Related Concept: 

Strategy (3.2.3.15) 

Base Classes: 

Base Class Usage Rationale 

Collaboration To specify and describe a particular strategy (3.2.3.15) that is used 

throughout the collaboration 

Class To specify and describe a particular strategy (3.2.3.15) that the 

class implements 

Tags: (refer to section 3.2.3.15 for details) 

Name Type Multiplicity Description 

Kind Enumeration [0..1] See attribute: Kind 

Parameter Expression [0..*] See attribute: Parameters 
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Name Type Multiplicity Description 

DesignOf Reference to a 

class or operation 

model element 

stereotyped 

<<SafetyCritical>> 

(5.2.17) 

[1..*] See relationship: Describes 

Design Of 

5.2.23 <<Formalism>> 

Definiton: 

See related concept. 

Related Concept: 

Formalism (3.2.3.16) 

Base Classes: 

Base Class Usage Rationale 

Collaboration To indicate that the collaboration is designed or verified by the 

use of formal methods (3.2.3.16) 

Class To indicate that the class is designed or verified by the use of 

formal methods (3.2.3.16) 

Operation To indicate that the operation is designed or verified by the use of 

formal methods (3.2.3.16) 

Tags: (refer to section 3.2.3.16 for details) 

Name Type Multiplicity Description 

Method Enumeration [0..*] See attribute: Methods 
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Name Type Multiplicity Description 

FormalismOf Reference to a 

class or operation 

model element 

stereotyped 

<<SafetyCritical>> 

(5.2.17) 

[1..*] See relationship: Describes 

Formalism Of 

5.2.24 <<Complexity>> 

Definiton: 

See related concept. 

Related Concept: 

Complexity (3.2.3.17) 

Base Classes: 

Base Class Usage Rationale 

Collaboration To describe a complexity (3.2.3.17) aspect (e.g. coupling using a 

specific measure, … etc) of a collaboration 

Class To describe a complexity (3.2.3.17) aspect (e.g. number of entry 

points of code, … etc) of a class 

Operation  To describe a complexity (3.2.3.17) aspect (e.g. level of nesting, 

… etc) of an operation 

Relationship To describe a complexity (3.2.3.17) aspect (e.g. coupling using a 

specific measure, … etc) of a relationship 

Tags: (refer to section 3.2.3.17 for details) 

Name Type Multiplicity Description 

Measure Enumeration [0..1] See attribute: Measure 

Value Expression [0..1] See attribute: Value 



Carleton University, TR SCE-06-19  Decermber 2006 

 108

Name Type Multiplicity Description 

ComplexityOf Reference to a 

class or operation 

model element 

stereotyped 

<<SafetyCritical>> 

(5.2.17) 

[1..*] See relationship: Describes 

Complexity Of 

5.2.25 <<Interface>> 

Definiton: 

See related concept. 

Related Concept: 

Interface (3.2.3.18) 

Base Classes: 

Base Class Usage Rationale 

Class Indicates that the class acts as an interface (3.2.3.18) to some 

other class 

Tags: (refer to section 3.2.3.18 for details) 

Name Type Multiplicity Description 

IsBetweenHardwareAndSoftware Boolean [0..1] See attribute: Is 

Between 

Hardware And 

Software 

InterfaceFor Reference to a 

class model 

element 

stereotyped 

<<SafetyCritical>> 

(5.2.17) 

[1..*] See relationship: 

Is Interface For 
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Name Type Multiplicity Description 

ProtocolID String [0..1] See attribute: 

Protocol ID 

InputFunctionParameter Expression [0..*] See attribute: 

Input Function 

Parameters 

OutputFunctionParameter Expression [0..*] See attribute: 

Output Function 

Parameters 

5.2.26 <<Concurrent>> 

Definiton: 

See related concept. 

Related Concept: 

Concurrent (3.2.3.19) 

Base Classes: 

Base Class Usage Rationale 

Class To identify the concurrency (3.2.3.19) role (e.g. active, passive, 

resource, … etc) that a specific class assumes in the model 

Tags: (refer to section 3.2.3.19 for details) 

Name Type Multiplicity Description 

Role Enumeration [0..1] See attribute: Role 

IsShared Boolean [0..1] See attribute: Is Shared 
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Name Type Multiplicity Description 

TriggeredEvent Reference to a 

model element 

stereotyped 

<<Event>> 

(5.2.15) (or its 

subclass 

<<Reaction>> 

(5.2.16)) 

[0..*] See relationship: Triggers 

Parameter Expression [0..*] See attribute: Parameters 

5.2.27 <<Defensive>> 

Definiton: 

See related concept. 

Related Concept: 

Defensive (3.2.3.20) 

Base Classes: 

Base Class Usage Rationale 

Class To specify that the class employs a defensive programming 

approach (3.2.3.20) and describes the reactions to actions that are 

defended against  

Operation To specify that the operation employs a defensive programming 

approach (3.2.3.20) and describes the reactions to actions that are 

defended against 

Tags: (refer to section 3.2.3.20 for details) 

Name Type Multiplicity Description 

DefendableInput Expression [1..*] See attribute: Defendable 

Inputs 
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Name Type Multiplicity Description 

Reaction Reference to a 

model element 

stereotyped 

<<Reaction>> 

(5.2.16) 

[1..*] See relationship: Performs 

5.2.28 <<Configurable>> 

Definiton: 

See related concept. 

Related Concept: 

Configurable (3.2.3.22) 

Base Classes: 

Base Class Usage Rationale 

Class To specify that the class can be configured (3.2.3.22) to produce a 

different configuration (3.2.3.21) with a different behaviour 

Tags: (refer to section 3.2.3.22 for details) 

Name Type Multiplicity Description 

Kind Enumeration [0..1] See attribute: Kind

When Enumeration [0..1] See attribute: 

When 

DefaultConfiguration Reference to a model 

element stereotyped 

<<ConfigurationContext>> 

(5.2.8) 

[1..1] See relationship: 

Is Defaulted To 

ProducibleConfiguration Reference to a model 

element stereotyped 

<<ConfigurationContext>> 

(5.2.8) 

[1..*] See relationship: 

Is Configurable To
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5.2.29 <<Loadable>> 

Definiton: 

See related concept. 

Related Concept: 

Loadable (3.2.3.23) 

Base Classes: 

Base Class Usage Rationale 

Class To specify that the class can be loaded (3.2.3.23) on some other 

configurable (3.2.3.22) class to produce a different configuration 

(3.2.3.21) 

Tags: (refer to section 3.2.3.23 for details) 

Name Type Multiplicity Description 

LoadableOn Reference to a model 

element stereotyped 

<<Configurable>> (5.2.28) 

[1..*] See relationship: Is 

Loadable On 

BaseConfiguration Reference to a model 

element stereotyped 

<<ConfigurationContext>> 

(5.2.8) 

[0..*] See relationship: 

Requires 

ResultantConfiguration Reference to a model 

element stereotyped 

<<ConfigurationContext>> 

(5.2.8) 

[1..*] See relationship: 

Produces 

5.2.30 <<Configurator>> 

Definiton: 

See related concept. 
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Related Concept: 

Configurator (3.2.3.24) 

Base Classes: 

Base Class Usage Rationale 

Class To specify that the class can configure configurable (3.2.3.22) 

classes to change the configuration (3.2.3.21) (and thus produce a 

different behaviour) 

Operation To specify that the invoking the operation can configure 

configurable (3.2.3.22) classes to change the configuration 

(3.2.3.21) (and thus produce a different behaviour) 

Tags: (refer to section 3.2.3.24 for details) 

Name Type Multiplicity Description 

ConfigurableEntity Reference to a 

model element 

stereotyped 

<<Configurable>> 

(5.2.28) 

[1..*] See relationship: Configures 

ConfigurationEntity Reference to a 

model element 

stereotyped 

<<Loadable>> 

(5.2.29) 

[1..*] See relationship: Loads 

5.2.31 <<Replicated>> 

Definiton: 

See related concept. 

Related Concept: 

Replicated (3.2.3.25) 
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Base Classes: 

Base Class Usage Rationale 

Class To indicate that class is replicated (3.2.3.25) 

Tags: (refer to section 3.2.3.25 for details) 

Name Type Multiplicity Description 

ID String [0..1] See attribute: ID (Replicated) 

ReplicationGroupID String [0..1] Identifies the ReplicationGroup 

(3.2.3.27), specified using the 

<<ReliabilityContext>> (5.2.2) 

stereotype, which owns this 

replicated instance. 

See relationship:  Owns 

(ReplicationGroup) 

5.2.32 <<Comparator>> 

Definiton: 

See related concept. 

Related Concept: 

Comparator (3.2.3.26) 

Base Classes: 

Base Class Usage Rationale 

Class To indicate that the class is a comparator (3.2.3.26) that compares 

the outputs of replicated (3.2.3.25) classes 

Operation To indicate that invoking the operation compares (3.2.3.26) the 

outputs of replicated (3.2.3.25) classes 
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Tags: (refer to section 3.2.3.26 for details) 

Name Type Multiplicity Description 

ReplicationGroupID String [0..1] Identifies the 

ReplicationGroup (3.2.3.27), 

specified using the 

<<ReliabilityContext>> (5.2.2) 

stereotype, which owns this 

replicated instance. 

See relationship:  Owns 

(ReplicationGroup) 

PolicyParameter Expression or 

Enumeration 

[0..*] See attribute: Policy 

Parameters (Comparator) 

ComparedEntity Reference to a 

model element 

stereotyped 

<<Replicated>> 

(5.2.31) 

[2..*] See relationship: Compares 

(Comparator) 

5.3 Examples 

This section presents examples of software models using the proposed UML profile. The 

examples are explained in detail, and they serve to help the reader better understand the 

UML profile and how it can be used.This thesis discusses a total of nine examples (plus a 

case study in section 7). Three of those examples are discussed below as they primarily 

use concepts (and stereotypes) that are key to the airworthiness standard (e.g., the notion 

of software level) or that are not supported by other UML profiles. The reminaing six 

examples are discussed in . Appendix G. The examples are also stereotyped according to 

Gomaa’s class classification as presented in [7] and summarized in Appendix E. 

5.3.1 Hardware/Software Interfaces 

The example in Figure 8 shows a Kalman filter and how it connects to the radar that 

provides its input and a simulator of the outside world’s events.  
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Kalman filters are recursive functions. Therefore, KalmanFilter is stereotyped with 

<<ImplementationStyle>> (5.2.11) whose “Kind” tagged value is set to “Recursive”. 

The project in which this system is developed has a coding standard requirement that says 

that “recursive algorithms shall not be used”. Therefore the KalmanFilter class is also a 

deviation, or a violation, of the coding standard requirement, and is stereotyped with 

<<Deviation>> (5.2.10) whose “Kind” tagged value is set to 

“UsingRecursiveAlgorithm”. The “Reference” tagged value is set to “CodingStandard” to 

indicate that using recursive algorithms is a deviation from, or a violation of, the project’s 

coding standard. 

Furthermore, filters are time-related functions. Therefore, KalmanFilter is also 

stereotyped with <<BehaviouralStyle>> (5.2.12) whose “Kind” tagged value is set to 

“Time-Related”. 

Now, Kalman filters process radar outputs. Since this example has a software 

implementation for the Kalman filter, it has to interface with the actual radar hardware on 

the aircraft. For this reason, RadarInterface is available to provide an interface between 

the software Kalman filter and the hardware radar device. Thus, RadarInterface is 

stereotyped with <<Interface>> (5.2.25) whose “IsBetweenHardwareAndSoftware” 

tagged value is set to “true”. The “InterfaceFor” tagged value indicates that 

RadarInterface is an interface for the actual radar hardware. 

The testing of such systems is often performed in system integration labs. In other words, 

the software is not loaded on the aircraft and the aircraft flown just to perform software 

unit or integration testing. That would just be too expensive! Therefore, a software 

simulator is developed to simulate world events that happen outside of the aircraft. This 

simulator is RealWorldEventSimulator and is stereotyped with <<Simulator>> 

(5.2.21). The “SimulatedEntity” tagged value indicates that it simulates the input to 

RadarInterface. Furthermore, the “SimulationParameter” tagged value indicates that 

the inputs exhibit a stochastic Poisson process with an average inter-arrival time of 20 

milliseconds. 
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All the information described above is relevant for two purposes. First, it describes how 

software was designed to improve the development process - this was achieved, as 

described above, by using a simulator to improve the testing process and a 

hardware/software interface to provide communication between radar hardware and 

Kalman filter software. Simulators are often used to test systems [1]. Therefore, the 

whole diagram is stereotyped with <<DesignContext>> (5.2.7) to indicate that this design 

setup is of special interest. Secondly, the modeled classes contain information that is 

relevant for the software certification aspects. For example, the airworthiness standard 

specifies that the certification authorities need to know about all hardware/software 

interfaces and deviations from plans or standards. Therefore, the diagram is stereotyped 

with <<CertificationContext>> (5.2.6) to indicate that it contains information relevant for 

the certification of the software in this diagram. 

<<DesignContext>>
<<CertificationContext>> <<algorithm>>

<<Simulator>>
{SimulatedEntity=“RadarInput”,

SimulatorParameter=(Poisson, Lamba=20ms)}

RealWorldEventSimulator

<<algorithm>>

<<ImplementationStyle>> {Kind=Recursive}

<<Deviation>>
{Kind=UsingRecursiveAlgorithm

Reference=CodingStandard}

<<BehaviouralStye>> {Kind=Time-Related}

KalmanFilter

<<input device interface>>

<<Interface>>
{IsBetweenHardwareAndSoftware=true

InterfaceFor=RadarHardware}

RadarInterface

Reads Simulator Outputs

Reads Radar Outputs

1

1

1

1

 
Figure 8: Kalman filter processing input, through an interface, from a simulator 

(structure).  

5.3.2 Contributions to Failure Conditions 

The example Figure 9 shows software that controls the landing wheels of the aircraft.  

PilotKeyboardInterface is an interface to the keyboard used by the aircraft’s pilots to 

deploy or hide the landing wheels when desired. An aircraft normally has two pilots, so it 

is likely that there will be several keyboards that can command 

LandingWheelsController to deploy or hide the landing wheels.  
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LandingWheelsController communicates with the landing wheel hardware, through 

LandingWheelsInterface, and can command it to hide or deploy the wheels. The 

wheels are deployed when the aircraft is on the ground or about to land. Since 

LandingWheelsInterface is an interface for the landing wheel hardware, it is 

stereotyped with <<Interface>> (5.2.25), its “IsBetweenHardwareAndSoftware” tagged 

value is set to “true”, and its “InterfaceFor” tagged value is set to “LandingWheels”. 

LandingWheelsController is a safety-critical element as well because it must ensure 

that the landing wheels are deployed when the aircraft is on the ground or it is at a low 

altitude because it is landing. If the landing wheels are not deployed when the aircraft is 

on the ground or is landing, then this could result in fatal injuries to the aircraft 

occupants. In the context of airworthiness, such software is assigned is assigned level B. 

Therefore, LandingWheelsController is stereotyped with <<SafetyCritical>> (5.2.17) 

and its “CriticalityLevel” tagged value is set to “B”. This is also why this diagram was 

stereotyped with <<SafetyContext>> (5.2.1). Because it depends on 

LandingWheelsInterface, the airworthiness rules specify that 

LandingWheelsInterface must also be safety-critical and have a software level equal to 

at least the highest level of all classes that depend on it. In this example, 

LandingWheelsInterface is stereotyped with <<SafetyCritical>> (5.2.17) and is 

assigned “CriticalityLevel” equal to that of LandingWheelsController, namely level 

“B”.  

To ensure a higher level of safety, LandingWheelsController implements defensive 

programming mechanisms by ensuring that the pilot does not attempt to hide the landing 

wheels when they shouldn’t. Defensive programming is common when developing user 

interfaces. In this example, LandingWheelsController defends against the pilot’s 

attempt to hide the landing wheels when the aircraft’s altitude is less than 100 meters by 

keeping the landing wheels deployed. This is explicitly specified by stereotyping 

LandingWheelsController with the <<Defensive>> (5.2.27) stereotype and specifying 

its “DefendableInput” and “Reaction” tagged values. (The KeepWheelsDeployed model 

element stereotyped <<Reaction>> is not shown in the diagram: It would be an operation 

of the LandingWheelsInterface class.)  
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LandingWheelsController determines the aircraft’s altitude by reading the radar output 

from RadarInterface. RadarInterface was explained in detail in section 5.3.1. 

However, it has also been stereotyped here with <<SafetyCritical>> (5.2.17) to explicitly 

specify the fact that some safety-critical functionality, such as 

LandingWheelsController, depends on it. Moreover, it has also been stereotyped with 

<<Complexity>> (5.2.24) and its “Measure” and “Value” tagged values indicate that the 

implementation must not have a “Big-O” larger than “n2” (where the meaning of “n” is 

dependent on the algorithm in context). This is because radars usually have high 

frequency inputs, so the code of the corresponding interfaces must be optimized. 

Furthermore, RadarInterface is monitored by RadarDataValidator. 

RadarDataValidator is a monitor whose purpose is to ensure that RadarInterface 

produces high-integrity information (i.e. high precision and accuracy). This is specified 

through the <<Monitor>> (5.2.20) stereotype that is applied on RadarDataValidator. 

Because the purpose of RadarValidatorDataValidator is to ensure the integrity of the 

data, its “Kind” tagged value is set to “Integrity”. Furthermore, the “MonitoredEntity” 

tagged value explicitly identifies the class that is monitored, namely RadarInterface. 

This is also why this diagram was stereotyped <<IntegrityContext>> (5.2.3). 

Finally, this diagram was also stereotyped with <<ReliabilityContext>> (5.2.2) because it 

is crucial that the modeled classes be reliable to the requirements. For example, the 

requirements specified by the <<Defensive>> (5.2.27) stereotype on 

LandingWheelsController must be correctly implemented (e.g. it must not allow hiding 

the wheels for altitudes less than 100 meters, and not greater than 100 meters!). 



Carleton University, TR SCE-06-19  Decermber 2006 

 120

<<SafetyContext>>
<<ReliabilityContext>>
<<IntegrityContext>>

<<state dependent control>>

<<SafetyCritical>> {CriticalityLevel=B}

<<Defensive>>
{DefendableInput=

‘Altitude < 100 m && Command=“HideWheels”’
Reaction=KeepWheelsDeployed}

LandingWheelsController

<<algorithm>>

<<Monitor>> {Kind=Integrity
MonitoredEntity=RadarInterface}

RadarDataValidator

<<input device interface>>

<<SafetyCritical>> {CriticalityLevel=B}

<<Complexity>> {Measure=Big-O, Value=“n2”},
ComplexityOf=RadarInterface}

<<Interface>>
{IsBetweenHardwareAndSoftware=true

InterfaceFor=RadarHardware}

RadarInterface

<<input device interface>>

PilotKeyboardInterface

1
1

Monitors
*

1
Commands

Reads Radar Outputs1 1

<<output device interface>>

<<Interface>>
{IsBetweenHardwareAndSoftware=true

InterfaceFor=LandingWheels}

<<SafetyCritical>> {CriticalityLevel=B}

LandingWheelsInterface

Commands

1

1

 
Figure 9: Landing wheel controller processing user and radar inputs (structure).  

5.3.3 Software Configurations 

The diagram in Figure 10 shows a configurable user interface. The user interface interacts 

with the users by displaying text in their language of preference. UserInterface itself is 

language-independent. It reads and displays textual strings in any of three languages: 

English, French, and German. This is achieved through UserInterfaceDictionary, 

which is stereotyped with <<Configurable>> (5.2.28) to indicate that the user can change 

its configuration. The “Kind” tagged value is set to “Lookup-Table” and the “When” 

tagged value is set to “Run-Time” to indicate that look-up tables can be loaded into it at 

run-time to change its configuration. The “DefaultConfiguration” tagged value specifies 

that the “EnglishInterface” is the default configuration for UserInterfaceDictionary. 

The possible configurations that can result from such a load are listed in the 

“ProducibleConfiguration” tagged values. In this example, we have three possible 

configurations that can result from such a load: “EnglishInterface”, “FrenchInterface”, 

and “GermanInterface”.  
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DictionaryLoader is the actual software than can perform the software load and 

therefore change the software configuration. Thus, it is stereotyped with 

<<Configurator>> (5.2.29). The “ConfigurableEntity” tagged value identifies the class 

that can be configured, namely UserInterfaceDictionary. The “ConfigurationEntity” 

tagged values identify the classes that can be loaded on the “ConfigurableEntity”, namely 

EnglishDictionaryTable, FrenchDictionaryTable, and GermanDictionaryTable, 

which are stereotyped with <<Loadable>> (5.2.29) to indicate that they can be loaded in 

appropriate situations. The “LoadableOn” tagged values are set to 

“UserInterfaceDictionary” to indicate that they are loadable on 

UserInterfaceDictionary, and the “ResultantConfiguration” specifies which 

configuration is produced by loading EnglishDictionaryTable, 

FrenchDictionaryTable, and GermanDictionaryTable, which are 

EnglishInterface, FrenchInterface, and GermanInterface, respectively. 

<<ConfigurationContext>>

<<coordinator>>

<<Configurator>>
{ConfigurableEntity=‘UserInterfaceDictionary’,
ConfigurationEntity=‘EnglishDictionaryTable’,
ConfigurationEntity=‘FrenchDictionaryTable’,
ConfigurationEntity=‘GermanDictionaryTable’}

DictionaryLoader

<<entity>>

<<Loadable>>
{LoadableOn=UserInterfaceDictionary,

ResultantConfiguration=GermanInterface}

GermanDictionaryTable

<<entity>>

<<Loadable>>
{LoadableOn=UserInterfaceDictionary,

ResultantConfiguration=EnglishInterface}

EnglishDictionaryTable

<<entity>>

<<Loadable>>
{LoadableOn=UserInterfaceDictionary,

ResultantConfiguration=FrenchInterface}

FrenchDictionaryTable

<<entity>>

<<Configurable>>
{Kind=Lookup-Table, When=Run-Time,
DefaultConfiguration=‘EnglishInterface’,

ProducibleConfiguration=‘EnglishInterface’,
ProducibleConfiguration=‘FrenchInterface’,
ProducibleConfiguration=‘GermanInterface’,

UserInterfaceDictionary

<<user interface>>

UserInterface

1

Loads
1

11 Configures

1

1

Reads

<<entity>>

DictionaryTable

1

Reads
1

 
Figure 10: User interface language configurations (structure).  
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The diagram is stereotyped with <<ConfigurationContext>> (5.2.8) to indicate that it 

contains information that is relevant to changing software configurations. 

5.4 Development Methodology 

The proposed UML profile provides a mechanism to model safety information in UML 

models. However, such mechanism is only a part of an overall process for developing 

airworthiness-compliant software. A methodology for developing airworthiness-

compliant software products is shown in Figure 11. In practice, it is likely that a step 

starts before its previous step is fully completed and closed. The different steps are 

further described below. 

Start
S-1: Define the system’s 

high-level functional 
requirements

S-2: Define the system 
architecture

S-3: Develop the detailed 
functional and non-functional, 

excluding safety, 
requirements

S-5: Perform a critical review
S-6: Are any 

issues 
identified?

End

No

Yes

S-4: Perform a safety 
assessment and develop 

safety requirements

S-7: Develop the subsystems’ 
detailed design while 

monitoring safety
S-8: Certify system

 
Figure 11: Development methodology of airworthiness-compliant software products.  

Each step in Figure 11 is explained in Table 4. 

Step Description 

S-1 Define the system’s high-level functional requirements 
Activity: The system boundaries, behaviour, and high-level requirements are 
defined. The system’s boundaries define what consistutes part of the system, and 
what does not. This is an important aspect for analysing the safety aspects of the 
system, as whether a system is safe or not depends on what is considered part of 
the system and what is not. In addition, the system’s general behaviour, along with 
the high-level functional requirements, are defined. At the end of this step, the 
system’s behaviour is understood and documented.  
Output: The documented behaviour of the system, usually presented as the 
system’s high-level functional requirements based on the definition of the system 
boundaries. 
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Step Description 

S-2 Define the system architecture 
Activity: The system architecture is defined based on its high-level functional 
requirements. The various subsystems are defined, and the role of each subsystem 
in implementing the system’s high-level functional requirements are defined and 
documented. As a result, the high-level functional requirements for each subsystem 
are defined. The proposed UML profile may be used to model the system 
architecture. 
Output: The system architecture, including the identification and definition of its 
subsystems. 

S-3 Develop the detailed functional and non-functional, excluding safety, requirements 
Activity: Detailed functional requirements are developed for the system and its 
subsystems. In addition, non-functional requirements, excluding safety 
requirements, are developed. 
Output: Detailed functional and non-functional, excluding safety, requirements of 
the system and its subsystems. 

S-4 Perform a safety assessment and develop safety requirements 
Activity: By this stage, the behaviour of the system and its subsystems is already 
understood. In this step, therefore, a safety assessment of the system is performed 
based on its architecture and intended behaviour, and using one or more safety 
assessment methods such as the ones identified in section 2.1. The results of the 
safety assessment are translated into safety requirements, and then the safety 
requirements are assigned to the various subsystems. This step includes USAGE 1 
as defined in section 2.4. 
Output: Safety hazards identified in the safety assessment, and safety 
requirements for the system and its subsystems. 

S-5 Perform a critical review 
Activity: The output of steps S-1 – S-4 are checked for consistency among each 
other. Areas of interest in this step are whether the safety requirements are 
complete with respect to the functional and non-functional requirements, and 
whether there are any ambiguous, missing, or conflicting requirements. In addition, 
the system architecture is analysed to determine whether there exists a more 
suitable architecture for the identified safety requirements. Thus, the results of the 
previous S1 – S4 steps iteration are analysed, which will be later used to determine 
whether another iteration is necessary or not. In practice, such critical reviews are 
common to hold with the project’s customer at selected milestones. 
Output: A list of identified issues to be fixed. This list may be empty, but this will 
be surprising unless steps S-1 – S-5 have already gone through at least two 
iterations. 
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Step Description 

S-6 Are any issues identified? 
Activity: The results from step S-5 are analysed. If any issues are encountered, 
step S-1 is revisited to correct all identified issues. Otherwise, development is 
progressed to step S-7. 
Output: The decision on whether to perform another iteration of steps S-1 – S-5 or 
not. 

S-7 Develop the subsystems’ detailed design while monitoring safety 
Activity: The subsystems’ detailed design is developed. The detailed design will 
also include the specification of the system’s events of interest, and the desired 
reactions to those events. The definition of the events and reactions will depend on 
the safety requirements of the system. The proposed UML profile is used to design 
the subsystems (USAGE 2 in section 2.4), and the design decisions are justified 
(USAGE 3 in section 2.4). The design elements are traced back to the requirements 
using the proposed UML profile’s stereotypes. While the subsystems are being 
designed, the design’s conformance to the safety requirements is continuously 
monitored (USAGE 4 in section 2.4). In practice, software implementation also 
occurs in this step. 
Output: The detailed design of the subsystems, the system events and reactions, 
the justifications of the design decisions, and the safety monitoring information. 

S-8 Certify system 
Activity: The project’s safety and airworthiness engineers are engaged with the 
certification authority to demonstrate the project’s compliance with the 
certification requirements. In this step, safety information is obtained from the 
software (USAGE 5 in section 2.4), and evidence of performing relevant activities 
(such as USAGE 1, USAGE 2, USAGE 3, and USAGE 4 in section 2.4) are 
presented. Any issues identified by the certification authority are corrected and the 
certification is ensured to completion. 
Output: Successful certification of the system. 

Table 4: Details of the development methodology steps. 
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6 GENERATION OF CERTIFICATION INFORMATION 

Now that a UML profile is defined, it can be used to model software that requires 

certification according to the airworthiness standard. This section shows how a UML 

model using the proposed UML profile can be used to automatically generate information 

that can either be submitted to the certification authorities, or can be used to track issues 

of relevance to the certification authorities. In either case, this information improves 

communication between airworthiness engineers and software engineers. The 

information required for submission to the certification authorities for each software level 

is listed in section 11 and annex A in the airworthiness standard, RTCA DO-178B [4]. 

6.1 Technological Requirements 

In order to be able to generate certification information from UML models, there are 

technological requirements that software development tools must support. Those 

requirements can be summarized in one requirement, namely the ability to search UML 

models based on the stereotypes that are applied to model elements and the values of the 

stereotypes’ tagged values.  

For example, consider a scenario when one needs to identify all safety-critical model 

elements. In this case, the modeling tool must be able to search the UML model and 

identify all model elements, such as classes in class diagrams, that have been stereotyped 

with <<SafetyCritical>> (5.2.17). If the user of the tool needs to identify all safety-

critical model elements that are assigned software level A, for example, then the tool 

must be able to read the “CriticalityLevel” tagged value of the <<SafetyCritical>> 

(5.2.17) stereotype and identify when it is set to “A”. This is why the proposed UML 

profile emphasizes specifying information in machine-readable language. 

In practice, there are several possible methods to achieve this technological requirement 

of being able to search UML models. Below is a list of some methods to guide the users 

of the proposed UML profile. 
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6.1.1 Integrated Support in UML Modeling Tools 

One convenient method to extract safety information from UML models is to provide a 

mechanism to do so in the UML modeling tool itself. UML modeling tools already offer 

some sort of search capabilities for the designers. For example, ARTiSAN Studio [31], 

which is a UML modeling tool from ARTiSAN Software Inc., allows designers to 

identify where specific model elements are used. That is one example of ARTiSAN’s 

search capabilities. Another example of a modeling tool is International Business 

Machines Corporation’s (IBM) Rational Software Architect [32]. A third example is 

Telelogic’s Rhapsody [33]. This UML model-driven development tool allows designers 

to search UML models for uses of specific stereotypes. In addition, it supports the Visual 

Basic for Applications (VBA) scripting language, which allows modelers to write their 

own scripts and execute them on models. This could be used to perform search queries.  

The Eclipse Modeling Framework (EMF) for Java [34] is a popular, and easily 

extensible, software development framework. Some of EMF’s extensions include the 

capability to use the Object Constraint Language (OCL) [35] to specify search queries on 

UML models, and then write Java code to execute them. Examples of the search 

capabilities of this technology include the capability to search for all objects that are 

instances of a specific class. However, the current state of this technology does not 

support searching UML models based on the stereotypes applied to model elements and 

the values assigned to the tagged values. Nevertheless, the integration of EMF and OCL 

is a promising approach that should be easibly extensible to support search queries based 

on stereotypes and tagged values. 

6.1.2 Exporting UML Models using XMI 

XMI [36] is an OMG standard for representing, and therefore exchanging, models and 

metadata in an XML-based language.  

In practice, UML modeling tools can export UML models in the XMI language. This 

would create an XML file containing all the model data. Since XMI is a standard format, 

it can be imported by any other tool, thus establishing a common format across different 
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tools. For example, imagine project A that is using Rational Software Architect to model 

its software. Further, assume that project A is similar in nature to a previously completed 

project B that used ARTiSAN Studio to model its software. Project A now wants to reuse 

the software model from project B. To achieve this, one would use a feature from 

ARTiSAN Studio that would export an XMI file containing all the software model for 

project B. Then, project A can import this XMI file using an import XMI file feature in 

Rational Software Architect. Thus, the model would be transfered from project B to 

project A. 

In our case of generating certification information, the model would be exported from the 

modeling tool by generating an XMI file. Once an XMI file containing the software 

model is available, it can be easily parsed and searched. This is possible in many ways, 

but the most appropriate method would probably involve the use of the Extensible 

Stylesheet Language (XSL) [37]. XSL is used to parse and transform XML-based files, 

such as XMI files, to any desired format. Such transformation is achieved by using XSL 

files called stylesheets. The purpose of XSL stylesheets is then to display the same model 

data in different formats or views, just like the Model-View-Controller (MVC) software 

pattern displays the same model information in different views. Using this approach, XSL 

stylesheets can be developed to execute search queries on the model data in the XMI 

files. 

6.2 Examples 

The examples presented below are specified in a high-level Structured Query Language 

(SQL)-like language. It is intended to be pseudocode-like, result in shorter text (see 

below), and be implementation-independent. Developers can also use them to implement 

using existing development tools and frameworks (refer to documentation of the existing 

tools and frameworks for more detail). It does not require the reader to have any 

knowledge of other tools or frameworks. The grammar for the language used is specified 

in an extension of the Extended Backus-Naur Form (EBNF), which is a popular syntax 

for specifiying languages [38]. The EBNF language itself is specified in the EBNF 
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standard [39]. One popular example of a language specified in EBNF is the Ada language 

as specified in the Ada 95 Language Reference Manual [40]. 

The EBNF meta-symbols used in this section are: 

1. “::=” means “is defined as”. 

2. “|” means “or”. 

3. Literal strings are enclosed in double-quotes “”. 

4. Angle brackets “<>” are used around category names. 

5. Optional items (zero or one) are enclosed in square brackets “[]”. 

6. Repetitive items (zero or more) are enclosed in braces “{}”. 

The grammar for the search language used in this section, represented in EBNF form, is: 

<search-query> ::= "SEARCH FOR " <subject> [" " <stereotype-criteria>] 

<subject> ::== "all model elements" 

<stereotype-criteria> ::= "STEREOTYPED WITH (" <stereotype-criterion> ") 
{" AND STEREOTYPED WITH (" <stereotype-criterion> } ")" 

<stereotype-criterion> ::= "<<" <stereotype-name> ">>" [<tagged-value-
criteria] 

<stereotype-name> ::= <string> 

<tagged-value-criteria> ::= "WITH TAGGED VALUE (" <tagged-value-
criterion> ") " {"AND WITH TAGGED VALUE (" <tagged-value-criterion> ")"} 

<tagged-value-criterion> ::= <tagged-value-name> "=" <tagged-value> | 
<tagged-value-element-dereference> "IS " <stereotype-criteria> 

<tagged-value-element-dereference> ::= <tagged-value-name> ".Element" 

<tagged=value-name> ::= <string> 

The <tagged-value-element-dereference> is used to obtain the model element to 

which a tagged value refers.  

6.2.1 Hardware/Software Interfaces 

Section 11.1 bullet a. in the airworthiness standard RTCA DO-178B [4] requires that the 

project’s Plan for Software Aspects of Certification (PSAC), which is submitted to the 
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certification authority, include a description of hardware/software interfaces in the 

system. Furthermore, section 11.9 bullet f. in the airworthiness standard RTCA DO-178B 

[4] requires that hardware/software interfaces be documented and the requirements of 

their protocols, frequency of input, and frequency of outputs be presented. 

A list of hardware/software interfaces can be extracted from the model using the 

following search query: 

SEARCH FOR all model elements STEREOTYPED WITH (<<Interface>> 

WITH TAGGED VALUE (IsBetweenHardwareAndSoftware = true)) 

From the results of this query, the “ProtocolID”, “InputFunctionParameter”, and 

“OutputFunctionParameter” tagged values of the <<Interface>> (5.2.25) stereotype can 

be read to present the information described above. For example, executing this search 

query on the model in Figure 8 gives the following results: RadarInterface. 

6.2.2 Contributions to Failure Conditions 

Section 11.1 bullet c. in the airworthiness standard RTCA DO-178B [4] requires that the 

project’s PSAC include a description of software’s contributions to failure conditions. 

A list of software that can contribute to failure conditions, along with the severity of the 

failure conditions, can be extracted from the model using the following search query: 

SEARCH FOR all model elements STEREOTYPED WITH 

(<<SafetyCritical>>) 

From the results of this query, the “CriticalityLevel” tagged value of the 

<<SafetyCritical>> (5.2.17) stereotype can be read to identify the failure condition levels 

that each safety-critical software component contributes to. For example, executing this 

search query on the model in Figure 9 gives the following results: 

LandingWheelsController, LandingWheelsInterface, RadarInterface. 



Carleton University, TR SCE-06-19  Decermber 2006 

 130

6.2.3 COTS Software 

Section 11.1 bullet g. in the airworthiness standard RTCA DO-178B [4] requires that the 

project’s PSAC include a description of COTS software used.  

A list of COTS software can be extracted from the model using the following search 

query: 

SEARCH FOR all model elements STEREOTYPED WITH (<<Nature>> 

WITH TAGGED VALUE (Kind = COTS)) 

For example, executing this search query on the model in Figure 17 (discussed in 

Appendix G.1) gives the following results: SafeFlightPaths. 

6.2.4 Software Partitioning 

Section 11.3 bullet f. in the airworthiness standard RTCA DO-178B [4] requires that the 

project specify which methods are used to verify the integrity of partitions performed. 

Furthermore, section 11.9 bullet h. requires that partitioning requirements allocated to 

software, as well as the software level(s) for each partition, be specified. 

A list of partitions can be extracted from the model using the following search query: 

SEARCH FOR all model elements STEREOTYPED WITH 

(<<Partition>>) 

From the results of this query, the “PartitionedFrom” tagged value of the <<Partition>> 

(5.2.18) stereotype can be read to determine which software component this partition was 

partitioned from. Furthermore, the “Reference” tagged value of the <<Partition>> 

(5.2.18) stereotype can be read to determine the requirement that resulted in this partition. 

For example, executing this search query on the model in Figure 18 (discussed in 

Appendix G.2) gives the following results: AutoPilotController, 

ConvertibleSteeringInformation. 

A list of partitions that have been assigned software levels, along with the software level 

for each partition, can be extracted from the model using the following search query: 
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SEARCH FOR all model elements STEREOTYPED WITH 

(<<Partition>>) AND STEREOTYPED WITH (<<SafetyCritical>>) 

From the results of this query, the “CriticalityLevel” tagged value of the 

<<SafetyCritical>> (5.2.17) stereotype can be read to determine the software level for 

each partition. For example, executing this search query on the model in Figure 18 gives 

the following results: AutoPilotController. 

6.2.5 Requirements and Traceability 

Section 11.9 in the airworthiness standard RTCA DO-178B [4] requires that the software 

requirements data be available. Furthermore, the airworthiness standard RTCA DO-178B 

[4] requires that the software design (e.g. UML model) be traced to the software 

requirements for software assigned level D or above. It also requires that the source code 

be traceable to the requirements for software assigned level C or above. 

A list of model elements traceable to software requirements can be extracted from the 

model using the following search query: 

SEARCH FOR all model elements STEREOTYPED WITH 

(<<Requirement>>) 

For example, executing this search query on the model in Figure 19 (discussed in 

Appendix G.3) gives the following results: PilotKeyboardInterface, Commands, and 

the diagram itself. Those are stereotype with <<Requirement>> (5.2.9) whose IDs, 

respectively, are: LREQ 1, LREQ 2, HREQ 1. 

For requirements that are only relevant for safety purposes, the following search query 

can be used: 

SEARCH FOR all model elements STEREOTYPED WITH 

(<<Requirement>> WITH TAGGED VALUE (Kind = Safety)) 

For example, executing this search query on the model in Figure 19 (discussed in 

appendix G.3) gives the following results: PilotKeyboardInterface, Commands, and the 

diagram itself. Those are stereotype with <<Requirement>> (5.2.9) whose IDs, 

respectively, are: LREQ 1, LREQ 2, HREQ 1. 
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For a list of all design decisions that are a result of safety-related requirements, the 

following search query can be used: 

SEARCH FOR all model elements STEREOTYPED WITH (<<Rationale>> 

WITH TAGGED VALUE (Reference.Element IS STEREOTYPED WITH 

(<<Requirement>> WITH TAGGED VALUE (Kind = Safety)))) 

The search query can be read as follows: Find all model elements that are stereotyped 

with <<Rationale>> (5.2.14). Then, pick only those elements where the “Reference” 

tagged value points to safety requirements (as indicated in the model with the 

<<Requirement>> (5.2.9) stereotype and its “Kind” tagged value). Thus, the above 

search query specifies that the results are all model elements that are stereotyped with 

<<Rationale>> (5.2.14), and where the “Reference” tagged value of the <<Rationale>> 

(5.2.14) stereotype is a reference to another model element stereotyped with 

<<Requirement>> (5.2.9) whose “Kind” tagged value is “Safety”. For example, 

executing this search query on the model in Figure 19 gives the following result: 

SafeFlightPaths. 

6.2.6 Multiple-Version Dissimilar Software 

Section 11.1 bullet g. in the airworthiness standard RTCA DO-178B [4] requires that the 

project’s PSAC include a description of the multiple-version dissimilar software used. 

Furthermore, section 11.3 bullet j. in the airworthiness standard RTCA DO-178B [4] 

requires that a description of the software verification process activities used to verify 

multiple-version dissimilar software be presented. 

A list of multiple-version dissimilar software can be extracted from the model using the 

following search query: 

SEARCH FOR all model elements STEREOTYPED WITH 

(<<Replicated>>) 

For example, executing this search query on the model in Figure 20 (discussed in 

Appendix G.4) gives the following results: RadarFilter1, RadarFilter2, 

RadarFilter3. 
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6.2.7 Recursive Software 

Section 11.7 bullet e. in the airworthiness standard RTCA DO-178B [4] requires that the 

software design standards specify which constraints on the software design exist. Such 

design constraints could require the exclusion of software recursion.  

If software recursion is used, then its use can be identified in the model. A list of 

recursive software can then be extracted from the model using the following search 

query: 

SEARCH FOR all model elements STEREOTYPED WITH 

(<<ImplementationStyle>> WITH TAGGED VALUE (Kind = 

Recursive)) 

For example, executing this search query on the model in Figure 8 gives the following 

results: KalmanFilter. 

If recursive software is not permitted by the software design standard but this rule was 

broken for some reason in some place, then a list of similar deviations from the standard 

can be extracted using the following search query: 

SEARCH FOR all model elements STEREOTYPED WITH (<<Deviation>> 

WITH TAGGED VALUE (Kind = UsingRecursiveAlgorithm)) 

From the results of this query, the “Reference” and “Explanation” tagged values of the 

<<Deviation>> (5.2.10) stereotype can be read to determine the standard from which this 

deviation existed and the rationale for this deviation. For example, executing this search 

query on the model in Figure 8 gives the following results: KalmanFilter 
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7 CASE STUDY – NAVIGATION CONTROLLER 

In this section, an aircraft’s navigation system is analysed, and its navigation controller 

subsystem is designed using the proposed UML profile (section 5.1). The goal is to 

demonstrate, through a realistic case study the usefulness of the profile in the context of 

the usage scenarios we defined (section 2.4). In order to be complete and provide enough 

insights about the system to the reader, we also go through the development methodology 

described in section 5.4.  

Here is a mapping between the steps of the development methodology (Figure 11 in 

section 5.4) and the subsections where they are addressed: 

S-1 Define the system’s high-level functional requirements: In section 7.1, an 

overview of the system is introduced, which describes in high-level language 

the major functionalities of the system. 

S-2 Define the system architecture: The system architecture is presented and 

explained in section 7.2. 

S-3 Develop the detailed functional and non-functional requirements (excluding 

safety): The functional requirements of the subsystem under study are presented 

and explained in section 7.3. 

S-4 Perform a safety assessment and develop safety requirements: A safety 

assessment is performed in section 7.4 using four standard, complementary 

methods. Its results are presented in sections 7.4.1 – 7.4.4, from which the 

safety requirements are derived and presented in section 7.4.5. 

S-5 Perform a critical review: Due to space constraints, only the final results are 

presented in this case study rather than the actual iterations used to develop the 

system. Therefore, the results of this step are not presented.  
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S-6 Are any issues identified?: For the same reasons as above, the results of this 

step are not presented. 

S-7 Develop the subsystems’ detailed design while monitoring safety: The design of 

the subsystem under study, including aspects related the defined safety 

requirements, is presented in section 7.5. 

S-8 Certify system: In section 7.6, the usage scenarios of our proposed UML profile 

are discussed in the context of our case study. Their results are generally 

submitted to the certification authorities to certify the system, particularly the 

results of usage USAGE 5 (Get Safety Information), which are discussed in 

section 7.6.5. 

7.1 Overview 

The navigation controller subsystem is used to control the aircraft’s flight paths through 

both automatic pilot and manual input from the pilots.  

It is worth reviewing the following terminology before proceeding with the case study: 

1. Fly-To-Point (FTP): An FTP specifies a location on earth that the aircraft plans to 

fly to. For example, an aircraft flying from London to Paris will have at least one 

FTP, which is Paris. 

2. Latitude/Longitude (LAT/LONG): A LAT/LONG specifies a particular 

geographic position on earth in latitude and longitude. LAT/LONG values are the 

standard measures for specifying geographic positions in navigation systems. The 

unit of both LAT and LONG are degrees, with LAT ranging from 90 South to 90 

North, and Longitude ranging from 180 Westward to 180 Eastward. LAT/LONG 

values are generally used to specify FTP positions. 

3. Bearing: The bearing on an aircraft is the direction in which it is flying. The 

bearing is generally specified in degrees, with a range of [0, 360[. A bearing of 
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zero is in a direction starting from the aircraft’s position and towards the North 

Pole. 

4. Dead-Reckoning: Dead-reckoning an aircraft’s position means that the aircraft’s 

position is being approximated using a previously known position at a given point 

of time, the current speed and bearing (direction). Ideally, the navigation system 

uses a Global Positioning System (GPS) to determine the aircraft’s LAT/LONG 

position. If the GPS system fails, however, the navigation system can then 

approximate the position by dead-reckoning it.  

The aircraft’s navigation controller subsystem has the following primary responsibilities: 

1. Autopilot (Automatic): Based on the source and destination of the aircraft, this 

subsystem can choose an appropriate flight path. During the entire flight period, it 

can also guide the aircraft by generating appropriate commands to the aircraft’s 

wings and engines to change the speed and bearing (i.e. direction) as required. 

2. Supporting Custom Flight Paths (Semi-Automatic): This subsystem can accept 

commands from the pilots such as a specific position’s latitude and longitude 

(LAT/LONG). Then, it controls the aircraft’s speed and bearing to get to the 

desired FTP that was indicated by the pilot. 

In order to perform such functionality, this subsystem needs to have continuous input 

from the aircraft’s navigation system, which reports the current position and altitude of 

the aircraft at all time. In addition, it needs to be able to command the aircraft’s wings 

and engines to change the speed and bearing. 

7.2 System Architecture 

Recall that software safety is only meaningful within the context of the system in which 

the software is used. As a result, it is mandatory to consider the system architecture as a 

whole to determine the safety aspects of NavigationControllerSubsystem. The system 

architecture, in which NavigationControllerSubsystem appears, is shown in Figure 
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12, and is discussed below. In the discussion, the rationale for assigning each software 

level is explained. The software levels were defined in section 2.2. 

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=B}

MechanicalSteeringWheelSubsystem

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=D}

NavigationUserInterfaceSubsystem

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=D}

LEDDisplaySubsystem

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Partition>>
{PartitionedFrom=NavigationSubsystem}

NavigationControllerSubsystem

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=B}

NavigationSubsystem

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=A}

WingsAndEnginesSubsystem

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=C}

NavigationDatabaseSubsystem

<<SafetyContext>>

 
Figure 12: System architecture (structure).  

The system is composed of the following subsystems: 

1. WingsAndEnginesSubsystem: This subsystem represents the wings and the 

engines of the aircraft, and is used to control them. Therefore, it is the most 

important element to control the aircraft’s speed and bearing. Thus, it is safety-

critical and is assigned level A, as the <<SafetyCritical>> (5.2.17) stereotype 

illustrates, because its failure prevents the continued safe flight and landing. This 

subsystem will not be considered any further in this case study. 

2. MechanicalSteeringWheelSubsystem: This subsystem represents the pilots’ 

mechanical steering wheel. They can use it to manually change the aircraft’s 

speed and bearing. Thus, it is safety-critical and is assigned level B, as the 

<<SafetyCritical>> (5.2.17) stereotype illustrates, because its failure prevents the 

pilots from performing their tasks correctly and accurately, but the aircraft’s speed 
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and bearing can still be controlled by other subsystems. This subsystem will not 

be considered any further in this case study.  

3. NavigationSubsystem: This subsystem represents the navigation system that 

determines the current position, altitude, speed, and bearing of the aircraft through 

a GPS system and other technologies. Thus, it is safety-critical and is assigned 

level B, as the <<SafetyCritical>> (5.2.17) stereotype illustrates, because its 

failure prevents the pilots from performing their tasks correctly and accurately, 

but the pilots can approximate the aircraft’s navigation information by observing 

ground landmarks. This subsystem will not be considered any further in this case 

study.  

4. LEDDisplaySubsystem: This subsystem represents a simple Light-Emitting 

Diode (LED) display to the pilots showing continuous navigation information as 

it is read from the “Navigation” subsystem. LEDs are a classical kind of 

information display technology. Thus, it is safety-critical and is assigned level D, 

as the <<SafetyCritical>> (5.2.17) stereotype illustrates, because its failure 

increases the pilots’ workload and discomfort, but they can still read the 

navigation information from NavigationUserInterfaceSubsystem. In case 

LEDDisplaySubsystem fails, they can approximate navigation information 

through ground landmarks or through radio communication with ground stations 

or other aircrafts. This subsystem will not be considered any further in this case 

study.  

5. NavigationDatabaseSubsystem: This subsystem stores and manages all the 

possible flight paths relevant to this aircraft. It is safety-critical and is assigned 

level C, as the <<SafetyCritical>> (5.2.17) stereotype illustrates, because the 

NavigationControllerSubsystem subsystem (at level “C”) depends on it. This 

is a rule in the airworthiness standard – components are assigned to the highest 

level of the components whose operations depend on it. This subsystem will not 

be considered any further in this case study.  
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6. NavigationControllerSubsystem: This subsystem is in charge of automatically 

guiding the aircraft through pre-determined flight paths and FTPs. The pilots can 

use it for the autopilot feature, or to fly to specific points. It is safety-critical and 

is assigned level C, as the <<SafetyCritical>> (5.2.17) stereotype illustrates, 

because its failure increases the pilots’ workload and discomfort and may cause 

injuries because the pilots will not necessarily be able to safely fly the aircraft 

without it as this would require them to use the mechanical steering wheels. It is 

partitioned away from NavigationSubsystem, as indicated by the <<Partition>> 

(5.2.18) stereotype, because it has a software level that is lower than that of 

NavigationSubsystem (i.e. level C is lower than level B). This partitioning 

allows NavigationSubsystem to continue providing information to other relevant 

subsystems such as LEDDisplaySubsystem even if 

NavigationControllerSubsystem fails. This subsystem is the topic of this case 

study, and is the only subsystem considered further here. 

7. NavigationUserInterfaceSubsystem: This subsystem serves as the pilots’ 

interface to NavigationControllerSubsystem. It can be used to read navigation 

information including flight paths, and to command 

NavigationControllerSubsystem to use the autopilot feature or to fly to 

specific FTPs. It is safety-critical and is assigned level C, as the 

<<SafetyCritical>> (5.2.17) stereotype illustrates, because its failure increases the 

pilots’ workload and discomfort and may cause injuries because the pilots will 

only be able to control the aircraft through 

MechanicalSteeringWheelSubsystem. This subsystem will not be considered 

any further in this case study. 

7.3 Functional Requirements 

The following functional requirements are assigned to 

NavigationControllerSubsystem: 

FREQ 1 NavigationControllerSubsystem shall be able to list pre-determined 

flight paths for a requested source/destination pair. 
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FREQ 2 NavigationControllerSubsystem shall provide an autopilot feature 

where it flies the aircraft through a requested flight path. 

FREQ 3 NavigationControllerSubsystem shall be able to fly the aircraft to a 

requested FTP. 

FREQ 4 NavigationControllerSubsystem shall provide the capability to guide 

the pilots through a requested flight path when the pilot is controlling the 

aircraft through MechanicalSteeringWheelsSubsystem. 

FREQ 5 NavigationControllerSubsystem shall be able to provide navigation 

information received from NavigationSubsystem. 

7.4 Safety Assessment 

A safety assessment of NavigationControllerSubsystem was performed based on the 

functional requirements listed in section 7.3 and the system architecture presented in 

Figure 12. This is common practice because such a safety assessment on the system helps 

identify potential hazards and their causes. This results in developing safety requirements 

to treat the hazards, which in turn impact the system and software design. Therefore, the 

safety assessment is performed at the early stages of the design because, unlike risk 

assessment, it emphasizes designing the system and software with safety in mind rather 

than adding safety features to a completed design.  

The safety assessment in this case study was performed using various methods to identify 

additional safety-related requirements. Each one of the following sections (7.4.1 – 7.4.4) 

first presents and explains a safety assessment method. A description and analysis of the 

various safety assessment methods can be found in [1]. Several safety assessment 

methods are used in practice because they are complementary. Safety assessment 

methods differ in terms of inputs, outputs, objectives, and scalability. (Refer to section 

2.1 for more detail.) Then, in each section, we apply the corresponding safety assessment 

method on the system, and only report on the results that are relevant to our case study 

(i.e., NavigationControllerSubsystem).  
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Section 7.4.5 then presents safety requirements for NavigationControllerSubsystem 

based on the safety assessments performed in sections 7.4.1 – 7.4.4.  

7.4.1 Action Error Analysis (AEA) 

AEA is a qualitative safety-analysis technique used to analyse human behaviour and 

identify actions that can potentially cause accidents. It focuses on potential deviations of 

human behaviour from the normal or intended behaviour. Examples of scenarios 

considered in this analysis include forgetting to do a step, doing a step at the wrong time, 

incorrect ordering of steps, taking too long to do a step, or doing an unintended step. 

Therefore, it uses a forward search strategy to identify what could result from such errors 

in human behaviour. It is very similar to FMEA, but it is applied to human behaviour 

instead [1]. More detailed discussions of AEA can be found in [1] and [42]. 

The following potentially unsafe human actions, which could result in hazards, were 

analysed using this method: 

AEA 1 A pilot attempts to manually control the aircraft through 

MechanicalSteeringWheelSubsystem while the aircraft is in autopilot 

mode. 

AEA 2 A pilot requests flying to an FTP that is in an unsafe area. 

AEA 3 A pilot requests flying to an FTP where the path to it requires passing 

through an unsafe area. 

AEA 4 A pilot requests a long flight path or a far FTP that would cause the aircraft 

to run out of fuel before landing. 

7.4.2 Failure Modes and Effects Analysis (FMEA) 

FMEA is a popular analysis technique, which was developed by reliability engineers. 

Therefore, it focuses on the failures of components and, using a forward search approach, 

analyses the effects of such failures. It is also used in safety assessments because the 

effects of such failures could include potential hazards and risks. When applied to safety 
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assessments, however, it is important to realize that not all failures result in hazards or 

accidents. In addition, it pays little attention to human errors because it focuses on the 

failure of components. Therefore, FMEA and AEA complement each other. More 

detailed discussions of FMEA can be found in [1] and [43]. 

Using FMEA, failures that would result in the failure of 

NavigationControllerSubsystem were identified. Such failures could potentially result 

in hazards because NavigationControllerSubsystem is safety-critical. They include 

the potential failure of NavigationControllerSubsystem itself and any of the 

subsystems on which it depends. 

The following failures, which could result in hazards, were identified using this method: 

FMEA 1 NavigationControllerSubsystem fails. 

FMEA 2 WingsAndEnginesSubsystem fails. 

FMEA 3 NavigationDatabaseSubsystem fails. 

FMEA 4 NavigationSubsystem fails. 

7.4.3 Hazards and Operability Analysis (HAZOP) 

HAZOP is an analysis technique that assumes that accidents are caused by deviations 

from the design or operating intentions. Therefore, it encourages creative thinking about 

all the possible ways in which hazards or operating problems may arise as a result of 

using the system in a mode other than its intended operating conditions. Because HAZOP 

considers a design and investigates what hazards could be caused by each design and 

operating deviation, it can discover new hazards that were not previously identified. More 

detailed discussions of HAZOP can be found in [1] and [44]. 

The following deviation from the operating intention, which could result in hazards, was 

identified using this method: 
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HAZOP 1 The autopilot mode is being used when NavigationSubsystem is unable 

to use the GPS feature and is instead dead-reckoning (i.e. periodically 

approximating) the aircraft’s position.  

7.4.4 Interface Analyses (IA) 

IA is an analysis method that is used to evaluate connections and relationships between 

components. It examines the interfaces between components and determines whether 

failures can be propagated between components. The types of problems that are often 

examined include, but are not limited to, failure to receive inputs from the connection, 

unstable connection, and erroneous output. IA is similar in use to HAZOP because 

interface problems are deviations from the intended design operation, but it is more 

general because it considers other types of problems. More detailed discussions of IA can 

be found in [1] and [45]. 

The following connection problems, which could result in hazards, were identified using 

this method: 

IA 1 NavigationControllerSubsystem can no longer communicate with 

WingsAndEnginesSubsystem. 

IA 2 NavigationControllerSubsystem can no longer communicate with 

NavigationSubsystem. 

7.4.5 Safety Requirements 

The following safety requirements are assigned to NavigationControllerSubsystem 

based on the results of the safety assessment performed above. Notice that sections 7.4.1 

- 7.4.4 describe the events that could occur and the hazards that could result from them, 

whereas this section describes the positive reactions to those events, which would 

eliminate or reduce the hazards. The parenthesis specify the hazards that each safety 

requirement guards against: 

SREQ 1 NavigationControllerSubsystem shall disable autopilot and FTP 

features when the pilot is using MechanicalSteeringWheelSubsystem, 
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and re-enable them when the pilot stops using 

MechanicalSteeringWheelSubsystem (AEA 1). 

SREQ 2 NavigationControllerSubsystem shall be able to identify whether a 

specific LAT/LONG position is in a safe area or not, and not fly the 

aircraft to unsafe positions unless explicitly confirmed by the pilot (AEA 

2). 

SREQ 3 NavigationControllerSubsystem shall be able to determine whether 

flying to a specific LAT/LONG position requires flying through unsafe 

areas or not, and not fly the aircraft through unsafe areas unless explicitly 

confirmed by the pilot (AEA 3). 

SREQ 4 NavigationControllerSubsystem shall alert the pilot when the next 

FTP cannot be reached without having to refuel the aircraft (AEA 4). 

SREQ 5 When NavigationControllerSubsystem fails, an alert shall be raised 

and, until NavigationControllerSubsystem is operational again, the 

pilot shall be required to manually fly the aircraft using 

MechanicalSteeringWheelsSubsystem (FMEA 1). 

SREQ 6 NavigationControllerSubsystem shall ensure that the autopilot and 

FTP features are enabled only when all of the following conditions hold: 

SREQ 6.1 WingsAndEnginesSubsystem is functional (FMEA 2). 

SREQ 6.2 NavigationDatabaseSubsystem is functional (FMEA 3). 

SREQ 6.3 NavigationSubsystem is functional (FMEA 4). 

SREQ 6.4 NavigationControllerSubsystem is able to communicate with 

WingsAndEnginesSubsystem (IA 1). 

SREQ 6.5 NavigationControllerSubsystem is able to communicate with 

NavigationSubsystem (IA 2). 
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SREQ 7 NavigationControllerSubsystem shall require explicit confirmation to 

continue autopilot or FTP flight modes every 5 minutes until 

NavigationSubsystem indicates that the GPS feature is functional again. 

If the confirmation is not performed for a period of 7 consecutive minutes, 

then NavigationControllerSubsystem shall signal an emergency to the 

pilots (HAZOP 1). 

7.5 Subsystem Design 

This section further defines NavigationControllerSubsystem, and then it introduces 

its UML model. Sections 7.5.1 – 7.5.4 aim at further defining the subsystem by 

understanding its events of interest, and how the subsystem should react to those events. 

Section 7.5.1 explains how the events and reactions can be derived from the safety 

requirements. Section 7.5.2 defines the events that are of interest to the subsystem, and 

section 7.5.3 defines how the subsystem behaves, or reacts, in response to those events. 

Thus, they provide an event-reaction relationship that defines the system behaviour. To 

ensure that the system’s behaviour is complete with respect to the events and reactions, 

the reactions are traced to the events that caused them. This is explained in section 7.5.4. 

Once the subsystem’s behaviour is understood, its software design in presented in section 

7.5.5. While the limited space in the diagrams makes it difficult to list all the possible 

stereotypes and tagged values that could be used, the safety information that is modeled 

is varied enough to show different kinds of safety information, stereotypes, and tagged 

values. It is important to note that, in practice, a UML modeling tool would allow the 

designers to specify as many stereotypes and tagged values while giving them the choice 

to show or hide specific stereotypes (or stereotype categories such as a particular profile’s 

stereotypes) on diagrams while retaining the information in the tool’s database. 

Furthermore, the model is also stereotyped according to Gomaa’s class classification as 

presented in [7] and summarized in Appendix E. 

The discussions in the sections below will often cross-reference events and reactions 

through their numbers, prefixed by either an “E” for events or “R” for reactions. 

Whenever an event is cross-referenced, the number between parenthesis represents its 
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number as listed in section 7.5.2. Whenever a reaction is cross-referenced, similarly, the 

number between parenthesis represents its number as listed in section 7.5.3. For example, 

the ControllerFailed (E5) event is described in section 7.5.2, but the 

DisableController (R4) reaction is described in section 7.5.3. 

7.5.1 Identification of Events and Reactions 

To design safety into the system, it is important to identify all events (3.2.3.8) that could 

have safety implications, and the reactions (3.2.3.9) to those events. To identify the 

events, one needs to ask: Which inputs to the system, or changes in its state, should the 

system respond to because they may impact its safety? To identify the reactions, one 

needs to ask: How should the system behave when any of the identified events occurs? 

The answers to those questions are found in the safety requirements. For example, 

consider safety requirement SREQ 1 from section 7.4.5: 

NavigationControllerSubsystem shall disable autopilot and FTP features 

when the pilot is using MechanicalSteeringWheelSubsystem, and re-

enable them when the pilot stops using 

MechanicalSteeringWheelSubsystem (1091HAEA 1). 

From this requirement, one can identify at least two events of interest: (1) The event of 

when the pilot starts using MechanicalSteeringWheelSubsystem; (2) The event of 

when the pilot stops using MechanicalSteeringWheelSubsystem. Also from this 

requirement, and from the identified events, one can identify at least the following 

reactions: (1) The reaction of disabling the autopilot and FTP features when the pilot 

starts using MechanicalSteeringWheelSubsystem; (2) The reaction of enabling the 

autopilot and FTP features when the pilot stops using 

MechanicalSteeringWheelSubsystem. 
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7.5.2 Events 

<<Event>>

SystemEvent (E1)

<<Event>>

DependentSubsystemEvent (E10)

<<Event>>

NavigationEvent (E21)

<<Event>>

NavigationDatabaseEvent (E11)

<<Event>>

WingsAndEnginesEvent (E14)

<<Event>>
{EffectOnSafetyDirection=Negative}

NavigationFailed (E22)

<<Event>>
{EffectOnSafetyDirection=Positive} 

NavigationRestored (E23)

<<Event>>
{EffectOnSafetyDirection=Negative}

NavigationConnectionLost (E24)

<<Event>
{EffectOnSafetyDirection=Positive}

NavigationConnectionEstablished (E25)

<<Event>>
{EffectOnSafetyDirection=Negative}

StartDeadReckoningAircraftPosition (E26)

<<Event>>
{EffectOnSafetyDirection=Positive}

UseGPSForAircraftPosition (E27)

<<Event>>
{EffectOnSafetyDirection=Negative}

NavigationDatabaseFailed (E12)

<<Event>>
{EffectOnSafetyDirection=Positive} 

NavigationDatabaseRestored (E13)

<<Event>>
{EffectOnSafetyDirection=Negative}

WingsAndEnginesFailed (E15)

<<Event>>
{EffectOnSafetyDirection=Positive} 

WingsAndEnginesRestored (E16)

<<Event>>
{EffectOnSafetyDirection=Negative}

WingsAndEnginesConnectionLost (E17)

<<Event>
{EffectOnSafetyDirection=Positive}

WingsAndEnginesConnectionEstablished (E18)

<<Event>>

IndependentSubsystemEvent (E2)

<<Event>
{EffectOnSafetyDirection=Negative,

EffectOnSafetyContext=‘Autopilot or FTP Mode is ON’}

WingsAndEnginesControlledByOtherSubsystem (E19)

<<Event>
{EffectOnSafetyDirection=Positive}

WingsAndEnginesNotControlled
ByOtherSubsystems (E20)

<<Event>>

PilotInputEvent (E7)

<<Event>>

ChangeFlightPath (E8)

<<Event>>

EditFTPList (E9)

<<Event>>
{EffectOnSafetyDirection=Negative,

When=‘Aircraft is expected to run out of fuel’}

FuelShortageExpected (E3)

<<Event>>
{EffectOnSafetyDirection=Negative}

FuelShortageNotExpected (E4)

<<Event>>
{EffectOnSafetyDirection=Negative,

When=‘Aircraft is not expected to run out of fuel’}

ControllerFailed (E5)

<<Event>> 
{EffectOnSafetyDirection=Positive}

ControllerRestored (E6)

 
Figure 13: NavigationControllerSubsystem’s events (structure).  

Figure 13 shows all the system events of interest. Each concrete class (i.e., leaf class in 

the generalization hierarchy) represents a unique event type, and an instantiation of a 

concrete event class represents a unique event. Each event class is stereotyped with 

<<Event>> (5.2.15) to indicate that it is an event of interest, and its 

“EffectOnSafetyDirection” and “Context” tagged values are set where applicable.This 

figure is primarily used here to arrange events in a hierachy and therefore facilitate 

discussion and analysis. During design, these events may not necessarily tranlate into 

actual classes in the subsystem class diagram (and implementation).  
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Here is a description of each event class: 

E1 SystemEvent: This event represents any event that occurs in the system. It can 

be raised by any class in the system. It is abstract and it serves as a parent class 

for other event classes. A direct or indirect subclass of SystemEvent may have 

a negative, neutral, or positive effect on the overall safety level. However, we 

limit the discussion here to only those events that can have a positive or 

negative effect on safety. 

E2 IndependentSubsystemEvent: This event represents any event that originates 

in NavigationControllerSubsystem, excluding the interface classes to other 

subsystems that it uses. It is abstract and it serves as a parent class for other 

event classes. 

E3 FuelShortageExpected: This event is raised when the 

InvestigateFuelShortage (R6) reaction executes and it determines that the 

aircraft is expected to run out of fuel during the flight according to the current 

flight and navigation information (i.e. the flight path, list and sequence of FTPs, 

wind speed and bearing, … etc). 

E4 FuelShortageNotExpected: This event is raised when the 

InvestigateFuelShortage (R6) reaction executes and it determines that the 

aircraft is not expected to run out of fuel during the flight according to the 

current flight and navigation information. This is of importance when, just 

before the InvestigateFuelShortage (R6) reaction executes, the aircraft was 

expected to run out of fuel during the flight. 

E5 ControllerFailed: This event is raised when the main controller class has 

failed and is not functioning correctly or at all. 

E6 ControllerRestored: This event is raised when the main controller class has 

transitioned from a failure state to a functional state and is now functioning 

correctly. 
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E7 PilotInputEvent: This event represents any event that occurs as a direct result 

of the pilot’s usage of the subsystem through the user interface, namely 

NavigationUserInterfaceSubsystem. It is abstract and it serves as a parent 

class for other event classes. 

E8 ChangeFlightPath: This event is raised when the pilot has requested, through 

NavigationUserInterfaceSubsystem, that the flight path for autopilot mode 

be changed. 

E9 EditFTPList: This event is raised when the pilot has requested that, through 

NavigationUserInterfaceSubsystem, the list of FTPs be changed (such as 

changing an FTP’s position or resequencing a list of more than one FTP). 

E10 DependentSubsystemEvent: This event represents any event that originates in 

a subsystem on which NavigationControllerSubsystem depends, namely 

WingsAndEnginesSubsystem, NavigationDatabaseSubsystem, and 

NavigationSubsystem. It is abstract and it serves as a parent class for other 

event classes. 

E11 NavigationDatabaseEvent: This event represents any event that originates in 

NavigationDatabaseSubsystem. It is abstract and it serves as a parent class 

for other event classes. 

E12 NavigationDatabaseFailed: This event is raised when 

NavigationDatabaseSubsystem has failed and is not functioning correctly or 

at all. 

E13 NavigationDatabaseRestored: This event is raised when 

NavigationDatabaseSubsystem has transitioned from a failure state to a 

functional state and is now functioning correctly. 

E14 WingsAndEnginesEvent: This event represents any event that originates in 

WingsAndEnginesSubsystem. It is abstract and it serves as a parent class for 

other event classes. 
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E15 WingsAndEnginesFailed: This event is raised when 

WingsAndEnginesSubsystem has failed and is not functioning correctly or at 

all. 

E16 WingsAndEnginesRestored: This event is raised when 

WingsAndEnginesSubsystem has transitioned from a failure state to a 

functional state and is now functioning correctly. 

E17 WingsAndEnginesConnectionLost: This event is raised when connection to 

WingsAndEnginesSubsystem has been lost. 

E18 WingsAndEnginesConnectionEstablished: This event is raised when 

connection to WingsAndEnginesSubsystem was lost but has now been 

established. 

E19 WingsAndEnginesControlledByOtherSubsystem: This event is raised when 

WingsAndEnginesSubsystem is now being controlled by a subsystem other 

than NavigationControllerSubsystem. Based on the system architecture in 

Figure 12, this means that MechanicalSteeringWheelSubsystem is now 

controlling WingsAndEnginesSubsystem. 

E20 WingsAndEnginesNotControlledByOtherSubsystem: This event is raised 

when WingsAndEnginesSubsystem is no longer being controlled by a 

subsystem other than NavigationControllerSubsystem. Based on the system 

architecture in Figure 12, this means that 

MechanicalSteeringWheelSubsystem has just stopped controlling 

WingsAndEnginesSubsystem. 

E21 NavigationEvent: This event represents any event that originates in 

NavigationSubsystem. It is abstract and it serves as a parent class for other 

event classes. 

E22 NavigationFailed: This event is raised when NavigationSubsystem has 

failed and is not functioning correctly or at all. 
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E23 NavigationRestored: This event is raised when NavigationSubsystem has 

transitioned from a failure state to a functional state and is now functioning 

correctly. 

E24 NavigationConnectionLost: This event is raised when connection to 

NavigationSubsystem has been lost. 

E25 NavigationConnectionEstablished: This event is raised when connection to 

NavigationSubsystem was lost but has now been established. 

E26 StartDeadReckoningAircraftPosition: This event is raised when the 

position of the aircraft is now being periodically estimated by the computer 

based on the knowledge of the current aircraft’s position, speed, and bearing 

and the wind’s speed and bearing. This occurs if the aircraft’s 

NavigationSubsystem is no longer able to continuously determine the 

aircraft’s position based on the GPS signals, most likely because it is no longer 

able to receive the GPS satelittes signals. 

E27 UseGPSForAircraftPosition: This event is raised when the position of the 

aircraft is now being determined by the signals received from the GPS satelittes. 

This occurs when the aircraft’s position was being dead-reckoned (see 

StartDeadReckoningAircraftPosition (E26) event), but the aircraft is now able 

to determine its position based on the GPS satellite signals, most likely because 

it is again able to receive the GPS satellite signals. 

7.5.3 Reactions 

Figure 14 shows all the system reactions to events of interest. Each class represents a 

unique reaction type, and an instantiation of a concrete reaction class (leaf class in the 

generalization hierarchy) represents a unique reaction. Each reaction class is stereotyped 

with <<Reaction>> (5.2.16) to indicate that it is a reaction to an event of interest, and its 

tagged values are set where applicable. Like for events, the figure is primarily used to 

facilitate discussion and analysis. During design, these reactions will unlikely translate 



Carleton University, TR SCE-06-19  Decermber 2006 

 152

into actual subsystem classes, but rather will likely translate into class operations 

stereotyped <<Reaction>>. 

<<Reaction>>

SystemReaction (R1)

<<Reaction>>

ReactionToIndependentSubsystemEvent (R5)

<<Reaction>>

ReactionToDependentSubsystemEvent (R2)

<<Reaction>>
{ConsequenceOf=DisableController,
ConsequenceOf=ControllerFailed,
EffectOnSafetyDirection=Positive}

<<Rationale>>
{Reference=“SREQ 5”,
Reference=“SREQ 6”}

RaiseSubsystemFailureAlert (R9)

<<Reaction>>
{ConsequenceOf=EnableController,

ConsequenceOf=ControllerRestored,
EffectOnSafetyDirection=Positive}

<<Rationale>>
{Reference=“SREQ 5”,
Reference=“SREQ 6”}

HideSubsystemFailureAlert (R10)

<<Reaction>>
{ConsequenceOf=FuelShortageExpected,

EffectOnSafetyDirection=Positive}

<<Rationale>>
{Reference=“SREQ 4”}

RaiseFuelShortageExpectedAlert (R11)

<<Reaction>>
{ConsequenceOf=FuelShortageNotExpected,

EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference=“SREQ 4”}

HideFuelShortageExpectedAlert (R12)

<<Reaction>>
{ConsequenceOf=StartDeadReckoningAircraftPosition,

ConsequenceOf=UseGPSForAircraftPosition,
When=‘(Controller in Autopilot or FTP mode) AND (Every 5 Minutes 

Until UseGPSForAircraftPosition Event Occurs),
EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference=“SREQ 7”}

RequirePilotConfirmation (R8)

<<Reaction>>
{ConsequenceOf=WingsAndEnginesFailed,

ConsequenceOf=NavigationFailed,
ConsequenceOf=NavigationDatabaseFailed,

ConsequenceOf=WingsAndEnginesConnectionLost,
ConsequenceOf=NavigationConnectionLost,

ConsequenceOf= WingsAndEnginesControlledByOtherSubsystem,
EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference=“SREQ 1”, Reference=“SREQ 6”}

DisableController (R4)

<<Reaction>> {ConsequenceOf=WingsAndEnginesRestored,
ConsequenceOf=NavigationRestored,

ConsequenceOf=NavigationDatabaseRestored,
ConsequenceOf=WingsAndEnginesConnectionEstablished, 

ConsequenceOf=NavigationConnectionEstablished,
ConsequenceOf=WingsAndEnginesNotControlledByOtherSubsystems,

When=‘Connections Available to Functional Subsystems’, 
EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference=“SREQ 1”, Reference=“SREQ 6”}

EnableController (R3)

<<Reaction>>
{ConsequenceOf=ChangeFlightPath,

ConsequenceOf=EditFTPList,
EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference=“SREQ 4”}

InvestigateFuelShortage (R6)

<<Reaction>>
{ConsequenceOf=ChangeFlightPath,

ConsequenceOf=EditFTPList,
EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference=“SREQ 2”,
Reference=“SREQ 3”}

EnsureFlightPathOverSafeAreas (R7)

 
Figure 14: NavigationController subsystem reactions (structure).  

Here is a description of each reaction class: 

R1 SystemReaction: This represents any reaction that occurs in the system, which 

generally occurs in response to an event that is a subclass of SystemEvent (E1). 

It is abstract and it serves as a parent class for other reaction classes. A direct or 

indirect subclass of SystemReaction may have negative, neutral, or positive 

effect on the overall safety level. However, all the concrete class reactions 

presented in this section have positive effect on safety, as indicated by the 

“EffectOnSafetyDirection” tagged value of the <<Reaction>> (5.2.16) 
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stereotype, because they implement the safety requirements described in section 

7.4.5.  

R2 ReactionToDependentSubsystemEvent: This represents any reaction that 

occurs in response to an event class that is a subclass of the abstract 

DependentSubsystemEvent (E10) event. It is abstract and it serves as a parent 

class for other event classes. 

R3 EnableController: This reaction enables the main controller class to start 

functioning. As the “ConsequenceOf” tagged values of the <<Reaction>> 

(5.2.16) stereotype indicate, this reaction can be triggered by the occurrence of 

any of the following events: WingsAndEnginesRestored (E16), 

NavigationRestored (E23), NavigationDatabaseRestored (E13), 

WingsAndEnginesConnectionEstablished (E18), NavigationConnection-

Established (E25), WingsAndEnginesNotControlledByOtherSubsystems 

(E20). Furthermore, the “When” tagged value indicates that this reaction (i.e. 

enabling the controller) only executes when connections are available to all 

functional subsystems on which the main controller class depends, namely 

WingsAndEnginesSubsystem, NavigationDatabaseSubsystem, and 

NavigationSubsystem. The <<Rationale>> (5.2.14) stereotype and its 

“Reference” tagged values indicate that this reaction class helps implement 

safety requriements SREQ 1 and SREQ 6. 

R4 DisableController: This reaction disables the main controller class. As the 

“ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) stereotype 

indicate, this reaction can be triggered by the occurrence of any of the following 

events: WingsAndEnginesFailed (E15), NavigationFailed (E22), 

NavigationDatabaseFailed (E12), WingsAndEnginesConnectionLost 

(E17), NavigationConnectionLost (E24), WingsAndEnginesControlledBy-

OtherSubsystems (E19). The <<Rationale>> (5.2.14) stereotype and its 

“Reference” tagged values indicate that this reaction class helps implement 

safety requriements SREQ 1 and SREQ 6. 
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R5 ReactionToIndependentSubsystemEvent: This represents any reaction that 

occurs in response to an event that is a subclass of the abstract 

IndependentSubsystemEvent (E2) event. It is abstract and it serves as a parent 

class for other event classes. 

R6 InvestigateFuelShortage: This represents a reaction that calculates the fuel 

quantity needed to fly the aircraft according to the current settings, which 

include the aircraft’s position, flight path, list of FTPs, and wind speed and 

bearing. As the “ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) 

stereotype indicate, this reaction is triggered by either the ChangeFlightPath 

(E8) or EditFTPList (E9) events. The “Reference” tagged value of the 

<<Rationale>> (5.2.14) stereotype indicates that this reaction implements safety 

requirement SREQ 4. If the execution of this reaction determines that the 

aircraft is expected to run out of fuel, then a FuelShortageExpected (E3) 

event is raised. Otherwise, a FuelShortageNotExpected (E4) event is raised. 

This is specified in the diagram using the “When” tagged value of the 

<<Event>> (5.2.15) stereotype applied on the FuelShortageExpected (E3) 

and FuelShortageNotExpected (E4) events. 

R7 EnsureFlightPathOverSafeAreas: This represents a reaction that ensures that 

the aircraft flies only over safe areas. As the “ConsequenceOf” tagged values of 

the <<Reaction>> (5.2.16) stereotype indicate, this reaction is triggered by 

either the ChangeFlightPath (E8) or EditFTPList (E9) events. The 

“Reference” tagged values of the <<Rationale>> (5.2.14) stereotype indicate 

that this reaction implements safety requirements SREQ 2 and SREQ 3. 

R8 RequirePilotConfirmation: This represents a reaction that prompts the pilot 

to confirm the use of autopilot or FTP mode every 5 minutes as long as the pilot 

is in autopilot or FTP mode and the aircraft’s position is being dead-reckoned 

instead of calculated using the GPS satellite signals, i.e. the 

UseGPSForAircraftPosition (E27) event has not been raised yet. As the 

“ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) stereotype 



Carleton University, TR SCE-06-19  Decermber 2006 

 155

indicate, this reaction is triggered by two events, namely 

StartDeadReckoningAircraftPosition (E26) or UseGPSForAircraft-

Position (E27). The “Reference” tagged value of the <<Rationale>> (5.2.14) 

stereotype indicates that this reaction implements safety requirement SREQ 7.  

R9 RaiseSubsystemFailureAlert: This represents a reaction that raises an alert 

to the pilots indicating that NavigationControllerSubsystem has failed, 

possibly because one of the subsystems on which it depends has failed as well. 

As the “ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) stereotype 

indicate, this reaction is triggered by the DisableController (R4) reaction or 

the ControllerFailed (E5) event. The “Reference” tagged value of the 

<<Rationale>> (5.2.14) stereotype indicates that this reaction implements safety 

requirements SREQ 5 and SREQ 6. 

R10 HideSubsystemFailureAlert: This represents a reaction that hides an alert, 

which was previously raised to the pilots as part of the 

RaiseSubsystemFailureAlert (R9) reaction, because 

NavigationControllerSubsystem has recovered from a previous failure. As 

the “ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) stereotype 

indicate, this reaction is triggered by the EnableController (R3) reaction or 

the ControllerRestored (E6) event. The “Reference” tagged values of the 

<<Rationale>> (5.2.14) stereotype indicate that this reaction implements safety 

requirements SREQ 5 and SREQ 6. 

R11 RaiseFuelShortageExpectedAlert: This represents a reaction that raises an 

alert to the pilots indicating that the aircraft is expected to run out of fuel before 

the final destination of the selected flight path or FTPs is reached. As the 

“ConsequenceOf” tagged value of the <<Reaction>> (5.2.16) stereotype 

indicates, this reaction is triggered by the FuelShortageExpected (E3) event. 

The “Reference” tagged values of the <<Rationale>> (5.2.14) stereotype 

indicate that this reaction implements safety requirement SREQ 4. 
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R12 HideFuelShortageExpectedAlert: This represents a reaction that hides an 

alert, which was previously raised to the pilots as part of the 

RaiseFuelShortageExpectedAlert (R11) reaction, because the flight path or 

FTPs have changed and it is not expected that they will cause fuel shortage 

anymore. As the “ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) 

stereotype indicate, this reaction is triggered by the FuelShortageNotExpected 

(E4) event. The “Reference” tagged values of the <<Rationale>> (5.2.14) 

stereotype indicate that this reaction implements safety requirement SREQ 4. 

7.5.4 Event-Reaction Relationships 

A traceability matrix can be constructed as follows: 

1. Identify the Events and Reactions: If the events (resp. reactions) are not explicitly 

identified and listed, then search for all model elements stereotyped with 

<<Event>> (5.2.15) (resp. <<Reaction>> (5.2.16)). In general, only concrete 

events (resp. reactions) are those of interest here. 

2. Create the Traceability Matrix: Create an (N+M) x M matrix, where N is the 

number of unique events, and M is the number of unique reactions. Recall from 

section 3.2.3.9 that reactions are events by inheritance. 

3. Identify Relationships: For every <<Reaction>> (5.2.16) stereotype, look at the 

“ConsequenceOf” tagged values. This tagged value identifies the events that can 

cause this reaction to occur. Therefore, this traces each reaction to the events that 

can cause it. 

4. Analyse Traceability: In general, each event must trigger at least one reaction. 

Each reaction may trigger zero or more reactions. 

The relationships and traceability between the events described in section 7.5.2 and the 

reactions in section 7.5.3 are shown in Table 5 in the form of a traceability matrix, as 

described above. If a “Yes” exists in a particular cell, this means that the event identified 
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by its row may trigger the reaction identified by its column. Only concrete events and 

reactions appear in the table. 

Reactions  Events 
R3 R4 R6 R7 R8 R9 R10 R11 R12 Total 

E3        Yes  1 
E4         Yes 1 
E5      Yes    1 
E6       Yes   1 
E8   Yes Yes      2 
E9   Yes Yes      2 

E12  Yes        1 
E13 Yes         1 
E15  Yes        1 
E16 Yes         1 
E17  Yes        1 
E18 Yes         1 
E19  Yes        1 
E20 Yes         1 
E22  Yes        1 
E23 Yes         1 
E24  Yes        1 
E25 Yes         1 
E26     Yes     1 
E27      Yes    1 
R3       Yes   1 
R4      Yes    1 
R6          0 
R7          0 
R8          0 
R9          0 

R10          0 
R11          0 
R12          0 

Total 6 6 2 2 1 3 2 1 1 24 

Table 5: Relationships between events and reactions. 

By analysing Table 5 we notice that there is an n-to-n relationship between events and 

reactions. More specifically: 

1. Every event causes at least one reaction: Since all the reactions described in 

section 7.5.3 have a positive effect on safety, every event that may introduce 

hazards is being handled in a way that increases the level of safety by masking, 



Carleton University, TR SCE-06-19  Decermber 2006 

 158

reducing, or removing the hazard. Note, however, that reactions do not always 

cause other reactions to occur. 

2. Every reaction can be triggered by at least one event: In essence, this means that 

none of the reactions will result in dead code that is never executed. In addition, a 

reaction’s code may occur if any of a number of events occur (e.g. 

ChangeFlightPath (E8) occurs if either InvestigateFuelShortage (R6) or 

EnsureFlightPathOverSafeAreas (R7) occurs). 

3. Some reactions are triggered by other reactions: the RaiseSystemFailureAlert 

(R9) reaction is triggered by the DisableController (R4) reaction; the 

HideSystemFailureAlert (R10) reaction is triggered by the EnableController 

(R3) reaction. 

4. Every event causes a finite number of reactions: In other words, it is guaranteed 

that the triggering of an event would eventually cause a reaction that does not 

trigger other reactions. If that was not the case, then the system could never 

restore itself to a steady-state. 

Note that we have initially defined our stereotypes (and associated tagged values) for a 

subset of the UML metamodel, specifically for metaclasses Class, Operation, and 

Relationship. The behavior suggested by these event-reaction relationships would, during 

a complete realistic design, also be modeled by one or several statechart diagrams. These 

statechart diagrams would specify which reactions (i.e., actions on transitions and states) 

result from which events (triggering transitions). The transitions’ guard conditions would 

then correspond to the “When” tagged value of the <<Reaction>> (5.2.16) stereotype 

above. This suggests that our UML profile needs to be extended to model elements of 

UML statechart diagrams. This will be considered in future work, and we do not foresee 

any major difficulty for doing so. 
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7.5.5 High-Level Design 

Figure 15 illustrates the NavigationControllerSubsystem high-level design, which 

contains safety information indicating requirements traceability, certification information, 

and safety monitoring. This will be elaborated further in the remainder of this section. 

<<state dependent control>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Handler>> {HandelableEvent=PilotInputEvent,
PerformedReaction=InvestigateFuelShortage}

<<Rationale>> {Reference=“FREQ 1, FREQ 2, FREQ 3, 
FREQ 4, FREQ 5, SREQ 2, SREQ 3, SREQ 4”}

Controller

<<system interface>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“FREQ 1”}

<<Interface>> {IsBetweenHardwareAndSoftware=false,
InterfaceFor=NavigationDatabaseSubsystem}

NavigationDatabaseInterface

<<system interface>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“FREQ 2, FREQ 3,
FREQ 4, FREQ 5, SREQ 4”}

<<Interface>> {IsBetweenHardwareAndSoftware=true,
InterfaceFor=NavigationSubsystem}

NavigationInterface

<<system interface>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“FREQ 2, FREQ 3””}

<<Interface>> {IsBetweenHardwareAndSoftware=true,
InterfaceFor=WingsAndEnginesSubsystem}

WingsAndEnginesInterface

<<coordinator>>

<<Monitor>> {Kind=Safety, 
MonitoredEntity=NavigationDatabaseInterface,
DetectableEvent=NavigationDatabaseEvent,

EventHandler=ExternalSubsystemsEventHandler}

<<Rationale>
{Reference=“SREQ 6.2”}

NavigationDatabaseMonitor

<coordinator>>

<<Monitor>> {Kind=Safety,
MonitoredEntity=NavigationInterface,
DetectableEvent=NavigationEvent,

EventHandler=ExternalSubsystemsEventHandler}

<<Rationale>>
{Reference=“SREQ 6.3, SREQ 6.5, SREQ 7”}

NavigationMonitor

<<coordinator>>

<<Monitor>> {Kind=Safety,
MonitoredEntity=WingsAndEnginesInterface,
DetectableEvent=WingsAndEnginesEvent,

EventHandler=ExternalSubsystemsEventHandler}

<<Rationale>>
{Reference=“SREQ 1, SREQ 6.1, SREQ 6.4”}

WingsAndEnginesMonitor

<<state dependent control>>

<<Handler>> {HandleableEvent=DependentSubsystemEvent,
PerformedReaction=ReactionToDependentSubsystemEvent}

<<Rationale>>
{Reference=“SREQ 1, SREQ 6, SREQ 7”}

ExternalSubsystemsEventHandler

<<algorithm>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“FREQ 2, FREQ 3, 
SREQ 3”} 

PathProjector

<<system interface>>

<<SafetyCritical>> {CriticalityLevel=C} 

<<Interface>>
{InterfaceFor=NavigationControllerSubsystem}

ControllerInterface

Monitors MonitorsMonitors

Notifies

Monitors

Reads and Writes Reads StatusCommands and Reads Status

Queries and
Commands

Commands

NotifiesNotifies

Executes

Executes

Reads Status

<<SafetyContext>>

<<Requirement>> {Kind=Functional, Specification=‘Fulfills all FREQs’}
<<Requirement>> {Kind=Safety, Specification=‘Fulfills all SREQs’}

<<algorithm>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“SREQ 2, SREQ 3”}

SafePointDeterminator

<<coordinator>>
<Monitor>> {Kind=Safety, MonitoredEntity=Controller,

DetectableEvent=IndependentSubsystemEvent,
EventHandler=ControllerMonitorAndHandler}

<<Handler>> {HandelableEvent=IndependentSubsystemEvent,
PerformedReaction=ReactionToIndependentSubsystemEvent}

<Rationale>> {Reference=“SREQ 4, SREQ 5, SREQ 7”}

ControllerMonitorAndHandler

Executes

 
Figure 15: NavigationController subsystem’s high-level design (structure).  

One key area of interest is tracing model elements, or classes, to requirements as 

described in section 2.5. This will be discussed in detail here as each classes contributing 

to the implementation of a requirement will be explained. The discussion will say that a 

class CLASS1 implements requirement REQ1 if, as a minimum, class CLASS1 partially 

implements requirement REQ1. 



Carleton University, TR SCE-06-19  Decermber 2006 

 160

The diagram is stereotyped with <<SafetyContext>> (5.2.1) to indicate that it contains 

information that is relevant to safety. Furthermore, it is also stereotyped with 

<<Requirement>> (5.2.9) twice. The first <<Requirement>> (5.2.9) stereotype has a 

“Kind” tagged value equal to “Functional” to indicate that it is a functional requirement, 

and its “Specification” tagged value is set to “Fulfills all FREQs” to indicate that the 

design in this diagram must fulfill all the FREQ functional requirements of the subsystem 

(section 7.3). The second <<Requirement>> (5.2.9) stereotype has a “Kind” tagged value 

equal to “Safety” to indicate that it is a safety requirement, and its “Specification” tagged 

value is set to “Fulfills all SREQs” to indicate that the design in this diagram must fulfill 

all SREQ safety requirements of the subsystem (section 7.4.5). 

Most classes in Figure 15 use the <<Rationale>> (5.2.14) stereotype and its “Reference” 

tagged value. For clarity and brevity, the “Reference” tagged value was used once to list 

more than one requirement. For example, Controller has a <<Rationale>> (In 5.2.14) 

stereotype with a “Reference” tagged value set to “FREQ 1, FREQ 2, FREQ 3, FREQ 4, 

FREQ 5, SREQ 2, SREQ 3”. This abbreviation is used in this , we say that a class CLASS1 

depends on class CLASS2 if there is an association between CLASS1 and CLASS2 in which 

CLASS1 is the source end of the uni-directional association and CLASS2 is the target end. 

Additionally, we say that CLASS1 depends on CLASS2 if a usage dependency exists for 

CLASS1 on CLASS2, which would be the case study to indicate that the sterotype actually 

has several “Reference” tagged values, and each “Reference” tagged value identifies only 

if CLASS2 is a parameter to at least one requirement. Therefore, the {Reference=“FREQ 

1, FREQ 2, FREQ 3, FREQ 4, FREQ 5, SREQ 2, SREQ 3”} string is actually identical to 

{Reference=“FREQ 1”, Reference=“FREQ 2”, Reference=“FREQ 3”, 

Reference=“FREQ 4”, Reference=“FREQ 5”, Reference=“SREQ 2”, Reference=“SREQ 

3”}. Whereas the latter format is what the proposed UML profile defines and therefore 

would be used when the design is modeled in a UML modeling tool, we have used the 

former abbreviated format in the figuremethod in this section to make the UML diagram 

clearer and easier to understand. 

Similarly, the “Explanation” tagged value of the <<Rationale>> (5.2.14) stereotype is not 

shown in Figure 15 because the explanation text is large and would have cluttered the 
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diagram. Instead, the explanation can be found below in the subsections describing each 

class: each time we provide the text (i.e., the value of the “Explanation” tagged value) 

that would be used by a UML CASE tool supporting our profile. 

The different classes in the class diagram of Figure 15 are now described in sections 

7.5.5.1 to 7.5.5.10. 

7.5.5.1 Description of class Controller 

Controller is the key and central element of the subsystem. It is stereotyped with 

<<SafetyCritical> (5.2.17) and assigned software level C, as indicated by the 

“CriticalityLevel” tagged value, because its failure results in the failure of the entire 

subsystem, which is assigned software level C itself. Furthermore, Controller is 

stereotyped with <<Handler>> (5.2.19) whose “HandleableEvent” tagged value is set to 

“PilotInputEvent” to indicate that it handles all concrete events that are subclasses of 

PilotInputEvent (E7). In addition to normal code execution (e.g. changing the flight 

path in response to a ChangeFlightPath (E8) input event), Controller also executes 

the InvestigateFuelShortage (R6) reaction to decide whether the changes requested 

by the pilots will result in a fuel shortage or not. This reaction results in sending one of 

two events (discussed later): FuelShortageExpected (E3) and 

FuelShortageNotExpectedEvent (E4). There is not a separate monitor shown here, 

using the <<Monitor>> (5.2.20) stereotype, because those events are explicit invocation 

calls through NavigationInterface. 

WingsAndEnginesInterface is NavigationControllerSubsystem’s interface to 

WingsAndEnginesSubsystemSubsystem. Therefore, it is stereotyped with <<Interface>> 

(5.2.25). Its “IsBetweenHardwareAndSoftware” tagged value is set to “true” to indicate 

the class interfaces directly with hardware, and its “InterfaceFor” tagged value is set to 

WingsAndEnginesSubsystemSubsystem to specify the subsystem for which this class is 

an interface for. 

Controller implements all the functional requirements assigned to the subsystem, 

namely FREQ 1, FREQ 2, FREQ 3, FREQ 4, and FREQ 5. This is explicitly indicated in 
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the diagram by stereotyping Controller with <<Rationale>> (5.2.14) and identifying 

the functional requirements through the “Reference” tagged value. Furthermore, 

Controller also implements three safety requirements, namely SREQ 2, SREQ 3, and 

SREQ 4, which are also listed in the “Reference” tagged value of the <<Rationale>> 

(5.2.14) stereotype. The “Explanation” tagged value for each requirement is: 

1. FREQ 1: To implement this functional requirement, Controller uses 

NavigationDatabaseInterface (see section 7.5.5.10) to read pre-determined 

flight paths from NavigationDatabaseSubsystem.  

2. FREQ 2: To implement this functional requirement, Controller needs to provide 

an autopilot functionality, which requires continuously controlling the aircraft’s 

wings and engines through WingsAndEnginesInterface, as well as using 

NavigationInterface to read the navigation parameters and determine the 

correct input parameters to the wings and engines (section 7.5.5.10). If the 

requested flight path is not pre-determined (i.e. loaded from the navigation 

database), then Controller uses PathProjector (section 7.5.5.9) to determine 

the most appropriate flight path based on the pilots’ input parameters. 

3. FREQ 3: To implement this functional requirement, Controller needs to be able 

to fly the aircraft to a specific FTP, which requires continuously controlling the 

aircraft’s wings and engines through WingsAndEnginesInterface , as well as 

using NavigationInterface to read the navigation parameters (section 7.5.5.10). 

To determine the flight path from the aircraft’s current position to the requested 

FTP, Controller uses PathProjector to determine what the most appropriate 

flight path based on the pilots’ requested FTP (section 7.5.5.9).  

4. FREQ 4: To implement this functional requirement, Controller needs to be able 

to guide the pilots with navigation directions by tracking the aircraft’s position 

and bearing, following the flight path, without controlling the aircraft’s wings and 

engines through WingsAndEnginesInterface. In this mode, the pilot manually 

controls the aircraft through MechanicalSteeringWheelSubsystem. However, 

Controller uses NavigationInterface to read the navigation parameters and 
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be able to provide correct flight guidance to the pilots (section 7.5.5.10). This 

operating mode requires Controller to calculate the required inputs to 

WingsAndEnginesSubsystem, which is then displayed to the pilots. Such 

calculations take various factors into account, including the aircraft’s navigation 

information, wind navigation information, and unsafe areas.  

5. FREQ 5: To implement this functional requirement, Controller needs to be able 

to read the navigation information (e.g., aircraft’s and the wind’s position and 

speed) from NavigationSubsystem (section 7.5.5.10).  

6. SREQ 2: To implement this safety requirement, Controller needs to be able to 

execute an algorithm that determines whether a specific LAT/LONG position is in 

safe area or not. This is the responsibility of SafePointDeterminator (section 

7.5.5.8).  

7. SREQ 3: To implement this safety requirement, Controller needs to be able to 

execute an algorithm that projects a flight path based on the current aircraft’s 

position and the target FTP, and then determines whether this path includes flying 

in unsafe areas. This algorithm is the responsibility of PathProjector (section 

7.5.5.9). Once a path is determined, then an algorithm in 

SafePointDeterminator is executed to determine whether the flight path is safe 

or not (section 7.5.5.8).  

8. SREQ 4: To implement this safety requirement, Controller needs to be able to 

investigate whether a fuel shortage is expected, based on the current navigation 

information and flight information, or not. The navigation information is available 

through NavigationInterface (section 7.5.5.10). The determination of whether 

fuel shortage is expected or not occurs in the execution of the 

InvestigateFuelShortage (R6) reaction. As a result of this execution, it raises 

either the FuelShortageExpected (E3) event or the FuelShortageNotExpected 

(E4) event. Raising an event is the explicit indication that a particular event has 

occurred, which would normally result in the detection of the event and its 
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appropriate handing by executing the corresponding reactions. The event is then 

detected and handled by ControllerMonitorAndHandler (section 7.5.5.6).  

7.5.5.2 Description of class WingsAndEnginesMonitor 

WingsAndEnginesMonitor is a safety monitoring class as indicated by the <<Monitor>> 

(5.2.20) stereotype and its “Kind” tagged value, which is set to “Safety”. The purpose of 

this class is to continuously monitor WingsAndEnginesSubsystem through 

WingsAndEnginesInterface to detect any event that may impact safety. This is 

specified in the “MonitoredEntity” tagged value, which is set to 

“WingsAndEnginesInterface” because, as far as NavigationControllerSubsystem is 

concerned, WingsAndEnginesInterface is the single point of interface with 

WingsAndEnginesSubsystem. The safety-related events that WingsAndEnginesMonitor 

detects are specified in the “DetectableEvent” tagged value, which is set to 

“WingsAndEnginesEvent” to indicate that it detects all events of type 

WingsAndEnginesEvent and its subclasses. Furthermore, the “EventHandler” tagged 

value is set to “ExternalSubsystemsEventHandler” to indicate that 

ExternalSubsystemsEventHandler is the event handler for the events that 

WingsAndEnginesMonitor detects. 

The requirements that WingsAndEnginesMonitor implements are indicated by the 

“Reference” tagged value of the <<Rationale>> (5.2.14) stereotype, namely SREQ 1, 

SREQ 6.1, and SREQ 6.4. The “Explanation” tagged values of stereotype <<Rationale>> 

are: 

1. SREQ 1: It implements this safety requirement by monitoring 

WingsAndEnginesInterface for the  following two events: 

WingsAndEnginesControlledByOtherSubsystem (E19) and 

WingsAndEnginesNotControlledByOtherSubsystem (E20). If any of them is 

detected, ExternalSubsystemsEventHandler is notified accordingly to handle 

the event (section 7.5.5.5).  
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2. SREQ 6.1: It implements this safety requirement by monitoring 

WingsAndEnginesInterface for the WingsAndEnginesFailed (E15) and 

WingsAndEnginesRestored (E16) events. If any of them is detected, 

ExternalSubsystemsEventHandler is notified accordingly to handle the event 

(section 7.5.5.5).  

3. SREQ 6.4: It implements this safety requirement by monitoring 

WingsAndEnginesInterface for the WingsAndEnginesConnectionLost (E17) 

and WingsAndEnginesConnectionEstablished (E18) events. If any of them is 

detected, ExternalSubsystemsEventHandler is notified accordingly to handle 

the event (section 7.5.5.5).  

7.5.5.3 Description of class NavigationDatabaseMonitor 

NavigationDatabaseMonitor is a safety monitoring class as indicated by the 

<<Monitor>> (5.2.20) stereotype and its “Kind” tagged value, which is set to “Safety”. 

The purpose of this class is to continuously monitor NavigationDatabaseSubsystem 

through NavigationDatabaseInterface to detect any events that may impact safety. 

This is specified in the “MonitoredEntity” tagged value, which is set to 

“NavigationDatabaseInterface” because, as far as NavigationControllerSubsystem is 

concerned, NavigationDatabaseInterface is the single point of interface with 

NavigationDatabaseSubsystem. The safety-related events that NavigationDatabase-

Monitor detects are specified in the “DetectableEvent” tagged value, which is set to 

“NavigationDatabaseEvent” to indicate that it detects all events of 

NavigationDatabaseEvent and its subclasses. Furthermore, the “EventHandler” tagged 

value is set to “ExternalSubsystemsEventHandler” to indicate that 

ExternalSubsystemsEventHandler is the event handler for the events that 

NavigationDatabaseMonitor detects. 

The requirements that NavigationDatabaseMonitor implements are indicated by the 

“Reference” tagged value of the <<Rationale>> (5.2.14) stereotype, namely SREQ 6.2. 

The detectable events are NavigationDatabaseFailed (E12) and 

NavigationDatabaseRestored (E13). If any of them is detected, 
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ExternalSubsystemsEventHandler is notified accordingly to handle the event (section 

7.5.5.5). The “Explanation” tagged value of the <<Rationale>> (5.2.14) stereotype is 

exactly the explanation provided in this paragraph.  

7.5.5.4 Description of class NavigationMonitor 

NavigationMonitor is a safety monitoring class as indicated by the <<Monitor>> 

(5.2.20) stereotype and its “Kind” tagged value, which is set to “Safety”. The purpose of 

this class is to continuously monitor NavigationSubsystem through 

NavigationInterface to detect any events that may impact safety. This is specified in 

the “MonitoredEntity” tagged value, which is set to “NavigationInterface” because, as far 

as NavigationControllerSubsystem is concerned, NavigationInterface is the single 

point of interface with NavigationSubsystem. The safety-related events that 

NavigationMonitor detects are specified in the “DetectableEvent” tagged value, which 

is set to “NavigationEvent” to indicate that it detects all events of NavigationEvent and 

its subclasses. Furthermore, the “EventHandler” tagged value is set to 

“ExternalSubsystemsEventHandler” to indicate that ExternalSubsystemsEventHandler 

is the event handler for the events that NavigationMonitor detects. This is an example 

of using the same class as both a monitor and an event handler, which may be more 

appropriate in cases where the events and reactions are relatively simple, possibly 

because the “MonitoredEntity” is a single class, namely, Controller. Each of the other 

monitors in the subsystem monitors an entire subsystem, through its interface. Those 

monitored subsystems reside on different nodes, and therefore there are several other 

factors that monitors need to be aware of, such as communication through data buses. 

The requirements that NavigationMonitor implements are indicated by the “Reference” 

tagged value of the <<Rationale>> (5.2.14) stereotype, namely SREQ 6.3, SREQ 6.5, and 

SREQ 7. The “Explanation” tagged values of the <<Rationale>> (5.2.14) stereotype are: 

1. SREQ 6.3: It implements this safety requirement by monitoring 

NavigationInterface for the NavigationFailed (E22) and 

NavigationRestored (E23) events.  
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2. SREQ 6.5: It implements this safety requirement by monitoring 

NavigationInterface for the NavigationConnectionLost (E24) and 

NavigationConnectionEstablished (E25) events.  

3. SREQ 7: It implements this safety requirement by monitoring 

NavigationInterface for the StartDeadReckoningAircraftPosition (E26) 

and UseGPSForAircraftPosition (E27) events.  

If any of these events is detected, ExternalSubsystemsEventHandler is notified 

accordingly to handle the event (section 7.5.5.5). 

7.5.5.5 Description of class ExternalSubsystemsEventHandler 

ExternalSubsystemsEventHandler is an event handler as indicated by the 

<<Handler>> (5.2.19) stereotype. Thus, the “HandleableEvent” tagged value is set to 

“DependentSubsystemEvent”, which is the event class, and its subclasses, that 

ExternalSubsystemsEventHandler can recognize and handle. All the events that are 

passed to ExternalSubsystemsEventHandler from WingsAndEnginesMonitor, 

NavigationDatabaseMonitor, or NavigationMonitor are subclasses of the 

DependentSubsystemEvent (E10). The reactions that 

ExternalSubsystemsEventHandler performs in response to those events are the 

concrete subclasses of ReactionToDependentSubsystemEvent (R2) and its subclasses. 

The “Reference” tagged value of the <<Rationale>> (5.2.14) stereotype specifies the 

requirements that ExternalSubsystemsEventHandler fulfills by performing the 

reactions to the event, namely1 SREQ 1, SREQ 6 (and its sub-requirements), and SREQ 

7. Specifically, it implements each requirement by invoking the corresponding reaction 

for each event it is notified with. As before, the “Explanation” tagged value of the 

<<Rationale>> (5.2.14) stereotype is not shown in the diagram because it is large and 

                                                 
1 WingsAndEnginesMonitor, NavigationDatabaseMonitor, and NavigationMonitor send events 
that are handled by ExternalSubsystemsEventHandler to implement requirements SREQ 1, 
SREQ 6.1, and SREQ 6.4 (WingsAndEnginesMonitor–section 7.5.5.2), SREQ 6.2 
(NavigationDatabaseMonitor–section 7.5.5.3), SREQ 6.3, SREQ 6.5, and SREQ 7 
(NavigationMonitor–section 7.5.5.4). 
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would have cluttered the diagram, but the explanation provided in this paragraph is 

actually the value of the “Explanation” tagged value and is what would be captured in a 

UML tool. 

7.5.5.6 Description of class ControllerMonitorAndHandler 

ControllerMonitorAndHandler is a safety monitoring class that monitors Controller. 

Unlike the monitoring classes discussed above, this class is also the handler for the events 

it detects. It was a design decision to combine those two functionalities in one class 

because all of the events detected, and reactions performed, by this class are simple 

enough to combine both in one class. On the other hand, WingsAndEnginesMonitor, 

NavigationDatabaseMonitor, and NavigationMonitor are designed to detect more 

complex events. Those complex events require the monitors to continuously interact with 

the subsystems they monitor by sending and receiving inter-subsystem messages through 

their interface classes.  

The <<Monitor>> (5.2.20) stereotype on ControllerMonitorAndHandler explicitly 

indicates that the class is a monitor, and the “Kind” tagged value, which is set to 

“Safety”, indicates that its purpose is to monitor safety. The “MonitoredEntity” tagged 

value is set to “Controller” to indicate ControllerMonitorAndHandler monitors 

Controller for safety-related events. The “DetectableEvent” tagged value is set to 

“IndependentSubsystemEvent” to indicate that it detects all events of 

IndependentSubsystemEvent and its subclasses. Furthermore, the “EventHandler” 

tagged value is set to “ControllerMonitorAndHandler” to indicate that 

ControllerMonitorAndHandler itself is the event handler for the events that it detects. 

The <<Handler>> (5.2.19) stereotype explicitly indicates that 

ControllerMonitorAndHandler also handles the events that it detects. The 

“HandleableEvents” tagged value is set to “IndependentSubsystemEvent” to indicate that 

the class can handle all IndependentSubsystemEvent events and its subclasses. 

Furthermore, the “PerformedReaction” tagged value is set to 

“ReactionToIndependentSubsystemEvent” to indicate that ControllerMonitor-
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AndHandler performs all reactions of ReactionToIndependentSubsystemEvent and its 

subclasses in response to the events. 

ControllerMonitorAndHandler is also stereotyped with <<Rationale>> (5.2.14) whose 

“Reference” tagged value is set to “SREQ 4, SREQ 5, SREQ 7”. The “Explanation” 

tagged values of the <<Rationale>> (5.2.14) stereotype are: 

1. SREQ 4: It implements this safety requirement by monitoring Controller for the 

FuelShortageExpected (E3) and FuelShortageNotExpected (E4) events 

(section 7.5.5.1). Since ControllerMonitorAndHandler is also an event handler, 

it executes the RaiseFuelShortageExpectedAlert (R11) reaction in response to 

the FuelShortageExpected (E3) event, and the 

HideFuelShortageExpectedAlert (R12) reaction in response to the 

FuelShortageNotExpected (E4) event. 

2. SREQ 5: It implements this safety requirement by monitoring Controller for the 

ControllerFailed (E5) and ControllerRestored (E6) events (section 7.5.5.1). 

It is ControllerMonitorAndHandler that creates those events based on how it 

observes the behaviour of Controller to be. Since 

ControllerMonitorAndHandler is also an event handler, it executes the 

RaiseSubsystemFailureAlert (R9) reaction in response to the 

FuelShortageExpected (E5) event, and the HideSubsystemFailureAlert 

(R10) reaction in response to the ControllerRestored (E6) event. 

3. SREQ 7: It implements this safety requirement by monitoring Controller, and 

by being sensitive to the StartDeadReckoningAircraftPosition (E26) and 

UseGPSForAircraftPosition (E27) events (section 7.5.5.1). Since 

ControllerMonitorAndHandler is also an event handler, it executes the 

RequirePilotConfirmation (R8) reaction, which periodically requires the 

pilot’s confirmation as long as the aircraft’s position is being dead-reckoned, in 

response to the StartDeadReckoningAircraftPosition (E26) and 

UseGPSForAircraftPosition (E27) events. 
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7.5.5.7 Description of class ControllerInterface 

ControllerInterface serves as the façade of NavigationControllerSubsystem to the 

other subsystems. This has two implications. First of all, it is safety-critical and has a 

software level equal to that of NavigationControllerSubsystem. This is indicated by 

stereotyping it with <<SafetyCritical>> (5.2.17) and setting its “CriticalityLevel” tagged 

value to “C”. Secondly, it is stereotyped with <<Interface>> (5.2.25) and has its 

“InterfaceFor” tagged value set to “NavigationControllerSubsystem” to indicate that it 

serves as an interface for NavigationControllerSubsystem. The services this interface 

provides is quering Controller, and consequently other classes that it depends on, and 

commanding Controller to perform certains functionalities such as activating autopilot 

or FTP mode. Notice that ControllerInterface is not stereotyped with <<Rationale>> 

(5.2.14) in this diagram because it is Controller that implements the functional 

requirements. In the class diagram for some other subsystem, such as 

NavigationUserInterfaceSubsystem, ControllerInterface serves as the façade of 

NavigationControllerSubsystem and its classes, including Controller. In that 

context, it is likely to include ControllerInterface and stereotype it with 

<<Rationale>> (5.2.14) and include all the FREQ ans SREQ requirements in its 

“Reference” tagged value. This is what was done here for the interfaces for other 

subsystems (WingsAndEnginesInterface, NavigationDatabaseInterface, and 

NavigationInterface). 

7.5.5.8 Description of class SafePointDeterminator 

SafePointDeterminator implements an algorithm that determines whether a specific 

LAT/LONG position is in a safe area or not. Similarly, it implements an algorithm that 

determines whether a flight path is safe or not. These services are provided to 

Controller to implement requirements SREQ 2 and SREQ 3 (see section 7.5.5.1). 

Therefore SafePointDeterminator participates in the implementation of this 

requirement and is stereotyped with <<Rationale>> (5.2.14) whose “Reference” tagged 

value includes “SREQ 2” and “SREQ 3”. 
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Additionally, SafePointDeterminator is stereotyped with <<SafetyCritical>> (5.2.17) 

whose “CriticalityLevel” tagged value is set to “C” because2 it is used by Controller 

which is itself safety critical at level “C”. 

7.5.5.9 Description of class PathProjector 

PathProjector provides services to Controller, such as obtaining the source and 

destination LAT/LONG positions, specific intermediate flight points, … of a path, when 

Controller does not have a pre-determined flight path (see section 7.5.5.1). Therefore, 

PathProjector participates in implementing requirement FREQ 2. Similarly, 

PathProjector participates in implementing requirement FREQ 3 (see section 7.5.5.1). 

Additionally, PathProjector implements an algorithm that projects a flight path based 

on the current aircraft’s position and the target FTP. This service is also used by 

Controller to implement requirement SREQ 3. PathProjector is therefore stereotyped 

with <<Rationale>> (5.2.14) whose “Reference” tagged value includes “FREQ 2”, 

“FREQ 3”, and “SREQ 3”. 

Additionally, PathProjector is stereotyped with <<SafetyCritical>> (5.2.17) whose 

“CriticalityLevel” tagged value is set to “C” because2 it is used by Controller which is 

itself safety critical at level “C”. 

7.5.5.10 Description of WingsAndEnginesInterface, NavigationDatabase-

Interface, and NavigationInterface classes 

Finally, the class diagram for NavigationControllerSubsystem includes three 

interface classes that communicate with other subsystems. For each one of those interface 

(client) classes, there exists a server class in the corresponding subsystem that 

communicates with it by receiving messages, usually known as requests in such 

                                                 
2 According to the rules for determining software levels described in the airworthiness standard RTCA DO-
178B [4], when a safety critical component has a specific criticality level, then all the components it 
depends on are safety critical and have at least this criticality level (‘A’ is more critical than ‘B’, which is 
more critical than ‘C’, …). In our case, components are classes, and a class depends on another class if the 
former class requires services from the latter class, which is specified in the class diagram as an association 
that can be navigated from the former to the latter. 
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distributed systems, from the interface and then responding to them. Those interface 

classes are: 

1. WingsAndEnginesInterface, which belongs to WingsAndEnginesSubsystem. It 

is NavigationControllerSubsystem’s interface to WingsAndEngines-

Subsystem. Therefore, it is stereotyped with <<Interface>> (5.2.25). Its 

“IsBetweenHardwareAndSoftware” tagged value is set to “true” to indicate the 

class interfaces directly with hardware, and its “InterfaceFor” tagged value is set 

to WingsAndEnginesSubsystemSubsystem to specify the subsystem for which 

this class is an interface for. WingsAndEnginesInterface is stereotyped with 

<<Rationale>> (5.2.14) whose “Reference” tagged value includes “FREQ 2” and 

“FREQ 3” because it is used by class Controller to implement these 

requirements (see section 7.5.5.1).  

2. NavigationDatabaseInterface, which belongs to the 

NavigationDatabaseSubsystem. It is NavigationControllerSubsystem’s 

interface to NavigationDatabaseSubsystem. Therefore, it is stereotyped with 

<<Interface>> (5.2.25). Its “IsBetweenHardwareAndSoftware” tagged value is set 

to “false” to indicate the class does not interface with hardware, and its 

“InterfaceFor” tagged value is set to “NavigationDatabaseSubsystem” to specify 

the subsystem for which this class is an interface for. 

NavigationDatabaseInterface is stereotyped with <<Rationale>> (5.2.14) 

whose “Reference” tagged value includes “FREQ 1” because it is used by class 

Controller to implement this requirement (see section 7.5.5.1). 

3. NavigationInterface, which belongs to the NavigationSubsystem. It is 

NavigationControllerSubsystem’s interface to NavigationSubsystem. 

Therefore, it is stereotyped with <<Interface>> (5.2.25). Its 

“IsBetweenHardwareAndSoftware” tagged value is set to “true” to indicate the 

class interfaces directly with hardware, and its “InterfaceFor” tagged value is set 

to “NavigationSubsystem” to specify the subsystem for which this class is an 

interface for. NavigationInterface is stereotyped with <<Rationale>> (5.2.14) 
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whose “Reference” tagged value includes “FREQ 2”, “FREQ 3”, “FREQ 4”, 

“FREQ 5”, and “SREQ 4” because it provide navigation parameters, such as the 

aircraft’s and the wind’s bearing and speed, the aircraft’s and the wind’s position 

and speed, to the Controller class to implement these requirements (see section 

7.5.5.1).  

Last, these three classes are stereotyped with <<SafetyCritical>> (5.2.17) whose 

“CriticalityLevel” tagged value is set to “C” because2 they are used by Controller 

which is itself safety critical at level “C”. 

7.5.6 Low-Level Design of Events and Reactions 

There are several possible ways to design and implement the events and reactions in 

software. One approach would be to design them as classes. In this case, the class 

diagram for each the events would be exactly the one shown in Figure 13, and the class 

diagram for reactions would be exactly the one shown in Figure 14. A concrete event 

instance is simply an instantiation of its corresponding class. This object instance would 

then be passed from a monitor, stereotyped with <<Monitor>> (5.2.20), to a handler 

<<Handler>> (5.2.19). A reaction would also be an instantiation of a reaction class. 

Executing it would simply correspond to passing an event object instance to a procedure 

in the reaction object instance. For example, here is a sample code for 

ControllerMonitorAndHandler illustrating how reactions to the ChangeFlightPath 

(E8) event are executed: 
ChangeFlightPath event = new ChangeFlightPath (params); 

InvestigateFuelShortage reaction1 =  

                  new InvestigateFuelShortage (params); 

EnsureFlightPathOverSafeAreas reaction2 =  

                  new EnsureFlightPathOverSafeAreas (params); 

reaction1.handle (event); 

reaction2.handle (event); 

However, it is not necessary to have a separate class for each reaction. In fact, only one 

procedure, in a Handler (3.2.3.12) class, is generally needed to describe and execute a 

reaction instead of an entire class, although this is dependent on the application details 

and the sizes of the events and reactions (i.e. it is up to the designers to ensure that events 
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and reactions are appropriately defined). Therefore, it is often feasible to group all related 

reaction procedures together and include them in the class that is stereotyped with 

<<Handler>> (5.2.19). That way, the handler does not need to keep track on which 

reactions should occur in response to which events. This would simplify the design and 

implementation. Here is a sample code illustrating this concept: 
switch (event.Kind) 

{ 

  case CHANGE_FLIGHT_PATH: 

    investigateFuelShortage (event); 

    ensureFlightPathOverSafeAreas (event); 

    break; 

  case ...: 

    ... etc. 

} 

Either way, the Handler class would be invoked as follows: 
ChangeFlightPath event = new ChangeFlightPath (params); 

PersistentEventHandler.handle (event); 

Thus, the PersistentEventHandler static class would know exactly that it should 

execute the InvestigateFuelShortage (R6) and EnsureFlightPathOverSafeAreas 

(R7) reactions. This is a better approach as it would relief the clients from knowing the 

reaction specifics. In other words, they can call the handle procedure of the event 

handler without needing to know what the event is and what its reactions are. 

The concepts of events and reactions in this research are related to the UML concepts of 

signals and operations. A signal is intended to indicate the occurrence of an event of 

interest. The occurrence of a signal could result in the occurrence of another signal, or in 

the invocation of an operation. Therefore, either a signal or an operation may be the 

response to a signal. Thus, signals and operations may be reactions to other signals 

(“events” in the safety analysis domain). 

In summary, structuring and interpreting events and reaction is an implementation detail 

rather than a significant design decision. Therefore, it will not be pursued any further in 

this case study. 
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7.6 Design Analysis 

Now that NavigationControllerSubsystem is designed according to the functional and 

safety requirements, the design model is analysed according to the UML profile’s usage 

scenarios identified in section 2.4. This section will illustrate the usefulness of modeling 

safety information in the UML model using the proposed UML profile. 

7.6.1 USAGE 1: Provide Safety Requirements 

Safety requirements are provided by the safety and airworthiness engineers. In this case 

study, the safety requirements resulted from the safety assessment performed in section 

7.4, and the safety requirements were listed in section 7.4.5. 

Two general requirements were specified in the class diagram for 

NavigationControllerSubsystem in Figure 15 (see the top of the diagram). One of 

them was a functional requirement, which indicated that the class diagram must fulfill all 

FREQ requirements of the subsystem. The second one was a safety requirement, which 

indicated that the class diagram must fulfill all SREQ requirements of the subsystem. To 

ensure that every functional and safety requirement is addressed by at least one class, one 

needs to ensure that every functional and safety requirement is referenced by at least one 

class using an appropriate stereotype and its tagged values. The <<Rationale>> (5.2.14) 

stereotype is the most common for such usage. This is a step towards ensuring that the 

diagram fulfills those two high-level diagram requirements. 

In addition, safety (and functional) requirements were referenced in the UML model 

using the <<Rationale>> (5.2.14) stereotype. Each model element that implemented at 

least one safety (or functional) requirement was stereotyped with <<Rationale>> (5.2.14). 

Thus, the design was explicitly and precisely related to the safety requirements. This had 

several advantages. One particular advantage that is relevant for this usage scenario is 

that software engineers better consider safety requirements if they have to explicitly 

relate the design model elements to them. This improves the communication between 

software and airworthiness/safety engineers because software engineers are now better 

able to relate the safety requirements to their software designs. 
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7.6.2 USAGE 2: Design Safety Requirements in Systems 

Safety requirements were decomposed into events and reactions in section 7.5, which 

helped design the safety requirements in the software. Event handlers, which perform 

reactions to events, were designed and stereotyped with <<Handler>> (5.2.19). When 

events and reactions were modeled, either as a class or as an operation, they were 

stereotyped with <<Event>> (5.2.15) and <<Reaction>> (5.2.16), respectively. 

As a result of decomposing safety requirements into events and reactions, designing 

safety requirements in the system reduces to ensuring that safety-related events are 

detected and that the relevant reactions are properly executed. The events are listed and 

described in section 7.5.2, and the reactions are listed and described in section 7.5.3. This 

can be ensured by analysing event handling classes in Figure 15, which were stereotyped 

with <<Handler>> (5.2.19), and ensuring that the “HandleableEvent” tagged values 

include all previously identified safety-related events. In addition, it must be ensured that 

all previously identified safety-related reactions are included in the “PerformedReaction” 

tagged values, and that all such reactions are properly executed in response to the events 

that trigger them. This helps ensure that all previously identified safety requirements are 

accounted for in the design. 

All classes that implement safety requirements are stereotyped with <<Rationale>> 

(5.2.14) and their “Reference” tagged values explicitly identify all the requirements that 

they implement. Therefore, another way to ensure that the safety requirements are 

accounted for in the design is to analyse the UML model and identify all <<Rationale>> 

(5.2.14) stereotypes. Then, their “Reference” tagged values are analysed to ensure that 

every safety requirement is referenced by at least one class. A class references a safety 

requirement if it implements it or at least helps implement it. 

One particular use of the <<Rationale>> (5.2.14) stereotype and its “Reference” tagged 

value is to associate reactions to the safety requirements that they implement. This is 

evident in Figure 14 as each modeled reaction is stereotyped with <<Rationale>> (5.2.14) 

to identify the safety requirements that it implements. 
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Since this is a highly-safety critical subsystem that has almost as many safety 

requirements as functional requirements, safety-monitoring is emphasized. Safety 

monitors are needed to design the safety requirements in the software. Thus, that 

subsystem has several safety monitors, one for each subsystem on which it depends and 

one for itself. The monitors can be identified by analysing the model and identifying all 

classes that are stereotyped with <<Monitor>> (5.2.20). Each monitor class explicitly 

identifies what it monitors through the “MonitoredEntity” tagged value. Therefore, 

NavigationControllerSubsystem will be able to track subsystem and class failures and 

ensure that this does not cause any safety hazards. In fact, once a monitor detects an event 

of interest, it notifies an appropriate event handler, which is stereotyped with 

<<Handler>> (5.2.19) itself. 

The monitors were designed to detect the safety-critical events of interest to the safety 

requirements. Once such an event is detected, the appropriate event handler is notified. 

Once notified, the event handler executes the corresponding reaction for each event. The 

reactions are intended to alleviate the safety hazards introduced by each event, which is 

indicated by stereotyping each reaction with <<Reaction>> (5.2.16) and setting its 

“EffectOnSafetyDirection” tagged value to “Positive”. The safety monitoring classes, 

which are stereotyped with <<Monitor>> (5.2.20) in the design are 

WingsAndEnginesMonitor, NavigationDatabaseMonitor, NavigationMonitor, and 

ControllerMonitorAndHandler. The event handlers, stereotyped with <<Handler>> 

(5.2.19) in the design are ExternalSubsystemsEventHandler and 

ControllerMonitorAndHandler. 

7.6.3 USAGE 3: Justify Design Decisions 

Justifying design decisions is captured in the “Explanation” tagged value of the 

<<Rationale>> (5.2.14) stereotype. In this case study, a detailed explanation on how the 

class implements each safety requirement, and often even functional requirement, 

assigned to it was discussed. This explanation was presented in section 7.5.5 and each 

occurrence was explicitly identified as the value of an “Explanation” tagged value. 
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7.6.4 USAGE 4: Monitor Safety 

There are many approaches to monitoring the design and ensuring that it fulfills safety 

requirements. One way is to ensure that each safety requirement has design elements 

traceable to it. This case study has used the <<Rationale>> (5.2.14) stereotype to trace 

design elements to safety requirements and provide justifications for this. The following 

search query can be executed to determine which model elements. Including classes and 

reactions, are traceable to (e.g. implement) safety requirements: 

SEARCH FOR all model elements STEREOTYPED WITH (<<Rationale>>) 

The results can be analysed to determine how safety requirements were designed into the 

system in USAGE 2, and the “Explanation” tagged value of the <<Rationale>> (5.2.14) 

stereotype can be read to determine the justifications, performed in USAGE 3, for the 

design decisions performed in USAGE 2. 

Executing this search query and then sorting the results per software requirement (i.e. 

according to the “Reference” tagged value of the <<Rationale>> stereotype) tells us 

which classes and reactions implement each safety requirement. Notice that we do not 

have events stereotyped with <<Rationale>> (5.2.14) because they do not contain 

executable code that implements safety requirements. The results (classes and reactions) 

of the above query for each safety requirement are: 

SREQ 1 WingsAndEnginesMonitor,   ExternalSubsystemsEventHandler, 
EnableController (R3),   DisableController (R4) 

SREQ 2 Controller,   SafePointDeterminator,  
EnsureFlightPathsOverSafeAreas (R7) 

SREQ 3 Controller,   SafePointDeterminator,  
PathProjector,   EnsureFlightPathsOverSafeAreas (R7) 

SREQ 4 ControllerMonitorAndHandler,   InvestigateFuelShortage (R6), 
RaiseFuelShortageExpectedAlert (R11),  
HideFuelShortageExpectedAlert (R12) 

SREQ 5 ControllerMonitorAndHandler,   RaiseSubsystemFailureAlert (R9),  
HideSubsystemFailureAlert (R10). 

SREQ 6 WingsAndEnginesMonitor,   NavigationDatabaseMonitor,  
NavigationMonitor,   ExternalSubsystemsEventHandler,  
EnableController (R3),   DisableController (R4),  
RaiseSubsystemFailureAlert (R9), HideSubsystemFailureAlert (R10) 

SREQ 7 NavigationMonitor, ExternalSubsystemsEventHandler, 
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ControllerMonitorAndHandler, and RequirePilotConfirmation (R8) 

Furthermore, monitoring safety includes ensuring that each event that can have negative 

effect on safety has one or more appropriate reactions that have a positive effect on 

safety. This basically means that all hazards caused by events must be treated, and 

technically removed, by reactions. Thus, each class stereotyped with <<Event>> (5.2.15) 

must be referenced at least once by a “ConsequenceOf” tagged value of a <<Reaction>> 

(5.2.16) stereotype of some class. In this case study, this was presented in sections 7.5.4 

and 7.5.4, specifically in Figure 14 and Table 5, respectively. 

Furthermore, one must ensure that all the safety-related events are detectable by 

monitors. This is ensured through the “DetectableEvent” tagged value of the 

<<Monitor>> (5.2.20) stereotype. Notice that a monitor can recognize events, but it does 

not know which reactions may execute in response to each event. In fact, this is the 

responsibility of an event handler. The following search query can be executed to obtain 

a list of monitors: 

SEARCH FOR all model elements STEREOTYPED WITH (<<Monitor>>) 

Executing this query on the design in Figure 15 gives the following result: 

ControllerMonitorAndHandler, WingsAndEnginesMonitor, NavigationDatabase-

Monitor, and NavigationMonitor. 

Then, looking into the “DetectableEvent” tagged value of the <<Monitor>> (5.2.20) 

stereotype for each of the classes in the result above tells us which events are detected by 

the identified monitors. This tells us whether all events of interest are detectable (i.e. the 

design of monitors is complete) or not. 

In addition, events detected by monitors must be handled by event handlers. The 

“EventHandler” tagged value of the <<Monitor>> (5.2.20) stereotype for each monitor 

class identifies the classes that the monitor notifies when any of the events represented by 

the “DetectableEvent” tagged value occurs. 

This case study contained two event handlers, each of which explicitly specifies the 

events it can handle and the reactions that it performs in response to those events. This 
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information was presented in the “HandleableEvent” and “PerformedReaction” tagged 

values, respectively, of the <<Handler>> (5.2.19) stereotype. A list of event handlers can 

be obtained by executing the following search query: 

SEARCH FOR all model elements STEREOTYPED WITH (<<Handler>>) 

Executing this search query on the design model in Figure 15 gives the following result: 

ExternalSubsystemsEventHandler, and ControllerMonitorAndHandler. 

Then, one needs to ensure that the “HandleableEvent” and “PerformedReaction” of the 

<<Handler>> (5.2.19) stereotype for all handler classes reference all the previously 

determined events and their reactions. This tells us whether all safety-related events of 

interest are properly handled, through the execution of appropriate reactions, or not. 

7.6.5 USAGE 5: Get Safety Information 

Safety information that is required to prove compliance with airworthiness requirements 

includes ensuring that each safety requirement is implemented. This was discussed in 

sections 7.6.1 - 7.6.4. 

In addition, safety information that is required by the certification authorities also 

includes determining hardware/software interfaces as explained in section 6.2.1. This can 

be obtained by executing the search query described in section 6.2.1. The search query is: 

SEARCH FOR all model elements STEREOTYPED WITH (<<Interface>> 

WITH TAGGED VALUE (IsBetweenHardwareAndSoftware = true)) 

Executing it on NavigationControllerSubsystem (section 7.5.5) gives: 

WingsAndEnginesInterface, and NavigationInterface. 

Furthermore, the certification authorities require that software levels be specified and 

submitted as explained in section 6.2.2. This can be obtained by executing the search 

query in section 6.2.2. This search query is: 

SEARCH FOR all model elements STEREOTYPED WITH 

(<<SafetyCritical>>) 
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Executing it on the system architecture in section 7.2 gives all the subsystems, namely: 

MechanicalSteeringWheelSubsystem, NavigationUserInterfaceSubsystem, 

LEDDisplaySubsystem, NavigationControllerSubsystem, WingsAndEngines-

Subsystem, NavigationDatabaseSubsystem, NavigationSubsystem. 

The software levels can be obtained from the “CriticalityLevel” tagged value of the 

<<SafetyCritical>> (5.2.17) stereotype for each of the above subsystems. 

Other information that is required by the certification authorities includes the partitions in 

the system as explained in section 6.2.4. This can be obtained by executing the search 

query described in section 6.2.4. The search query is: 

SEARCH FOR all model elements STEREOTYPED WITH 

(<<Partition>>) 

Executing it on the system architecture in section 7.2 gives: 

NavigationControllerSubsystem. 

Furthermore, the airworthiness rules specify that the software level for each subsystem or 

class be equal to at least that of the highest software level for all subsystems or classes 

that depend on it2. This can be automatically verified in the model by executing the 

following pseudocode: 
for each CLIENT model element stereotyped with <<SafetyCritical> 

  if CLIENT has a “CriticalityLevel” assigned then 

    for each SERVER model element on which it depends 

      ensure that SERVER is stereotyped with 

      <<SafetyCritical>> and has a “CriticalityLevel” 

      assigned equal to at least the “CriticalityLevel” 

      of the CLIENT model element 

    end loop 

  end if 

end loop 

Moreover, the certification authorities require a list and description of all safety monitors. 

The monitors and handlers were discussed in sections 7.6.2 and 7.6.4. 
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8 CONCLUSION 

This research has proposed a UML profile for developing software to be compliant with 

the airworthiness standard, RTCA DO-178B [4]. The profile was based on the safety-

related concepts that were extracted from the airworthiness standard as well as their 

refined concepts. As a result, the UML extensions provided by this profile are a 

consequence of the concepts emphasized by the airworthiness standard.  

For example, the airworthiness standard emphasized traceability across requirements, 

design, and source code. The proposed profile provides specific extensions to model 

traceability of design elements to requirements, deviation of design elements from 

original requirements, requirements in the UML model, justification of design and 

implementation styles according to requirements, and partitioning of the architecture 

according to the requirements. A detailed analysis on how the UML profile can be used 

to fulfill each information requirement is presented in section 8.1. 

Furthermore, this research has shown how a software model using an appropriate UML 

profile can be used to effectively generate airworthiness-related information. Such 

information can be submitted to the certification authorities, or it can be used by the 

airworthiness engineers to track how software evolves over the lifetime of a project from 

an airworthiness point of view. 

The profile’s completeness and usefulness was validated by performing a case study. An 

aircraft’s navigation subsystem was defined and analysed by performing a safety 

assessment. It was then modeled using the proposed UML profile. Analysing the model 

showed that the UML profile effectively supported the previously identified usage 

scenarios for safety information. In addition, it is effective in tracing model elements to 

safety requirements and in automatically generating certification information from a 

UML model. 

To achieve the results presented above, this research had to define the used safety-related 

concepts precisely. The original safety-related concepts that were extracted from the 



Carleton University, TR SCE-06-19  Decermber 2006 

 183

airworthiness standard were refined into concepts that better grouped related concepts. 

Furthermore, each safety related concept was described in detail, and attributes were 

defined to describe the various aspects and dimensions of each concept. A  conceptual 

model (class diagram) was also defined and presented, which precisely defined the 

relationships across safety-related concepts and modeled them as associations and 

inheritance relationships. Furthermore, the profile precisely defined the tagged values for 

each stereotype including its type and multiplicity, and mapped each stereotype and its 

tagged values to the refined concepts and their attributes and relationships. 

It is also important to note that this UML profile builds on top of existing UML model 

diagrams within a project. In other words, using this UML profile does not require the 

software engineers to create new diagrams but they must stereotype model elements 

accordingly. Therefore, the amount of effort involved in using this profile is minimal. 

This also contribute towards improving communication between safety and airworthiness 

engineers on the one hand, and software engineers on the other hand. 

8.1 Fulfilling Requirements 

The proposed UML profile was defined based on the refined safety-related concepts 

specified in section 3.2. As section 5 illustrates, there exists a stereotype for each of the 

refined concepts. Therefore, the proposed UML profile is able to model all the refined 

concepts. Table 6 illustrates how each information requirement is fulfilled by the 

proposed UML profile. 

IREQ # How to Fulfill the Information Requirement 

IREQ 1 Use <<SafetyContext>> (5.2.1) stereotype 
IREQ 2 Use <<ReliabilityContext>> (5.2.2) stereotype 
IREQ 3 Use <<IntegrityContext>> (5.2.3) stereotype 
IREQ 4 Use <<PerformanceContext>> (5.2.4) stereotype 
IREQ 5 Use <<ConcurrencyContext>> (5.2.5) stereotype 
IREQ 6 Use <<CertificationContext>> (5.2.6) stereotype 
IREQ 7 Use <<ConfigurationContext>> (5.2.8) stereotype 
IREQ 8 Use <<DesignContext>> (5.2.7) stereotype 
IREQ 9 Use <<Requirement>> (5.2.9) stereotype and its “Kind” and “Specification” tags 

IREQ 10 Use <<Requirement>> (5.2.9) stereotype and its “OfGoal” tag 
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IREQ # How to Fulfill the Information Requirement 

IREQ 11 Use <<Deviation>> (5.2.10) stereotype 
IREQ 12 Use <<ImplementationStyle>> (5.2.11) stereotype and its “Kind” tag 
IREQ 13 Use <<BehaviouralStyle>> (5.2.12) stereotype with its “Kind” tag equal to “Time-

Related” 
IREQ 14 Use <<BehaviouralStyle>> (5.2.12) stereotype with its “Kind” tag equal to “State-

Related” 
IREQ 15 Use <<Nature>> (5.2.13) stereotype and its “Reference” and “Explanation” tags with 

its “Kind” tag equal to “COTS” 
IREQ 16 Use <<Nature>> (5.2.13) stereotype and its “Reference” and “Explanation” tags with 

its “Kind” tag equal to “Previously Developed” 
IREQ 17 Use <<Nature>> (5.2.13) stereotype and its “Reference” and “Explanation” tags with 

its “Kind” tag equal to “Deactivated” 
IREQ 18 Use <<Rationale>> (5.2.14) stereotype 
IREQ 19 Use <<Rationale>> (5.2.14) stereotype and its “Reference” and “Explanation” tags 
IREQ 20 Use <<Event>> (5.2.15) stereotype 
IREQ 21 Use <<Event>> (5.2.15) stereotype and its “EffectOnSafetyDirection” and 

“EffectOnSafetyValue” tags 
IREQ 22 Use <<Reaction>> (5.2.16) stereotype 
IREQ 23 Use <<Reaction>> (5.2.16) stereotype and its “ConsequenceOf” tag 
IREQ 24 Use <<Reaction>> (5.2.16) stereotype and its “EffectOnSafetyDirection” and 

“EffectOnSafetyValue” tags 
IREQ 25 Use <<SafetyCritical>> (5.2.17) stereotype 
IREQ 26 Use <<SafetyCritical>> (5.2.17) stereotype and its “CriticalityLevel” tag 
IREQ 27 Use <<Partition>> (5.2.18) stereotype 
IREQ 28 Use <<Handler>> (5.2.19) stereotype 
IREQ 29 Use <<Monitor>> (5.2.20) stereotype 
IREQ 30 Use <<Monitor>> (5.2.20) stereotype with its “Kind” tag equal to “Safety” 
IREQ 31 Use <<Monitor>> (5.2.20) stereotype with its “Kind” tag equal to “Fault Tolerance” 
IREQ 32 Use <<Monitor>> (5.2.20) stereotype with its “Kind” tag equal to “Integrity” 
IREQ 33 Use <<Simulator>> (5.2.21) stereotype 
IREQ 34 Use <<Simulator>> (5.2.21)stereotype and its “SimulatedEntity” and 

“SimulationParameter” tags 
IREQ 35 Use <<Strategy>> (5.2.22) stereotype with its “Kind” tag equal to “Safety” 
IREQ 36 Use <<Strategy>> (5.2.22) stereotype with “Kind” tag equal to “Scheduling” 
IREQ 37 Use <<Formalism>> (5.2.23) stereotype 
IREQ 38 Use <<Complexity>> (5.2.24) stereotype and its “Measure” and “Value” tags 
IREQ 39 Use <<Interface>> (5.2.25) stereotype with its “IsBetweenHardwareAndSoftware” 

tag equal to “true” 
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IREQ # How to Fulfill the Information Requirement 

IREQ 40 Use <<Interface>> (5.2.25) stereotype and its “ProtocolID”, 
“InputFunctionParameter”, and “OutputFunctionParameter” tags 

IREQ 41 Use <<Concurrent>> (5.2.26) stereotype with its “Role” tag equal to “Active” 
IREQ 42 Use <<Concurrent>> (5.2.26) stereotype with its “Role” tag equal to “Passive” 
IREQ 43 Use <<Concurrent>> (5.2.26) stereotype with its “Role” tag equal to “Resource” 
IREQ 44 Use <<Concurrent>> (5.2.26) stereotype and its “IsShared” tag with its “Role” tag 

equal to “Resource” 
IREQ 45 Use <<Defensive>> (5.2.27) stereotype 
IREQ 46 Use <<Defensive>> (5.2.27) stereotype and its “DefendableInput” tag 
IREQ 47 Use <<Configurable>> (5.2.28) stereotype 
IREQ 48 Use <<Configurable>> (5.2.28) stereotype and its “Kind” tag 
IREQ 49 Use <<Configurable>> (5.2.28) stereotype and its “When” tag 
IREQ 50 Use <<Loadable>> (5.2.29) stereotype 
IREQ 51 Use <<Configurator>> (5.2.30) stereotype 
IREQ 52 Use <<Replicated>> (5.2.31) stereotype 
IREQ 53 Use <<Comparator>> (5.2.32) stereotype 
IREQ 54 Use <<Comparator>> (5.2.32) stereotype and its “PolicyParameter” tag 

Total All 54 information requirements are fulfilled 

Table 6: Using the proposed UML profile to fulfill the information requirements. 

8.2 Open Issues and Future Work 

This research has defined a software safety UML profile and demonstrated how it can 

help solve the identified challenges. Numerous examples of its usage have been presented 

(section 5.3). Furthermore, the profile has been applied in a case study (section 7) 

involving an aircraft navigation controller system – a key software element in every 

aircraft. Future work could include applying the profile for other systems in diverse 

organizations, and then soliciting the engineers participating in those projects to identify 

the strengths and weaknesses of this profile. Such solicitations can be used to generate 

qualitative and quantitative results in an approach similar to the one used in [46].  

This research has focused on modeling safety information in class diagrams. It 

demonstrated how the proposed UML profile’s stereotypes and tagged values can be used 

to model information in class diagrams. There was little discussion of other types of 
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diagrams, such as dynamic diagrams including object diagrams and statecharts. This has 

been left for future work. However, the proposed UML profile should be easily 

transferable for dynamic diagrams. 

The proposed UML profile lists the UML meta classes on which each stereotype may be 

applied (section 5.1). This list may not necessarily be sufficient for all usages. More 

specifically, certain applications of this profile may determine that it is useful to apply 

certain stereotypes on UML meta classes that are not listed here. Nevertheless, this will 

form the path in which this profile can evolve in the future. 

The refined safety-related concepts (section 3.2), which formed the basis of the UML 

profile, are mostly based on the general safety-related concepts identified in the 

airworthiness standard [4]. A standard is normally written in a high-level language as to 

not restrict the developers following it. Different projects have different airworthiness 

requirements and/or technical solutions to airworthiness requirements, and hence may 

have additional refined concepts. This is because UML models can be used as an 

interface between safety engineers and software developers. This may introduce the need 

for additional profile stereotypes and tagged values. 

Although airworthiness is a subset of safety, it is specific to the aerospace industry. Many 

other industries exist where safety-critical software is used such as the medical, nuclear, 

transport, and defence industries. This research was based on the airworthiness standard, 

and therefore is intended to meet requirements of the aerospace industry. Those 

requirements may or may not be sufficient in other industries that use different safety-

related standards. However, an attempt has been made in this research to generalize 

results as much as possible without compromising the ability to model specific 

airworthiness concepts and needs. Therefore, this UML profile should be easily tailorable 

and applicable to other industries. 

It was initially thought that it would be best to propose a UML profile that would be as 

compliant as possible with existing OMG UML profiles. However, it was found that it 

was better to define concepts for which similar stereotypes existed in other profiles (e.g. 

<<Requirement>> (5.2.9) stereotype is similar to the <<QoSConstraint>> and its 
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subtypes in the QoS and FT OMG UML profile [5]). This redefinition allowed this 

profile to be simple, clear, and most importantly self-contained and independent of other 

existing profiles. This is important from a maintainability point of view because we may 

not necessarily need to modify this profile if other OMG UML profiles are revised and 

newer versions are available. 

While some of its stereotypes and tagged values can be used to model safety-related 

information for systems, this UML profile has focused on modeling them for software. 

This is jusitified by the fact that the airworthiness standard [4] focuses on software itself. 

Nevertheless, it may be useful to model such information for systems in future work. In 

that regard, the OMG System Modeling Language [47], which resuses and extends a 

subset of UML [30] to model systems, may be helpful. In fact, it may be merged with 

UML to constitute the base modeling language for a new systems and software UML 

profile. 

Certain extension mechanisms that describe the code were added. Examples of these 

include using <<ImplementationStyle>> (5.2.11) to identify recursive code, or code that 

dynamically allocates memory. Another example is using the <<Complexity>> (5.2.24) 

stereotype to identify constraints on the level of code nesting. While they were provided 

here for completeness and their need in software certification, some of them are generally 

better addressed by a software code analysis tool that could parse software code, analyse 

it, and extract this information. The later approach would provide more complete and 

accurate results, and it would relieve the developers from maintaining this information in 

the model. Therefore, it may be more appropriate to use such stereotypes and tagged 

values as placeholders for data entered by software analysis tools. This UML profile does 

not specify the source of the information entered by the software engineers. Thus, a 

possible future extension could explicitly address this distinction and potentially provide 

two different values for each piece of information – a specified value, which is entered by 

the engineers to indicate requirements, and an analysis value, which is entered by a tool 

to indicate a predicted or measured value. Then, a tool can compare those two sets of 

values to detect violations. 
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Most enumeration tagged values for some stereotypes were left open for extension by the 

users of this profile. This recognizes the fact that each software application may have 

specific needs or usages whose level of detail that is not addressed here. Therefore, this 

gives flexibility in a seemingly open UML profile. However, this UML profile lists 

sample values for each enumeration type that are deemed most useful. Thus, users of this 

UML profile do not need to do extra work in defining the enumeration values unless they 

truly need to. 

Search queries on UML models were used to illustrate how certification-relevant 

information can be extracted from a UML model. Those search queries were specified in 

a Structured Query Language (SQL)-like textual language. This could be refined and 

eventually lead into the development of an SQL-variant language that is used specifically 

to search and query UML models. Such a language should be defined such as it is 

independent of the UML profiles used. 

Alternatively, the integration of EMF and OCL seems to be a promising integration of 

technologies to query UML models. The current state of this technology does not support 

querying UML models for model elements according to criteria specifying the 

stereotypes and tagged values applied on the model elements. However, EMF and OCL 

should be easily extensible to support this because it already supports some form of 

querying UML models and class objects. Such an extension would be supportive of this 

UML profile as it will allow developers to dynamically query this information. 
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9 SUMMARY 

This research has investigated the relationship between UML and software safety. The 

airworthiness standard [4] is widely considered as the de-facto safety standard in the 

aerospace industry. Therefore, modeling software that has to be developed in an 

environment satisfying the airworthiness standard was considered. Since UML has 

become the de-facto software modeling language, it was fitting to define a UML profile 

for modeling safety-critical software. Therefore, even high-level requirements were 

identified for a UML profile to be able to effectively model safety-critical software 

developed under the airworthiness standard. 

The airworthiness standard was analysed to determine safety-related concepts of interest. 

A list of 65 safety-related concepts was formed, and the concepts were categorized in 

eight different but related categories: safety, reliability, integrity, performance, 

concurrency, certification, design, and configuration. 

Given the language difference between standards and UML modeling techniques, the 65 

safety-related concepts were refined into 27 concepts that were more appropriate from a 

software modeling perspective. This refined list of concepts removed duplication across 

similar concepts, and it defined additional concepts that were not covered by the original 

65. The 27 refined safety-related concepts were explained in detail and their inter-concept 

relationships were formalized through a conceptual model. This allowed us to define 54 

information requirements for a candidate UML profile to model those concepts. Those 54 

information requirements were traced back to the original 7 high-level concepts. 

After analyzing several existing UML profiles and concluding that they did not fulfill an 

acceptable percentage of the 54 information requirements, a UML profile was proposed. 

The profile, composed of 32 stereotypes and their tagged values, was presented in detail. 

Several examples of using the profile were presented and explained in detail. The profile 

fulfilled the 54 information requirements and guidance was presented on how it can be 

used to fulfill each one of the information requirements. 
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One specific usage of the profile was the ability to automatically provide airworthiness 

and certification information from a UML model. Therefore, examples of such usage 

were presented. Each example identified a specific need from the airworthiness standard, 

and then it presented search queries that a UML modeling tool can execute on a model 

employing the proposed profile to automatically generate the required information. This 

is handy for submitting software-related information to the certification authority as well 

as continuous project monitoring and control by managers and airworthiness engineers 

that are likely to be less experienced with software. 

The UML profile was validated by using it to design and analyse an aircraft’s navigation 

controller subsystem – a key element in every aircraft. The overall system’s architecture 

was presented and explained, and then the navigation controller’s subsystem’s functional 

requirements were defined. Then, a safety assessment using the AEA, FMEA, HAZOP, 

and IA methods was performed, which identified 11 safety hazards relevant to the 

subsystem under study. Those resulted in 7 safety requirements for the subsystem’s 

software. The subsystem was then designed using the UML profile, and an analysis of the 

model was performed. The analysis showed that the resultant UML model contained 

information on how the model elements were traceable to the safety requirements, as well 

as additional information relevant to the certification authorities. 

Future work in this area could include using the profile in real-life projects and soliciting 

participating stakeholders for improvement information. 
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Appendix A Examples of Safety/Risk Assessment Methods 

Method Analyzed Subjects Output Comments 

Action Error 

Analysis (AEA) 

Human-machine 

interactions 

Consequences of 

actions that operators 

perform at the wrong 

time, or do not perform 

when they should 

Similar to FMEA but is 

applied to steps in human 

procedures rather than 

hardware or components 

Cause-

Consequence 

Analysis (CCA) 

Critical events Causes and 

consequences of critical 

events 

Unlike fault trees, it 

explicitly shows the 

sequence of events. 

Unlike event trees, it 

allows the representation 

of time delays, alternative 

consequence paths, and 

combination of events 

Event Tree 

Analysis (ETA) 

Critical events Consequences of 

critical events 

Is a version of FTA that 

is tailored to large and 

complex systems. Breaks 

large problems into 

smaller ones to which 

FTA may be applied 

Failure Modes and 

Effects Analysis 

(FMEA) 

Possible failures Probabilities of failures. 

Overall probability that 

the product will operate 

without a failure for a 

specific period of time 

Reliability-oriented rather 

than safety-oriented. 

Emphasizes correct 

functioning rather than 

hazards and risks. 

Concentrates on single 

events of failures 
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Method Analyzed Subjects Output Comments 

Failure Modes, 

Effects, and 

Criticality 

Analysis 

(FMECA) 

Possible failures Same as FMEA but it 

includes the criticalities 

of failures 

Is an extended FMEA 

that examines the 

criticality of each event in 

more detail. Concentrates 

on single events of 

failures 

Fault Hazard 

Analysis (FHA) 

Possible failures 

that may result in 

accidents 

Similar to FMEA or 

FMECA, but it 

considers a different 

scope 

Causes of failures are 

considered over a wide 

scope that even includes 

human errors, procedural 

deficiencies, and 

environmental conditions. 

Concentrates on single 

events of failures that 

may cause accidents 

Fault Tree 

Analysis (FTA) 

Previously-

identified hazards 

Causes of the 

previously-identified 

hazards, fault trees and 

Boolean expressions 

for them  

Hazards should have 

already been identified by 

other methods. A popular 

method but not scalable 

to large and complex 

systems. Considers 

relationships across 

events that cause hazards 

Hazards and 

Operability 

Analysis 

(HAZOP) 

System design and 

operating intentions 

Possible deviations 

from the design and 

operating intentions, 

and hazards that result 

from them 

Uses a qualitative 

approach. Labour 

intensive. Does not 

require that the hazards 

be previously identified 

Interface Analyses 

(IA) 

Inter-component 

interfaces 

Connection failures that 

can lead to failure 

propagations 

Similar to HAZOP but is 

more general 
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Method Analyzed Subjects Output Comments 

Management 

Oversight and 

Risk Tree Analysis 

(MORT) 

Managerial 

functions, human 

behaviour, and 

environmental 

factors 

Problems, defects, and 

oversights that create 

hazards or prevent their 

early identification by 

poor planning, 

inadequate operational 

checks, or limited 

information-exchange 

within the organization. 

Checklist-based 

State Machine 

Hazard Analysis 

(SMHA) 

Hazardous states in 

software state 

machines 

Conditions that cause 

the software to enter 

the hazardous states 

Intended for software. 

Works on the model 

rather than the design 

itself 

Table 7: Examples of safety or risk assessment methods. 
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Appendix B Examples of Safety-Related Standards 

Industry Owner Standard 

Radio Technical 

Commission for 

Aeronautics (RTCA) 

DO-178B, Software Considerations in Airborne 

Systems and Equipment Certification 

European Space Agency 

(ESA) 

Set of Several Standards – ECSS-Q-00A, ECSS-Q-

20A, ECSS-Q-30A, ECSS-Q-40A, ECSS-Q-80A, 

ECSS-Q-80-2, ECSS-Q-80-3, ECSS-Q-80-4 

National Aeronautics and 

Space Administration 

(NASA) 

NASA-STD-8719.13A – Software Safety, 

September 1997 

National Aeronautics and 

Space Administration 

(NASA) 

NASA-GB-1740.13-96 – NASA Guidebook for 

Safety Critical Software - Analysis and 

Development, September 1997 

Aerospace 

American Institute of 

Aeronautics and 

Astronautics (AIAA) 

R-013-1992 – Recommended Practice: Software 

Reliability, 1992 

Biomedical International 

Electrotechnical 

Commission (IEC) 

601-1-4(1996-06) – Medical Electrical Equipment 

- Part 1: General Requirements for Safety - 4. 

Collateral Standard: Programmable Electric 

Medical Systems, June 1996 

U.S. Department of 

Defense (DoD) 

MIL-STD-882D – Standard Practice for System 

Safety, February 2000 

U.K. Ministry of Defence 

(MoD) 

DEF STAN 00-55 – Requirements for Safety 

Related Software in Defence Equipment, August 

1997 

Defence 

North Atlantic Treaty 

Organization (NATO) 

Commercial Off-the-Shelf (COTS) Software 

Acquisition Guidelines and COTS Policy Issues, 

January 1996 
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Industry Owner Standard 

International 

Electrotechnical 

Commission (IEC) 

61508:1986-09 – Software for Computers in Safety 

Systems of Nuclear Power Stations, including the 

First Supplement, 60880-1 (FDIS), 1977  

Nuclear Power 

Ontario Hydro Nuclear and 

Atomic Energy Canada, 

Ltd. (AECL) 

CE-1001-STD – Standard for Software 

Engineering of Safety Critical Software, January 

1995 

European Committee for 

Electrotechnical 

Standardisation 

(CENELEC) 

EN 50128:2001 – Railway Applications: Software 

for Railway Control and Protection Systems 

Motor Industry Software 

Reliability Association 

(MISRA) 

Development Guidelines for Vehicle-Based 

Software, November 2001 

Transportation 

Society of Automotive 

Engineers (SAE) 

JA 1002 – Software Reliability Program Standard, 

July 2004 

International 

Electrotechnical 

Commission (IEC) 

61508-3:1998-12 – Functional Safety of 

Electrical/Electronic/Programmable Electronic 

Safety-Related Systems - Part 3: Software 

Requirements, December 1998 

International 

Electrotechnical 

Commission (IEC) 

300-3-9:1995-12 – Dependability Management - 

Part 3: Application Guide - Section 9: Risk 

Analysis of Technological Systems, December 

1995 

International Organization 

for Standardization (ISO) 

15026:1998-04-29 – System and Software 

Integrity Levels, April 1998 

Non-Industry 

Specific 

Institution of Electrical 

Engineers (IEE) 

Software Engineering Methods for Safe 

Programmable Logic Controllers (SEMSPLC) 

Guidelines – Safety-Related Application Software 

for Programmable Logic Controllers, September 

1996 
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Industry Owner Standard 

Institute of Electrical & 

Electronic Engineers 

(IEEE) 

Std. 982.1-1989 and 982.2-1989 – Measures to 

Produce Reliable Software 

Institute of Electrical & 

Electronic Engineers 

(IEEE) 

Std. 1228-1994 – Standard for Software Safety 

Plans, 1994 

Table 8: Some of the many safety-related standards that exist for several industries. 
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Appendix C Concept Identification and Categorization from 

the Airworthiness Standard 

C.1 Primarily Safety Concepts 

Concept Description RTCA DO-
178B Section 

Failure Condition The effect that one or more failures cause on, or 

contribute to, the aircraft and its occupants, directly or 

indirectly, considering relevant adverse operational and 

environmental conditions [4]. 

2.2 

Failure Condition 

Category 

Failure conditions are categorized according to the 

severity of their effects as defined in some standard [4]. 

2.2 

2.2.1 

Level of Confidence In the context of software safety, the level of confidence 

is the extent of the assurance to which the software is 

believed to exhibit the desired behaviour of safety, with 

respect to the system in which it is deployed. 

4.1 

6.4 

Loadable Software 

Indicator 

A hardware or software that is used to indicate the status 

of the field-loadable software (see section C.7). This 

indicator should be able to detect incorrect software 

and/or hardware and/or aircraft combinations and should 

provide protection appropriate to the failure condition of 

the function [4]. 

2.5 

Safeguard A technical contrivance to prevent accident [13]. 7.2.8 

11.4 

Safety Feature A prominent part or characteristic [13], which is 

intended to increase the safety of the system. 

4.4 

11.1 
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Concept Description RTCA DO-
178B Section 

Safety Monitoring Safety monitoring is a means of protecting against 

specific failure conditions by directly monitoring a 

function for failures which would contribute to the 

failure condition. Monitoring is usually associated with 

activities done over an extended period of time where 

100% witnessing is considered impractical or 

unnecessary. Monitoring permits authentication that the 

claimed activity was performed as planned [4]. 

Examples of safety-monitors include watchdog timers, 

reasonableness checks, and cross-channel comparisons 

[4].  

2.1.1 

2.3.2 

11.9 

Safety Objective A safety-related goal, which often results in safety 

requirements and safety constraints. 

4.1 

Safety Requirement A safety requirement is a non-functional requirement 

whose objective is to increase the level of safety. And 

while functional requirements often focus on what the 

system shall do, safety-related requirement focus on 

both what the system shall and shall not do [1]. 

2.1.1 

5.1 

Safety Response A safety response is an action that a software component 

performs as a result of detecting the occurrence of some 

safety-related failure condition that it provides immunity 

to. 

2.1.1 

Safety Strategy A strategy is the art of devising or employing plans or 

stratagems toward a goal [13]. The goal of a safety 

strategy is to increase the safety of a system, which is 

often done through design decisions. 

2.1.1 
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Concept Description RTCA DO-
178B Section 

Safety-Critical A safety-critical system is any system that can directly 

or indirectly cause a loss of human life [1]. Examples of 

such systems include transportation vehicles, air traffic 

controllers, medical devices, nuclear reactors, and 

military equipment and vehicles. A loss of human life 

may be caused by accidents, which may be the results of 

hazards introduced by the system. 

 

Software Level Assigning different levels to software components is a 

means of classifying software components according to 

their contribution to potential failure conditions as 

determined by the system safety assessment process. 

Having different software levels imply different levels 

of effort are required to show compliance with different 

failure condition categories [4]. 

2.2 

2.2.2 

Unsafe Action An action that can directly or indirectly contribute to the 

occurrence of a hazardous system state, which may 

result in an accident. Such an action may occur with or 

without an explicit action by the software or system 

user. 

 

Table 9: Safety-related concepts that are classified as “primarily safety”. 
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C.2 Primarily Reliability Concepts 

Concept Description RTCA DO-
178B Section 

Comparator (Voter) When multiple-version dissimilar software is used, 

voting refers to detecting faults caused by some 

dissimilar versions of the software. This is done by 

assuming that the majority of the dissimilar software 

versions produce a correct output [14]. A voter or a 

comparator is a software component that analyzes the 

results of the multiple software versions and outputs the 

result of the voting. 

2.3.2 

Defensive 

Programming 

Defensive programming is based on the principle that 

the programmer makes as few assumptions as 

reasonably possible. Extra code is written to check that 

the software is in correct state at selected checkpoints, 

such as the beginning or end of an operation. This 

allows the software to detect incorrect states and react 

appropriately to ensure the continued execution of the 

system. 

4.5 

Error Detection The process of realizing that an error has occurred [15]. 

In a fault-tolerant design, this may be implemented as 

part of the software or hardware. 

4.2 

Exception Handling Exception handling is a programming technique of most 

modern programming languages to handle situations 

where abnormal conditions arise. When an exception 

occurs, the software flow of control resumes in an 

exception handler, which generally handles selected 

exceptions and allows the software execution to 

continue. 

11.7 
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Concept Description RTCA DO-
178B Section 

Failure A failure is the inability of a system or system 

component to perform a required function within 

specified limits. It may be produced when a fault is 

encountered [4].  

2.2 

Fault A fault is a manifestation of an error in software that, if 

it occurs, may cause a failure [4], which is a deviation in 

the expected performance of the system [15]. 

2.1.1 

Fault Containment In designing and implementing fault tolerant systems, 

fault containment is the process of preventing an error 

from propagating within a system. Fault containment is 

one of four steps required to reconfigure a system from 

a faulty state back to some operational state. The other 

three steps are fault detection, fault location, and fault 

recovery [15]. 

2.1.2 

Fault Detection The process of realizing that a fault has occurred [15]. In 

a fault-tolerant design, this may be implemented as part 

of the software or hardware. 

2.1.1 

11.9 

Fault Tolerance The built-in capability of a system or software to 

provide continued correct execution in the presence of a 

limited number of hardware or software faults [4]. 

2.1.1 

4.4 

11.1 

Immunity The quality or state of being immune [13]. A system or 

software is immune to some failure condition if it can 

detect it and perform an appropriate safety response that 

renders it harmless. 

2.1.1 

Multiple-Version 

Dissimilar Software 

A form of fault tolerance design technique where a set 

of two or more programs developed separately to satisfy 

the same functional requirements are used. Errors 

specific to one of the versions are detected by 

comparison of the multiple outputs [4]. 

2.1.1 

2.3.2 

11.1 

11.3 
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Concept Description RTCA DO-
178B Section 

Software 

Redundancy 

Redundancy is the use of redundant components, which 

is exceeding what is necessary or normal [13]. Software 

redundancy implies using multiple-version dissimilar 

software. 

2.1.1 

11.1 

Table 10: Safety-related concepts that are classified as “primarily reliability”. 

C.3 Primarily Integrity Concepts 

Concept Description RTCA DO-
178B Section 

Accuracy Degree of conformity of a measure to a standard or a 

true value [13]. 

11.9 

Discontinuity A mathematical discontinuity is the property of not 

being continuous. A continuous function has the 

property that the absolute value of the numerical 

difference between the value at a given point and the 

value at any point in a neighbourhood of the given point 

can be made as close to zero as desired by choosing the 

neighbourhood small enough [13]. 

6.3.2 

Integrity Check The act of testing or verifying the integrity of an object. 

Integrity is the quality or state of being complete [13], 

accurate, and precise.  

11.16 

Precision The degree of refinement with which an operation is 

performed or a measurement stated [13]. 

11.9 

Software Protector Software that provides protection for user modifications 

in user-modifiable software, option-selectable software, 

and commercial-off-the-shelf software [4].  

2.4 

Table 11: Safety-related concepts that are classified as “primarily integrity”. 
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C.4 Primarily Performance Concepts 

Concept Description RTCA DO-
178B Section 

Scheduling Strategy A strategy is the art of devising or employing plans or 

stratagems toward a goal [13]. The goal of a scheduling 

strategy is to determine how various active components 

share resources. Examples of scheduling strategies 

include round robin, rate monotonic, and earliest 

deadline first [6]. 

11.1 

Time-Related Software functionality whose output or behaviour is a 

function of time such as filters, integrators, and delays.  

6.4.2.1 

Table 12: Safety-related concepts that are classified as “primarily performance”. 

C.5 Primarily Concurrency Concepts 

Concept Description RTCA DO-
178B Section 

Active An active component is a component that is capable of 

generating stimuli concurrently or pseudo (seemingly) 

concurrently without being prompted by an explicit 

stimulus instance (i.e., devices that appear capable of 

“spontaneous” unprompted behaviour such as hardware, 

operating system processes and threads, etc.) [6]. In 

terms of a software component, package, or object, 

activeness implies that a thread is continually executing 

within the context of that software component, package, 

or object. 

12.3.3 

Multi-Tasking Software that runs with more than one flow of control, 

i.e. concurrent software. Different flows of control may 

interact at which point their interactions need to be 

managed. 

11.7 
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Concept Description RTCA DO-
178B Section 

Passive A passive component is a component that cannot 

generate its own behaviour, but only reacts when 

prompted by a stimulus [6]. In terms of a software 

component, package, or object, passiveness implies that 

there is no thread that is continually executing within the 

context of that software component, package, or object, 

but its code is executed as a result of some other active 

software component, package, or object. A passive 

element is generally event-driven. 

11.7 

12.3.3 

Shared Resource A resource that is shared across multiple software 

modules or flows of control (software threads or 

processes). Examples of resources include memory, 

CPU cycles, network, and others. 

11.1 

Table 13: Safety-related concepts that are classified as “primarily concurrency”. 
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C.6 Primarily Certification Concepts 

Concept Description RTCA DO-
178B Section 

Certification Certification is the legal recognition by the certification 

authority that a product, service, organization or person 

complies with some requirements. Such certification 

comprises the activity of technically checking the 

product, service, organization or person and the formal 

recognition of compliance with the applicable 

requirements by issue of a certificate, license, approval 

or other documents as required by national laws and 

procedures. In particular, certification of a produt 

involves: (a) the process of assessing the design of the 

product to ensure that it complies with a set of standards 

to that type of product so as to demonstrate an 

acceptable level of safety; (b) the process of assessing 

the product to ensure that it conforms with the certified 

type design; (c) the issuance of a certificate required by 

national laws to declare that compliance or conformity 

has been found with standards in accordance with items 

(a) or (b) above [4]. Certified software is software that is 

legally recognized to be compliant with some 

certification criteria by a certification authority as it is 

used in a particular system context. 

5.4.3 

9 

10 

11.1 

Certification 

Requirement 

A requirement that needs to be fulfilled in order for a 

product, service, organization, or person to be certified 

by a certification authority according to some 

certification criteria.  

2.1.1 

Derived 

Requirement 

Additional requirement resulting from the software 

development process, which may not be directly 

traceable to higher level requirements [4]. Derived 

requirements often appear in the form of implementation 

constraints [4]. 

5.1.1 



Carleton University, TR SCE-06-19  Decermber 2006 

 210

Concept Description RTCA DO-
178B Section 

Deviation Difference in the output or execution of a process, such 

as the design or implementation processes, from its plan.  

8.2 

Hardware / Software 

Interface 

The boundary at which software and hardware directly 

communicate with each other. This is usually done at 

the bit or byte level. 

6.4.3 

11.1 

11.9 

Traceability The evidence of an association between items, such as 

between process outputs, between an output and its 

originating process, or between a requirement and its 

implementation [4]. Horizontal traceability expresses 

relationship between items in different phases of the 

development life cycle, such as the relationship between 

a design component and software requirements. On the 

other hand, vertical traceability expresses relationship 

between items in the same phase of the development life 

cycle, such as the relationship between two software 

requirements. 

5.3.1 

5.5 

Table 14: Safety-related concepts that are classified as “primarily certification”. 

C.7 Primarily Design Concepts 

Concept Description RTCA DO-
178B Section 

COTS Software Commercially available applications sold by vendors 

through public catalogue listings. COTS software is not 

intended to be customized or enhanced. Contract-

negotiated software developed for a specific application 

is not COTS software [4]. 

2.4 

11.1 

Compacted 

Expression 

A shorter, but equal, form of an expression such as a 

mathematical expression. 

11.7 
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Concept Description RTCA DO-
178B Section 

Complexity The degree to which a system, software, or component 

has a design and implementation that is difficult to 

understand and verify [16]. Increasing the complexity 

level of software makes it harder to formulate its overall 

behaviour, even when given almost complete 

information about its atomic components and their inter-

relations [17]. It also makes it harder to verify the 

software design and the fulfilment of the safety 

objectives [4]. Examples of complexity measures 

include level of nesting, cyclomatic complexity, 

conditional structure, unconditional branches, number of 

entries into a code component, and number of exits from 

a code component. 

5.2.2 

6.3.4 

11.7 

Coupling Coupling is a factor of the inter-module complexity of 

software [18], which represents the strength of 

connection between two modules [19], [20]. Myers 

identified several types of coupling in [21], namely, 

content coupling, common coupling, external coupling, 

control coupling, stamp coupling, and data coupling. 

11.8 

Data Alias In software, a data alias is a name for a software 

variable, which is also accessible through another 

different name. Essentially, the same data is known and 

accessed under different names. Although allowed by 

programming languages, this technique is generally 

avoided in safety-critical software as they may introduce 

confusion. 

11.7 
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Concept Description RTCA DO-
178B Section 

Deactivated Code Executable object code (or data) which by design is 

either (a) not intended to be executed (code) or used 

(data), for example, a part of a previously developed 

software component, or (b) is only executed (code) or 

used (data) in certain configurations of the target 

computer environment, for example, code that is 

enabled by a hardware pin selection or software 

programmed option [4]. 

4.2 

5.4.3 

11.10 

Design by Contract Design by contract is a technique for software 

development where inter-module interactions are 

constrained by an agreement, or contract, which defines 

the requirements and obligations of each interacting 

software entity. A contract is composed of three parts 

[22]: (a) class (module) invariants, which define 

conditions that are always true (in steady-state), (b) 

operation preconditions, which define conditions that 

are true before calling the operation, and (c) operation 

postconditions, which define conditions that are true 

after an operation finishes execution. 

 

Dynamic Memory Memory that is allocated during the execution of the 

software through special calls to the underlying 

operating system, rather than at compile-time by pre-

reserving its memory space. The use of dynamic 

memory is generally avoided in safety-critical software. 

A dynamic object is an object that resides in dynamic 

memory space. 

11.7 

Error A software error is a mistake in its requirements, design, 

or code [4]. 

4.2 

Error Prevention A technique that attempts to avoid or prevent the 

occurrence of errors. Error prevention and error 

avoidance are used interchangeably. 

4.2 

4.4 
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Concept Description RTCA DO-
178B Section 

Field-Loadable 

Software 

Field-loadable software refers to software or data tables 

that can be loaded without removing the system or 

equipment from its installation [4]. 

2.5 

6.4.3 

11.1 

Formal Method A formal method of software development is a process 

for developing software that exploits the power of 

mathematical notation and mathematical proofs [23]. It 

involves the use of formal logic, discrete mathematics, 

and computer readable languages to improve the 

specification and verification of software [4]. 

12.3.1 

Loader A hardware or software that is used to load field-

loadable software. 

2.5 

Partitioning  Software partitioning is a technique for providing 

isolation between functionally independent software 

components to contain and/or isolate faults and 

potentially reduce the effort of the software verification 

process. It prevents specific interactions and cross-

coupling interference [4]. 

2.1.1 

2.3.1 

5.2.2 

6.3.3 

11.3 

11.9 

11.10 

Previously 

Developed Software 

Software that was developed in a previous project. It 

may or may not have been previously certified for use in 

one or more systems. 

11.1 

11.3 

12.1 

Recursion Recursion is a software implementation approach to 

solve a problem by breaking it into a smaller problem 

that is easier to solve. Recursion is generally avoided in 

airborne and safety-critical software due to their high 

demand of resources. 

6.3.3 

11.7 
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Concept Description RTCA DO-
178B Section 

Simulator A device that enables the operator to reproduce or 

represent under test conditions phenomena likely to 

occur in actual performance [13]. A simulator may be an 

actual device, computer program, or a system, which 

interfaces to other software or hardware system in the 

same manner as the actual devices, which will be 

eventually used in the final system. Simulators are often 

used when testing software. 

12.3.3.5 

Software Patch A modification to an object program, in which one or 

more of the planned steps of re-compiling, re-

assembling or re-linking is bypassed. This does not 

include identifiers embedded in the software product, 

for example, part numbers and checksums [4]. 

5.4.3 

State-Related Related to a state machine or its states or transitions. 6.4.2.1 

Table 15: Safety-related concepts that are classified as “primarily design”. 

C.8 Primarily Configuration Concepts 

Concept Description RTCA DO-
178B Section 

Configuration A system can have multiple configurations, not all of 

which are intended to be used in every application. 

Therefore, a configuration represents a set of enabled 

and disabled functionality. This can lead to deactivated 

code that cannot be executed or data that is not used [4]. 

5.4.3 

Option-Selectable 

Software 

Software that contains software-programmed options, 

which may be configured by the user to produce 

different possible configurations. 

2.4 

11.1 
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Concept Description RTCA DO-
178B Section 

User-Modifiable 

Software 

Software that is designed to be modifiable by its users. 

Examples include a single memory bit used to select one 

of two equipment options, a table of messages, or a 

memory area that can be programmed, compiled, and 

linked for aircraft maintenance functions [4]. 

2.4 

4.2 

5.2.3 

11.1 

Table 16: Safety-related concepts that are classified as “primarily configuration”. 
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Appendix D Conceptual Model—Concept Relationships 

Source End Relationship Analysis Destination End 

Requirement 

[0..*] 

Is Requirement Of: Each Requirement may be 

traceable to zero or more higher-level Requirements. 

Conversely, a Requirement may have zero or more 

lower-level Requirements (traceable to it). 

Requirement 

[0..*] 

Deviation 

[0..*] 

References: Each Deviation must deviate from at 

least one, potentially more, Requirement. Moreover, 

there may exist more than one Deviation from a 

particular Requirement. However, not every 

Requirement may have Deviations from it, which 

would be the case when the design fully conforms to 

the Requirements. 

Requirement 

[1..*] 

ImplementationStyle Is Child Class Of: Each ImplementationStyle is a 

Style. 

Style 

ImplementationStyle 

[0..*] 

References: Each ImplementationStyle may 

conform to, or deviate from, zero or more 

Requirements. Conversely, a Requirement may 

require zero or more ImplementationStyles. In the 

case where an ImplementationStyle is not associated 

with any Requirements, the ImplementationStyle 

signifies a design decision rather than an obligation 

or a requirement. 

Requirement 

[0..*] 

BehaviouralStyle Is Child Class Of: Each BehaviouralStyle is a Style. Style 
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Source End Relationship Analysis Destination End 

BehaviouralStyle 

[0..*] 

References: Each BehaviouralStyle may conform to, 

or deviate from, zero or more Requirements. 

Conversely, a Requirement may require zero or more 

BehaviouralStyles. In the case where a 

BehaviouralStyle is not associated with any 

Requirements, the BehaviouralStyle signifies a 

design decision rather than an obligation or a 

requirement. 

Requirement 

[0..*] 

Nature 

[0..*] 

References: A Nature may have been used solely as 

a design decision, in which case it is not associated 

with any Requirements, or it may have been used to 

conform to one or more Requirements. Conversely, a 

Requirement may exist but not cause any Natures, or 

it may cause one or more Natures.  

Requirement 

[0..*] 

Rationale 

[0..*] 

References: Each Rationale must be associated with 

at least one, potentially more, Requirement. 

Moreover, there may exist more than one Rationale 

associated with a particular Requirement. However, 

not every Requirement may have Rationales 

associated with it. However, such a case is 

uncommon because it would mean that there are no 

design elements traceable to this Requirement.  

Requirement 

[1..*] 

Reaction Is Child Class Of: Each Reaction is an Event. Event 

Reaction 

[0..*] 

Is Consequence Of: Each Reaction is a consequence 

of one or more Events because it is executed in 

response to the Events. However, each Event may 

not cause any reactions at all, or it may cause one or 

several Reactions. Since Reactions are Events by 

inheritance, then a terminal Reaction, which is the 

last Reaction in a chain of Reactions, does not cause 

any more Reactions. 

Event 

[1..*] 
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Source End Relationship Analysis Destination End 

SafetyCritical 

[1..*] 

Triggers: A SafetyCritical entity may trigger zero or 

or more Events. A particular Event may not be 

triggered by any SafetyCritical entity, or it may be 

triggered by one or more SafetyCritical entities. 

Event 

[0..*] 

Partition 

[0..*] 

References: A Partition may exist to fulfill one or 

more Requirements, or it may exist as a design 

decision to isolate functionally independent elements 

such that a failure in one component does not cause 

the other to fail. Conversely, a Requirement may or 

may not require one or more Partitions to be 

performed. 

Requirement 

[0..*] 

Partition 

[0..*] 

Is Partitioned From: By definition, a Partition is 

always Partitioned from one or more SafetyCritical 

entities. However, a SafetyCritical entity may not 

necessarily have one or more Partitions from it. 

SafetyCritical 

[1..*] 

Handler 

[0..*] 

Handles: A Handler handles at least one Event, and 

it usually handles more than one Event. However, 

one or more Events may not necessarily be handled 

by a Handler. The latter case may occur for Events 

that are not of interest in the system, such as non-

safety-critical events. In addition, it usually occurs 

for many Reactions, which are Events by 

inheritance. 

Event 

[1..*] 

Handler 

[0..*] 

Performs: A Handler performs one or more 

Reactions. However, a Reaction may not necessarily 

be performed by a Handler, or it may be performed 

by one or more Handlers. 

Reaction 

[1..*] 
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Source End Relationship Analysis Destination End 

Monitor 

[0..*] 

Monitors: A Monitor monitors one or more 

SafetyCritical entities. However, not every 

SafetyCritical entity is monitored by a monitor. It is 

also possible for a SafetyCritical entity to be 

monitored by more than one Monitor. 

SafetyCritical 

[1..*] 

Monitor 

[0..*] 

Detects: A Monitor detects at least, but usually more 

than, one Event. However, an Event may go 

undetected by Monitors, or it may be detected by one 

or more Monitors.  

Event 

[1..*] 

Monitor 

[1..*] 

Notifies: Each Handler is notified by at least one 

Monitor. However, some Monitors may not 

necessarily notify any Handlers, and a Monitor may 

notify more than one Handler. 

Handler 

[0..*] 

Simulator 

[0..*] 

Simulates: A Simulator simulates at least one 

SafetyCritical entity. A SafetyCritical entity may not 

have any Simulators, or it may have one or more 

Simulators. For example, a radar may have two 

simulators, with each one simulating the radar’s 

behaviour under different environmental conditions. 

Another example is having two different versions for 

a particular Simulator. 

SafetyCritical 

[1..*] 

Strategy 

[0..1] 

Describes Design Of: A Strategy describes the 

design of one or more SafetyCritical entities. In 

addition, a SafetyCritical entity’s design may, or 

may not, be described by a Strategy. 

SafetyCritical 

[1..*] 

Formalism 

[0..1] 

Describes Formalism Of: A Formalism describes 

the formalism of one or more SafetyCritical entities. 

In addition, a SafetyCritical entity’s formalism may, 

or may not, be described by a Formalism. 

SafetyCritical 

[1..*] 
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Source End Relationship Analysis Destination End 

Complexity 

[0..1] 

Describes Complexity Of: A Complexity describes 

the complexity of one or more SafetyCritical entities. 

In addition, a SafetyCritical entity’s complexity may, 

or may not, be described by a Complexity. 

SafetyCritical 

[1..*] 

Interface 

[0..*] 

Is Interface For: Each Interface is for one or more 

SafetyCritical entities or components. In addition, a 

specific SafetyEntity may have one or more 

Interfaces. An example of the latter case would be 

where a subsystem has one Interface to it in each of 

the other subsystems in the complete system. 

SafetyCritical 

[1..*] 

Concurrent 

[0..*] 

Triggers: Each Concurrent entity may trigger zero 

or more Events. Conversely, each Event may be 

triggered by zero or more Concurrent entities. A 

Concurrent entity may not trigger any Events if it is 

passive. 

Event 

[0..*] 

Defensive 

[0..1] 

Performs: A Defensive entity protects against 

unusual inputs by performing one or more Reactions 

to such unusual inputs, or Events. However, 

Reactions are not necessarily performed by 

Defensive entities. 

Reaction 

[1..*] 

Configurable 

[1..1] 

Is Defaulted To: Each Configurable entity must be 

defaulted to a particular Configuration. 

Configuration 

[1..1] 

Configurable 

[1..*] 

Is Configurable To: Each Configurable entity may 

be configured to produce one or more 

Configurations. In addition, each Configuration can 

be produces by configuration one or more 

Configurable entities in a particular way. 

Configuration 

[1..*] 

Loadable 

[1..*] 

Is Loadable On: Each Loadable entity is loadable 

on one or more Configurable entities. Conversely, 

every Configurable entity can be configured by 

loading one or more Loadables on it. 

Configurable 

[1..*] 
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Source End Relationship Analysis Destination End 

Loadable 

[0..*] 

Requires: Loading a Loadble entity may require 

specific base Configurations for it to be Loaded. For 

example, loading a particular software patch may 

require pre-loading earlier patches. However, there 

may not be such a requirement if the patch is a 

complete and comprehensive patch, rather than an 

incremental patch. Conversely, not every 

Configuration is required by Loadable entities. 

Configuration 

[0..*] 

Loadable 

[1..*] 

Produces: A Configuration may be produced by 

loading a Loadable. A Loadable may produce more 

than Configuration if loaded on different base 

Configurations. For a Configuration to be produced, 

at least one Loadable must be loaded. 

Configuration 

[1..*] 

Configurator 

[1..*] 

Configures: A Configurator configures one or more 

Configurable entities. A Configurable entity may be 

configured by more than one Configurator, such as 

the case where the Configurators configure different 

aspects of the Configurable entity. 

Configurable 

[1..*] 

Configurator 

[1..*] 

Loads: A Configurator loads one or more Loadables. 

In addition, a Loadable is loaded by one or more 

Configurators. 

Loadable 

[1..*] 

Comparator 

[1..1] 

Compares: A Comparator compares the outputs of 

at least two Replicated entities. The output of a 

Replicated entity is compared by exactly one 

Comparator. 

Replicated 

[2..*] 

ReplicationGroup 

[1..1] 

Owns: Each ReplicationGroup has exactly one 

Comparator. 

Comparator 

[1..1] 

ReplicationGroup 

[1..1] 

Owns: Each ReplicationGroup has at least two 

Replicated entities. 

Replicated 

[2..*] 

Table 17: Analysis of conceptual model concept relationships. 
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Appendix E Gomaa’s Class Classification 

This section identifies Gomaa’s class classifications as described in [7]. Each 

classification is represented by a unique stereotype. The stereotypes are shown in Figure 

16. 

<<application>>

<<interface>> <<entity>> <<control>> <<application
logic>>

<<user
interface>>

<<device
interface>>

<<system
interface>>

<<input
device

interface>>

<<output
device

interface>>

<<input/output
device

interface>>

<<timer>> <<state
dependent
control>>

<<coordinator>>

<<algorithm>><<business
logic>>

 

Figure 16: Gomaa’s classification of application classes using stereotypes [7].  
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Appendix F Assessing Existing Profiles based on the 

Information Requirements 

F.1 Quality of Service and Fault Tolerance OMG Profile (discussed in 

Section 4.1) 

IREQ # Fulfilled Comment 
IREQ 1 Yes Use <<QoSContext>> stereotype 
IREQ 2 Yes Use <<FTFaultTolerantDomain>> stereotype 
IREQ 3 No Can reuse <<QoSContext>> stereotype, but then cannot differentiate it 

from IREQ 1 
IREQ 4 No Can reuse <<QoSContext>> stereotype, but then cannot differentiate it 

from IREQ 1 
IREQ 5 No Can reuse <<QoSContext>> stereotype, but then cannot differentiate it 

from IREQ 1 
IREQ 6 No Can reuse <<QoSContext>> stereotype, but then cannot differentiate it 

from IREQ 1 
IREQ 7 No  
IREQ 8 No  
IREQ 9 Yes Use <<QoSConstraint>> stereotype and its child classes 

IREQ 10 No  
IREQ 11 No  
IREQ 12 No  
IREQ 13 No  
IREQ 14 Yes Use <<QoSLevel>> and <<QoSTransition>> stereotypes 
IREQ 15 No  
IREQ 16 No  
IREQ 17 No  
IREQ 18 No  
IREQ 19 No  
IREQ 20 No  
IREQ 21 Yes Use <<QoSDimension>> stereotype 
IREQ 22 No  
IREQ 23 Yes Use <<Initiate>> stereotype 
IREQ 24 Yes Use <<QoSDimension>> 
IREQ 25 Yes Use <<Asset>> stereotype, but it is not suitable for all uses 
IREQ 26 Yes Use <<QoSCharacteristic>> and <<QoSDimension>> stereotypes 
IREQ 27 No  
IREQ 28 No  
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IREQ # Fulfilled Comment 
IREQ 29 Yes Use <<FTReplicationStyle>> and <<FTFaultTolerantDomain>> 

stereotypes 
IREQ 30 No  
IREQ 31 Yes Use <<FTReplicationStyle>> and <<FTFaultTolerantDomain>> 

stereotypes 
IREQ 32 No  
IREQ 33 No  
IREQ 34 Yes The simulation parameters may be specified by using the 

<<QoSValue>> stereotype and its child classes 
IREQ 35 No  
IREQ 36 No  
IREQ 37 No  
IREQ 38 Yes Can use <<QoSValue>> stereotype, but it may get confusing with others 

such as IREQ 40 
IREQ 39 No  
IREQ 40 Yes Use <<QoSValue>> stereotype and its child classes 
IREQ 41 No  
IREQ 42 No  
IREQ 43 No  
IREQ 44 No  
IREQ 45 No  
IREQ 46 No  
IREQ 47 No  
IREQ 48 No  
IREQ 49 No  
IREQ 50 No  
IREQ 51 No  
IREQ 52 Yes Use Fault-Tolerance sub-profile 
IREQ 53 Yes Use Fault-Tolerance sub-profile, and specifically the 

<<FTReplicationStyle>> stereotype 
IREQ 54 Yes Use Fault-Tolerance sub-profile, and specifically the 

<<FTReplicationStyle>> and <<FTFaultTolerantDomain>> stereotypes 
Total 17 Only 17 information requirements out of 54 are fulfilled 

Table 18: Assessing the Quality of Service and Fault Tolerance OMG profile based 

on the information requirements. 
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F.2 Schedulability, Performance, and Time OMG Profile (discussed in 

Section 4.2) 

IREQ # Fulfilled Comment 
IREQ 1 No  
IREQ 2 No  
IREQ 3 No  
IREQ 4 Yes Use <<PAcontext>> stereotype 
IREQ 5 Yes Use <<SAsituation>> stereotype 
IREQ 6 No  
IREQ 7 No  
IREQ 8 No  
IREQ 9 No  

IREQ 10 No  
IREQ 11 No  
IREQ 12 No  
IREQ 13 No  
IREQ 14 No  
IREQ 15 No  
IREQ 16 No  
IREQ 17 No  
IREQ 18 No  
IREQ 19 No  
IREQ 20 Yes Use <<SAtrigger>> stereotype 
IREQ 21 No  
IREQ 22 Yes Use <<SAresponse>> stereotype 
IREQ 23 No  
IREQ 24 No  
IREQ 25 No  
IREQ 26 No  
IREQ 27 No  
IREQ 28 No  
IREQ 29 No  
IREQ 30 No  
IREQ 31 No  
IREQ 32 No  
IREQ 33 No  
IREQ 34 No  
IREQ 35 No  
IREQ 36 No  
IREQ 37 No  
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IREQ # Fulfilled Comment 
IREQ 38 No  
IREQ 39 No  
IREQ 40 No  
IREQ 41 Yes Use <<CRconcurrent>> stereotype 
IREQ 42 No  
IREQ 43 Yes Use <<PAresource>> and <<SAresource>> stereotypes 
IREQ 44 No  
IREQ 45 No  
IREQ 46 No  
IREQ 47 No  
IREQ 48 No  
IREQ 49 No  
IREQ 50 No  
IREQ 51 No  
IREQ 52 No  
IREQ 53 No  
IREQ 54 No  

Total 6 Only 6 information requirements out of 54 are fulfilled 

Table 19: Assessing the Schedulability, Performance, and Time OMG profile based 

on the information requirements. 
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F.3 HIDOORS Profile (discussed in Section 4.3) 

IREQ # Fulfilled Comment 
IREQ 1 No  
IREQ 2 No  
IREQ 3 No  
IREQ 4 Yes Reuse <<PAcontext>> stereotype from SPT profile 
IREQ 5 Yes Reuse << SAsituation>> stereotype from SPT profile 
IREQ 6 No  
IREQ 7 No  
IREQ 8 No  
IREQ 9 No  

IREQ 10 No  
IREQ 11 No  
IREQ 12 No  
IREQ 13 No  
IREQ 14 No  
IREQ 15 No  
IREQ 16 No  
IREQ 17 No  
IREQ 18 No  
IREQ 19 No  
IREQ 20 Yes Use the <<HIEvent>> stereotype, or reuse <<SAtrigger>> stereotype 

from SPT profile 
IREQ 21 No  
IREQ 22 Yes Reuse << SAresponse>> stereotype from SPT profile 
IREQ 23 No  
IREQ 24 No  
IREQ 25 No  
IREQ 26 No  
IREQ 27 No  
IREQ 28 No  
IREQ 29 No  
IREQ 30 No  
IREQ 31 No  
IREQ 32 No  
IREQ 33 No  
IREQ 34 No  
IREQ 35 No  
IREQ 36 No  
IREQ 37 No  
IREQ 38 No  
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IREQ # Fulfilled Comment 
IREQ 39 No  
IREQ 40 No  
IREQ 41 Yes Use the <<HIConcurrent>> stereotype, or reuse <<CRconcurrent>> 

stereotype from SPT profile 
IREQ 42 No  
IREQ 43 Yes Reuse <<PAresource>> and <<SAresource>> stereotypes from SPT 

profile 
IREQ 44 No  
IREQ 45 No  
IREQ 46 No  
IREQ 47 No  
IREQ 48 No  
IREQ 49 No  
IREQ 50 No  
IREQ 51 No  
IREQ 52 No  
IREQ 53 No  
IREQ 54 No  

Total 6 Only 6 information requirements out of 54 are fulfilled 

Table 20: Assessing the HIDOORS profile based on the information requirements. 
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F.4 Effects of Message Loss, Delay, and Corruption (discussed in 

Section 4.4) 

IREQ # Fulfilled Comment 
IREQ 1 Yes Use <<safe behaviour>>, <<safe dependency>>, and <<safe links>> 

stereotypes 
IREQ 2 No  
IREQ 3 No  
IREQ 4 No  
IREQ 5 No  
IREQ 6 No  
IREQ 7 No  
IREQ 8 No  
IREQ 9 Yes Use <<guarantee>> stereotype 

IREQ 10 No  
IREQ 11 No  
IREQ 12 No  
IREQ 13 No  
IREQ 14 No  
IREQ 15 No  
IREQ 16 No  
IREQ 17 No  
IREQ 18 No  
IREQ 19 No  
IREQ 20 No  
IREQ 21 No  
IREQ 22 No  
IREQ 23 No  
IREQ 24 No  
IREQ 25 Yes Use <<critical>> stereotype 
IREQ 26 Yes Use <<critical>> stereotype and its “level” tagged value 
IREQ 27 No  
IREQ 28 Yes Use <<error handling>> stereotype 
IREQ 29 Yes Use <<containment>> stereotype 
IREQ 30 No  
IREQ 31 No  
IREQ 32 No  
IREQ 33 No  
IREQ 34 No  
IREQ 35 No  
IREQ 36 No  
IREQ 37 No  
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IREQ # Fulfilled Comment 
IREQ 38 No  
IREQ 39 No  
IREQ 40 No  
IREQ 41 No  
IREQ 42 No  
IREQ 43 No  
IREQ 44 No  
IREQ 45 No  
IREQ 46 No  
IREQ 47 No  
IREQ 48 No  
IREQ 49 No  
IREQ 50 No  
IREQ 51 No  
IREQ 52 Yes Use <<redundancy>> stereotype 
IREQ 53 No  
IREQ 54 No  

Total 7 Only 7 information requirements out of 54 are fulfilled 

Table 21: Assessing the Effects of Messages profile based on the information 

requirements. 
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F.5 Patterns for Reliability and Safety (discussed in Section 4.5) 

IREQ # Fulfilled Comment 
IREQ 1 No  
IREQ 2 No  
IREQ 3 No  
IREQ 4 No  
IREQ 5 No  
IREQ 6 No  
IREQ 7 No  
IREQ 8 No  
IREQ 9 No  

IREQ 10 No  
IREQ 11 No  
IREQ 12 No  
IREQ 13 No  
IREQ 14 No  
IREQ 15 No  
IREQ 16 No  
IREQ 17 No  
IREQ 18 No  
IREQ 19 No  
IREQ 20 No  
IREQ 21 No  
IREQ 22 No  
IREQ 23 No  
IREQ 24 No  
IREQ 25 No  
IREQ 26 Yes Use “qosSafety” constraint 
IREQ 27 No  
IREQ 28 No  
IREQ 29 No Paper introduces some patterns to model this, but only for use cases 
IREQ 30 No  
IREQ 31 No  
IREQ 32 No  
IREQ 33 No  
IREQ 34 No  
IREQ 35 No  
IREQ 36 No  
IREQ 37 No  
IREQ 38 No  
IREQ 39 No  
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IREQ # Fulfilled Comment 
IREQ 40 No  
IREQ 41 No  
IREQ 42 No  
IREQ 43 No  
IREQ 43 No  
IREQ 46 No  
IREQ 47 No  
IREQ 48 No  
IREQ 49 No  
IREQ 50 No  
IREQ 51 No  
IREQ 52 No Paper introduces some patterns to model this, but only for use cases  
IREQ 53 No  
IREQ 54 No  

Total 1 Only 1 information requirement out of 54 is fulfilled 

Table 22: Assessing patterns for Reliability and Safety based on the information 

requirements. 
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F.6 Assessing Existing Profiles based on the Safety Information 

Requirements—Summary (discussed in section 4.6) 

IREQ # OMG 
QoS & 

FT 

OMG 
SPT 

HIDOORS Effects of 
Messages 

Patterns All 
Combined 

IREQ 1 Yes   Yes  Yes 
IREQ 2 Yes     Yes 
IREQ 3       
IREQ 4  Yes Yes   Yes 
IREQ 5  Yes Yes   Yes 
IREQ 6       
IREQ 7       
IREQ 8       
IREQ 9 Yes   Yes  Yes 

IREQ 10       
IREQ 11       
IREQ 12       
IREQ 13       
IREQ 14 Yes     Yes 
IREQ 15       
IREQ 16       
IREQ 17       
IREQ 18       
IREQ 19       
IREQ 20  Yes Yes   Yes 
IREQ 21 Yes     Yes 
IREQ 22  Yes Yes   Yes 
IREQ 23 Yes     Yes 
IREQ 24 Yes     Yes 
IREQ 25 Yes   Yes  Yes 
IREQ 26 Yes   Yes Yes Yes 
IREQ 27       
IREQ 28    Yes  Yes 
IREQ 29 Yes   Yes  Yes 
IREQ 30       
IREQ 31 Yes     Yes 
IREQ 32       
IREQ 33       
IREQ 34 Yes     Yes 
IREQ 35       
IREQ 36       
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IREQ # OMG 
QoS & 

FT 

OMG 
SPT 

HIDOORS Effects of 
Messages 

Patterns All 
Combined 

IREQ 37       
IREQ 38 Yes     Yes 
IREQ 39       
IREQ 40 Yes     Yes 
IREQ 41  Yes Yes   Yes 
IREQ 42       
IREQ 43  Yes Yes   Yes 
IREQ 44       
IREQ 45       
IREQ 46       
IREQ 47       
IREQ 48       
IREQ 49       
IREQ 50       
IREQ 51       
IREQ 52 Yes   Yes  Yes 
IREQ 53 Yes     Yes 
IREQ 54 Yes     Yes 

Total (Max 
= 54) 

17 6 6 7 1 24 

Percentage 
(%) 

31% 11% 11% 13% 2% 44% 

Table 23: Assessment summary of existing UML profiles based on the information 

requirements. 
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Appendix G Additional UML Profile Examples 

G.1 COTS Software 

The example in Figure 17 shows an aircraft navigation controller, which controls the 

flight of the aircraft including all auto pilot programmes.  

NavigationController controls the aircraft’s flight paths. Therefore, it is a safety-

critical element. This is marked explicitly on the diagram by stereotyping 

NavigationController with a <<SafetyCritical>> (5.2.17) stereotype. Because the 

failure of this system can result in conditions difficult to handle by the aircraft’s crew, 

this class has been assigned software level C. This is indicated by the “CriticalityLevel” 

tagged value of the <<SafetyCritical>> (5.2.17) stereotype. 

NavigationController needs to know the allowed flight paths of the aircraft. In this 

example, SafeFlightPaths serves as the database that contains all the navigation 

information relevant to the currently needed flight paths. It is safety-critical because a 

safety-critical class, namely NavigationController, depends on it. This is marked 

explicitly on the diagram by stereotyping it with a <<SafetyCritical>> (5.2.17) stereotype 

and assigning it a software level equal to at least that of the class that depends on it as 

indicated by the “CriticalityLevel” tagged. The developers of this navigation controller 

system decided to purchase COTS software and use it to store the flight paths. This is 

indicated in the diagram by stereotyping SafeFlightPaths with <<Nature>> (5.2.13) 

and setting the “Kind” tagged value to “COTS”. 

For the aircraft’s flight paths to be meaningful, maps of the world are needed. They are 

necessary for verifying the safe flight paths as well as displaying them to the pilots. 

Unlike the flight paths, they are static information that rarely change, and therefore they 

are maintained as a separate class outside of SafeFlightPaths. They are maintained in 

CurrentlyUsedWorldMaps, which contains the world maps that are needed for the 

current flight. It is safety-critical because a safety-critical class, namely 

SafeFlightPaths, depends on it. This is marked explicitly on the diagram by 
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stereotyping it with a <<SafetyCritical>> (5.2.17) stereotype and assigning it a software 

level equal to at least that of the class that depends on it as indicated by the 

“CriticalityLevel” tagged. 

This diagram shows safety-critical model elements. Hence, it is stereotyped with 

<<SafetyContext>> (5.2.1). In addition, COTS software is a crucial element of the 

software’s certification aspects in airworthiness. Therefore, they must be declared to the 

certification authorities. For this reason, this diagram is stereotyped with 

<<CertificationContext>> (5.2.6) to indicate that it contains information that is highly 

relevant to the certification authorities. 

<<state dependent control>>

<<SafetyCritical>>
{CriticalityLevel=C}

NavigationController

<<entity>>

<<SafetyCritical>>
{CriticalityLevel=C}

<<Nature>> {Kind=COTS}

SafeFlightPaths

<<SafetyContext>>
<<CertificationContext>>

<<entity>>

<<SafetyCritical>>
{CriticalityLevel=C}

CurrentlyUsedWorldMaps

1 1 1 1Reads Based On

 
Figure 17: Aircraft’s navigation controller using COTS software (structure).  

G.2 Software Partitioning 

Software partitioning is a technique for providing isolation between functionally 

independent software components to contain and/or isolate faults and potentially reduce 

the effort of the software verification process. It prevents specific interactions and cross-

coupling interference [1]. Its key advantages are in separating safety-critical software 

elements that have different safety levels, so that the failure of the less critical software 

does not result in the failure of the more critical software.  

The example in Figure 18 shows another section of a navigation system. This system, 

which can be put on auto-pilot, has a steering controller that is highly safety-critical. 

SteeringController controls the steering of the aircraft and its movement. Therefore, it 

is highly safety-critical and is assigned software level B. Thus, it is stereotyped 

<<SafetyCritical>> (5.2.17) and its “CriticalityLevel” tagged value is set to level B. 

Because it is highly safety-critical, it also employs defensive programming methods to 
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protect against unsafe inputs, whether they are manual input from the pilot through 

PilotKeyboardInterface, or from the software’s auto pilot system through 

AutoPilotController. SteeringController does not perform any action that requires 

the aircraft to fly on an altitude below 100 meters unless the aircraft is in the process of 

landing. Therefore, it is stereotyped with <<Defensive>> (5.2.27) and has a 

“DefendableInput” tagged value set to “Altitude < 100 m”. It also does not perform any 

action that requires the aircraft to change its flight direction in angles of greater than 90 

degrees. Thus, another instance of the “DefendableInput” tagged value is set to “Angle > 

90 deg”. In both cases, SteeringController reports that an illegal operation has 

occurred by exeuting the ReportIllegationOperation reaction procedure, as evident 

from the “Reaction” tagged value that is set to “ReportIllegalOperation” . 

AutoPilotController is also safety-critical, but less critical than 

SteeringController. This is because the failure of AutoPilotController only results 

in inconvenience for the pilots rather than significantly compromising the level of safety. 

If the auto pilot feature fails, the pilots can always manually control the aircraft through 

PilotKeyboardInterface or some other mechanical device inputs. Therefore, 

AutoPilotController was assigned software level D. Thus, it is stereotyped with 

<<SafetyCritical>> (5.2.17) and its “CriticalityLevel” tagged value is set to level D. The 

interesting thing to note in this example is that AutoPilotController was partitioned 

from SteeringController for this very reason – if the auto pilot feature fails, the 

steering controller can still execute correctly and ensure the safe flight of the aircraft. 

This is stated in the model by stereotyping AutoPilotController with <<Partition>> 

(5.2.18) and using its “PartitionedFrom” tagged value, set to “SteeringController”, and 

“Explanation” tagged value, set to “Lower Criticality Level”, to specify this exact 

information. 

ConvertibleSteeringInformation is used by PilotDisplayInterface to display the 

current aircraft steering information. What is special about this class is that it can read the 

information from SteeringController and convert it to appropriate units for the pilots 

such as conversion from metric units to imperial units, and vice-versa. Again, 

ConvertibleSteeringInformation was partitioned away from SteeringController 
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because it is only relevant for displaying the information to the pilots. If it fails, the 

aircraft can still resume safe flight through either manual input through 

PilotKeyboardInterface or auto pilot through AutoPilotController. As a result, 

ConvertibleSteeringInformation was stereotyped with <<Partition>> (5.2.18) and its 

“PartitionedFrom” and “Explanation” tagged values were used to specify that it was 

partitioned from SteeringController because it was “Not Safety Critical”. 

It is clear from this discussion that this example has emphasis on safety. Therefore, the 

diagram was stereotyped with <<SafetyContext>> (5.2.1). It should also be noted that 

partitioning information has to be submitted to the certification authorities. Therefore, the 

diagram was also stereotyped with <<CertificationContext>> (5.2.6). Finally, we also 

decided to stereotype it with <<DesignContext>> (5.2.7) because it is the result of design 

decisions on how software classes are organized with respect to safety. In fact, the 

partitioning concept was identified as a design concept in section C.7 

<<algorithm>>

<<Partition>>
{PartitionedFrom=“SteeringController”,

Explanation=“Not Safety Critical}

ConvertibleSteeringInformation

<<SafetyContext>>
<<CertificationContext>>

<<DesignContext>>

<<coordinator>>

<<SafetyCritical>> {CriticalityLevel=B}

<<Defensive>>
{DefendableInput=‘Altitude < 100 m’,
DefendableInput=‘Angle > 90 deg’,
Reaction=ReportIllegalOperation}

SteeringController .
-ReportIllegalOperation() <<Reaction>> {…}

<<state dependent control>>

<<SafetyCritical>> {CriticalityLevel=D}

<<Partition>>
{PartitionedFrom=“SteeringController”,
Explanation=“Lower Criticality Level”}

AutoPilotController

<<output device interface>>

PilotDisplayInterface

<<input device interface>>

PilotKeyboardInterface

*
1

Commands

1 Commands 1

1 Uses 1

1
1

Reads

 
Figure 18: Aircraft steering controller (structure).  

One final note is that the higher the software level is, the more expensive it is to develop 

it. A direct positive result of the partitioning in this example is that 

AutoPilotController and ConvertibleSteeringInformation do not have to go 
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through the rigorous development and testing methods required for 

SteeringController, which is of level B. 

G.3 Requirements and Traceability 

The example in Figure 19 shows safety-related requirements in the aircraft steering 

controller system presented in Figure 18.  Most of the stereotypes on the classes were 

explained in Appendix G.2. Therefore, only new stereotypes are explained here. Such 

systems are generally safety-critical, and are often allocated safety requirements. As a 

result, this diagram has been stereotyped with <<SafetyContext>> (5.2.1).  

Generally, a project identifies high-level safety requirements that must be fulfilled. Then, 

low-level safety requirements are developed to ensure that the high-level goals are 

fulfilled. This diagram specifies and elaborates on a safety goal that was identified for 

this model, namely to ensure that the aircraft always flies in “Safe Flight Paths”. This 

goal is captured in the diagram by stereotyping it with <<Requirement>> (5.2.9). The 

“ID” tagged value specified the unique ID of the requirement. The “Kind” tagged value is 

set to “Safety” to identify that this is a safety-related requirement, and its “Specification” 

tagged value states what the requirement is, namely ensuring “Safe Flight Paths”. 

Because of its high software level, SteeringController is checked for correctness 

using a formal method, namely “Theorem-Proving”. Therefore, it is stereotyped with 

<<Formalism>> (5.2.23) and its “Method” tagged value is set to “Theorem-Proving”. Its 

“Kind” tagged value is set to “Full” to indicate that a fully formal method is used.   

PilotKeyboardInterface serves as an input interface to the pilot. The pilot can use it to 

change the flight path of the aircraft. PilotKeyboardInterface has been assigned a 

safety requirement to request confirmation from the pilots whenever they wish to change 

the flight path. Therefore, it was stereotyped with <<Requirement>> (5.2.9). Its “ID” 

tagged value specifies the unique ID of the requirement, which is “LREQ 1”. Its “Kind” 

tagged value was set to “Safety” to indicate that it is a safety requirement. Its 

“OfRequirement” tagged value specifies the high-level requirement that this low-level 

requirement can be traced to. In this example, it is the “HREQ 1” high-level requirement 
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that was applied as a stereotype on the diagram. The “Specification” tagged value 

specifies that there must be a user confirmation for every path change. 

The second safety requirement for “HREQ 1” was assigned to the association between 

AutoPilotController and SteeringController. The association was stereotyped with 

<<Requirement>> (5.2.9) whose “Kind” tagged value is also set to “Safety”. Its “ID” 

tagged value specifies the unique ID of the requirement. The “OfRequirement” tagged 

value specifies that this requirement is traceable to the “HREQ 1” requirement. The 

“Specification” tagged value specifies that the association must ensure that the “Chosen 

Aircraft Flight Path is in Safe Flight Paths Set”. Therefore, AutoPilotController must 

not command SteeringController to fly in a flight path that is not in the safe flight 

paths set. 

AutoPilotController determines whether a particular flight path is allowed or not by 

reading the data managed by SafeFlightPaths. The availability of such information is 

the only reason for the existence of SafeFlightPaths. Therefore, it was stereotyped with 

<<Rationale>> whose “Reference” tagged value is set to “LREQ 2” to identify the 

requirement whose existence resulted developing this class. 

<<SafetyContext>>

<<Requirement>>
{ID=“HREQ 1”, Kind=Safety, Specification=“Safe Flight Paths”}

<<state dependent control>>

<<SafetyCritical>>
{CriticalityLevel=D}

AutoPilotController

<<input device interface>>

<<Requirement>>
{ID=“LREQ 1”, Kind=Safety,
OfRequirement=“HREQ 1”,

Specification=‘Exists User Confirmation 
for every Path Change’}

PilotKeyboardInterface<<Requirement>>
{ID=“LREQ 2”, Kind=Safety,
OfRequirement=“HREQ 1”,

Specification=‘Chosen Aircraft Flight Path is 
in Safe Flight Paths Set’}

Commands

<<coordinator>>

<<SafetyCritical>> {CriticalityLevel=B}

<<Formalism>>
{Kind=Full, Method=Theorem-Proving,

FormalismOf=SteerinController}

SteeringController

1 1

*
1

Commands

<<entity>>

<<Rationale>>
{Reference=LREQ 2}

SafeFlightPaths

1

1
Reads

 
Figure 19: Safety-requirements for an aircraft steering system (structure).  

Finally, notice that the language used in the “Specification” tagged value for the 

<<Requirement>> (5.2.9) stereotype is more detailed and specific for low-level 
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requirements than for the high-level requirements. In fact, the “Specification” tagged 

values for the low-level requirements can be written as mathematical expressions. 

G.4 Multiple-Version Dissimilar Software 

Multiple-version dissimilar software is a common technical solution to reliability 

challenges in highly reliable and safety-critical software. The example in Figure 20 

shows three dissimilar software versions that function as a radar filter. Those three 

dissimilar versions are RadarFilter1, RadarFilter2, and RadarFilter3. Each one of 

them is stereotyped with <<Replicated>> to indicate that it is a dissimilar version for 

some other class. The “ID” tagged value uniquely identifies the ID of that class within the 

replication group that is specified in the “ReplicationGroup” tagged value. In this 

example, the replication group is called “RadarFilter”. 

Each version of the radar filter logs its output to RadarFilterResults. 

RadarFilterResults compares all three outputs from RadarFilter1, RadarFilter2, 

and RadarFilter3, and determines what the accepted value should be and then it updates 

the pilot’s display accordingly. Because of this behaviour, RadarFilterResults is 

stereotyped with <<Comparator>> (5.2.32) to indicate that it compares outputs from 

dissimilar software versions. The “ReplicationGroup” tagged value identifies the 

replication group of the multiple version dissimilar software. It is equal to the 

“ReplicatedGroup” tagged values of the <<Replicated>> (5.2.31) stereotypes for each of 

the replicated software versions. The “PolicyParameter” tagged value of the 

<<Comparator>> stereotype indicates that RadarFilterResults determines the 

accepted output based on a majority voting policy. This means that if two of the three 

replicated classes agree on a value, their output is accepted as the correct one. The 

“ReplicatedEntity” tagged values of the <<Comparator>> (5.2.32) stereotype identify the 

classes whose outputs are considered for voting. 

Since multiple-version dissimilar software is a reliability-related solution, the diagram 

was stereotyped with <<ReliabilityContext>> (5.2.2). 
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Notice that in this case, the classes stereotyped with <<Replicated>> (5.2.31) depend 

(navigability of association) on the one stereotyped with <<Comparator>> (5.2.32). This 

is only because of a design decision in this model where the radar filters are active 

components that read the radar input and inform the comparator class accordingly. 

However, this will not always be the case. There can be cases where the comparator class 

depends on the replicated classes. Therefore, stereotypes <<comparator>> and 

<<replicated>> do not suggest any specific association navigability between stereotyped 

classes.  

<<algorithm>>

<<Comparator>>
{ReplicationGroup=“RadarFilter”,
PolicyParameter=MajorityVoting,
ReplicatedEntity=RadarFilter1,
ReplicatedEntity=RadarFilter2,
ReplicatedEntity=RadarFilter3}

RadarFilterResults

<<ReliabilityContext>>

<<algorithm>>

<<Replicated>> {ID=“0003”, 
ReplicationGroup=“RadarFilter”}

RadarFiter3

<<aglorithm>>

<<Replicated>> {ID=“0001”, 
ReplicationGroup=“RadarFilter”}

RadarFiter1

<<algorithm>>

<<Replicated>> {ID=“0002”, 
ReplicationGroup=“RadarFilter”}

RadarFiter2

<<output device interface>>

PilotDisplayInterface

Log Result
1

11
Log ResultLog Result 1

11

1

Update Display

1
 

Figure 20: Multiple-version radar filter system (structure).  

G.5 Concurrent Software 

This example shows concurrent access to the database presented in Figure 19. As Figure 

21 shows, SafeFlightPaths is COTS software as indicated by the <<Nature>> 

stereotype and its “Kind” tagged value. This class is a resource that is subject to 

concurrent access from other classes. Therefore, it is stereotyped with <<Concurrent>> 

(5.2.26) to indicate that it is relevant from a concurrency point of view. Its “Role” tagged 

value is set to “Resource” and its “IsShared” “tagged value is set to “true” to indicate that 

it is a shared resource. 

SafeFlightPaths is subject to concurrent access from 

SatelliteCommunicationInterface, RadarInterface, and UserInterface. Each one 



Carleton University, TR SCE-06-19  Decermber 2006 

 243

of those classes is an active class that may initiate action without explicit invocation from 

other software classes in the system. Therefore, each one of them is stereotyped with 

<<Concurrent>> (5.2.26) whose “Role” tagged value was set to “Active”. Each one of 

them has an association to SafeFlightPaths to show that it can read from and write to 

it. 

<<entity>>

<<Nature>> {Kind=COTS}

<<Concurrent>>
{Role=Resource, IsShared=true}

SafeFlightPaths

<<ConcurrencyContext>>
<<PerformanceContext>>

<<user interface>>

<<Concurrent>>  {Role=Active}

UserInterface

<<system interface>>

<<Concurrent>> {Role=Active}

SatelliteCommunicationInterface

<<system interface>>

<<Concurrent>> {Role=Active}

RadarInterface
*
1Reads and Writes *

1

Reads and Writes
1

1

Reads and Writes

 
Figure 21: Concurrent access to an aircraft’s COTS software (structure). 

Because this diagram involves a concurrency discussion, it is stereotyped with 

<<ConcurrencyContext>> (5.2.5). It is also stereotyped with <<PerformanceContext>> 

(5.2.4) because concurrent access to a shared resource is also relevant from a 

performance point of view especially because RadarInterface and 

SatelliteCommunicationInterface are likely to have high-frequency accesses to 

SafeFlightPaths. 

G.6 Software Monitoring 

The example in Figure 22 shows safety-monitoring software. Its purpose is to detect 

when the aircraft’s engine temperature becomes too high, and then to react by lowering 

the temperature to an acceptable level. 

EngineInterface serves as an interface for the aircraft’s engine. Hence, it is stereotyped 

with <<Interface>> (5.2.25) and its “InterfaceFor” tagged value is set to 
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“AircraftEngine”. Because the aircraft’s engine is a hardware component, its 

“IsBetweenHardwareAndSoftware” tagged value is set to “true”. 

EngineInterface is monitored by EngineMonitor, which is stereotyped with 

<<Monitor>> (5.2.20). Its “Kind” tagged value is set to “Safety” to indicate that the 

purpose of the monitor is to increase the safety level of the system. The 

“MonitoredEntity” tagged value is set to “EngineInterface” to indicate that the class 

being monitored is EngineInterface. The “DetectableEvent” tagged value specifies the 

event that can be detected by EngineMonitor, which is EngineTooHot. The 

“EventHandler” tagged value is set to “AircraftEngineController” to indicate that 

AircraftEngineController will be notified when this event occurs. 

EngineTooHot represents the event that the engine’s temperature has risen to an 

unacceptable level. Thus, it is stereotyped with <<Event>> (5.2.15) and its 

“EffectOnSafetyDirection” tagged value is set to “Negative” to indicate that the 

occurrence of this event can have unsafe consequences. 

NormalizeEngineTemperature contains the reaction code that will be executed when 

the EngineTooHot event occurs. Therefore, it is stereotyped with <<Reaction>> (5.2.16) 

and its “ConsequenceOf” tagged value is set to “EngineTooHot”, which is the class name 

of the event that triggers the reaction. The “EffectOnSafetyDirection” is set to “Positive” 

to indicate that the reaction is intended to increase the safety level. 

AircraftEngineController is a safety-critical class because it determines how to 

control the aircraft’s engine. Thus, it is stereotyped with <<SafetyCritical>> (5.2.17). 

Moreover, it serves as an event handler by recognizing the EngineTooHot event and 

executing the NormalizeEngineTemperature reaction code. Therefore, it is also 

stereotyped with <<Handler>> (5.2.19) stereotype whose “HandleableEvent” tagged 

value is set to the “EngineTooHot” event, and its “PerformedReaction” tagged value is 

set to the “NormalizeEngineTemperature” reaction. 

Because this diagram discusses safety aspects of the system, it is stereotyped with 

<<SafetyContext>> (5.2.1). Furthermore, it is stereotyped with <<Strategy>> (5.2.22) 
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and its “Kind” tagged value is set to “Safety” to indicate that it is a technical solution to 

increase the safety level. 

<<state dependent control>>
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Figure 22: Monitoring the aircraft’s engine’s temperature (structure).  
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