
Carleton University, TR SCE-06-19 Decermber 2006

 1

A UML Profile For Developing

Airworthiness-Compliant (RTCA DO-178B)
Safety-Critical Software

Gregory Zoughbi, Lionel Briand and Yvan Labiche

Software Quality Engineering Laboratory (SQUALL)
www.sce.carleton.ca/squall

Department of Systems and Computer Engineering, Carleton University
1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada

www.zoughbi.com, {briand, labiche}@sce.carleton.ca

Abstract
Many safety-related and certification standards exist for developing safety-critical
systems. Safety assessments are performed in practice, and system certification according
to a standard requires the submitting information about the software. The airworthiness
standard, RTCA DO-178B, is the software de-facto standard for commercial and military
aerospace programmes. The objective of this research is to propose an approach to
improve the line of communication between safety engineers and software engineers by
proposing a Unified Modeling Language (UML) profile that allows software engineers to
model safety related concepts and properties in UML, the de-facto software modeling
language. In this research, the list of safety-related concepts is extracted from RTCA DO-
178B, and then a UML profile is presented to enable modeling them. Then, approaches to
generate certification-related information from UML models are presented. This new
approach is illustrated through a case study on developing an aircraft’s navigation
controller subsystem.

Keywords: UML, UML Profile, Airworthiness, RTCA DO-178B, Safety, Safety-
Critical, Safety Assessment, Certification, Certification Authority.

Carleton University, TR SCE-06-19 Decermber 2006

 2

TABLE OF CONTENTS

1 INTRODUCTION .. 10
1.1 SAFETY AND UML... 10
1.2 RESEARCH PROBLEM ... 12
1.3 DOCUMENT ORGANIZATION .. 13
1.4 RESEARCH METHOD .. 16

2 INDUSTRIAL PRESPECTIVE .. 19
2.1 SAFETY ASSESSMENTS... 19
2.2 SAFETY-RELATED STANDARDS.. 20
2.3 CHALLENGES IN SOFTWARE SAFETY.. 23
2.4 USAGE SCENARIOS FOR SAFETY INFORMATION ... 24
2.5 TRACEABILITY REQUIREMENTS ... 27
2.6 UML APPROACH ... 28

2.6.1 Disadvantages .. 29
2.6.2 Advantages ... 29
2.6.3 Requirements of an Effective UML Profile .. 32

3 SAFETY-RELATED CONCEPTS ... 34
3.1 CONCEPT IDENTIFICATION AND CATEGORIZATION .. 36
3.2 CONCEPT REFINEMENT .. 42

3.2.1 Conceptual Model ..44
3.2.2 Concept Details.. 44
3.2.3 Concepts Specifications ... 47
3.2.4 Providing Traceability ...71

3.3 INFORMATION REQUIREMENTS .. 72

4 EXISTING UML PROFILES.. 79
4.1 QUALITY OF SERVICE AND FAULT TOLERANCE OMG PROFILE 79
4.2 SCHEDULABILITY, PERFORMANCE, AND TIME OMG PROFILE 80
4.3 HIDOORS PROFILE... 81
4.4 EFFECTS OF MESSAGE LOSS, DELAY, AND CORRUPTION 81
4.5 PATTERNS FOR RELIABILITY AND SAFETY ... 82
4.6 SUMMARY.. 82

5 PROPOSED UML PROFILE.. 85
5.1 UML PROFILE—TEMPLATE DESCRIPTION... 85
5.2 PROFILE DESCRIPTION ... 88

5.2.1 <<SafetyContext>>... 88
5.2.2 <<ReliabilityContext>>.. 89
5.2.3 <<IntegrityContext>>... 90

Carleton University, TR SCE-06-19 Decermber 2006

 3

5.2.4 <<PerformanceContext>>.. 90
5.2.5 <<ConcurrencyContext>>.. 91
5.2.6 <<CertificationContext>> .. 91
5.2.7 <<DesignContext>> ...92
5.2.8 <<ConfigurationContext>>.. 92
5.2.9 <<Requirement>>... 93
5.2.10 <<Deviation>>... 94
5.2.11 <<ImplementationStyle>>.. 95
5.2.12 <<BehaviouralStyle>> ... 96
5.2.13 <<Nature>> ... 97
5.2.14 <<Rationale>> ... 98
5.2.15 <<Event>> ... 98
5.2.16 <<Reaction>> .. 99
5.2.17 <<SafetyCritical>> .. 100
5.2.18 <<Partition>> .. 101
5.2.19 <<Handler>> ...102
5.2.20 <<Monitor>> ...103
5.2.21 <<Simulator>>... 104
5.2.22 <<Strategy>> ... 105
5.2.23 <<Formalism>> ... 106
5.2.24 <<Complexity>> ..107
5.2.25 <<Interface>> .. 108
5.2.26 <<Concurrent>> .. 109
5.2.27 <<Defensive>>... 110
5.2.28 <<Configurable>> ... 111
5.2.29 <<Loadable>> ... 112
5.2.30 <<Configurator>>.. 112
5.2.31 <<Replicated>> ... 113
5.2.32 <<Comparator>>... 114

5.3 EXAMPLES ... 115
5.3.1 Hardware/Software Interfaces ... 115
5.3.2 Contributions to Failure Conditions .. 117
5.3.3 Software Configurations .. 120

5.4 DEVELOPMENT METHODOLOGY .. 122

6 GENERATION OF CERTIFICATION INFORMATION 125
6.1 TECHNOLOGICAL REQUIREMENTS ... 125

6.1.1 Integrated Support in UML Modeling Tools.. 126
6.1.2 Exporting UML Models using XMI.. 126

6.2 EXAMPLES ... 127
6.2.1 Hardware/Software Interfaces ... 128
6.2.2 Contributions to Failure Conditions .. 129
6.2.3 COTS Software... 130
6.2.4 Software Partitioning ... 130
6.2.5 Requirements and Traceability .. 131
6.2.6 Multiple-Version Dissimilar Software ... 132
6.2.7 Recursive Software... 133

7 CASE STUDY – NAVIGATION CONTROLLER ... 134

Carleton University, TR SCE-06-19 Decermber 2006

 4

7.1 OVERVIEW ... 135
7.2 SYSTEM ARCHITECTURE .. 136
7.3 FUNCTIONAL REQUIREMENTS .. 139
7.4 SAFETY ASSESSMENT .. 140

7.4.1 Action Error Analysis (AEA).. 141
7.4.2 Failure Modes and Effects Analysis (FMEA) .. 141
7.4.3 Hazards and Operability Analysis (HAZOP)... 142
7.4.4 Interface Analyses (IA)... 143
7.4.5 Safety Requirements ... 143

7.5 SUBSYSTEM DESIGN .. 145
7.5.1 Identification of Events and Reactions... 146
7.5.2 Events ...147
7.5.3 Reactions .. 151
7.5.4 Event-Reaction Relationships .. 156
7.5.5 High-Level Design ... 159
7.5.6 Low-Level Design of Events and Reactions ... 173

7.6 DESIGN ANALYSIS ... 175
7.6.1 USAGE 1: Provide Safety Requirements ... 175
7.6.2 USAGE 2: Design Safety Requirements in Systems ... 176
7.6.3 USAGE 3: Justify Design Decisions .. 177
7.6.4 USAGE 4: Monitor Safety .. 178
7.6.5 USAGE 5: Get Safety Information ... 180

8 CONCLUSION ... 182
8.1 FULFILLING REQUIREMENTS .. 183
8.2 OPEN ISSUES AND FUTURE WORK.. 185

9 SUMMARY ... 189

REFERENCES.. 191

APPENDIX A EXAMPLES OF SAFETY/RISK ASSESSMENT METHODS 195

APPENDIX B EXAMPLES OF SAFETY-RELATED STANDARDS............. 198

APPENDIX C CONCEPT IDENTIFICATION AND CATEGORIZATION
FROM THE AIRWORTHINESS STANDARD.. 201

C.1 PRIMARILY SAFETY CONCEPTS.. 201
C.2 PRIMARILY RELIABILITY CONCEPTS .. 204
C.3 PRIMARILY INTEGRITY CONCEPTS ... 206
C.4 PRIMARILY PERFORMANCE CONCEPTS .. 207
C.5 PRIMARILY CONCURRENCY CONCEPTS.. 207
C.6 PRIMARILY CERTIFICATION CONCEPTS.. 209
C.7 PRIMARILY DESIGN CONCEPTS .. 210
C.8 PRIMARILY CONFIGURATION CONCEPTS.. 214

Carleton University, TR SCE-06-19 Decermber 2006

 5

APPENDIX D CONCEPTUAL MODEL—CONCEPT RELATIONSHIPS... 216

APPENDIX E GOMAA’S CLASS CLASSIFICATION.................................... 222

APPENDIX F ASSESSING EXISTING PROFILES BASED ON THE
INFORMATION REQUIREMENTS... 223

F.1 QUALITY OF SERVICE AND FAULT TOLERANCE OMG PROFILE (DISCUSSED IN
SECTION 4.1).. 223
F.2 SCHEDULABILITY, PERFORMANCE, AND TIME OMG PROFILE (DISCUSSED IN
SECTION 4.2).. 225
F.3 HIDOORS PROFILE (DISCUSSED IN SECTION 4.3) ... 227
F.4 EFFECTS OF MESSAGE LOSS, DELAY, AND CORRUPTION (DISCUSSED IN SECTION
4.4) 229
F.5 PATTERNS FOR RELIABILITY AND SAFETY (DISCUSSED IN SECTION 4.5) 231
F.6 ASSESSING EXISTING PROFILES BASED ON THE SAFETY INFORMATION
REQUIREMENTS—SUMMARY (DISCUSSED IN SECTION 4.6) .. 233

APPENDIX G ADDITIONAL UML PROFILE EXAMPLES 235
G.1 COTS SOFTWARE .. 235
G.2 SOFTWARE PARTITIONING ... 236
G.3 REQUIREMENTS AND TRACEABILITY.. 239
G.4 MULTIPLE-VERSION DISSIMILAR SOFTWARE... 241
G.5 CONCURRENT SOFTWARE .. 242
G.6 SOFTWARE MONITORING ... 243

Carleton University, TR SCE-06-19 Decermber 2006

 6

LIST OF TABLES
TABLE 1: DETAILS OF THE RESEARCH METHOD STEPS. ... 18
TABLE 2: EXAMPLES OF SAFETY REQUIREMENTS AND THE ACCIDENTS THEY PROTECT

AGAINST... 19
TABLE 3: TRACING INFORMATION REQUIREMENTS TO THE ORIGINAL HIGH-LEVEL

REQUIREMENTS. ... 78
TABLE 4: DETAILS OF THE DEVELOPMENT METHODOLOGY STEPS. 124
TABLE 5: RELATIONSHIPS BETWEEN EVENTS AND REACTIONS. .. 157
TABLE 6: USING THE PROPOSED UML PROFILE TO FULFILL THE INFORMATION

REQUIREMENTS. ... 185
TABLE 7: EXAMPLES OF SAFETY OR RISK ASSESSMENT METHODS. 197
TABLE 8: SOME OF THE MANY SAFETY-RELATED STANDARDS THAT EXIST FOR SEVERAL

INDUSTRIES. ... 200
TABLE 9: SAFETY-RELATED CONCEPTS THAT ARE CLASSIFIED AS “PRIMARILY SAFETY”. 203
TABLE 10: SAFETY-RELATED CONCEPTS THAT ARE CLASSIFIED AS “PRIMARILY

RELIABILITY”. .. 206
TABLE 11: SAFETY-RELATED CONCEPTS THAT ARE CLASSIFIED AS “PRIMARILY INTEGRITY”.

... 206
TABLE 12: SAFETY-RELATED CONCEPTS THAT ARE CLASSIFIED AS “PRIMARILY

PERFORMANCE”. .. 207
TABLE 13: SAFETY-RELATED CONCEPTS THAT ARE CLASSIFIED AS “PRIMARILY

CONCURRENCY”. .. 208
TABLE 14: SAFETY-RELATED CONCEPTS THAT ARE CLASSIFIED AS “PRIMARILY

CERTIFICATION”. .. 210
TABLE 15: SAFETY-RELATED CONCEPTS THAT ARE CLASSIFIED AS “PRIMARILY DESIGN”.214
TABLE 16: SAFETY-RELATED CONCEPTS THAT ARE CLASSIFIED AS “PRIMARILY

CONFIGURATION”... 215
TABLE 17: ANALYSIS OF CONCEPTUAL MODEL CONCEPT RELATIONSHIPS........................ 221
TABLE 18: ASSESSING THE QUALITY OF SERVICE AND FAULT TOLERANCE OMG PROFILE

BASED ON THE INFORMATION REQUIREMENTS.. 224
TABLE 19: ASSESSING THE SCHEDULABILITY, PERFORMANCE, AND TIME OMG PROFILE

BASED ON THE INFORMATION REQUIREMENTS.. 226
TABLE 20: ASSESSING THE HIDOORS PROFILE BASED ON THE INFORMATION

REQUIREMENTS. ... 228
TABLE 21: ASSESSING THE EFFECTS OF MESSAGES PROFILE BASED ON THE INFORMATION

REQUIREMENTS. ... 230
TABLE 22: ASSESSING PATTERNS FOR RELIABILITY AND SAFETY BASED ON THE

INFORMATION REQUIREMENTS. .. 232
TABLE 23: ASSESSMENT SUMMARY OF EXISTING UML PROFILES BASED ON THE

INFORMATION REQUIREMENTS. .. 234

Carleton University, TR SCE-06-19 Decermber 2006

 7

LIST OF ILLUSTRATIONS (FIGURES)
FIGURE 1: RESEARCH METHOD. ... 17
FIGURE 2: USAGE SCENARIOS FOR SAFETY INFORMATION.. 24
FIGURE 3: A UML MODEL SERVES AS A CENTRAL ROLE FOR STAKEHOLDERS.................... 27
FIGURE 4: ROLE OF A UML SAFETY PROFILE IN THE DEVELOPMENT PROCESS. 29
FIGURE 5: RELATIONSHIP BETWEEN SAFETY AND OTHER SAFETY-RELATED QUALITY

CATEGORIES ASSUMING THAT THOSE CATEGORIES FORM MUTUALLY EXCLUSIVE SETS.
... 40

FIGURE 6: RELATIONSHIP ACROSS SAFETY ENTITIES, ATTRIBUTES, AND METHODS. 42
FIGURE 7: META-MODEL FOR THE REFINED SAFETY-RELATED CONCEPTS………...............45
FIGURE 8: KALMAN FILTER PROCESSING INPUT, THROUGH AN INTERFACE, FROM A

SIMULATOR (STRUCTURE). ... 117
FIGURE 9: LANDING WHEEL CONTROLLER PROCESSING USER AND RADAR INPUTS

(STRUCTURE). .. 120
FIGURE 10: USER INTERFACE LANGUAGE CONFIGURATIONS (STRUCTURE). 121
FIGURE 11: DEVELOPMENT METHODOLOGY OF AIRWORTHINESS-COMPLIANT SOFTWARE

PRODUCTS. ... 122
FIGURE 12: SYSTEM ARCHITECTURE (STRUCTURE). ... 137
FIGURE 13: NAVIGATIONCONTROLLERSUBSYSTEM’S EVENTS (STRUCTURE)................... 147
FIGURE 14: NAVIGATIONCONTROLLER SUBSYSTEM REACTIONS (STRUCTURE)................ 152
FIGURE 15: NAVIGATIONCONTROLLER SUBSYSTEM’S HIGH-LEVEL DESIGN (STRUCTURE).

... 159
FIGURE 16: GOMAA’S CLASSIFICATION OF APPLICATION CLASSES USING STEREOTYPES [7].

... 222
FIGURE 17: AIRCRAFT’S NAVIGATION CONTROLLER USING COTS SOFTWARE (STRUCTURE).

... 236
FIGURE 18: AIRCRAFT STEERING CONTROLLER (STRUCTURE). ... 238
FIGURE 19: SAFETY-REQUIREMENTS FOR AN AIRCRAFT STEERING SYSTEM (STRUCTURE).240
FIGURE 20: MULTIPLE-VERSION RADAR FILTER SYSTEM (STRUCTURE)............................ 242
FIGURE 21: CONCURRENT ACCESS TO AN AIRCRAFT’S COTS SOFTWARE (STRUCTURE). . 243
FIGURE 22: MONITORING THE AIRCRAFT’S ENGINE’S TEMPERATURE (STRUCTURE)......... 245

Carleton University, TR SCE-06-19 Decermber 2006

 8

LIST OF ACRONYMS AND ABBREVIATIONS

AEA Action Error Analysis
AECL Atomic Energy Canada, Limited
AIAA American Institute of Aeronautics and Astronautics
ARINC Aeronautical Radio, Incorporated
CCA Cause-Consequence Analysis
CENELEC European Committee for Electrotechnical Standardisation
CORBA Common Object Resource Broker Architecture
COTS Commercial-Off-The-Shelf
DoD United States Department of Defense
EBNF Extended Backus–Naur Form
EMF Eclipse Modeling Framework
ESA European Space Agency
ETA Event Tree Analysis
FAA Federal Aviation Administration
FHA Fault Hazard Analysis
FIFO First-In-First-Out
FMEA Failure Modes and Effects Analysis
FMECA Failure Modes, Effects, and Criticality Analysis
FT Fault-Tolerant / Fault Tolerance
FTA Fault Tree Analysis
FTP Fly-To-Point
GPS Global Positioning System
HAZOP Hazards and Operability Analysis
HIDOORS High Integrity Distributed Object-Oriented Real-Time Systems
IA Interface Analyses
IEC International Electrotechnical Commission
IEE Institution of Electrical Engineers
IEEE Institute of Electrical & Electronic Engineers
ISO International Organization for Standardization
LAT/LONG Latitude and Longitude
LED Light-Emitting Diode

Carleton University, TR SCE-06-19 Decermber 2006

 9

LIFO Last-In-First-Out
LLF Linear Logical Framework
MDA Model-Driven Architecture
MISRA Motor Industry Software Reliability Association
MoD United Kingdom Ministry of Defence
MORT Management Oversight and Risk Tree Analysis
MVC Model-View-Controller
NASA National Aeronautics and Space Administration
NATO North Atlantic Treaty Organization
OCL Object Constraint Language
OMG Object Management Group
ORB Object Resource Broker
PSAC Plan for Software Aspects of Certification
QoS Quality of Service
RF Radio Frequency
RMA Rate Monotonic Analysis
RTCA Radio Technical Commission for Aeronautics
SAE Society of Automotive Engineers
SIL Safety Integrity Level
SMHA State Machine Hazard Analysis
SPT Schedulability, Performance, and Time
SQL Structured Query Language
SSAC Streamlining Software Aspects of Certification
SWOT Strengths, Weaknesses, Opportunities, and Threats
VBA Visual Basic for Applications
XMI XML Metadata Interchange
XML Extensible Markup Language
XSL Extensible Stylesheet Language

Carleton University, TR SCE-06-19 Decermber 2006

 10

1 INTRODUCTION

1.1 Safety and UML

Software’s role in various systems has been rapidly increasing over past several decades.

Its purpose is no longer restricted to managing financial or mathematical data. Due to the

technological advances of computer processors, memory and other components, discrete

hardware components in many systems have been replaced by software. Putting software

on aircrafts, for example, has become significantly more affordable than it used to be. As

a result, software now directly affects human life by managing flights, airplanes, ships,

nuclear reactors, medical systems, and many others. This led to increased emphasis on

the quality of software used in such systems. This emphasis focused on many aspects.

First, it led to improved software verification and testing methods to detect software bugs

before the software is delivered and deployed in its target system. However, it was

accepted that software can never be 100% correct and error free. Therefore, fault

tolerance emerged as a design technique to increase the reliability of the software. The

principles of fault tolerance focus on adding protection mechanisms to detect software

failures within a specified software boundary such that the software is able to recover and

continue execution despite the presence of software faults or bugs. Therefore, fault

tolerance aims at reducing the likelihood that the software becomes unavailable due to

software bugs.

However, it was observed that highly reliable software is not necessarily safe within the

context of the system in which it is used. Software is safe if it does not contribute to

hazards within the context of the system in which it is used, and a system is safe if it does

not cause accidents to or harm its environment. In particular, software may be reliable but

unsafe when any of the following conditions occurs [1]:

1. The software correctly implements the requirements, but the specified behaviour

is unsafe for the system as a whole (i.e. some requirements are unsafe).

2. Some safety-related requirements are missing (i.e. requirements are incomplete).

Carleton University, TR SCE-06-19 Decermber 2006

 11

3. The software implements unintended and unsafe behaviour that is not specified in

the requirements.

As a result, emphasis increased on developing safety requirements, whose goal is to

ensure the safety of the environment in which the system is used. Safety requirements

and constraints are generally the output of safety assessments that are performed on the

system in which the software will be used. As a result, proper requirements development

is vital towards ensuring safety.

Furthermore, safety-related standards generally require gathering information about the

software that is not necessarily related to the implementation of safety-related

requirements. Examples of such information include the use of COTS software and time-

related functions such as filters.

UML is the de-facto standard language for specifying, modeling, analyzing, and

documenting software [2]. It is also used in other areas such as modeling systems,

hardware, and even business contexts. UML represents a collection of best engineering

techniques and practices that have proven successful in modeling large and complex

software systems. It is a very important part of the software development process, and is

particularly well-suited for developing object-oriented software. It uses mostly graphical

notations to express the design of software systems. The benefits of UML include helping

project teams communicate, explore potential designs, and validate the software

architecture. It also increases the formalism of the software model, which makes the

analysis process easier. Furthermore, it is the heart of the Model-Driven Architecture

(MDA) initiative [3], whose supporters claim that it is the future of developing software.

UML is an extensible modeling language; it allows developers to add semantics to the

UML language that are applicable in a particular domain, area, or industry. Such added

semantics are called a “UML Profile”, which in effect tailor the UML language to a

specific area of interest such as, for example, fault tolerance, distributed computing, and

Common Object Resource Broker Architecture (CORBA). A UML profile extends the

core UML language by defining additional modeling mechanisms of the following types:

Carleton University, TR SCE-06-19 Decermber 2006

 12

1. Stereotypes: A stereotype is used to describe a UML element in a platform or

domain specific language.

2. Constraints: A constraint is a condition or a restriction that is applied to a UML

element. It can be expressed in any language, regardless on whether it is machine-

readable or not.

3. Tagged Value: A tagged value is used to further describe a stereotyped-element

through parameterization of the stereotype in a platform or domain specific

language.

1.2 Research Problem

Safety assessments are performed on the system as a whole regardless of which of its

features will be implemented in software. As a result, safety requirements are first

developed for the system itself. Once it is determined which functionality will be

implemented in software, the safety requirements associated with that functionality are

allocated to the software that implements it.

Moreover, software certification authorities require information about the software that is

not necessarily captured within the safety requirements. Such information could include

the use of COTS software, time-related functions as filters, state machines, and others.

The certification authorities consider this information along with the safety requirements

when determining whether the software is safe or not.

Generally, safety engineers that perform the safety assessments and collect certification

information are not the software engineers that design and implement the software. In

fact, it is uncommon to find software engineers that are experienced with the safety and

certification aspects of systems and software. Conversely, safety engineers are often

inexperienced with software engineering’s development techniques, including UML. This

creates a critical gap that must be bridged – safety engineers need to have better insight

into the software and to what extent it is compliant with the safety and certification

requirements, and software engineers need to have better understanding of the safety and

Carleton University, TR SCE-06-19 Decermber 2006

 13

certification requirements so that they develop safe software that can run in a certified

system.

In this research, the airworthiness standard [4], which is the de-facto safety-related

standard in the aerospace industry, is analyzed to extract a list of safety-related concepts

that are of interest to both safety engineers and software engineers. It is argued that if

those concepts are properly represented in UML models of software, then a tool can

automatically generate reports containing safety and certification-related information

about the software. This gives the safety engineers better insight into the software’s

safety and compliance aspects, which they can easily track over time. Those reports could

also be used as evidence of software compliance with the airworthiness requirements, and

then presented to the external certification authority. Furthermore, this will increase

software engineers’ knowledge of safety-related concepts, which will enable them to

implement safer software and better communicate with safety engineers.

To model the safety-related concepts in UML, this research proposed a UML profile that

can be used to model the safety-related information that is extracted from the

airworthiness standard [4]. The proposed profile contains stereotypes and tagged values

that correspond to the safety-related concepts, their attributes that capture the concept

details, and the relationships among safety-related concepts. The focus here is modeling

safety and certification information in structural diagrams, specifically class diagrams,

but the stereotypes and tagged values should be easily transferable to dynamic diagrams

such as object diagrams and state charts.

1.3 Document Organization

Section 1.4 of this document describes the research method that was followed in this

research.

Section 2 describes the industrial view of this research. Section 2.1 describes safety

assessments in general, and then provides examples of safety requirements and safety

assessment techniques. Section 2.2 lists several safety-related industrial standards and

then provides a high-level description of the Radio Technical Commission for

Carleton University, TR SCE-06-19 Decermber 2006

 14

Aeronautics (RTCA) DO-178B [4] airworthiness standard. Section 2.3 presents research

findings on the challenges of developing safety-critical software that has certification

requirements. Section 2.4 presents and describes usage scenarios for safety information,

and proposes using UML to model the safety information. Section 2.5 identifies

traceability between software concepts that needs to be tracked. Section 2.6 discusses the

rationale, disadvantages, advantages, and requirements of using a UML profile to model

safety information.

Section 3 introduces safety-related concepts that are extracted from the airworthiness

standard, RTCA DO-178B [4]. Section 3.1 identifies, describes, and categorizes the

safety-related concepts as extracted from the airworthiness standard. Each category is

prefixed with “primarily” to indicate that its concepts are related to other categories as

well. The concepts are then refined in section 3.2. Section 3.2.1 introduces the conceptual

model describing the refined concepts. Section 3.2.2 describes each concept in detail,

presents their attributes and relationships with other concept, and explains which original

safety-related concept from section 3.1 can be represented using each of the refined

concepts. Section 3.2.4 explains how the refined concepts, and their conceptual model,

satisfy the required traceability explained in section 2.5. Section 3.3 identifies precise

information requirements that a suitable UML profile should be able to model.

Section 4 presents some of the existing UML profiles and patterns and assesses each one

of them versus the information requirements identified in section 3.3. Section 4.1

introduces the “UML Profile for Modeling Quality of Service and Fault Tolerance

Characteristics and Mechanism” [5], which is an Object Management Group’s (OMG)

UML profile that enables modeling some safety and fault tolerance concepts. Section 4.2

introduces the “UML Profile for Schedulability, Performance, and Time Specification”

[6], which enables modeling some concepts that are usually important in safety-critical

software such as performance and concurrency. Section 4.3 introduces a UML profile

that was developed by a European research project that specialized in developing high-

integrity real-time systems [26]. Section 4.4 introduces a UML profile that was developed

by a researcher who argued that safety is often related to messages across software

components [27]. Section 4.5 introduces patterns that can be used to model some

Carleton University, TR SCE-06-19 Decermber 2006

 15

reliability and safety concepts such as software redundancy. Section 4.6 summarizes the

overall suitability of each profile with respect to the information requirements identified

in section 3.3.

Section 5 presents a new UML Profile, one for modeling safety-related concepts listed in

section 3.2, and provides examples of its usage. Section 5.1 presents the UML profile,

section 5.3 provides numerous examples of its usage, and section 5.4 describes a

development methodology for safety-critical systems within which the proposed UML

profile can be used.

Section 6 describes how safety certification information can be generated from a UML

model where the new UML profile is applied. Section 6.1 describes the technological

requirements that are needed to be able to generate such safety and certification

information, with sections 6.1.1 and 6.1.2 providing guidance on how such requirements

can be achieved. Section 6.1.1 describes how UML modeling tools can be extended to

support generation of certification information, an section 6.1.2 introduces another

approach that uses XML Metadata Interchange (XMI) to obtain the safety and

certification information. Section 6.2 presentes examples of search queries that can be

executed on a UML model to generate safety and certification information from the

software model.

Section 7 presents a case study of an aircraft’s navigation controller subsystem, which

controls the movement of an aircraft by performing autopilot and custom Fly-To-Point

(FTP) positions from the pilots. Section 7.1 provides an overview of the system and

presents some navigation terminology. Section 7.2 describes the aircraft’s system

architecture in which the navigation controller subsystem appears. Section 7.3 lists the

functional requirements of the navigation controller subsystem. Section 7.4 discussed the

safety assessment that was performed on the system and lists the identified safety hazards

that are relevant to the subsystem under study. Section 7.4.1 lists safety hazards that were

identified using the Action Error Analysis (AEA) safety assessment method, section 7.4.2

lists those that were identified using the Failure Modes and Effects Analysis (FMEA)

method, section 7.4.3 lists those that were identified using the Hazards and Operability

Carleton University, TR SCE-06-19 Decermber 2006

 16

Analysis (HAZOP) method, and section 7.4.4 lists those that were identified using the

Interface Analyses (IA) method. Section 7.4.5 lists safety requirements that were

assigned to the navigation controller subsystem based on the hazards identified in

sections 7.4.1 - 7.4.4. Section 7.5 presents the UML model for the subsystem design

using the proposed UML profile, with section 7.5.2 showing the subsytem’s safety-

related events of interest, section 7.5.3 showing the subsystem’s reactions to those events,

section 7.5.4 explicitly listing all the relationships between events and reactions, section

7.5.5 showing the subsystem’s high-level design, and section 7.5.6 presenting approaches

to low-level design of events and reactions. Section 7.6 discusses the benefits of the

proposed UML profile by analysis the UML model of the subsystem according to the

usage scenarios identified in section 2.4.

Section 8 concludes this research by describing the use of the proposed UML profile and

identifying open issues for future work. Section 8.1 assesses the UML profile according

to the requirements identified in section 2.6.3 the same way existing UML profiles were

assessed in section 4. Section 8.2 lists open issues and improvement opportunities for

future work.

Section 9 provides a summary of this document.

1.4 Research Method

This research was performed according to the method described in Figure 1. There is no

input or entry criterion for the first step, S-1. The input of each of the other steps is all the

outputs from all of its previous steps. The entry criterion of those steps is the exit

criterion of its previous step. Notice, however, that the input to step S-2 includes the

outputs of both steps S-1 and S-7 when it is entered from step S-7. The exit criterion for

each step is that its output becomes available. The activity, output, and reference sections

of each step are presented in Table 1 below.

Carleton University, TR SCE-06-19 Decermber 2006

 17

Start
S-1: Select a relevant
industrial standard for

analysis

S-2: Identify a list of relevant
safety-related concepts and

define their relationships

S-3: Identify requirements for
a suitable UML profile

S-5: Define a safety-related
UML profile based on the

safety-related concepts and
information requirements

S-7: Are the
results

satisfactory?

End

Yes

No

S-6: Demonstrate how the
defined UML profile improves

the process of developing
safe software

S-4: Assess existing UML
profiles based on the

information requirements

Figure 1: Research method.

Step Description

S-1 Select a relevant industrial standard for analysis
Activity: A safety-related standard is identified for analysis.
Output: A list of one or more standards that are selected for further analysis.
Reference: Section 2.2.

S-2 Identify a list of relevant safety-related concepts and define their relationships
Activity: Safety-related concepts that are emphasized in the standard selected in S-
1 are identified. Those safety-related concepts are then refined into terms that are
friendlier from a software modeling perspective. Relationships across the refined
safety-related concepts are defined through a conceptual model.
Output: A detailed list of safety-related concepts and their definitions, which
includes the definition of each concept as it is used in the selected standard, and a
list of refined safety-related concepts including a conceptual model describing their
inter-concept relationships.
Reference: Sections 3.1 and 3.2.

S-3 Identify requirements for a suitable UML profile
Activity: The safety-related concepts identified in S-2 are further analyzed.
Requirements for developing software under the identified standard, as well as
software-related requirements for certifying systems, are understood. Information
that a suitable UML profile should be able to model are developed into information
requirements.
Output: A list of high-level requirement, and a list of information requirements
specifying which information a suitable UML profile should be able to model.
Reference: Sections 2.6.3 and 3.3.

Carleton University, TR SCE-06-19 Decermber 2006

 18

Step Description

S-4 Assess existing UML profiles based on the information requirements
Activity: Identify existing UML profiles that are related to the development of
safety-critical software. Assess each one of them based on the information
requirements identified in S-3.
Output: An assessment of existing UML profiles and how they perform versus the
identified information requirements.
Reference: Section 4.

S-5 Define a safety-related UML profile based on the safety-related concepts and
information requirements
Activity: A safety-related UML profile that fulfils the information requirements is
defined. This UML profile is able to represent the refined safety-related concepts
on UML designs, thus enabling engineers to better meet the challenges and
requirements identified in S-2. A system and software development methodology
for using the UML profile is presented.
Output: A safety-related UML profile, examples of its usage, and a development
methodology for using the UML profile.
Reference: Section 5.

S-6 Demonstrate how the defined UML profile improves the process of developing safe
software
Activity: The degree to which a software model using this profile describes the
safety and certification aspects of the system is considered. An analysis of how the
requirements in section 3.3 are fulfilled is presented. Approaches are proposed on
how a UML modeling tool can be used to extract certification information from a
UML model using this profile are presented. A case study using the profile is
performed.
Output: A proposed approach on how a UML modeling tool can extract safety and
certification-related information from a UML model using this profile, an analysis
of the profile versus the information requirements identified in section 3.3, and a
case study using the profile.
Reference: Sections 6, 7, and 8.1.

S-7 Are the results satisfactory?
Activity: The results of steps S-5 and S-6 are assessed. If they satisfactorily
improve the development process of safety-critical software, then the process is
complete. If not, then step S-2 is revisited for another iteration of this process.
Output: The decision on whether to perform another iteration of this process,
starting with step S-2, the strengths of the defined UML profile, and a list of open
issues in this work.
Reference: Section 8.

Table 1: Details of the research method steps.

Carleton University, TR SCE-06-19 Decermber 2006

 19

2 INDUSTRIAL PRESPECTIVE

2.1 Safety Assessments

Safety-critical software must exhibit safe behaviour that does not contribute to hazards

within the context in which it is used. For example, an aircraft must only allow the pilot

to hide the landing wheel if it is flying in the air. If the landing wheel was hidden while

the aircraft is on ground, then there would be a hazard of damaging the aircraft and

hurting its occupants. A hazard is a state of the system that could ultimately lead to an

accident that may result in a loss in human life.

Because of such added requirements and constraints, developing safety-critical software

is more expensive than developing non-safety-critical software. In fact, it is generally

well accepted that developing safety-critical software is at least 10 times more expensive

than non-safety-critical software, and some sources claim that it can be 20 to 30 times

more expensive [8].

Many standards require that a safety assessment be performed for each safety-critical

system. Safety assessments, which have some similarities with risk assessments [1] and

are performed using similar methods, produce a list of safety requirements and

constraints that the system developers must adhere to. Performing a safety assessment is a

mandatory and critical element to developing a safety-critical system. Table 2 provides

examples of safety requirements and the potential accidents they protect against.

Safety Requirement Accident Protected Against

A submarine detection aircraft may only

release a sonobuoy while it is flying above

water

The sonobuoy is dropped on unintended

locations and causes unintended damages

An aircraft’s automatic flight pilot programme

may only fly the aircraft to a particular

destination after explicit confirmation from the

pilot

The automatic flight pilot programme flies the

aircraft to incorrect destinations, possibly

through hazardous flight paths

Table 2: Examples of safety requirements and the accidents they protect against.

Carleton University, TR SCE-06-19 Decermber 2006

 20

There exist many methods for performing a safety or risk assessment. Those methods

differ, for instance, in terms of what factors they consider as possible causes of accidents

(e.g., operator actions, environment state), the subjects they analyze (e.g., critical events,

possible failures), their outputs (e.g., a tree), their scalability. Furthermore, some methods

target reliability issues (e.g., Failure Modes and Effects Analysis (FMEA), Failure

Modes, Effects, and Criticality Analysis (FMECA), Interface Analyses (IA)) whereas

others solely consider safety issues (e.g., State Machine Hazard Analysis (SMHA)), and

some consider both (e.g., Event Tree Analysis (ETA)). Most of those methods originated

in hardware or system analysis, and some were developed for software. Some consider

single events at a time (e.g., FMEA and FMECA), whereas others consider relationships

across events (e.g., Fault Tree Analysis (FTA)). Furthermore, some are used to identify

potential hazards (e.g., Action Error Analysis (AEA)), whereas others are used to analyze

previously identified hazards (e.g., ETA).

Therefore, some of these methods are complimentary to each other, whereas others are

similar and overlap. As a result, a project is likely to use several of those methods rather

than just one. Examples of those methods are listed in Table 7 of Appendix A. Those

methods are discussed in many references, and a summary of them is presented in [1].

2.2 Safety-Related Standards

Many industrial standards exist for system and software safety. Some are common to all

industry sectors (e.g., IEC 61508-3 on software requirements for the functional safety of

electrical/electronic/programmable electronic systems) whereas others are industry

specific (e.g., CENELEC 50128 for Railway applications). Table 8 of Appendix B lists

some of these standards that relate to safety, or reliability due to its relation to safety.

Hermann provided a high-level summary for those standards, or some of their earlier

versions, in [9].

RTCA DO-178B [4] is the de-facto safety-related standard for developing software to run

in aerospace systems. It is also known as the “airworthiness” standard. Consequently,

engineers whose responsibilities includes ensuring compliancy with the airworthiness

standard are known as “airworthiness engineers”.

Carleton University, TR SCE-06-19 Decermber 2006

 21

In addition to developing safety-related requirements, standards usually have additional

certification-related requirements. Those requirements are not necessarily implemented in

software, but rather they represent information about the software that must be submitted

to the certification authorities. For example, the airworthiness standard requires that

developers submit information regarding the COTS software used in the system.

Moreover, it requires that the developers specify time-related functions, such as filters,

that are used in the system. Therefore, it is important to be able to gather such

information easily about the software.

DO-178B realizes that not all software components in an airborne system have the same

impact on the safety of the aircraft and its occupants. For example, the failure of software

that controls the altitude of an aircraft is much less acceptable than the failure of the

software that controls the aircraft VCR for watching movies. This is because the failure

of the former may significantly reduce the aircraft’s chances of a safe flight. The failure

of the latter, however, does not have such effects as long as the VCR is isolated from

other safety-critical software. As a result, DO-178B classifies software failure conditions

into the following five categories [4]:

1. Catastrophic: A failure condition of this type would prevent continued safe flight

and landing of the aircraft. A software component whose failure may result in

failure condition of this category is known as a level A software component, and

is said to have airworthiness level A.

2. Hazardous/Severe-Major: A failure condition of this type would introduce

operating conditions that would severely reduce the ability of the aircraft crew to

cope with them to the extent where there would be large reductions in system

safety, the inability of the crew to perform tasks accurately and completely, and

potential fatal injuries. A software component whose failure may result in failure

condition of this category is known as a level B software component, and is said

to have airworthiness level B.

3. Major: A failure condition of this type would introduce operating conditions that

would severely reduce the ability of the aircraft crew to cope with them to the

Carleton University, TR SCE-06-19 Decermber 2006

 22

extent where there would be significant reductions in system safety and crew

efficiency, significant increase in crew workload and occupant discomfort, and

potential injuries. A software component whose failure may result in failure

condition of this category is known as a level C software component, and is said

to have airworthiness level C.

4. Minor: A failure condition of this type would introduce operating conditions that

can be handled by the crew, but may include a slight increase in the crew’s

workload or occupant discomfort, and a slight reduction in safety. A software

component whose failure may result in failure condition of this category is known

as a level D software component, and is said to have airworthiness level D.

5. No Effect: A failure condition of this type does not impact the system safety of the

aircraft, nor does it increase the aircraft crew’s workload. A software component

whose failure may result in failure condition of this category is known as a level E

software component, and is said to have airworthiness level E.

It should be noted, however, that there exists a difference between the concepts of

“airworthiness” and “safety”. The airworthiness standard, like many other safety-related

standards, defines different levels of impact on safety called “failure condition

categories” and “software levels”. However, it defines the failure condition categories

and the software levels based on the “severity of failure conditions on the aircraft and its

occupants” [4]. This is different from Leveson’s definition of safety, which was stated as

“the freedom from accidents or losses” [1]. While safety is the freedom from accidents or

losses, airworthiness is therefore the freedom from accidents or losses with respect to the

aircraft and its occupants. Thus, airworthiness is a subset of safety, and safe software is

airworthy but airworthy software is not necessarily safe. For example, the first safety

requirement in Table 2 of page 19 is not necessarily an airworthiness requirement,

whereas the second one is.

Carleton University, TR SCE-06-19 Decermber 2006

 23

2.3 Challenges in Software Safety

The NASA Langley Research Center, which has long cooperated with the Federal

Aviation Administration (FAA) on research about software engineering methods for

aerospace applications, conducted a research programme called Streamlining Software

Aspects of Certification (SSAC). This programme included an extensive survey to

identify the challenges in developing safety-critical software for aerospace systems.

Hayhurst and Holloway have documented results of this research in [10].

Hayhurst and Holloway of the NASA Langley Research Center identified “the challenge

of accurately communicating requirements between groups of people” as “the root of

many of the current challenges” in software safety [10]. They presented the

communication challenge as a combination of the following two major communication

channels:

1. Between regulatory people (e.g. certification authorities) and systems people (e.g.

systems engineers and airworthiness engineers).

2. Between systems people (e.g. systems engineers and airworthiness engineers) and

software people (e.g. software engineers).

Since systems engineers and safety/airworthiness engineers need to communicate with

the certification authorities, they need to have insight into the software and its sfety

compliance aspects. The fact that they are unlikely to be experienced in software

engineering makes their responsibilities even more challenging. Moreover, software is

continuously changing and it is likely that the software engineers significantly outnumber

safety engineers. Therefore, it is essential to be able to achieve insight into the software’s

compliance aspects at relatively low costs. Such insight could be the ability to easily

monitor the software engineers’ progress with respect to the safety requirements and the

compliance with the certification requirements of the software.

Hayhurst’s and Holloway’s survey also found out that “requirements definition is

difficult” [10]. This undoubtedly contributes to the communication challenges between

Carleton University, TR SCE-06-19 Decermber 2006

 24

the various people groups. For example, systems engineers may define requirements that

software engineers find unusual or expensive. If software engineers better understand the

needs behind the requirements, then they may be able to propose solutions that are more

cost effective. The software engineers’ misinterpretation of the requirements may also be

due to their lack of experience in safety. In fact, their lack of experience in safety often

causes them to confuse safety with reliability. In many instances, software engineers

cannot clearly define software safety without having prior background knowledge or

experience.

2.4 Usage Scenarios for Safety Information

Based on the discussion in sections 2.1 - 2.3, safety information is used by many

stakeholders as described in the use case diagram in Figure 2.

Usage Scenarios for Safety Information

USAGE 1
Provide Safety
Requirements

Certification Authorities
(3rd Parties)

Safety Engineers
Airworthiness Engineers

Software Engineers

USAGE 2
Design Safety

Requirements in
Systems

USAGE 3
Record and Justify
Design Decisions

USAGE 4
Monitor Safety

USAGE 5
Get Safety
Information

Figure 2: Usage scenarios for safety information.

The usage scenarios are:

USAGE 1 Provide Safety Requirements: Safety and airworthiness engineers

perform a safety assessment of the system being designed or modified.

As discussed in section 2.1, such a safety assessment results in safety

requirements, a subset of which will be allocated to software and

communicated to the software engineers. The software engineers will

then design and implement the software according to the safety

Carleton University, TR SCE-06-19 Decermber 2006

 25

information and requirements. Thus, this usage scenario represents the

process of communicating safety information from the safety and

airworthiness engineers to the software engineers.

USAGE 2 Design Safety Requirements in Systems: Once the software engineers are

informed with the safety requirements allocated to software, they design

the software system with the safety requirements in mind. Then, they

implement it such that it meets all the safety requirements. Thus, this

usage scenario represents the process of designing and implementing the

software system according to the safety requirements.

USAGE 3 Justify Design Decisions: Not only must the software engineers design

the software to meet the safety requirements, but they must justify their

design decisions as well. Such justification should explain the rationale

for the architecture and design details. In practice, architectural and

major design decisions are documented in separate documents, which

makes it separate from the software model. Furthermore, detailed design

decisions normally appear as plain text comments in the source code,

which makes it hard for safety and airworthiness engineers to obtain

justifications for the various design decisions. Thus, this usage scenario

represents the process of justifying and documenting design decisions so

that they can be easily obtained in the future.

USAGE 4 Monitor Safety: The safety and airworthiness engineers continuously

monitor the safety of the system, including the software, over the

project’s lifecycle. In order to do so, they need to consider how the

software engineers designed the software (USAGE 2) according to the

safety requirements they were provided with (USAGE 1). The software

engineers’ justifications for the design decisions (USAGE 3) will also be

considered. Then, the safety and airworthiness engineers can assess this

information and discuss any issue with the software engineers. This

ensures that the software’s safety is continuously improving during the

Carleton University, TR SCE-06-19 Decermber 2006

 26

software’s lifecycle so that it meets the final safety objectives of the

system. In addition, this usage scenario provides additional confidence

that the system certification process will go more smoothly. Thus, this

usage scenario represents the process of continuously monitoring the

design and implementation of the software in accordance with the

system’s overall safety requirements.

USAGE 5 Get Safety Information: Once it is time to certify the system, which is

usually towards the end of the development lifecycle, safety and

certification information is submitted to the certification authorities. This

information includes the safety requirements (USAGE 1), the software

design (USAGE 2), the justification of the software design (USAGE 3)

given the safety requirements of the software, and the process used to

continuously monitor the system and software safety over the

development lifecycle (USAGE 4). If safety and airworthiness engineers

continuously and appropriately monitor safety over time (USAGE 4),

then certification should be a much easier experience. Thus, this usage

scenario represents the process of obtaining the appropriate safety

information, system and software design, justification of the design from

a safety perspective, and the method used for monitoring safety during

the development lifecycle for the purpose of submitting this information

to the certificatrion authorities.

If the safety information is captured in a UML model, then this would easily facilitate the

above mentioned usage scenarios. UML models are developed for software systems

anyways, so using it to facilitate the usage scenarios and address the challenges in

software safety fits well (this is rationalized further in section 2.6). Therefore, a UML

model can serve a central role as shown in Figure 3.

Carleton University, TR SCE-06-19 Decermber 2006

 27

Software Engineers

Safety Engineers
Airworthiness Engineers

Certification Authorities
(3rd Parties)

UML Model

Monitor

Get

Record

Figure 3: A UML model serves as a central role for stakeholders.

As Figure 3 shows, a UML model can serve as a central role and a key element in the

communication of safety information across engineering groups. Software engineers

record safety information in UML models. Then, safety and airworthiness engineers can

monitor the safety information by automatically generating reports about it, using a tool,

from the UML model. Therefore, they need not understand the UML model because any

tool that extracts the safety information from the model can format it in a model-

independent way. When it is time to certify the system, certification authorities can get

the safety and certification information from the UML model, again, using a tool which

could produce the safety and certification information in a format that is suitable for

submission to the certification authorities.

2.5 Traceability Requirements

Proper traceability is key in the development of large systems, and it is even more

important for the development of safety-critical systems. For example, the airworthiness

DO-178B standard [4] requires traceability across the development lifecycle. In fact, it

requires that at least the software design be traceable to the original high-level

requirements for all software of level D or higher. Therefore, it is important to be able to

trace design elements to the requirements.

Another important traceability requirement relates to the analysis of safety requirements.

For example, the first requirement in Table 2 states: A submarine detection aircraft may

only release a sonobuoy while it is flying above water. This can be rephrased to: The

Carleton University, TR SCE-06-19 Decermber 2006

 28

ordnance (sonobuoy release) subsystem shall not release a sonobuoy if it is requested to

do so when the aircraft is not flying above water. This results in identifying the following

event of interest: The ordnance subsystem is requested to release a sonobuoy when the

aircraft is not flying above water. Furthermore, this also results in identifying a reaction

to this event, namely: The ordnance subsystem verifies that the aircraft is flying above

water, and forbids the sonobuoy from being released if it is not flying above water. Since

reactions are caused by events, it is important to ensure that every reaction is traceable to

the appropriate events

In summary, two important traceability requirements are:

1. Tracing software design elements to software requirements.

2. Tracing software reactions to software events.

2.6 UML APPROACH

Because the results of safety assessments are an important part of software developers’

work, they need to be appropriately communicated and implemented in the technical

designs. Furthermore, certification information about the software is required for the

certification authorities. It is appropriate and useful to be able to represent the results of

safety assessments and certification information in UML diagrams because it is the

standard modeling language used by software developers throughout the world [2].

Currently, there does not seem to be a comprehensive UML profile specifically targeted

towards modeling safety-related concepts driven from safety standards (see section 4). If

it existed, such a UML profile would help bridge the gap between the system’s safety

assessment (performed by safety engineers) and the software design (performed by

software engineers). The safety engineers need not necessarily understand the UML

profile, but they will need the information that is reprented by the profile. See Figure 4

for an illustration.

Carleton University, TR SCE-06-19 Decermber 2006

 29

Generate Safety
Requirements

and Certification
Information

Use Unified
Modeling
Language

(UML)

Safety Engineers
Airworthiness Engineers

Software Engineers
System Engineers

Information Flow

Safety and Airworthiness engineers
produce a list of safety requirements
and certification information

Software and system engineers use
UML to model their systems, which
must conform to the safety and
certification requirements

An appropriate UML safety profile bridges this gap by allowing software and
system engineers to include safety requirements and certification
information in their UML models. In turn, they may discover additional safety
or certification information that are communicated back to the safety and
airworthiness engineers.

Figure 4: Role of a UML safety profile in the development process.

2.6.1 Disadvantages

Using this approach has the following disadvantages:

1. Is an extra step to the development process: Most software development

processes do not require documenting safety-related properties on design models.

Therefore, this approach will be an additional step to most software development

processes.

2. Requires that software engineers consider a topic they are likely to have little

experience in – safety: Safety is a specialized topic of software engineering. Since

software engineers may come from backgrounds where they were developing

non-safety-critical systems, they may not have sufficient knowledge and

experience in this topic.

2.6.2 Advantages

Using this approach has the following advantages:

1. Results in safer and higher quality software: By representing safety requirements

and constraints on UML diagrams, the engineers are forced to consider them and

use them to design and implement the systems.

Carleton University, TR SCE-06-19 Decermber 2006

 30

2. Enables the possibility of reusing the results of a safety assessment through

software models: Performing a safety assessment, like a risk assessment, is costly

and time consuming. Therefore, representing the results of a safety assessment on

UML diagrams allows it to be reused whenever the design is reused instead of

reassessing the new or modified system from scratch. This is important when an

organization is designing similar systems.

3. Improves communication between safety engineers and software engineers:

Software developers will have a better understanding of the safety engineers’

requirements. This will allow software engineers to better understand and review

the results of the safety assessment. As a result, software engineers will be able to

provide feedback regarding the safety assessment.

4. Improves documentation of safety-related properties: Appropriate documentation

is required by many standards including the MIL-STD-498 [11], and its

replacement IEEE/EIA 12207 [12], which is one of the most referenced software

development documentation standards. Documenting the results of a safety

assessment in UML provides a step in that direction.

5. Increases participation of software engineers in the safety assessment: This

approach drives software engineers to think about the results of the safety

assessment because it is represented in UML. Therefore, they will implicitly

perform additional analyses as part of their job to design and implement the

software. As a result, they may discover additional safety requirements and

constraints, which can then be communicated back to the safety assessment

process.

6. Increases level of formalism: The results of the safety assessment will be

represented using methods that are more formal than plain text English. This helps

introduce the benefits of using formal methods, such as being able to detect

conflicting or ambiguous requirements. In addition, this will make it easier for

tools to use this information to help the engineers design, implement, and verify

systems.

Carleton University, TR SCE-06-19 Decermber 2006

 31

7. Maps safety-related properties to source code: This approach allows safety-

related properties to be represented in UML models. In the software development

process, the source code is directly traceable to UML models. Therefore, this

approach allows safety-related properties to be mapped to the source code through

the UML designs. This improves traceability, which is often required by many

standards and is critical in large programmes.

8. Lower cost to use since UML is known in the software community: A UML safety

profile builds on the engineers’ knowledge of UML. Therefore, there is no

additional cost to train the software engineers to use UML. They only need to be

aware of the UML profile specifics and how it builds on top of UML. This should

be inexpensive as software engineers should already be experienced with UML

and the tools that support it.

9. Emphasizes a “develop in safety” culture: In her book on software safety [1],

Nancy Leveson stressed the need for a “develop in safety” culture in

organizations. This UML approach emphasizes Leveson’s point as it involves the

software engineers and developers in the safety aspects of the software.

10. Supports the MDA initiative: The MDA initiative [3] is a promising approach

that, in conjunction with UML, seems to be the future of software development. It

argues that design should be modeled appropriately first, which then allows the

engineers to forward-generate the implementation (e.g. software code) from the

high-level designs using appropriate computer tools. This is a very active research

area that is projected to be the future of the development process as it will

increase the level of automation. Such a UML profile allows describing the safety

aspects in the software model, which would in turn be used in the MDA approach.

11. Makes life of engineers easier: For the engineers, this means that relevant safety

information will be represented in a language that they understand, namely UML,

rather than having to read other informal documents that risk being ambiguous.

Carleton University, TR SCE-06-19 Decermber 2006

 32

2.6.3 Requirements of an Effective UML Profile

Based on the previous discussion, we identify that the requirements of an effective UML

profile are:

REQ 1 The profile shall provide insight into the software’s compliance aspects with

airworthiness, and such evidence of compliance shall be obtainable at low

costs: In essence, the cumulative cost of training the engineers to use the

profile and extracting regular software compliance reports for progress

tracking shall be less than the cost of collecting software compliance

evidence when the profile is not used.

REQ 2 The profile shall allow the software engineers to relate technical solutions

to the specific airworthiness requirements: Therefore, it shall be possible to

exactly determine the software design and source code units that are

responsible for satisfying each airworthiness requirement.

REQ 3 The profile shall have clear language semantics with respect to safety and

airworthiness: For example, the profile shall not assume that safety is

simply reliability or some other concept – it shall recognize safety and

airworthiness as a separate quality domain. This will enable better

representation of requirements as well as improve the software engineers’

understanding and ability to distinguish between safety and other concepts

such as reliability.

REQ 4 The profile shall model technical solutions using machine-readable

extension mechanisms that increase the level of formalism: In other words,

specific domain stereotypes, tags, and constraints shall be preferable to

general purpose comments. In addition, the extensions shall allow software

engineers to identify various kinds of technical solutions. Examples of

technical solutions include safety monitors and multiple-version dissimilar

software. This is particularly useful when developing software under high

Carleton University, TR SCE-06-19 Decermber 2006

 33

software airworthiness (see section 2.2) levels when formal methods are

more likely to be used, and when models are reused across projects.

REQ 5 The profile shall support, or be easily scalable to, developing software

under high airworthiness levels: Different airworthiness levels have

different compliance requirements. For example, level C and above require

tracing source code to low-level requirements and tracing low-level

requirements to high-level requirements, whereas levels D and E do not

have such requirements [4]. As another example, high software levels

require checking that requirements are compatible with the target computers

on which the software is deployed. Refer to annex A in [4] for a list of

objectives per software level.

REQ 6 The profile shall favour language semantics that are meaningful to both

software engineers and airworthiness engineers for concepts that both

engineering groups need to discuss: Therefore, it will improve

communication between the two groups.

REQ 7 The profile shall favour representing airworthiness requirements using

machine-readable extension mechanisms: Thus, it shall define some

airworthiness-specific stereotypes, tags, and constraints that are

parameterizable. Again, this is particularly useful when developing software

under high-software levels because that is when formal methods are more

likely to be used due to their ability to prove correctness. In addition, this is

also useful when models are to be reused across projects.

Carleton University, TR SCE-06-19 Decermber 2006

 34

3 SAFETY-RELATED CONCEPTS

This section describes airworthiness-related concepts that were extracted from the

airworthiness standard, RTCA DO-178B [4]. Since airworthiness is a subset of safety

(see end of section 2.2), all of the identified airworthiness-related concepts are safety-

related concepts. This does not necessarily mean that those concepts are the only ones

needed for all safety-critical applications including transportation, medical, nuclear, and

other industries. However, they should be enough for any development under the

airworthiness standard [4], which is the goal of this research.

Since airworthiness is a subset of safety, airworthiness-related concepts will be referred

to with their general term, safety-related concepts, in the remainder of this document.

This is to emphasize that they are not restricted to airworthiness even though they

resulted from analysing the airworthiness standard.

Ensuring software safety has many concerns that impact other qualities of service. As a

result, the extracted safety-related concepts form a long list of concepts related to many

concerns and qualities of service. Hence, it is important to group concepts that are most

related together, which will also improve clarity and give the reader the general goal of

each concept. For example, consider the following safety-related requirement:

An aircraft shall ensure that its landing wheels are deployed when the

aircraft’s altitude is less than 100 meters

The following concerns are relevant for designing and implementing the safety-critical

software assigned with the above requirement:

1. It must be safe so that the aircraft does not hit the ground with the landing wheels

not deployed (i.e. when they are in their compartments). Software safety is the

ability of the software to execute within its system context without contributing to

hazards, which may lead to accidents or losses [1].

Carleton University, TR SCE-06-19 Decermber 2006

 35

2. It must be reliable so that it correctly implements the requirement by ensuring

that landing wheels are deployed when the altitude is less than 100 meters.

Software reliability is the capability of the software system to offer continued

service, or more specifically to maintain a specified level of performance when

used under specified conditions [5].

3. It must have high integrity by providing precise and accurate results so that an

altitude of less than 100 meters is not interpreted to be larger than 100 meters (and

thus causing the aircraft not to deploy its wheels when it should). Software

integrity is the capability of the software system to produce the expected quality

of service of the correct functionality delivered by the software [5].

4. It must have high performance capabilities, so that the landing wheels are

deployed when the aircraft’s altitude drops to less than 100 meters even when it

does so quickly in a fast descent such as the case in an emergency. Software

performance refers to the timeliness aspects of how software systems behave, and

sometimes it refers to the relationship between the services provided and the

utilization of resources [5].

5. It must provide concurrent control so that the landing wheels are deployed even if

pilot is already using the system to perform other functionality through the user

interface. Software concurrency refers to the concurrent and temporal consistency

of data and software elements [5].

6. It must be certifiable as vendors of such safety-critical systems often require them

to be certified by an external third-party certification authority. Certification is the

legal recognition by the certification authority that a product, service, organization

or person complies with the requirements [4].

7. It must be properly designed so that non-critical software, such as a language

dictionary, is decoupled from highly safety-critical software, such as the software

interfacing with the landing wheels and the altitude sensors, to ensure that

software bugs in non-critical software do not cause the critical software to fail.

Carleton University, TR SCE-06-19 Decermber 2006

 36

8. It must be independent of the various software configurations that may be loaded

into the system to configure it such as English and French dictionaries to

customize the user interface. Software configuration, which is not the same as

software configuration management, is the concept of having multiple software

configurations or settings, each of which has a different set of functionalities and

behaviours than the others.

Notice that while the concerns above describe various software quality categories, they

all contribute to safety in some way. With that in mind, it is important to classify all of

the extracted safety-related concepts into quality categories that best describe each related

group of concepts. Those categories help the reader have a better understanding of the

general goal of each concept, and they provide guidance on what to look for when

attempting to describe a specific concept.

3.1 Concept Identification and Categorization

The selected standard, the airworthiness RTCA DO-178B standard [4], was analysed and

a list of safety-related concepts was extracted. Those safety-related concepts are not

solely safety concepts, and hence the rationale behind using the term “safety-related

concepts” rather than simply “safety concepts” – in fact, many of those concepts are

primarily non-safety concepts, such as reliability concepts, fault-tolerance concepts,

certification concepts, and others. The “primarily” keyword identifies the category with

which a concept is most associated. For example, fault tolerance is associated with

reliability and, therefore, is a primarily reliability concept that also affects safety in some

way.

To clarify and group related concepts together, the extracted safety-related concepts are

classified in this research into the following safety-related quality categories:

1. Primarily safety concepts: The concepts listed in this category are software

concepts that describe the software’s safety aspects in the context of the system in

which it is used. Software safety is the ability of the software to execute within its

system context without contributing to hazards, which may lead to accidents or

Carleton University, TR SCE-06-19 Decermber 2006

 37

losses [1]. Examples of these concepts include safety-monitoring techniques and

software levels. These concepts are listed and described in section C.1 of

Appendix C.

2. Primarily reliability concepts: The concepts listed in this category are software

concepts that describe the software’s reliability aspects. However, they also

impact the safety of the software because of the relationship between software’s

reliability and safety – reliability measures the probability of failure, whereas

safety measures the consequences of those failures [5]. Software reliability is the

capability of the software system to offer continued service, or more specifically

to maintain a specified level of performance when used under specified conditions

[5]. Examples of primarily reliability concepts include exception handling and

fault tolerance. These concepts are listed and described in section C.2 of

Appendix C.

3. Primarily integrity concepts: The concepts listed in this category are software

concepts that describe the software’s integrity aspects. However, they also impact

the safety of the software because of the relationship between software’s integrity

and safety. Software integrity is the capability of the software system to produce

the expected quality of service of the correct functionality delivered by the

software [5]. Examples of primarily integrity concepts include accuracy and

precision: Inaccurate data may cause the safety-critical system to behave in a non-

safe way. As an example, consider an aircraft the needs to know when to deploy

the landing wheels – it must have an accurate value of the altitude so that it

deploys the landing wheels when it should. These concepts are listed and

described in section C.3 of Appendix C.

4. Primarily performance concepts: The concepts listed in this category are software

concepts that describe the software’s performance aspects. However, they also

impact the safety of the software because of the relationship between software’s

performance and safety. Software performance refers to the timeliness aspects of

how software systems behave, and sometimes it refers to the relationship between

Carleton University, TR SCE-06-19 Decermber 2006

 38

the services provided and the utilization of resources [5]. In this document,

performance concepts include schedulability and time concepts. Examples of

primarily performance concepts include scheduling strategies (e.g. round robin,

rate monotonic) and time-related (e.g. filters) functions. For example, an aircraft’s

scheduling software must schedule safety-critical tasks with priorities higher than

non safety-critical tasks. These concepts are listed and described in section C.4 of

Appendix C.

5. Primarily concurrency concepts: The concepts listed in this category are software

concepts that describe the software’s concurrency aspects. However, they also

impact the safety of the software because of the relationship between software’s

concurrency and safety. Software concurrency refers to the concurrent and

temporal consistency of data and software elements [5]. Examples of primarily

concurrency concepts include multi-tasking and active software components,

which may be safety-critical. These concepts are listed and described in section

C.5 of Appendix C.

6. Primarily certification concepts: The concepts listed in this category are software

concepts that describe the software’s certification aspects. However, they also

impact the safety of the software because of the relationship between software’s

certification and safety. Certification is the legal recognition by the certification

authority that a product, service, organization or person complies with some

requirements. Such certification comprises the activity of technically checking the

product, service, organization or person and the formal recognition of compliance

with the applicable requirements by issue of a certificate, license, approval or

other documents as required by national laws and procedures [4]. Examples of

primarily certification concepts include certification requirements (e.g. specifying

hardware/software interfaces) and software traceability. These concepts are listed

and described in section C.6 of Appendix C.

7. Primarily design concepts: The concepts listed in this category are software

concepts that describe the software’s design aspects. However, they also impact

Carleton University, TR SCE-06-19 Decermber 2006

 39

the safety of the software because of the relationship between software’s design

and safety. These generally impact areas such as the quality, clarity, and

maintainability of the model and the source code. The impact of these decisions

on the use of the end product is usually less defined than those of other quality

categories. Examples of primarily design concepts include software coupling and

software complexity. These concepts are listed and described in section C.7 of

Appendix C.

8. Primarily configuration concepts: The concepts listed in this category are

software concepts that describe the software’s configuration aspects. However,

they also impact the safety of the software because developing multiple-

configuration software is more challenging than developing single configuration

software due to the changing behaviour. As a result, it is more challenging to fully

predict the behaviour of the software, especially when the user of the software can

change the configuration (e.g. by changing memory bits or loading customized

look up tables). Software configuration, which is not the same as software

configuration management, is the concept of having multiple software

configurations or settings, each of which has a different set of functionalities and

behaviours than the others. Choosing the desired software configuration is usually

performed by the user rather than the software developer. Examples of primarily

configuration concepts include option-selectable software and user-modifiable

software. These concepts are listed and described in section C.8 of Appendix C.

An 8-dimensional space is needed to fully describe the relationships across all safety-

related quality categories identified above. For simplicity, let us assume that reliability,

integrity, performance, concurrency, certification, design, and configuration concepts sets

form mutually exclusive sets. If we fix values for 6 dimensions, then we can arrive at a 2-

dimensional view that shows the relationship between safety and each of the other

identified safety-related quality categories independently of their cross relationships. This

view is somehow simplistic but it is useful for illustration purposes. It is shown in Figure

5 below.

Carleton University, TR SCE-06-19 Decermber 2006

 40

Figure 5 shows that the identified quality categories are related to safety. In other words,

there exist concepts that are present in more than one quality category, one of which is

the safety quality category. All of the concepts extracted from the airworthiness standard

belong to at least the safety quality category. In addition, some of those concepts also

belong to categories other than the safety category. For example, a “shared resource” is a

“concurrency” concept because multiple flows of control may be competing for access to

it. This will also impact the performance aspects of the software. Moreover, it is also

relevant to the “design” aspects of the software because the way it will be used is a result

of design decisions. Finally, all of these aspects might impact the “safety”-aspects if one

or more of the competing flows of control are executing a safety-critical software section.

Primarily Safety

Primarily
Performance

Purely
Performance

Primarily
Integrity

Purely
Integrity

Primarily
Reliability

Purely
Reliability

Safety-Related Concepts
(concepts of interest)

Primarily
Concurrency

Purely
Concurrency

Purely
Certification

Primarily
Certification

Purely
Design

Primarily
Design

Purely
Configuration

Primarily
Configuration

Figure 5: Relationship between safety and other safety-related quality categories

assuming that those categories form mutually exclusive sets.

Regardless of its category, each concept can be one of three different kinds:

1. It can be a “safety entity”, which is software that may contribute, positively or

negatively, to the overall safety level of the system or software. Furthermore, a

safety entity can interact with another safety entity. An example of a safety entity

would be identifying a particular software component as a fault monitor. A fault

monitor (one safety entity) is used to monitor particular functions (other safety

entities) to detect faults that could occur and cause the system to enter a

hazardous state. If a fault monitor detects such a fault, it could then perform

appropriate actions to prevent the system from entering hazardous states.

Carleton University, TR SCE-06-19 Decermber 2006

 41

Therefore, the fault monitor is a safety entity whose purpose is to increase the

overall level of safety of the system.

2. It can be a “safety attribute”, which is a concept that describes a safety property,

such as the safety level or impact on safety, of safety entities. For example, the

fault monitor described above may be used to detect specific faults or unusual

results and behaviours. For example, what if a particular software function that is

used to indicate the altitude of the aircraft provides output that says that the

aircraft has a negative altitude? This is clearly an incorrect result. Assume that a

fault resulting in this scenario is detectable by the fault monitor described earlier.

In this case, this specific fault can be used as a safety attribute of the fault

monitor. In other words, the complete specification of the fault monitor safety

entity will explicitly state through one of its safety attributes that it can detect this

fault.

3. It can be a “safety method”, which is an activity, technique, or a process that may

measure or impact, positively or negatively, the safety level of safety entities. For

example, a scenario that describes the fault monitoring example above covers

many concepts such as fault monitoring, faults, and possibly many others that are

related to the ability of monitoring software against faults that they may cause.

Therefore, all that discussion is centred around one concept, namely “fault

monitoring”. Thus, that scenario describes one “safety method” that is fault

monitoring.

The use of the word “safety” in safety entity, safety attribute, and safety method only

means that those concepts are safety-related. It does not assume that they increase the

level of safety.

Figure 6 (a) formalises those definitions through a conceptual conceptual model. Notice

that each safety entity is described through safety attributes. Safety entities may interact

with each other, and they may implement safety methods (usually those that positively

impact safety). Safety methods may measure or impact, positively or negatively, the

Carleton University, TR SCE-06-19 Decermber 2006

 42

safety level of safety entities. Figure 6 (b) describes the fault monitoring example

presented above, which is an instance of the conceptual model in Figure 6 (a).

SafetyEntity SafetyAttribute

SafetyMethod SafetyConcept

* *

described
through

*

*
measures or

impacts safety of

*

*
implements

*

*

interacts
with

faulMonitor
:SafetyEntity

monitoredComponent
:SafetyEntity

faultMonitoring
:SafetyMethod

Fault
:SafetyAttribute

1
1monitors

1
1 improves safety of

1

1

Imple-
ments

*

1 recognizes

1 *

causes

 (a) Model (b) Fault monitoring example

Figure 6: Relationship across safety entities, attributes, and methods.

The safety-related concepts for each category are listed in Appendix C. They are

described according to the context in which they appear within the airworthiness

standard, RTCA DO-178B [4]. Those concepts are then refined into a terminology that is

more suitable for modeling software. The refined concepts, along with their descriptions

and their inter-concept relationships, are presented in section 3.2.

3.2 Concept Refinement

Section 3.1 and Appendix C introduced 65 safety-related concepts that were found

relevant for developing airworthiness-compliant software. They were then grouped

according to their software quality category. In this section, those concepts are refined for

the following reasons:

1. Removing duplicate concepts: In some instances, seemingly different concepts

appeared in the airworthiness standard where, in reality, they can be represented

using a single concept or term. This is because the same fundamental software

concept can appear in different forms in airworthiness-related applications.

Examples are presented below.

Consider, for example, the two following primarily reliability concepts exactly as

they appear in the airworthiness standard: Multiple-Version Dissimilar Software

Carleton University, TR SCE-06-19 Decermber 2006

 43

and Software Redundancy (see Appendix C.2 for definitions). They revolve

around the same software concept, which is that of using multiple software

components that have the same functionality but different implementations. It

would be unnecessarily confusing to use two different terms to denote the same

concept. As a result, a single refined term is provided to model both of those

concepts, which is the “replicated” concept to denote software replication or

redundancy.

2. Grouping concepts: Some concepts are in fact examples of a more general

concept.

Consider the following concepts: Safety Monitoring, Loadable Software

Indicator, Safeguard, Safety Feature (primarily safety concepts defined in

Appendix C.1); Error Detection, Fault Detection, Fault Containment (primarily

reliability concepts defined in Appendix C.2); Integrity Check, Software Protector

(primary integrity concepts defined in Appendix C.3); Error Prevention

(primarily design concept defined in Appendix C.7). They are applications of a

single software-concept that is “Monitor”. A “monitor” monitors the activity of

other software components to detect unusual, potentially hazardous, events.

3. Precise definition of details: Presenting each concept is a single entry in a list may

be misleading by giving the impression that it is the smallest level of detail. In

reality, each concept has many attributes that describe it, with each attribute

describing a single aspect of the concept. Examples are presented below.

For example, “Safety Requirement” is identified as a (primarily safety) safety-

related concept (Appendix C.1). However, it does not mention the specification of

safety requirements. When refining the “Safety Requirement” concept, we give it

an attribute called “specification” that can be used to specify the details of the

requirement. Therefore, a concept’s attribute is used to describe a specific aspect

or detail of it.

The rest of this section shows how the concepts and their relationships have been

formalized under the form of a conceptual model, i.e., a UML class diagram (section

Carleton University, TR SCE-06-19 Decermber 2006

 44

3.2.1), describes the template we use to specify the concepts (section 3.2.2), and then

actually specifies the concepts (section 3.2.3). Appendix D provides additional details on

the relationships between concepts.

3.2.1 Conceptual Model

Before describing the details of the concepts, we introduce a conceptual model to list the

refined concepts and formalize the relationships among them (Figure 7—its elements are

further described in section 3.2.3). Thus, the motivations for defining a conceptual model

for the refined concepts are:

1. It introduces a high-level presentation of the concepts and their relationships, thus

leaving out most attributes that are considered low-level details. This helps the

reader better understand the concepts and their relationships.

2. It formalises the relationships across the concepts, for instance by specifying

multiplicities on relationships.

3. It makes the definition and the use of the UML profile’s extensions (stereotypes,

tagged values, and constraints) in section 5 easier because the refined concepts are

designed to be more appropriate from a modeling point of view. Thus, many of

the profile’s extensions refer back to the refined concepts. In fact, the profile’s

stereotypes and tagged values are based on the refined concepts, their attributes,

and their relationships.

3.2.2 Concept Details

In this section, we describe the template we use in section 3.2.3 to define the concepts in

Figure 7. Each of the following describes one characteristic of a concept:

1. Definition: This presents a definition for the concept. It describes the concept and

gives its general purpose.

Carleton University, TR SCE-06-19 Decermber 2006

 45

2. Attributes: This lists and describes the attributes for the concept. Each attribute

describes a specific aspect of the concept. A name, description, and examples are

provided for each concept.

3. Relationships: This lists and describes the relationships that the concept has with

other concepts. A name and a description, which includes the end multiplicities,

are provided for each concept’s relationships.

4. Original Safety-Related Concepts: This lists the original safety-related concepts,

which were extracted from the airworthiness standard, RTCA DO-178B [4], and

3.2.2.6
Nature

3.2.2.1
Requirement

*

3.2.2.7
Rationale*

3.2.2.11
Partition*

*

*

1 .. *

*

*

*

Is Requirement Of

3.2.2.18
Interface

3.2.2.14
Simulator

1 .. *

3.2.2.12
Handler

3.2.2.9
Reaction

3.2.2.13
Monitor

3.2.2.8
Event

3.2.2.19
Concurrent**

3.2.2.20
Defensive0 .. 1

* 1 .. *

1 .. *

*

1 .. *

3.2.2.24
Configurator

3.2.2.22
Configurable

3.2.2.23
Loadable

3.2.2.21
Configuration

1 .. *1 .. *

1 .. *1 .. *

1 .. * 1 .. *

* 1 .. *11 .. *

1 .. *1 .. *

1 *

Is Loadable On

LoadsConfigures

Produces

Requires

Is Configurable To

Is Defaulted To

3.2.2.25
Replicated

3.2.2.26
Comparator

12 .. *
Compares

3.2.2.16
Formalism

3.2.2.17
Complexity

3.2.2.15
Strategy

Triggers

1 .. *

*

1 .. *Monitors

*
Detects* 1 .. *

Performs* 1 .. *

Handles

*

1 .. *

1 .. *
Notifies

*

1 .. *
Is Consequence Of

*
Performs

Triggers

References

Is Partitioned From

References

References

Simulates

Is Interface For

3.2.2.4
Implementation Style

*

* 1 .. *

3.2.2.5
Behavioural Style

References

*

*

References3.2.2.2
Deviation

3.2.2.3
Style

1 .. * 0 .. 1
Describes Design Of

1 .. * 0 .. 1
Describes Formalism Of

1 .. * 0 .. 1
Describes Complexity Of

3.2.2.27
Replication Group

1

1

2 .. *

Owns

3.2.2.10
Safety Critical

1Owns

Figure 7: Meta-model for the refined safety-related concepts.

Carleton University, TR SCE-06-19 Decermber 2006

 46

presented in section 3.1 (and Appendix C), that this concept represents. Thus, this

information serves as additional justification for the concept, its attributes, and its

relationships.

The attributes of each concept are presented in a table. For example, the attributes of the

“Safety Critical” (section 3.2.3.10) refined concept are presented as follows:

Name Description Examples

Criticality Level Indicates the level of criticality (e.g.

airworthiness level, Safety Integrity

Level (SIL)), on some pre-defined

scale, such as the software level or

the failure condition category

For RTCA DO-178B [4]:

“A”, “B”, “C”, “D”, “E”

For IEC 61508 [24]:

“SIL 1”, “SIL 2”, “SIL

3”, “SIL 4”

… etc

Confidence Level Indicates the level of confidence, on

some pre-defined scale, that the

criticality level is satisfied

“High”, “Medium”,

“Low”, “80%”, “50%”,

… etc

Each row describes a single concept attribute. The first column (Name) specifies the

name of the attribute, the second column (Description) describes the attribute, and the

third column (Examples) provides examples for the value of the attribute.

Similarly, the relationships of each concept are presented in a table. For example, the

relationships of the “Safety Critical” (section 3.2.3.10) refined concept are presented as

follows:

Name Description

Triggers Identifies zero or more “Event” instance that the “Safety Critical”

instance triggers

Each row describes a single concept relationship. The first column (Name) specifies the

name of the relationship, and the second column (Description) describes the relationship.

The description of the relationship identifies the concept at the other end of the

relationship as well as its multiplicity.

Carleton University, TR SCE-06-19 Decermber 2006

 47

3.2.3 Concepts Specifications

The refined concepts are listed below in sections 3.2.3.1 to 3.2.3.27 in an order, different

from the alphabetical order, that we think will help the reader better understand them and

their relationships. For example, concept A is listed before concept B if concept B

references or depends on concept A.

Some of the concepts’ attributes presented below are specific to the developed system or

the development project. This is common for attributes whose type is an enumeration. In

such cases, this research does not attempt to define all the possible values. However, it

does present examples on what they could be. It is up to the software developers to define

the enumeration values that are relevant to the system being developed.

The term “design element” is used to indicate “a portion of the design” such as a class,

operation, collaboration (i.e. diagram), or relationship between classes. The design

element can be either hardware or software.

3.2.3.1 Requirement

Definiton:

The “Requirement” concept specifies a requirement that must be met. The

requirement need not necessarily be a safety requirement – it can be any functional

or non-functional requirements. It may be traceable to another requirement, which

is often a higher level one. This enables the concept of requirements traceability,

which is a key element in the software development process.

Attributes:

Name Description Examples

ID A unique ID for this requirement “REQ 1”, “REQ 2”,

“FREQ 1”, “SREQ 10”,

… etc

Carleton University, TR SCE-06-19 Decermber 2006

 48

Name Description Examples

Kind The kind of this requirement “Functional”, “Safety”,

“Reliability”, “Integrity”,

“Performance”,

“Concurrency”,

“Certification”, “Design”,

“Configuration”,

“Derived”, … etc

Specification The actual requirement’s

specification

“Radar Output is Poisson

with Lambda = 20 ms”,

“Levels of Code Nesting

< 5”, … etc

Relationships:

Name Description

Is Requirement Of Identifies zero or more, usually higher-level, “Requirement”

instances to which this “Requirement” instance can be traced

Original Safety-Related Concepts:

Safety Requirement, Certification Requirement, Derived Requirement, Design by

Contract

3.2.3.2 Deviation

Definiton:

The “Deviation” concept identifies a design deviation from a plan, standard, or

requirement (3.2.3.1). Deviations are important to note as they must be submitted to

the certification authorities according to the airworthiness standard RTCA DO-

178B [4].

Carleton University, TR SCE-06-19 Decermber 2006

 49

Attributes:

Name Description Examples

Kind The kind of this deviation. This

generally specifies the deviation

action or decision

“Using Recursive

Algorithm”, “Using

Dynamic Memory", …

etc

Explanation Specifies how, or why, this is a

deviation from the reference

requirements (see relationships

below)

“Kalman filter is

recursive so using

recursive algorithm for

the implementation”, …

etc

Relationships:

Name Description

References Identifies one or more “Requirement” (3.2.3.1) instances from

which the “Deviation” instance deviates

Original Safety-Related Concepts:

Deviation

3.2.3.3 Style

Definiton:

The “Style” concept is an abstract concept indicating an implementation or a

behavioural style. It does not capture any information, but it serves as a base class

for other concepts.

Attributes:

None

Relationships:

None

Carleton University, TR SCE-06-19 Decermber 2006

 50

Original Safety-Related Concepts:

Implementation Style, Time-Related, State-Related

3.2.3.4 ImplementationStyle

Definiton:

The “ImplementationStyle” concept identifies a style that is used to implement a

design. A development standard should define which styles are permitted and which

ones are not.

Attributes:

Name Description Examples

Kind The kind of this implementation style “Recursive”, “Unbounded

Loop”, “Compacted

Expression”, “Dynamic

Memory”, “Data Alias”,

… etc

Parameters Describes additional details of the

implementation style. It is generally

an expression whose meaning is

dependent on the Kind of the

implementation style

“Dynamic memory

allocation frequency =

Poisson with Lambda =

15 seconds”, … etc

Explanation Specifies how this implementation

style conforms to, or deviates from,

the reference requirements (see

relationships below)

“Using dynamic memory

here because static

because 90% of the time

only 10% of the

maximum memory space

will be needed (which

would be required if static

memory is used). This

improves performance”,

… etc

Carleton University, TR SCE-06-19 Decermber 2006

 51

Relationships:

Name Description

Is Child Class Of States that all “ImplementationStyle” instances are “Style”

(3.2.3.3) instances

References Identifies zero or more “Requirement” (3.2.3.1) instances

indicating that the “ImplementationStyle” instance conforms to or

deviates from

Original Safety-Related Concepts:

Recursion, Compacted Expression, Dynamic Memory, Data Alias

3.2.3.5 BehaviouralStyle

Definiton:

The “BehaviouralStyle” concept identifies and describes a behavioural style of a

design. A development standard should define which styles are permitted and which

ones or not..

Attributes:

Name Description Examples

Kind The kind of thie behavioural style “Time-Related”, “State-

Related”, … etc

Parameters Describes additional details of the

behavioural style. It is generally an

expression whose meaning is

dependent on the Kind of the

behavioural style

“Number of state machine

states = 10”, “Number of

state transitions = 20”,

“Frequency of state

changes = Periodic every

1 minute”, … etc

Explanation Specifies how this behavioural style

conforms to, or deviates from, the

reference requirements (see

relationships below)

“Frequency of state

changes is less than the

maximum value permitted

by REQ 23”, … etc

Carleton University, TR SCE-06-19 Decermber 2006

 52

Relationships:

Name Description

Is Child Class Of States that all “BehaviouralStyle” instances are “Style” (3.2.3.3)

instances

References Identifies zero or more “Requirement” (3.2.3.1) instances

describing that the “BehaviouralStyle” instance conforms to or

deviates from

Original Safety-Related Concepts:

Time-Related, State-Related

3.2.3.6 Nature

Definiton:

The “Nature” concept describes the source for the design such as whether the actual

software is purchased to meet the requirements, whether it was previously

developed as part of another project or software system, or whether it is deactivated

and does not get executed.

Attributes:

Name Description Examples

Kind The kind of the software’s nature. It

is the primary attribute that describes

the actual software represented by

this concept

“COTS”, “Deactivated”,

“Previously Developed”,

… etc

Explanation Specifies how the referenced

requirements are met by the nature of

this design (see relationships below)

“This is a COTS software

component purchased

according to document

number 1234567 to meet

requirements REQ 1 –

REQ 10”, … etc

Carleton University, TR SCE-06-19 Decermber 2006

 53

Relationships:

Name Description

References Identifies zero or more “Requirement” (3.2.3.1) instances that are

the reasons for the “Nature” instance’s existence

Original Safety-Related Concepts:

COTS Software, Deactivated Code, Previously Developed Software

3.2.3.7 Rationale

Definiton:

The “Rationale” concept specifies that a specific design exists to support another

design element, or to fulfill specific requirements. It explicitly allows modelers to

trace the design to specific requirements (3.2.3.1).

Attributes:

Name Description Examples

Explanation Specifies how the design decision is a

solution for the referenced

requirements

“This class lists safe flight

paths for an aircraft,

which is used to satisfy

safety requirements

SREQ 1, SREQ 2, and

SREQ 3”, … etc

Relationships:

Name Description

References Identifies one or more “Requirement” (3.2.3.1) instances that are

the reasons for the “Rationale” instance’s existence

Original Safety-Related Concepts:

Traceability

Carleton University, TR SCE-06-19 Decermber 2006

 54

3.2.3.8 Event

Definiton:

The “Event” concept describes an event or action that may occur. An event may

impact safety by either causing or removing hazards. It may also be caused

internally by the system or it may be an external event. It does not need another

event to trigger it.

Attributes:

Name Description Examples

Kind The kind of this event “External”, “Internal”,…

etc

When Describes the conditions under which

this event occurs. This may be

specified in a formal language

“Event occurs when a

sonobuoy is released from

the aircraft”, … etc

Effect On Safety

Direction

Specifies the direction of its impact

on safety, i.e. whether it removes

some hazards, does not impact safety,

or causes additional hazards to occur.

Therefore, this attribute provides

qualitative information

“Positive”, “Neutral”,

“Negative”, …etc

Effect On Safety

Value

Specifies the severity of its impact on

safety. This is also used to quantify

the impact on safety, possibly be

identifying the effect of the event on

the number of hazards in the system.

Therefore, this attribute provides

quantitative information

“+5”, “0”, “-5”, … etc

Carleton University, TR SCE-06-19 Decermber 2006

 55

Name Description Examples

Effect on Safety

Context

Identifies the context within which

the “Effect On Safety Direction” and

“Effect On Safety Value” attributes

are valid. This attribute is necessary

because understanding the context is

essential to safety [1]

“Aircraft is flying above

water”, “Aircraft is on the

ground”, “Aircraft is in

autopilot mode”, …etc

Relationships:

None

Original Safety-Related Concepts:

Unsafe Action, Failure, Failure Condition, Fault, Error, Integrity Check

3.2.3.9 Reaction

Definiton:

The “Reaction” concept describes a reaction to one or more events (3.2.3.8) that

may occur. A reaction may impact safety by either causing or removing hazards. It

is an event (3.2.3.8) in itself, but it always occurs in response to other events

(3.2.3.8). It is a subclass of the event (3.2.3.8) concept to allow the possibility of

chain reactions (i.e. there could be a reaction for a reaction).

Attributes:

Name Description Examples

Kind Inherited from “Event” (3.2.3.8) See “Event” (3.2.3.8)

When Inherited from “Event” (3.2.3.8). In

effect, this attribute filters out

situations when the reaction will not

be performed as a result of the event

(3.2.3.8) occurrence. This may be

specified in a formal language

See “Event” (3.2.3.8)

Carleton University, TR SCE-06-19 Decermber 2006

 56

Name Description Examples

Effect On Safety

Direction

Inherited from “Event” (3.2.3.8) See “Event” (3.2.3.8)

Effect On Safety

Value

Inherited from “Event” (3.2.3.8) See “Event” (3.2.3.8)

Effect on Safety

Context

Inherited from “Event” (3.2.3.8) See “Event” (3.2.3.8)

Relationships:

Name Description

Is Child Class Of States that all “Reaction” instances are also “Event” instances

Is Consequence Of Identifies one or more “Event” (3.2.3.8) instances to which the

“Reaction” instance is a consequence of

Original Safety-Related Concepts:

Safety Response

3.2.3.10 SafetyCritical

Definiton:

The “SafetyCritical” concept represents a safety-critical design or element that

impacts safety. It also identifies the safety or airworthiness level of design elements.

Attributes:

Name Description Examples

Criticality Level Indicates the level of criticality (e.g.

airworthiness level, Safety Integrity

Level (SIL)), on some pre-defined

scale, such as the software level or

the failure condition category

For RTCA DO-178B [4]:

“A”, “B”, “C”, “D”, “E”

For IEC 61508 [24]:

“SIL 1”, “SIL 2”, “SIL

3”, “SIL 4”

… etc

Carleton University, TR SCE-06-19 Decermber 2006

 57

Name Description Examples

Confidence Level Indicates the level of confidence, on

some pre-defined scale, that the

criticality level is satisfied

“High”, “Medium”,

“Low”, “80%”, “50%”,

… etc

Relationships:

Name Description

Triggers Identifies zero or more “Event” (3.2.3.8) instance that the

“SafetyCritical” instance may trigger

Original Safety-Related Concepts:

Safety-Critical, Software Level, Level of Confidence, Failure Condition Category

3.2.3.11 Partition

Definiton:

The “Partition” concept identifies a design partition that resulted from separating

some design element from other design elements. Partitioning is a technique for

providing isolation between functionally independent entities to contain and/or

isolate faults and potentially reduce the effort of the verification process. It prevents

specific interactions and cross-coupling interference [1]. Its key advantages are in

separating safety-critical design elements that have different safety levels, so that

the failure of the less critical entity does not result in the failure of the more critical

entities.

Attributes:

Name Description Examples

Explanation Provides further details on the

reasons for the partitioning

“Partitioned away from a

software component with

a higher airworthiness

level”, … etc

Carleton University, TR SCE-06-19 Decermber 2006

 58

Relationships:

Name Description

References Identifies zero or more “Requirement” (3.2.3.1) instances that

specify the reasons for the “Partition” instance’s existence

Is Partitioned From Identifies one or more “Safety Critical” (3.2.3.10) instances from

which this “Partition” instance was partitioned

Original Safety-Related Concepts:

Partitioning

3.2.3.12 Handler

Definiton:

The “Handler” concept identifies a design element that handles events (3.2.3.8) that

are detected by a monitor (3.2.3.13). A handler handles the events (3.2.3.8) by

performing specific reactions (3.2.3.9) in response to the events (3.2.3.8).

Attributes:

None

Relationships:

Name Description

Handles Identifies one or more “Event” (3.2.3.8) instances that the

“Handler” instance can handle by performing certain reactions

Performs Identifies one or more “Reaction” (3.2.3.9) instances that the

“Handler” instance performs to handle events

Original Safety-Related Concepts:

Exception Handling, Fault Containment, Immunity, Software Protector, Safety

Feature

Carleton University, TR SCE-06-19 Decermber 2006

 59

3.2.3.13 Monitor

Definiton:

The “Monitor” concept identifies a design element that monitors other safety-

critical (3.2.3.10) design elements for events (3.2.3.8). Detected events (3.2.3.8) are

passed to handlers (3.2.3.12) for processing, which in turn invoke the appropriate

reactions (3.2.3.9).

Attributes:

Name Description Examples

Kind The kind of this monitor, indicating

the quality of service that it monitors

“Safety”, “Reliability”,

“Integrity”,

“Performance”,

“Concurrency”,

“Configuration”,… etc

Relationships:

Name Description

Monitors Identifies one or more “Safety Critical” (3.2.3.10) instances that

the “Monitor” instance monitors for events

Detects Identifies one or more “Event” (3.2.3.8) instances that the

“Monitor” instance detects

Notifies Identifies zero or more “Handler” (3.2.3.12) instances that the

“Monitor” instance notifies when it detects events

Original Safety-Related Concepts:

Safety Monitoring, Error Detection, Fault Detection, Fault Containment, Error

Prevention, Integrity Check, Software Protector, Loadable Software Indicator,

Safeguard, Safety Feature

Carleton University, TR SCE-06-19 Decermber 2006

 60

3.2.3.14 Simulator

Definiton:

The “Simulator” concept identifies a design element that mimics the behaviour,

usually in test mode, of another design element that will be used in the real system.

For example, software simulators are common for hardware elements or other

subsystems (hardware or software). Simulators are often used in developing large

systems, they make the testing experience easier and more cost effective, and they

play a key role in system integration labs [1].

Attributes:

Name Description Examples

Parameters Specifies which behaviours are

simulated and how

For a communication

subsystem simulator (e.g.

Radio Frequency (RF)):

“Messages received as

Poisson with Lambda =

100ms”, “Message loss

frequency is Poisson with

Lambda = 250 messages”,

… etc

Relationships:

Name Description

Simulates Identifies one or more “Safety Critical” (3.2.3.10) instances that

the “Simulator” instance simulates

Original Safety-Related Concepts:

Simulator

Carleton University, TR SCE-06-19 Decermber 2006

 61

3.2.3.15 Strategy

Definiton:

The “Strategy” concept describes an approach used to achieve a set of

requirements. This approach is a design decision that relates to some category (see

Kind attribute below).

Attributes:

Name Description Examples

Kind The kind of this strategy “Safety”, “Reliability”,

‘Integrity”,

“Performance”,

“Concurrency”,

“Certification”, “Design”,

“Configuration”,

“Scheduling”, … etc

Parameters Specifies the strategy policy

parameters

For a scheduling strategy:

“Round Robin”, “FIFO”,

“LIFO”, … etc

Relationships:

Name Description

Describes Design Of Identifies one or more “Safety Critical” (3.2.3.10) instances that is

designed according to a strategy described by the “Strategy”

instance

Original Safety-Related Concepts:

Safety Strategy, Scheduling Strategy

Carleton University, TR SCE-06-19 Decermber 2006

 62

3.2.3.16 Formalism

Definiton:

The “Formalism” concept indicates that formal methods were used to develop, or

prove the correctness, of some design element.

Attributes:

Name Description Examples

Methods Identifies the formal methods that

were used

“Natural Deduction”,

“Linear Logical

Framework (LLF)”, …

etc

Relationships:

Name Description

Describes Formalism

Of

Identifies one or more “Safety Critical” (3.2.3.10) instances that

are designed according to some formal method as described in the

“Formalism” instance

Original Safety-Related Concepts:

Formal Method

3.2.3.17 Complexity

Definiton:

The “Complexity” concept describes the complexity of a design element.

Complexity aspects, such as coupling between entities or complexity of a single

entity, can be measured through a variety of measures.

Carleton University, TR SCE-06-19 Decermber 2006

 63

Attributes:

Name Description Examples

Measure Identifies the kind of the measure that

is used to quantify the complexity

“Level of Nested Calls”,

“Conditional Structures”,

“Unconditional

Branches”, “Number of

Entry/Exit Points of

Code”, “Big O”, … etc

Value An expression specifying the value,

or the permitted range, of the

measure

“n2”, “log n”, “25”, … etc

Relationships:

Name Description

Describes

Complexity Of

Identifies one or more “Safety Critical” (3.2.3.10) instances for

which there is a measure of complexity

Original Safety-Related Concepts:

Complexity, Coupling

3.2.3.18 Interface

Definiton:

The “Interface” concept describes an interface between design elements. Interfaces

are common between subsystems of the same system, between the system and some

other external system, between software and hardware, and other situations.

Attributes:

Name Description Examples

Is Between Hardware

And Software

Indicates whether the interface is

between hardware and software

“True”, “False”

Carleton University, TR SCE-06-19 Decermber 2006

 64

Name Description Examples

Protocol ID Identifies the protocol used “MIL STD 1553” [25],

“Ethernet”, “CORBA”, …

etc

Input Function

Parameters

Specifies the expected input function

and/or its frequency

“Poisson with Lamba =

20ms”, “Periodic every 1

second”, … etc

Output Function

Parameters

Specifies the expected output

function and/or its frequency

“Poisson with Lamba =

20ms”, “Periodic every 1

second”, … etc

Relationships:

Name Description

Is Interface For Identifies one or more “Safety Critical” (3.2.3.10) instances that

the “Interface” instance acts as an interface for

Original Safety-Related Concepts:

Hardware / Software Interface

3.2.3.19 Concurrent

Definiton:

The “Concurrent” concept identifies a design element that participates in a

concurrency model. There are several possible roles that the design element can

assume in a concurrency model, such as being a resource or software execution

code that can be either active or passive. An active design element is one that is

capable of generating stimuli concurrently or pseudo (seemingly) concurrently

without being prompted by an explicit stimulus instance, whereas a passive one is

one that cannot generate its own behaviour but only reacts when prompted by a

stimulus [6].

Carleton University, TR SCE-06-19 Decermber 2006

 65

Attributes:

Name Description Examples

Role The role of this entity “Active”, “Passive”,

“Resource”

Is Shared Specifies whether this entity can be

shared by more than one other entity

or not

“True”, “False”

Parameters Specifies how this entity acts from a

concurrency point of view, such as

the frequency of events that an active

entity can trigger, or the maximum

frequency at which a passive entity or

a resource can be accessed

“Poisson with Lamba =

20ms”, “Periodic every 1

second”, … etc

Relationships:

Name Description

Triggers Identifies zero or more “Event” (3.2.3.8) instance that the

“Concurrent” instance triggers

Original Safety-Related Concepts:

Active, Passive, Shared Resource, Multi-Tasking

3.2.3.20 Defensive

Definiton:

The “Defensive” concept specifies that a design element employs a defensive

design model, and describes it. In a defensive design model (e.g. defensive

programming model for software), a design element checks for illegal inputs and

forbid execution using illegal inputs, thus avoiding a scenario where the design

element may fail due to an unfulfilled assumption on the input variables.

Carleton University, TR SCE-06-19 Decermber 2006

 66

Attributes:

Name Description Examples

Defendable Inputs Specifies illegal input conditions that

this design element checks against

“Division by Zero”,

“Altitude < 0”, … etc

Relationships:

Name Description

Performs Identifies one or more “Reaction” (3.2.3.9) instances that the

“Defensive” instance performs to handle defendable (e.g. invalid)

inputs

Original Safety-Related Concepts:

Defensive Programming

3.2.3.21 Configuration

Definiton:

The “Configuration” concept represents a specific configuration. Software and/or

hardware configurations may change by changing memory bits, changing lookup

tables, loading a software patch, and others.

Attributes:

Name Description Examples

ID Uniquely identifies a specific

software configuration

For a user interface

software that can provide

interface in many

languages based on a

string lookup table:

“English Interface”,

“French Interface”,

“German Interface”, …

etc

Carleton University, TR SCE-06-19 Decermber 2006

 67

Relationships:

None

Original Safety-Related Concepts:

Configuration

3.2.3.22 Configurable

Definiton:

The “Configurable” concept identifies a design element that can be configured or

altered to produce a different configuration (3.2.3.21) or behaviour. Such change is

generally performed by the user or buyer of the software, not the by vendor or its

development team.

Attributes:

Name Description Examples

Kind The kind of this configurable design

element

“Memory Bits”, “Lookup

Tables”, …etc

When Specifies when this configurable

design element can be configured to

change configurations

“Compile-Time”, “Link-

Time”, “Run-Time”, …

etc

Relationships:

Name Description

Is Defaulted To Identifies one default “Configuration” (3.2.3.21) instance for the

“Configurable” instance

Is Configurable To Identifies one or more “Configuration” (3.2.3.21) instances that

can be produced by loading loadable instances on the

“Configurable” instance

Original Safety-Related Concepts:

User Modifiable Software, Option Selectable Software

Carleton University, TR SCE-06-19 Decermber 2006

 68

3.2.3.23 Loadable

Definiton:

The “Loadable” concept identifies a design element that can be loaded by the user

to change the configuration (3.2.3.21). Loadable design elements are loaded on

configurable (3.2.3.22) design elements.

Attributes:

None

Relationships:

Name Description

Is Loadable On Identifies one or more “Configurable” (3.2.3.22) instances on

which the “Loadable” instance can be loaded

Requires Identifies zero or more “Configuration” (3.2.3.21) instances in

which the “Loadable” instance can be loaded

Produces Identifies one or more “Configuration” (3.2.3.21) instances that

result by loading the “Loadable” instance

Original Safety-Related Concepts:

Field Loadable Software, Software Patch

3.2.3.24 Configurator

Definiton:

The “Configurator” concept identifies a design element that can configure

configurable (3.2.3.22) design elements to change the configuration (3.2.3.21),

possibly by loading loadable (3.2.3.23) design elements.

Attributes:

None

Carleton University, TR SCE-06-19 Decermber 2006

 69

Relationships:

Name Description

Configures Identifies one or more “Configurable” (3.2.3.22) instances that can

be configured by the “Configurator” instance

Loads Identifies one or more “Loadable” (3.2.3.23) instances that can be

loaded by a “Configurator” on configurable instances

Original Safety-Related Concepts:

Loader

3.2.3.25 Replicated

Definiton:

The “Replicated” concept identifies a design element that participates in a

replication group (3.2.3.27), such as multiple-version dissimilar software, and

whose output is evaluated by a comparator (3.2.3.26).

Attributes:

Name Description Examples

ID Specifies a unique identifier for this

entity within its replication group

“Filter Version 1”, “Filter

Version 2”, “Filter

Version 3”, … etc

Relationships:

None

Original Safety-Related Concepts:

Multiple-Version Dissimilar Software, Software Redundancy

Carleton University, TR SCE-06-19 Decermber 2006

 70

3.2.3.26 Comparator

Definiton:

The “Comparator” concept identifies a design element that analyzes outputs of

replicated (3.2.3.25) design elements and determines the formal output of the

replication group (3.2.3.27).

Attributes:

Name Description Examples

Policy Parameters Specifies how the comparator

determines the formal output. Can

include assignment of weights

“Equal Weights”,

“Majority Voting”, … etc

Relationships:

Name Description

Compares Identifies two or more “Replicated” (3.2.3.25) instances whose

outputs are compared by the “Comparator” instance

Original Safety-Related Concepts:

Comparator (Voter)

3.2.3.27 ReplicationGroup

Definiton:

The “ReplicationGroup” concept identifies a software replication group composed

of replicated (3.2.3.25) design elements and a comparator (3.2.3.26) that compares

their outputs. For example, a replication group is an instance of software

redundancy or multiple-version dissimilar software. It is a technical solution to

reliability challenges and has been traditionally used in safety-critical systems.

Carleton University, TR SCE-06-19 Decermber 2006

 71

Attributes:

Name Description Examples

ID Specifies the ID of this replication

group

“Radar Filter Replication

Group”, “Controller

Replication Group”,

“REPLICATION 1”, …

etc

Relationships:

Name Description

Owns (with

Comparator)

Identifies one “Comparator” (3.2.3.26) instance that belongs to

this “ReplicationGroup” instance

Owns (with

Replicated)

Identifies two or more “Replicated” (3.2.3.25) instances that

belong to this “ReplicationGroup” instance

Original Safety-Related Concepts:

Multiple-Version Dissimilar Software, Software Redundancy

3.2.4 Providing Traceability

The refined concepts and their conceptual model satisfy all the traceabilty requirements

specified in section 2.5.

First, software requirements can be specified using the “Requirement” (3.2.3.1) concept.

Then, software design elements can be traced to software requirements using the

“Rationale” (3.2.3.7) concept. There also exists other concepts that allow for specialized

forms of traceability to requirements, namely the “Deviation” (3.2.3.2), Nature (3.2.3.6),

Partition (3.2.3.11), Implementation Style (3.2.3.4), and Behavioural Style (3.2.3.5)

concepts.

In addition, the conceptual model explicitly identifies the “Event” (3.2.3.8) and

“Reaction” (3.2.3.9) concepts, and establishes traceability links between those two

Carleton University, TR SCE-06-19 Decermber 2006

 72

concepts and the “Handler” concept (3.2.3.12). Furthermore, it requires reactions to be

traceable to events through the “Is Consequence Of” relationship.

It is important to note that, while the traceability described above and in section 2.5 are

commonly needed for developing software, this conceptual model satisfy many more

traceability requirements than those. In fact, the “Rationale” (3.2.3.7) concept is a “one-

size-fits-all” traceability concept that can be used to trace any model element to any other

model element or requirement. For example, the “Rationale” (3.2.3.7) concept allows

traceability links from safety-critical design elements to requirements, from subsystems

to requirements, and from classes to subsystems

3.3 Information Requirements

Section 3.1 identified detailed safety-related concepts as they appear in the airworthiness

standard, which were refined in section 3.2. Therefore, a UML profile useful for safety

purposes should be able to model at least this information. In other words, the refined

concepts are central to defining information requirements for the definition of a UML

profile, and one can transform every concept into an information requirement.

However, the information requirements we present below are defined at a level lower

than the refined concept and, therefore, a refined concept may correspond to more than

one information requirements. This is done so in order to break down concepts that

capture many details and recognize the fact that existing profiles may only satisfy parts of

a concept. For example, the “Reaction” concept and its “Consequence Of” attribute can

be considered a single concept, but they capture two different pieces of information.

Therefore, they are represented as two different information requirements (IREQ 22 and

IREQ 23 below) to recognize the fact that a UML profile can meet only one of those two

requirements (and therefore partially, but not entirely, be able to model the concept).

Moreover, there are terms that are useful from a modeling prespective but that are not

really safety-related concepts. They were not mentioned in section 3.2 because they are

not concepts. Nevertheless, they help the modeler specify safety-related information in

the model. Their information requirements are IREQ 1 - IREQ 8 (see below). It is

Carleton University, TR SCE-06-19 Decermber 2006

 73

common in UML profiles to provide stereotypes for such cases (see OMG UML profiles

such as [5] and [6] for examples). Examples of those concepts include: Safety Context,

which is used to provide high-level information about the safety of the software;

Performance Context, which is used to provide high-level information about the

performance aspects of the software.

The information requirements we derived from the concepts presented in section 3.2.3

are:

IREQ 1 The profile shall be able to identify a safety-related software context.

IREQ 2 The profile shall be able to identify a reliability-related software context.

IREQ 3 The profile shall be able to identify an integrity-related software context.

IREQ 4 The profile shall be able to identify a performance-related software

context.

IREQ 5 The profile shall be able to identify a concurrency-related software

context.

IREQ 6 The profile shall be able to identify a certification-related software

context.

IREQ 7 The profile shall be able to identify a configuration-related software

context.

IREQ 8 The profile shall be able to identify a design-related software context.

IREQ 9 The profile shall be able to specify software requirements, including the

kind of the requirements such as safety, certification, and derived.

IREQ 10 The profile shall be able to relate software requirements to other

requirements.

IREQ 11 The profile shall be able to model a software model deviation from a plan,

requirement, or a standard.

IREQ 12 The profile shall be able to model specific software implementation styles

of interest to airworthiness-related software such as recursion, dynamic

memory, compacted expressions, and data aliases.

IREQ 13 The profile shall be able to model time-related software such as filters.

IREQ 14 The profile shall be able to model state-related software such as state

machines.

Carleton University, TR SCE-06-19 Decermber 2006

 74

IREQ 15 The profile shall be able to model COTS software, including the rationale

for using it.

IREQ 16 The profile shall be able to model previously-developed software,

including the rationale for using it.

IREQ 17 The profile shall be able to model software that has deactivated code and

the rationale for including the deactivated code in the design.

IREQ 18 The profile shall be able to provide traceability by relating model

elements to other elements that caused related design decisions, such as

relating a software comparator to a requirement element that says that a

software comparator shall be used for multiple-version dissimilar

software.

IREQ 19 The profile shall provide the capability to specify a reference or

explanation for a modeled traceability, possibly referring to non-model

elements or documents.

IREQ 20 The profile shall be able to model software events.

IREQ 21 The profile shall be able to specify how a particular software event affects

the level of safety.

IREQ 22 The profile shall be able to model software reactions, or responses, to

software events.

IREQ 23 The profile shall be able to specify which reactions, or responses, occur

for which events.

IREQ 24 The profile shall be able to specify how a particular software reaction, or

response, affects the level of safety.

IREQ 25 The profile shall be able to model safety-critical elements.

IREQ 26 The profile shall be able to specify the criticality level of safety-critical

model elements, or the element’s contributions to failure conditions.

IREQ 27 The profile shall be able to model a software partition.

IREQ 28 The profile shall be able to model event handlers that perform reactions to

unusual events that are detected by monitors.

IREQ 29 The profile shall be able to model software monitors.

IREQ 30 The profile shall be able to model safety monitoring software.

Carleton University, TR SCE-06-19 Decermber 2006

 75

IREQ 31 The profile shall be able to model fault monitoring software.

IREQ 32 The profile shall be able to model integrity monitoring software.

IREQ 33 The profile shall be able to model a software simulator.

IREQ 34 The profile shall be able to specify what a software simulator simulates

and the parameters by which it does so.

IREQ 35 The profile shall be able to model safety strategies.

IREQ 36 The profile shall be able to model scheduling strategies.

IREQ 37 The profile shall be able to specify the use of formal methods.

IREQ 38 The profile shall be able to model and quantify an entity’s complexity on

the design such as coupling and the level of code nesting.

IREQ 39 The profile shall be able to model hardware/software interfaces.

IREQ 40 The profile shall be able to describe an interface’s parameters or reference

external documents describing the interface parameters.

IREQ 41 The profile shall be able to model active software that can initiate a flow

of control.

IREQ 42 The profile shall be able to model passive software whose execution is

triggered by external events.

IREQ 43 The profile shall be able to model resources such as databases and

semaphores.

IREQ 44 The profile shall be able to indicate whether a modeled resource is shared

or not.

IREQ 45 The profile shall be able to distinguish software that uses defensive

programming from others that do not.

IREQ 46 The profile shall be able to describe the defensive programming

parameters of software developed using defensive programming methods.

IREQ 47 The profile shall be able to model software elements whose behaviour can

be modified by the user (e.g. by changing memory bits or loading look-up

tables).

IREQ 48 The profile shall be able to specify what can be modified about

modifiable software elements (e.g. is it a set of memory bits? A lookup

table?).

Carleton University, TR SCE-06-19 Decermber 2006

 76

IREQ 49 The profile shall be able to specify when a modifiable software element

can be modified, such as at compile-time or run-time.

IREQ 50 The profile shall be able to model software that can be loaded into a

system (e.g. software patch) to result in a different software configuration.

IREQ 51 The profile shall be able to model software that the user uses to change

the software configuration (e.g. software used to change a memory bit or

load a lookup table).

IREQ 52 The profile shall be able to model multiple-version dissimilar software.

IREQ 53 The profile shall be able to model software comparators, or voters, for

multiple version dissimilar software

IREQ 54 The profile shall be able to specify the voting policy parameters for

software comparators, or voters.

The requirements traceability matrix in Table 3 describes how the information

requirements trace back to the original high-level requirements presented in section 2.6.3.

This explains how the original-high level requirements are met by a UML profile meeting

the information requirements. If a “Yes” exists in a particular cell, this means that the

information requirement identified by its row traces back to the high-level requirement

identified by its column. Each information requirement may trace back to more than one

high-level requirement. As the table illustrates, there is an n-to-n relationship between

high-level requirements and information requirements.

The requirements traceability matrix answers the following question: Which information

requirements (IREQ) are required in order to meet a particular high-level requirement

(REQ)? Conversly, it can also be used to answer the following question: For a particular

information requirement (IREQ), which high-level requirements (REQ) does it help

meet? Therefore, it is useful if the reader is interested in knowing additional details about

how a particular profile meets the original requirements (REQ). Therefore, all the

information requirements trace to both the safety-related concepts, which form the basis

for the information requirements, and are justified by the high-level requirements.

Carleton University, TR SCE-06-19 Decermber 2006

 77

The rest of this document focuses on the information requirements (IREQ) rather than the

high-level requirements (REQ) because they are easier to use for assessing UML profiles.

Furthermore, information requirements are the true requirements that the profile must

meet because they specify the particular information that must be modeled in UML

models.

 REQ 1 REQ 2 REQ 3 REQ 4 REQ 5 REQ 6 REQ 7 Total
IREQ 1 Yes Yes Yes 3
IREQ 2 Yes Yes Yes 3
IREQ 3 Yes Yes Yes 3
IREQ 4 Yes Yes Yes 3
IREQ 5 Yes Yes 2
IREQ 6 Yes Yes 2
IREQ 7 Yes Yes 2
IREQ 8 Yes Yes 2
IREQ 9 Yes Yes Yes Yes Yes 5
IREQ 10 Yes Yes Yes Yes Yes 5
IREQ 11 Yes Yes Yes Yes 4
IREQ 12 Yes Yes Yes Yes 4
IREQ 13 Yes Yes Yes 3
IREQ 14 Yes Yes Yes 3
IREQ 15 Yes Yes Yes Yes Yes 5
IREQ 16 Yes Yes Yes Yes Yes 5
IREQ 17 Yes Yes Yes Yes 4
IREQ 18 Yes Yes Yes 3
IREQ 19 Yes Yes Yes Yes 4
IREQ 20 Yes Yes 2
IREQ 21 Yes Yes Yes Yes 4
IREQ 22 Yes Yes Yes 3
IREQ 23 Yes Yes Yes 3
IREQ 24 Yes Yes Yes Yes Yes 5
IREQ 25 Yes Yes Yes 3
IREQ 26 Yes Yes Yes Yes 4
IREQ 27 Yes Yes Yes 3
IREQ 28 Yes Yes Yes 3
IREQ 29 Yes Yes Yes 3
IREQ 30 Yes Yes Yes Yes 4
IREQ 31 Yes Yes Yes Yes 4
IREQ 32 Yes Yes Yes 3
IREQ 33 Yes Yes 2
IREQ 34 Yes Yes 2
IREQ 35 Yes Yes Yes Yes 4
IREQ 36 Yes Yes Yes 3
IREQ 37 Yes Yes 2
IREQ 38 Yes Yes 2
IREQ 39 Yes Yes 2
IREQ 40 Yes Yes 2
IREQ 41 Yes Yes 2
IREQ 42 Yes Yes 2
IREQ 43 Yes Yes 2
IREQ 44 Yes Yes 2

Carleton University, TR SCE-06-19 Decermber 2006

 78

 REQ 1 REQ 2 REQ 3 REQ 4 REQ 5 REQ 6 REQ 7 Total
IREQ 45 Yes Yes Yes 3
IREQ 46 Yes Yes Yes 3
IREQ 47 Yes Yes Yes Yes 4
IREQ 48 Yes Yes Yes Yes 4
IREQ 49 Yes Yes Yes 3
IREQ 50 Yes Yes Yes 3
IREQ 51 Yes Yes Yes 3
IREQ 52 Yes Yes Yes 3
IREQ 53 Yes Yes Yes 3
IREQ 54 Yes Yes 2

Total 54 8 18 33 18 34 2 167

Table 3: Tracing information requirements to the original high-level requirements.

Carleton University, TR SCE-06-19 Decermber 2006

 79

4 EXISTING UML PROFILES

This section introduces existing UML profiles and approaches and evaluates each one of

them with respect to the information requirements identified in section 3.3. This is

required to determine whether a suitable profile already exists or not, which would

determine whether an existing profile should be extended (if necessary) or a completely

new profile should be defined. Details of the evaluations are reported in Appendix F and

summarized in the following sections.

4.1 Quality of Service and Fault Tolerance OMG Profile

OMG released a profile to model Quality of Service (QoS) for high-quality and Fault-

Tolerant (FT) systems. The profile, presented in [5], includes frameworks to describe

quality of service, risk assessment, and fault tolerance.

The framework to describe quality of service includes mechanisms to describe generic

quality of service driven from quality-based requirements. It is not specific to any kind of

quality of service, such as safety. Its mechanisms focus on characteristics, constraints,

and levels of quality of service. The risk assessment framework includes support for

model-based risk assessment. It provides mechanisms for modeling risk contexts,

stakeholders, assets, strengths, weaknesses, opportunities and threats, unwanted incidents,

risk quantification, and risk mitigation and treatments. The fault tolerance framework

includes mechanisms for describing fault-tolerant software architectures in general as a

technical solution to reliability requirements. It focuses on modeling software

redundancy, or software replication.

Table 18 in Appendix F presents an analysis of the profile with respect to each of the

information requirements described in section 3.3. The table concludes that this profile is

not adequate for extension to meet the information requirements since only 17 of the

information requirements (out of 54) are fulfilled.

Carleton University, TR SCE-06-19 Decermber 2006

 80

4.2 Schedulability, Performance, and Time OMG Profile

OMG released a profile, the Schedulability, Performance, and Time (SPT) profile, which

provides mechanisms to model concepts of importance to real-time systems. Real-time

systems are those where there exist timing requirements on when the responses to events

occur. Soft real-time systems are those were late responses may be acceptable if they are

not within a specified range, whereas hard real-time systems are those where late

responses are unacceptable and may be fatal [6]. The profile, presented in [6], includes

frameworks to model resources, time, concurrency, schedulability, performance, and

CORBA schedulability properties. Using it allows developers to perform performance

analysis of the model.

The resource modeling framework includes mechanisms to model resources, components

that acquire and release them, and their deployment on hosts. The time modeling

framework includes mechanisms to model clocks, timers, timeouts, and actions that are

applied on them such as delays, interrupts, events, pause, reset, start, and stop. The

concurrency modeling framework includes mechanisms to model synchronous and

asynchronous actions, and event queues for immediate and deferred event processing.

The schedulability analysis framework includes mechanism to model actions, engines,

responses, scheduling resources, triggers, action schedulers, and scheduling hosts. The

performance analysis framework includes mechanism to model performance contexts,

open and closed workloads, and steps. The CORBA schedulability framework includes

mechanisms to model CORBA channels, connections, clients, servers, and Object

Resource Brokers (ORBs).

Table 19 in Appendix F presents an analysis of the profile with respect to each of the

information requirements described in section 3.3. The table concludes that this profile is

not adequate for extension to meet the information requirements since only 6 of the

information requirements (out of 54) are fulfilled. The profile does not meet many of the

information requirements because it does not cover safety and reliabity topics.

Carleton University, TR SCE-06-19 Decermber 2006

 81

4.3 HIDOORS Profile

The High Integrity Distributed Object-Oriented Real-Time Systems (HIDOORS) was a

joint research project by several European companies and research institutions. One of

the goals of HIDOORS was to introduce mechanisms for modeling safety-critical and

embedded real-time applications. Those mechanisms were required to be compliant with

OMG’s SPT profile (see section 4.2), provide mechanisms for modeling the Rate

Monotonic Analysis (RMA) scheduling strategy, and provide specific concepts relating

to inter-task communication. The researchers involved in this project felt that UML’s

SPT profile was too general and too fundamental to provide mechanisms for specifying

RMA and some inter-task communication concepts [26]. The profile therefore specializes

some SPT concepts such as triggers, actions, resources, and scheduling jobs.

Furthermore, it provides mechanisms to model inter-task communication styles such as

buffers, black boards, and events.

Table 20 in Appendix F presents an analysis of the profile with respect to each of the

information requirements described in section 3.3. The table concludes that this profile is

not adequate for extension to meet the information requirements since only 6 of the

information requirements (out of 54) are fulfilled. The profile included only few

stereotypes so it does not meet most of the information requirements. In fact, it did not

meet any information requirements that were not already met by the SPT profile.

4.4 Effects of Message Loss, Delay, and Corruption

Jan Jürjens presented a UML profile in [27] that aimes at addressing safety issues from a

fault-tolerant point of view. Jürjens argued that safety goals are often expressed

quantitatively via the maximum failure rate, and then presented some possible failures

that served as the basis of the proposed UML profile. Thus, his profile assumes that those

failures are based on the concept of transmitting messages on links and between nodes.

The profile included mechanisms to model risks, crashes, guarantees, redundancy, safe

links, safe dependencies, safety critical elements, safe behaviours, containment, and error

handling.

Carleton University, TR SCE-06-19 Decermber 2006

 82

Table 21 in Appendix F presents an analysis of the profile with respect to each of the

information requirements described in section 3.3. The table concludes that this profile is

not adequate for extension to meet the information requirements since only 7 of the

information requirements (out of 54) are fulfilled. In fact, it does not meet many of the

information requirements because assuming the airworthiness standard does not make the

assumption that unsafe states result from failures of transmitting messages because safety

is a bigger issue than that.

4.5 Patterns for Reliability and Safety

Hansen and Gullesen presented in [28] a series of UML patterns that can be used to

model some aspects of safety-critical systems. They presented patterns for modeling

safety quality of service, software diversity and voting, partial diversity with built-in

diagnostic or monitoring, “safe” communication protocols, and some other topics such as

testing, hazard analysis and quality development. Their work was driven by the IEC

61508 standard in [24]. They have therefore used the concept of Safety Integrity Level

(SIL), which is similar to the concept of software level presented in the airworthiness

standard [4]. The patterns include mechanisms to model the SIL levels, and other patterns

that could be used to explicitly model, in use cases, redundancy, monitoring, and voting

based on multiple output comparisons.

Table 22 in Appendix F presents an analysis of the profile with respect to each of the

information requirements described in section 3.3. The table concludes that the patterns

presented in this paper are not adequate for extension to meet the information

requirements since only 1 of the information requirements (out of 54) are fulfilled. The

patterns mostly focus on reliability and software replication issues, whereas the

information requirements cover a bigger concern.

4.6 Summary

Table 23 in Appendix F summarizes how each of those existing UML profiles scores

with respect to addressing the information requirements identified in section 3.3. Each

Carleton University, TR SCE-06-19 Decermber 2006

 83

profile’s score is calculated based on how many information requirements it meets.

Therefore, the maximum score is 54 (100%).

As it can be noticed from previous sections, which results are summarized in Table 23,

none of the existing profiles that were evaluated achieves more than 31% of the

maximum score. In fact, all of the profiles combined only meet 44% of the information

requirements.

The two OMG profiles are useful, but only within their intended domain. The OMG QoS

and FT profile is suitable for modeling fault tolerance and software redundancy. The

OMG SPT profile is suitable for modeling schedulability, performance, and concurrency

concepts. However, it was evident in section 3 that safety and airworthiness are

dependent on many domains. Therefore, those two OMG profiles would be

complimentary, but not complete enough. It should also be noticed that the SPT profile

included more details than the QoS and FT profile, but it was centred on domains that are

somehow less important to safety (resources, time, concurrency, performance, and

schedulability) than those covered by the QoS and FT profile (quality of service, risk

assessment, fault tolerance).

Furthermore, the profile for the “effects of messages on safety” introduces some useful

stereotypes such as <<safe behaviour>>, <<guarantee>>, <<critical>>,

<<containment>>and <<redundancy>>. However, some of them are too general to be

effective, such as <<critical>> which does not tell us the criticality level (e.g.

airworthiness level) of the software. Neverthless, it meets some information requirements

that are not met by the 2 OMG profiles such as the ability to model exception handlers.

The “HIDOORS” profile did not meet any information requirements that were not

already met by the SPT profile.

The “Patterns” paper did not fulfil any information requirements that were not fulfilled

by the other profiles.

Because none of the existing UML profiles and patterns comes close to fulfilling the

information requirements, a new UML profile is proposed instead of extending an

Carleton University, TR SCE-06-19 Decermber 2006

 84

existing one. This has the advantage that the resultant profile will be coherent and

specifically designed to meet the information requirements instead of “patching” an

existing profile that was originally designed for some other purpose.

Carleton University, TR SCE-06-19 Decermber 2006

 85

5 PROPOSED UML PROFILE

Since no suitable UML profile was found, this section introduces a new UML profile that

meets all of the information requirements. Section 5.1 describes the template we use to

describe the profile whereas section 5.2 describes the profile proper. Examples are then

presented in section 5.3 to explain in detail how to use this proposed UML profile.

Section 5.4 suggests a methodology to be followed when using the profile.

5.1 UML Profile—Template Description

This section introduces a UML profile that satisfies all of the information requirements

specified in section 3.3. The discussion on how this proposed profile meets all of the

information requirements is presented in section 8.1.

Each of the subsections of section 5.2 describes a single stereotype and associated tagged

values. Most of the stereotypes correspond to some refined concepts. However, some

additional stereotypes, which do not correspond to any refined concepts, were deemed

helpful for modeling purposes are introduced. The stereotypes’ tagged values correspond

to the refined concepts’ attributes and relationships. The following information is

presented for each stereotype:

1. Definition: This presents a definition for the stereotype. It describes the stereotype

and gives its general purpose.

2. Related Concept: This identifies, if applicable, the concept from section 3.2.2 that

the stereotype represents.

3. Base Classes: This lists the UML meta-classes on which the stereotype may be

applied. The explanation on how and why the stereotype may be applied on each

meta-class is also presented. This does not identify meta-classes on which the

stereotype may not be applied to allow future extenstions of this profile to be

backwards compatible. This is because future extension may permit the

application of the stereotypes on meta-classes that are not explicit here. This is

Carleton University, TR SCE-06-19 Decermber 2006

 86

necessary because extending UML, such as in the form of UML profiles, permits

adding new rules but does not allow removing existing rules.

4. Tags: This lists the tags that the stereotype has. For each tag, the type,

multiplicity, and a description is presented.

The base classes of each stereotype are presented in a table. For example, the base classes

of the <<SafetyCritical>> (5.2.17) stereotype are presented as follows:

Base Class Usage Rationale

Class To indicate that the class is safety-critical (3.2.3.10) and specify

its safety (e.g. airworthiness) level

Operation To indicate that invoking the operation is safety-critical (3.2.3.10)

and specify its safety (e.g. airworthiness) level

Relationship To indicate that the relationship is safety-critical (3.2.3.10) and

specify its safety (e.g. airworthiness) level

The first column lists the UML meta-classes on whose instances the stereotype can be

applied. The UML classes are specified as defined in the UML meta-model in [29] and

[30]. This profile uses only the following base classes in the first column:

1. Collaboration: Used to represent instances of class

“CompositeStructures::Collaborations::Collaboration”.

2. Class: Used to represent instances of class “Kernel::Class” and class

“BasicComponents::Component”.

3. Operation: Used to represent instances of class “Kernel::Operation”.

4. Relationship: Used to represent instances of class “Kernel::Relationship”.

The second column describes why the stereotype can be applied on each base class.

Thus, the above table is read as follows: The <<SafetyCritical>> stereotype can be

applied on all UML model classes that are instances of the following meta-classes (first

Carleton University, TR SCE-06-19 Decermber 2006

 87

column): Class, Operation, and Relationship. It is applied on each of the base classes as

follows (second column):

1. Class: To indicate that the class is safety-critical (3.2.3.10) and specify its safety

(e.g. airworthiness) level

2. Operation: To indicate that invoking the operation is safety-critical (3.2.3.10) and

specify its safety (e.g. airworthiness) level

3. Relationship: To indicate that the relationship is safety-critical (3.2.3.10) and

specify its safety (e.g. airworthiness) level

The tags of each stereotype are presented in a table. For example, the tags of the

<<SafetyCritical>> (5.2.17) stereotype are presented as follows:

Name Type Multiplicity Description

CriticalityLevel Enumeration [0..1] See attribute: Criticality Level

ConfidenceLevel Enumeration [0..1] See attribute: Confidence

Level

TriggeredEvent Reference to a

model element

stereotyped

<<Event>>

(5.2.15) (or its

subclass

<<Reaction>>

(5.2.16))

[0..*] See relationship: Triggers

The first column specifies the tag name, the second column specifies the type of the tag,

the third column specifies its multiplicity, and the fourth column provides a description of

the tag. In most cases, the fourth column will refer the reader to an attribute or a

relationship of the related concept.

This example tells us that this stereotype has the following tags and they are described as

follows:

Carleton University, TR SCE-06-19 Decermber 2006

 88

1. The “CriticalityLevel” tag (first column) of the <<SafetyCritical>> stereotype is

specified through an enumeration (second column). It can be specified zero or one

time (third column) for each stereotype. Its description is the same as the

“Criticality Level” attribute of the related concept (“Safety Critical” (3.2.3.10)

concept in this case) (fourth column).

2. The “ConfidenceLevel” tag (first column) of the <<SafetyCritical>> stereotype is

specified through an enumeration (second column). It can be specified zero or one

time (third column) for each stereotype. Its description is the same as the

“Confidence Level” attribute of the related concept (“Safety Critical” (3.2.3.10)

concept in this case) (fourth column).

3. The “TriggeredEvent” tag (first column) of the <<SafetyCritical>> stereotype is

specified through a reference to a model element stereotyped with <<Event>> or

<<Reaction>> (second column). It can be specified zero or as many times as one

wishes (third column) for each stereotype. Its description is the same as the

“Triggers” relationship of the related concept (“SafetyCritical” (3.2.3.10) concept

in this case) (fourth column).

5.2 Profile Description

5.2.1 <<SafetyContext>>

Definiton:

The <<SafetyContext>> stereotype is used to indicate that there is safety-related

information of interest such as information representing the original primarily

safety concepts listed in Appendix C.1.

Related Concept:

None

Carleton University, TR SCE-06-19 Decermber 2006

 89

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains safety information

Tags:

None

5.2.2 <<ReliabilityContext>>

Definiton:

The <<ReliabilityContext>> stereotype is used to indicate that there is reliability-

related information of interest such as information representing the original

primarily reliability concepts listed in Appendix C.2. In one specific usage, it could

also be used to describe or identify a specific replication group (see related

concept).

Related Concept:

ReplicationGroup (3.2.3.27)

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains reliability information,

or to identify a particular replication group (3.2.3.27) composed

of replicated (3.2.3.25) design elements and a comparator

(3.2.3.26)

Tags:

Name Type Multiplicity Description

ID String [0..1] See attribute: ID

Carleton University, TR SCE-06-19 Decermber 2006

 90

5.2.3 <<IntegrityContext>>

Definiton:

The <<IntegrityContext>> stereotype is used to indicate that there is safety-related

information of interest such as information representing the original primarily

integrity concepts listed in Appendix C.3.

Related Concept:

None

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains integrity information

Tags:

None

5.2.4 <<PerformanceContext>>

Definiton:

The <<PerformanceContext>> stereotype is used to indicate that there is

performance-related information of interest such as information representing the

original primarily performance concepts listed in Appendix C.4.

Related Concept:

None

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains performance

information

Tags:

None

Carleton University, TR SCE-06-19 Decermber 2006

 91

5.2.5 <<ConcurrencyContext>>

Definiton:

The <<ConcurrencyContext>> stereotype is used to indicate that there is

concurrency-related information of interest such as information representing the

original primarily concurrency concepts listed in Appendix C.5.

Related Concept:

None

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains concurrency

information

Tags:

None

5.2.6 <<CertificationContext>>

Definiton:

The <<CertificationContext>> stereotype is used to indicate that there is

certification-related information of interest such as information representing the

original primarily certification concepts listed in Appendix C.6.

Related Concept:

None

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains certification

information

Tags:

None

Carleton University, TR SCE-06-19 Decermber 2006

 92

5.2.7 <<DesignContext>>

Definiton:

The <<DesignContext>> stereotype is used to indicate that there is specific design-

related information of interest such as information representing the original

primarily design concepts listed in Appendix C.7.

Related Concept:

None

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains specific design

information such as design constraints and design decisions

Tags:

None

5.2.8 <<ConfigurationContext>>

Definiton:

The <<ConfigurationContext>> stereotype is used to indicate that there is

configuration-related information of interest such as information representing the

original primarily configuration concepts listed in Appendix C.8. In one specific

usage, it could also be used to describe or identify a specific configuration (see

related concept).

Related Concept:

Configuration (3.2.3.21)

Carleton University, TR SCE-06-19 Decermber 2006

 93

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration contains configuration

(3.2.3.21) information, or to identify a particular configuration

(3.2.3.21)

Tags: (refer to section 3.2.3.21 for details)

Name Type Multiplicity Description

ID String [0..1] See attribute: ID

5.2.9 <<Requirement>>

Definiton:

See related concept.

Related Concept:

Requirement (3.2.3.1)

Base Classes:

Base Class Usage Rationale

Collaboration To specify a requirement that the design in the collaboration

fulfills

Class To specify a requirement that the class fulfills

Operation To specify a requirement that the operation fulfills

Relationship To specify a requirement that a relationship fulfills

Tags: (refer to section 3.2.3.1 for details)

Name Type Multiplicity Description

ID String [0..1] See attribute: ID

Kind Enumeration [0..1] See attribute: Kind

Specification Expression [1..1] See attribute: Specification

Carleton University, TR SCE-06-19 Decermber 2006

 94

Name Type Multiplicity Description

OfRequirement Reference to a

model element

stereotyped

<<Requirement>>

(5.2.9)

[0..*] See relationship: Is

Requirement Of

5.2.10 <<Deviation>>

Definiton:

See related concept.

Related Concept:

Deviation (3.2.3.2)

Base Classes:

Base Class Usage Rationale

Collaboration To specify that the collaboration’s design and/or implementation

deviates from a requirement (3.2.3.1), standard, or plan

Class To specify that the class’ design and/or implementation deviates

from a requirement (3.2.3.1), standard, or plan

Operation To specify that the operation’s design and/or implementation

deviates from a requirement (3.2.3.1), standard, or plan

Relationship To specify that the relationship’s design and/or implementation

deviates from a requirement (3.2.3.1), standard, or plan

Tags: (refer to section 3.2.3.2 for details)

Name Type Multiplicity Description

Kind Enumeration [0..1] See attribute: Kind

Carleton University, TR SCE-06-19 Decermber 2006

 95

Name Type Multiplicity Description

Reference Reference to a

model element

stereotyped

<<Requirement>>

(5.2.9)

[1..*] See relationship: References

Explanation String [0..*] See attribute: Explanation

5.2.11 <<ImplementationStyle>>

Definiton:

See related concept.

Related Concept:

ImplementationStyle (3.2.3.4)

Base Classes:

Base Class Usage Rationale

Class To identify an implementation style (3.2.3.4) (e.g. dynamic

memory, recursive algorithms, … etc) that is followed in the

implementation of the class

Operation To identify an implementation style (3.2.3.4) (e.g. dynamic

memory, recursive algorithms, … etc) that is followed in the

implementation of the operation

Tags: (refer to section 3.2.3.4 for details)

Name Type Multiplicity Description

Kind Enumeration [0..1] See attribute: Kind

Parameter Expression [0..*] See attribute: Parameters

Carleton University, TR SCE-06-19 Decermber 2006

 96

Name Type Multiplicity Description

Reference Reference to a

model element

stereotyped

<<Requirement>>

(5.2.9), or a String

[0..*] See relationship: References

Explanation String [0..*] See attribute: Explanation

5.2.12 <<BehaviouralStyle>>

Definiton:

See related concept.

Related Concept:

BehaviouralStyle (3.2.3.5)

Base Classes:

Base Class Usage Rationale

Collaboration To identify a behavioural style (3.2.3.5) (e.g. state-related such as

state machines, … etc) that is followed in the implementation of

the design specified in the collaboration

Class To identify a behavioural style (3.2.3.5) (e.g. state-related as in

class attributes, time-related as in filters, … etc) that is followed

in the implementation of the class

Operation To identify a behavioural style (3.2.3.5) (e.g. state-related as in

static operations, time-related as in filters) that is followed in the

implementation of the operation

Tags: (refer to section 3.2.3.5 for details)

Name Type Multiplicity Description

Kind Enumeration [0..1] See attribute: Kind

Parameter Expression [0..*] See attribute: Parameters

Carleton University, TR SCE-06-19 Decermber 2006

 97

Name Type Multiplicity Description

Reference Reference to a

model element

stereotyped

<<Requirement>>

(5.2.9), or a String

[0..*] See relationship: References

Explanation String [0..*] See attribute: Explanation

5.2.13 <<Nature>>

Definiton:

See related concept.

Related Concept:

Nature (3.2.3.6)

Base Classes:

Base Class Usage Rationale

Class To identify the nature (3.2.3.6) (e.g. COTS, previously developed,

deactivated, … etc) of the class

Operation To identify the nature (3.2.3.6) (e.g. deactivated, … etc) of the

operation

Tags: (refer to section 3.2.3.6 for details)

Name Type Multiplicity Description

Kind Enumeration [0..1] See attribute: Kind

Reference Reference to a

model element

stereotyped

<<Requirement>>

(5.2.9), or a String

[0..*] See relationship: References

Explanation String [0..*] See attribute: Explanation

Carleton University, TR SCE-06-19 Decermber 2006

 98

5.2.14 <<Rationale>>

Definiton:

See related concept.

Related Concept:

Rationale (3.2.3.7)

Base Classes:

Base Class Usage Rationale

Collaboration To explain the rationale (3.2.3.7) or explain the design decisions

for the design specified in the collaboration

Class To explain the rationale (3.2.3.7), explain the design decisions, or

identify the reason for defining and developing the class

Operation To explain the rationale (3.2.3.7), explain the design decisions, or

identify the reason for defining and developing the operation

Relationship To explain the rationale (3.2.3.7), explain the design decisions, or

identify the reason for defining the relationship

Tags: (refer to section 3.2.3.7 for details)

Name Type Multiplicity Description

Reference Reference to a

model element

stereotyped

<<Requirement>>

(5.2.9), or a String

[1..*] See relationship: References

Explanation String [0..*] See attribute: Explanation

5.2.15 <<Event>>

Definiton:

See related concept.

Carleton University, TR SCE-06-19 Decermber 2006

 99

Related Concept:

Event (3.2.3.8)

Base Classes:

Base Class Usage Rationale

Class To indicate that the class contains information that constitutes and

describes an event (3.2.3.8) of interest

Operation To indicate that invoking the specified operation is an event

(3.2.3.8) of interest, and to further describe the operation’s effect

on safety

Tags: (refer to section 3.2.3.8 for details)

Name Type Multiplicity Description

Kind Enumeration [0..1] See attribute: Kind

When Expression [0..*] See attribute: When

EffectOnSafetyDirection Enumeration [0..*] See attribute: Effect On

Safety Direction

EffectOnSafetyValue Expression [0..*] See attribute: Effect On

Safety Value

EffectOnSafetyContext Expression [0..*] See attribute:

EffectOnSafetyContext

5.2.16 <<Reaction>>

Definiton:

See related concept.

Related Concept:

Reaction (3.2.3.9)

Carleton University, TR SCE-06-19 Decermber 2006

 100

Base Classes:

Base Class Usage Rationale

Class To indicate that the class contains the logic (e.g. hardware or

executable software code) that constitutes and describes a reaction

(3.2.3.9)

Operation To indicate that invoking the specified operation is a reaction

(3.2.3.9) to one or more events (3.2.3.8) of interest, and to further

describe the operation’s effect on safety

Tags: (refer to section 3.2.3.9 for details)

Name Type Multiplicity Description

Kind Enumeration [0..1] See attribute: Kind

ConsequenceOf Reference to a

model element

stereotyped

<<Event>>

(5.2.15) (or its

subclass

<<Reaction>>

(5.2.16))

[1..*] See relationship: Is

Consequence Of

When Expression [0..*] See attribute: When

EffectOnSafetyDirection Enumeration [0..*] See attribute: Effect On

Safety Direction

EffectOnSafetyValue Expression [0..*] See attribute: Effect On

Safety Value

EffectOnSafetyContext Expression [0..*] See attribute:

EffectOnSafetyContext

5.2.17 <<SafetyCritical>>

Definiton:

See related concept.

Carleton University, TR SCE-06-19 Decermber 2006

 101

Related Concept:

SafetyCritical (3.2.3.10)

Base Classes:

Base Class Usage Rationale

Class To indicate that the class is safety-critical (3.2.3.10) and specify

its safety (e.g. airworthiness) level

Operation To indicate that invoking the operation is safety-critical (3.2.3.10)

and specify its safety (e.g. airworthiness) level

Relationship To indicate that the relationship is safety-critical (3.2.3.10) and

specify its safety (e.g. airworthiness) level

Tags: (refer to section 3.2.3.10 for details)

Name Type Multiplicity Description

CriticalityLevel Enumeration [0..1] See attribute: Criticality Level

ConfidenceLevel Enumeration [0..1] See attribute: Confidence

Level

TriggeredEvent Reference to a

model element

stereotyped

<<Event>>

(5.2.15) (or its

subclass

<<Reaction>>

(5.2.16))

[0..*] See relationship: Triggers

5.2.18 <<Partition>>

Definiton:

See related concept.

Related Concept:

Partition (3.2.3.11)

Carleton University, TR SCE-06-19 Decermber 2006

 102

Base Classes:

Base Class Usage Rationale

Class To indicate that the class is has been partitioned (3.2.3.11) from

some other (usually more safety-critical (3.2.3.10)) class

Tags: (refer to section 3.2.3.11 for details)

Name Type Multiplicity Description

PartitionedFrom Reference to a

class model

element

stereotyped

<<SafetyCritical>>

(5.2.17)

[1..*] See relationship: Is

Partitioned From

Reference Reference to a

model element

stereotyped

<<Requirement>>

(5.2.9) , or a String

[0..*] See relationship: References

Explanation String [0..*] See attribute: Explanation

5.2.19 <<Handler>>

Definiton:

See related concept.

Related Concept:

Handler (3.2.3.12)

Base Classes:

Base Class Usage Rationale

Class To indicate that the class is an event (3.2.3.8) handler (3.2.3.12)

Carleton University, TR SCE-06-19 Decermber 2006

 103

Tags: (refer to section 3.2.3.12 for details)

Name Type Multiplicity Description

HandleableEvent Reference to a

model element

stereotyped

<<Event>>

(5.2.15) (or its

subclass

<<Reaction>>

(5.2.16))

[1..*] See relationship: Handles

PerformedReaction Reference to a

model element

stereotyped

<<Reaction>>

(5.2.16)

[1..*] See relationship: Performs

5.2.20 <<Monitor>>

Definiton:

See related concept.

Related Concept:

Monitor (3.2.3.13)

Base Classes:

Base Class Usage Rationale

Class To indicate that the class is a monitor (3.2.3.13) that monitors

some other class

Tags: (refer to section 3.2.3.13 for details)

Name Type Multiplicity Description

Kind Enumeration [0..1] See attribute: Kind

Carleton University, TR SCE-06-19 Decermber 2006

 104

Name Type Multiplicity Description

MonitoredEntity Reference to a

class model

element

stereotyped

<<SafetyCritical>>

(5.2.17)

[1..*] See relationship: Monitors

DetectableEvent Reference to a

model element

stereotyped

<<Event>>

(5.2.15) (or its

subclass

<<Reaction>>

(5.2.16))

[1..*] See relationship: Detects

EventHandler Reference to a

model element

stereotyped

<<Handler>>

(5.2.19)

[0..*] See relationship: Notifies

5.2.21 <<Simulator>>

Definiton:

See related concept.

Related Concept:

Simulator (3.2.3.14)

Base Classes:

Base Class Usage Rationale

Class To indicate that the class is a simulator (3.2.3.14) for some other

class or operation

Carleton University, TR SCE-06-19 Decermber 2006

 105

Tags: (refer to section 3.2.3.14 for details)

Name Type Multiplicity Description

SimulatedEntity Reference to a

class or operation

model element

stereotyped

<<SafetyCritical>>

(5.2.17)

[1..*] See relationship: Simulates

Parameter Expression [0..*] See attribute: Parameters

5.2.22 <<Strategy>>

Definiton:

See related concept.

Related Concept:

Strategy (3.2.3.15)

Base Classes:

Base Class Usage Rationale

Collaboration To specify and describe a particular strategy (3.2.3.15) that is used

throughout the collaboration

Class To specify and describe a particular strategy (3.2.3.15) that the

class implements

Tags: (refer to section 3.2.3.15 for details)

Name Type Multiplicity Description

Kind Enumeration [0..1] See attribute: Kind

Parameter Expression [0..*] See attribute: Parameters

Carleton University, TR SCE-06-19 Decermber 2006

 106

Name Type Multiplicity Description

DesignOf Reference to a

class or operation

model element

stereotyped

<<SafetyCritical>>

(5.2.17)

[1..*] See relationship: Describes

Design Of

5.2.23 <<Formalism>>

Definiton:

See related concept.

Related Concept:

Formalism (3.2.3.16)

Base Classes:

Base Class Usage Rationale

Collaboration To indicate that the collaboration is designed or verified by the

use of formal methods (3.2.3.16)

Class To indicate that the class is designed or verified by the use of

formal methods (3.2.3.16)

Operation To indicate that the operation is designed or verified by the use of

formal methods (3.2.3.16)

Tags: (refer to section 3.2.3.16 for details)

Name Type Multiplicity Description

Method Enumeration [0..*] See attribute: Methods

Carleton University, TR SCE-06-19 Decermber 2006

 107

Name Type Multiplicity Description

FormalismOf Reference to a

class or operation

model element

stereotyped

<<SafetyCritical>>

(5.2.17)

[1..*] See relationship: Describes

Formalism Of

5.2.24 <<Complexity>>

Definiton:

See related concept.

Related Concept:

Complexity (3.2.3.17)

Base Classes:

Base Class Usage Rationale

Collaboration To describe a complexity (3.2.3.17) aspect (e.g. coupling using a

specific measure, … etc) of a collaboration

Class To describe a complexity (3.2.3.17) aspect (e.g. number of entry

points of code, … etc) of a class

Operation To describe a complexity (3.2.3.17) aspect (e.g. level of nesting,

… etc) of an operation

Relationship To describe a complexity (3.2.3.17) aspect (e.g. coupling using a

specific measure, … etc) of a relationship

Tags: (refer to section 3.2.3.17 for details)

Name Type Multiplicity Description

Measure Enumeration [0..1] See attribute: Measure

Value Expression [0..1] See attribute: Value

Carleton University, TR SCE-06-19 Decermber 2006

 108

Name Type Multiplicity Description

ComplexityOf Reference to a

class or operation

model element

stereotyped

<<SafetyCritical>>

(5.2.17)

[1..*] See relationship: Describes

Complexity Of

5.2.25 <<Interface>>

Definiton:

See related concept.

Related Concept:

Interface (3.2.3.18)

Base Classes:

Base Class Usage Rationale

Class Indicates that the class acts as an interface (3.2.3.18) to some

other class

Tags: (refer to section 3.2.3.18 for details)

Name Type Multiplicity Description

IsBetweenHardwareAndSoftware Boolean [0..1] See attribute: Is

Between

Hardware And

Software

InterfaceFor Reference to a

class model

element

stereotyped

<<SafetyCritical>>

(5.2.17)

[1..*] See relationship:

Is Interface For

Carleton University, TR SCE-06-19 Decermber 2006

 109

Name Type Multiplicity Description

ProtocolID String [0..1] See attribute:

Protocol ID

InputFunctionParameter Expression [0..*] See attribute:

Input Function

Parameters

OutputFunctionParameter Expression [0..*] See attribute:

Output Function

Parameters

5.2.26 <<Concurrent>>

Definiton:

See related concept.

Related Concept:

Concurrent (3.2.3.19)

Base Classes:

Base Class Usage Rationale

Class To identify the concurrency (3.2.3.19) role (e.g. active, passive,

resource, … etc) that a specific class assumes in the model

Tags: (refer to section 3.2.3.19 for details)

Name Type Multiplicity Description

Role Enumeration [0..1] See attribute: Role

IsShared Boolean [0..1] See attribute: Is Shared

Carleton University, TR SCE-06-19 Decermber 2006

 110

Name Type Multiplicity Description

TriggeredEvent Reference to a

model element

stereotyped

<<Event>>

(5.2.15) (or its

subclass

<<Reaction>>

(5.2.16))

[0..*] See relationship: Triggers

Parameter Expression [0..*] See attribute: Parameters

5.2.27 <<Defensive>>

Definiton:

See related concept.

Related Concept:

Defensive (3.2.3.20)

Base Classes:

Base Class Usage Rationale

Class To specify that the class employs a defensive programming

approach (3.2.3.20) and describes the reactions to actions that are

defended against

Operation To specify that the operation employs a defensive programming

approach (3.2.3.20) and describes the reactions to actions that are

defended against

Tags: (refer to section 3.2.3.20 for details)

Name Type Multiplicity Description

DefendableInput Expression [1..*] See attribute: Defendable

Inputs

Carleton University, TR SCE-06-19 Decermber 2006

 111

Name Type Multiplicity Description

Reaction Reference to a

model element

stereotyped

<<Reaction>>

(5.2.16)

[1..*] See relationship: Performs

5.2.28 <<Configurable>>

Definiton:

See related concept.

Related Concept:

Configurable (3.2.3.22)

Base Classes:

Base Class Usage Rationale

Class To specify that the class can be configured (3.2.3.22) to produce a

different configuration (3.2.3.21) with a different behaviour

Tags: (refer to section 3.2.3.22 for details)

Name Type Multiplicity Description

Kind Enumeration [0..1] See attribute: Kind

When Enumeration [0..1] See attribute:

When

DefaultConfiguration Reference to a model

element stereotyped

<<ConfigurationContext>>

(5.2.8)

[1..1] See relationship:

Is Defaulted To

ProducibleConfiguration Reference to a model

element stereotyped

<<ConfigurationContext>>

(5.2.8)

[1..*] See relationship:

Is Configurable To

Carleton University, TR SCE-06-19 Decermber 2006

 112

5.2.29 <<Loadable>>

Definiton:

See related concept.

Related Concept:

Loadable (3.2.3.23)

Base Classes:

Base Class Usage Rationale

Class To specify that the class can be loaded (3.2.3.23) on some other

configurable (3.2.3.22) class to produce a different configuration

(3.2.3.21)

Tags: (refer to section 3.2.3.23 for details)

Name Type Multiplicity Description

LoadableOn Reference to a model

element stereotyped

<<Configurable>> (5.2.28)

[1..*] See relationship: Is

Loadable On

BaseConfiguration Reference to a model

element stereotyped

<<ConfigurationContext>>

(5.2.8)

[0..*] See relationship:

Requires

ResultantConfiguration Reference to a model

element stereotyped

<<ConfigurationContext>>

(5.2.8)

[1..*] See relationship:

Produces

5.2.30 <<Configurator>>

Definiton:

See related concept.

Carleton University, TR SCE-06-19 Decermber 2006

 113

Related Concept:

Configurator (3.2.3.24)

Base Classes:

Base Class Usage Rationale

Class To specify that the class can configure configurable (3.2.3.22)

classes to change the configuration (3.2.3.21) (and thus produce a

different behaviour)

Operation To specify that the invoking the operation can configure

configurable (3.2.3.22) classes to change the configuration

(3.2.3.21) (and thus produce a different behaviour)

Tags: (refer to section 3.2.3.24 for details)

Name Type Multiplicity Description

ConfigurableEntity Reference to a

model element

stereotyped

<<Configurable>>

(5.2.28)

[1..*] See relationship: Configures

ConfigurationEntity Reference to a

model element

stereotyped

<<Loadable>>

(5.2.29)

[1..*] See relationship: Loads

5.2.31 <<Replicated>>

Definiton:

See related concept.

Related Concept:

Replicated (3.2.3.25)

Carleton University, TR SCE-06-19 Decermber 2006

 114

Base Classes:

Base Class Usage Rationale

Class To indicate that class is replicated (3.2.3.25)

Tags: (refer to section 3.2.3.25 for details)

Name Type Multiplicity Description

ID String [0..1] See attribute: ID (Replicated)

ReplicationGroupID String [0..1] Identifies the ReplicationGroup

(3.2.3.27), specified using the

<<ReliabilityContext>> (5.2.2)

stereotype, which owns this

replicated instance.

See relationship: Owns

(ReplicationGroup)

5.2.32 <<Comparator>>

Definiton:

See related concept.

Related Concept:

Comparator (3.2.3.26)

Base Classes:

Base Class Usage Rationale

Class To indicate that the class is a comparator (3.2.3.26) that compares

the outputs of replicated (3.2.3.25) classes

Operation To indicate that invoking the operation compares (3.2.3.26) the

outputs of replicated (3.2.3.25) classes

Carleton University, TR SCE-06-19 Decermber 2006

 115

Tags: (refer to section 3.2.3.26 for details)

Name Type Multiplicity Description

ReplicationGroupID String [0..1] Identifies the

ReplicationGroup (3.2.3.27),

specified using the

<<ReliabilityContext>> (5.2.2)

stereotype, which owns this

replicated instance.

See relationship: Owns

(ReplicationGroup)

PolicyParameter Expression or

Enumeration

[0..*] See attribute: Policy

Parameters (Comparator)

ComparedEntity Reference to a

model element

stereotyped

<<Replicated>>

(5.2.31)

[2..*] See relationship: Compares

(Comparator)

5.3 Examples

This section presents examples of software models using the proposed UML profile. The

examples are explained in detail, and they serve to help the reader better understand the

UML profile and how it can be used.This thesis discusses a total of nine examples (plus a

case study in section 7). Three of those examples are discussed below as they primarily

use concepts (and stereotypes) that are key to the airworthiness standard (e.g., the notion

of software level) or that are not supported by other UML profiles. The reminaing six

examples are discussed in . Appendix G. The examples are also stereotyped according to

Gomaa’s class classification as presented in [7] and summarized in Appendix E.

5.3.1 Hardware/Software Interfaces

The example in Figure 8 shows a Kalman filter and how it connects to the radar that

provides its input and a simulator of the outside world’s events.

Carleton University, TR SCE-06-19 Decermber 2006

 116

Kalman filters are recursive functions. Therefore, KalmanFilter is stereotyped with

<<ImplementationStyle>> (5.2.11) whose “Kind” tagged value is set to “Recursive”.

The project in which this system is developed has a coding standard requirement that says

that “recursive algorithms shall not be used”. Therefore the KalmanFilter class is also a

deviation, or a violation, of the coding standard requirement, and is stereotyped with

<<Deviation>> (5.2.10) whose “Kind” tagged value is set to

“UsingRecursiveAlgorithm”. The “Reference” tagged value is set to “CodingStandard” to

indicate that using recursive algorithms is a deviation from, or a violation of, the project’s

coding standard.

Furthermore, filters are time-related functions. Therefore, KalmanFilter is also

stereotyped with <<BehaviouralStyle>> (5.2.12) whose “Kind” tagged value is set to

“Time-Related”.

Now, Kalman filters process radar outputs. Since this example has a software

implementation for the Kalman filter, it has to interface with the actual radar hardware on

the aircraft. For this reason, RadarInterface is available to provide an interface between

the software Kalman filter and the hardware radar device. Thus, RadarInterface is

stereotyped with <<Interface>> (5.2.25) whose “IsBetweenHardwareAndSoftware”

tagged value is set to “true”. The “InterfaceFor” tagged value indicates that

RadarInterface is an interface for the actual radar hardware.

The testing of such systems is often performed in system integration labs. In other words,

the software is not loaded on the aircraft and the aircraft flown just to perform software

unit or integration testing. That would just be too expensive! Therefore, a software

simulator is developed to simulate world events that happen outside of the aircraft. This

simulator is RealWorldEventSimulator and is stereotyped with <<Simulator>>

(5.2.21). The “SimulatedEntity” tagged value indicates that it simulates the input to

RadarInterface. Furthermore, the “SimulationParameter” tagged value indicates that

the inputs exhibit a stochastic Poisson process with an average inter-arrival time of 20

milliseconds.

Carleton University, TR SCE-06-19 Decermber 2006

 117

All the information described above is relevant for two purposes. First, it describes how

software was designed to improve the development process - this was achieved, as

described above, by using a simulator to improve the testing process and a

hardware/software interface to provide communication between radar hardware and

Kalman filter software. Simulators are often used to test systems [1]. Therefore, the

whole diagram is stereotyped with <<DesignContext>> (5.2.7) to indicate that this design

setup is of special interest. Secondly, the modeled classes contain information that is

relevant for the software certification aspects. For example, the airworthiness standard

specifies that the certification authorities need to know about all hardware/software

interfaces and deviations from plans or standards. Therefore, the diagram is stereotyped

with <<CertificationContext>> (5.2.6) to indicate that it contains information relevant for

the certification of the software in this diagram.

<<DesignContext>>
<<CertificationContext>> <<algorithm>>

<<Simulator>>
{SimulatedEntity=“RadarInput”,

SimulatorParameter=(Poisson, Lamba=20ms)}

RealWorldEventSimulator

<<algorithm>>

<<ImplementationStyle>> {Kind=Recursive}

<<Deviation>>
{Kind=UsingRecursiveAlgorithm

Reference=CodingStandard}

<<BehaviouralStye>> {Kind=Time-Related}

KalmanFilter

<<input device interface>>

<<Interface>>
{IsBetweenHardwareAndSoftware=true

InterfaceFor=RadarHardware}

RadarInterface

Reads Simulator Outputs

Reads Radar Outputs

1

1

1

1

Figure 8: Kalman filter processing input, through an interface, from a simulator

(structure).

5.3.2 Contributions to Failure Conditions

The example Figure 9 shows software that controls the landing wheels of the aircraft.

PilotKeyboardInterface is an interface to the keyboard used by the aircraft’s pilots to

deploy or hide the landing wheels when desired. An aircraft normally has two pilots, so it

is likely that there will be several keyboards that can command

LandingWheelsController to deploy or hide the landing wheels.

Carleton University, TR SCE-06-19 Decermber 2006

 118

LandingWheelsController communicates with the landing wheel hardware, through

LandingWheelsInterface, and can command it to hide or deploy the wheels. The

wheels are deployed when the aircraft is on the ground or about to land. Since

LandingWheelsInterface is an interface for the landing wheel hardware, it is

stereotyped with <<Interface>> (5.2.25), its “IsBetweenHardwareAndSoftware” tagged

value is set to “true”, and its “InterfaceFor” tagged value is set to “LandingWheels”.

LandingWheelsController is a safety-critical element as well because it must ensure

that the landing wheels are deployed when the aircraft is on the ground or it is at a low

altitude because it is landing. If the landing wheels are not deployed when the aircraft is

on the ground or is landing, then this could result in fatal injuries to the aircraft

occupants. In the context of airworthiness, such software is assigned is assigned level B.

Therefore, LandingWheelsController is stereotyped with <<SafetyCritical>> (5.2.17)

and its “CriticalityLevel” tagged value is set to “B”. This is also why this diagram was

stereotyped with <<SafetyContext>> (5.2.1). Because it depends on

LandingWheelsInterface, the airworthiness rules specify that

LandingWheelsInterface must also be safety-critical and have a software level equal to

at least the highest level of all classes that depend on it. In this example,

LandingWheelsInterface is stereotyped with <<SafetyCritical>> (5.2.17) and is

assigned “CriticalityLevel” equal to that of LandingWheelsController, namely level

“B”.

To ensure a higher level of safety, LandingWheelsController implements defensive

programming mechanisms by ensuring that the pilot does not attempt to hide the landing

wheels when they shouldn’t. Defensive programming is common when developing user

interfaces. In this example, LandingWheelsController defends against the pilot’s

attempt to hide the landing wheels when the aircraft’s altitude is less than 100 meters by

keeping the landing wheels deployed. This is explicitly specified by stereotyping

LandingWheelsController with the <<Defensive>> (5.2.27) stereotype and specifying

its “DefendableInput” and “Reaction” tagged values. (The KeepWheelsDeployed model

element stereotyped <<Reaction>> is not shown in the diagram: It would be an operation

of the LandingWheelsInterface class.)

Carleton University, TR SCE-06-19 Decermber 2006

 119

LandingWheelsController determines the aircraft’s altitude by reading the radar output

from RadarInterface. RadarInterface was explained in detail in section 5.3.1.

However, it has also been stereotyped here with <<SafetyCritical>> (5.2.17) to explicitly

specify the fact that some safety-critical functionality, such as

LandingWheelsController, depends on it. Moreover, it has also been stereotyped with

<<Complexity>> (5.2.24) and its “Measure” and “Value” tagged values indicate that the

implementation must not have a “Big-O” larger than “n2” (where the meaning of “n” is

dependent on the algorithm in context). This is because radars usually have high

frequency inputs, so the code of the corresponding interfaces must be optimized.

Furthermore, RadarInterface is monitored by RadarDataValidator.

RadarDataValidator is a monitor whose purpose is to ensure that RadarInterface

produces high-integrity information (i.e. high precision and accuracy). This is specified

through the <<Monitor>> (5.2.20) stereotype that is applied on RadarDataValidator.

Because the purpose of RadarValidatorDataValidator is to ensure the integrity of the

data, its “Kind” tagged value is set to “Integrity”. Furthermore, the “MonitoredEntity”

tagged value explicitly identifies the class that is monitored, namely RadarInterface.

This is also why this diagram was stereotyped <<IntegrityContext>> (5.2.3).

Finally, this diagram was also stereotyped with <<ReliabilityContext>> (5.2.2) because it

is crucial that the modeled classes be reliable to the requirements. For example, the

requirements specified by the <<Defensive>> (5.2.27) stereotype on

LandingWheelsController must be correctly implemented (e.g. it must not allow hiding

the wheels for altitudes less than 100 meters, and not greater than 100 meters!).

Carleton University, TR SCE-06-19 Decermber 2006

 120

<<SafetyContext>>
<<ReliabilityContext>>
<<IntegrityContext>>

<<state dependent control>>

<<SafetyCritical>> {CriticalityLevel=B}

<<Defensive>>
{DefendableInput=

‘Altitude < 100 m && Command=“HideWheels”’
Reaction=KeepWheelsDeployed}

LandingWheelsController

<<algorithm>>

<<Monitor>> {Kind=Integrity
MonitoredEntity=RadarInterface}

RadarDataValidator

<<input device interface>>

<<SafetyCritical>> {CriticalityLevel=B}

<<Complexity>> {Measure=Big-O, Value=“n2”},
ComplexityOf=RadarInterface}

<<Interface>>
{IsBetweenHardwareAndSoftware=true

InterfaceFor=RadarHardware}

RadarInterface

<<input device interface>>

PilotKeyboardInterface

1
1

Monitors
*

1
Commands

Reads Radar Outputs1 1

<<output device interface>>

<<Interface>>
{IsBetweenHardwareAndSoftware=true

InterfaceFor=LandingWheels}

<<SafetyCritical>> {CriticalityLevel=B}

LandingWheelsInterface

Commands

1

1

Figure 9: Landing wheel controller processing user and radar inputs (structure).

5.3.3 Software Configurations

The diagram in Figure 10 shows a configurable user interface. The user interface interacts

with the users by displaying text in their language of preference. UserInterface itself is

language-independent. It reads and displays textual strings in any of three languages:

English, French, and German. This is achieved through UserInterfaceDictionary,

which is stereotyped with <<Configurable>> (5.2.28) to indicate that the user can change

its configuration. The “Kind” tagged value is set to “Lookup-Table” and the “When”

tagged value is set to “Run-Time” to indicate that look-up tables can be loaded into it at

run-time to change its configuration. The “DefaultConfiguration” tagged value specifies

that the “EnglishInterface” is the default configuration for UserInterfaceDictionary.

The possible configurations that can result from such a load are listed in the

“ProducibleConfiguration” tagged values. In this example, we have three possible

configurations that can result from such a load: “EnglishInterface”, “FrenchInterface”,

and “GermanInterface”.

Carleton University, TR SCE-06-19 Decermber 2006

 121

DictionaryLoader is the actual software than can perform the software load and

therefore change the software configuration. Thus, it is stereotyped with

<<Configurator>> (5.2.29). The “ConfigurableEntity” tagged value identifies the class

that can be configured, namely UserInterfaceDictionary. The “ConfigurationEntity”

tagged values identify the classes that can be loaded on the “ConfigurableEntity”, namely

EnglishDictionaryTable, FrenchDictionaryTable, and GermanDictionaryTable,

which are stereotyped with <<Loadable>> (5.2.29) to indicate that they can be loaded in

appropriate situations. The “LoadableOn” tagged values are set to

“UserInterfaceDictionary” to indicate that they are loadable on

UserInterfaceDictionary, and the “ResultantConfiguration” specifies which

configuration is produced by loading EnglishDictionaryTable,

FrenchDictionaryTable, and GermanDictionaryTable, which are

EnglishInterface, FrenchInterface, and GermanInterface, respectively.

<<ConfigurationContext>>

<<coordinator>>

<<Configurator>>
{ConfigurableEntity=‘UserInterfaceDictionary’,
ConfigurationEntity=‘EnglishDictionaryTable’,
ConfigurationEntity=‘FrenchDictionaryTable’,
ConfigurationEntity=‘GermanDictionaryTable’}

DictionaryLoader

<<entity>>

<<Loadable>>
{LoadableOn=UserInterfaceDictionary,

ResultantConfiguration=GermanInterface}

GermanDictionaryTable

<<entity>>

<<Loadable>>
{LoadableOn=UserInterfaceDictionary,

ResultantConfiguration=EnglishInterface}

EnglishDictionaryTable

<<entity>>

<<Loadable>>
{LoadableOn=UserInterfaceDictionary,

ResultantConfiguration=FrenchInterface}

FrenchDictionaryTable

<<entity>>

<<Configurable>>
{Kind=Lookup-Table, When=Run-Time,
DefaultConfiguration=‘EnglishInterface’,

ProducibleConfiguration=‘EnglishInterface’,
ProducibleConfiguration=‘FrenchInterface’,
ProducibleConfiguration=‘GermanInterface’,

UserInterfaceDictionary

<<user interface>>

UserInterface

1

Loads
1

11 Configures

1

1

Reads

<<entity>>

DictionaryTable

1

Reads
1

Figure 10: User interface language configurations (structure).

Carleton University, TR SCE-06-19 Decermber 2006

 122

The diagram is stereotyped with <<ConfigurationContext>> (5.2.8) to indicate that it

contains information that is relevant to changing software configurations.

5.4 Development Methodology

The proposed UML profile provides a mechanism to model safety information in UML

models. However, such mechanism is only a part of an overall process for developing

airworthiness-compliant software. A methodology for developing airworthiness-

compliant software products is shown in Figure 11. In practice, it is likely that a step

starts before its previous step is fully completed and closed. The different steps are

further described below.

Start
S-1: Define the system’s

high-level functional
requirements

S-2: Define the system
architecture

S-3: Develop the detailed
functional and non-functional,

excluding safety,
requirements

S-5: Perform a critical review
S-6: Are any

issues
identified?

End

No

Yes

S-4: Perform a safety
assessment and develop

safety requirements

S-7: Develop the subsystems’
detailed design while

monitoring safety
S-8: Certify system

Figure 11: Development methodology of airworthiness-compliant software products.

Each step in Figure 11 is explained in Table 4.

Step Description

S-1 Define the system’s high-level functional requirements
Activity: The system boundaries, behaviour, and high-level requirements are
defined. The system’s boundaries define what consistutes part of the system, and
what does not. This is an important aspect for analysing the safety aspects of the
system, as whether a system is safe or not depends on what is considered part of
the system and what is not. In addition, the system’s general behaviour, along with
the high-level functional requirements, are defined. At the end of this step, the
system’s behaviour is understood and documented.
Output: The documented behaviour of the system, usually presented as the
system’s high-level functional requirements based on the definition of the system
boundaries.

Carleton University, TR SCE-06-19 Decermber 2006

 123

Step Description

S-2 Define the system architecture
Activity: The system architecture is defined based on its high-level functional
requirements. The various subsystems are defined, and the role of each subsystem
in implementing the system’s high-level functional requirements are defined and
documented. As a result, the high-level functional requirements for each subsystem
are defined. The proposed UML profile may be used to model the system
architecture.
Output: The system architecture, including the identification and definition of its
subsystems.

S-3 Develop the detailed functional and non-functional, excluding safety, requirements
Activity: Detailed functional requirements are developed for the system and its
subsystems. In addition, non-functional requirements, excluding safety
requirements, are developed.
Output: Detailed functional and non-functional, excluding safety, requirements of
the system and its subsystems.

S-4 Perform a safety assessment and develop safety requirements
Activity: By this stage, the behaviour of the system and its subsystems is already
understood. In this step, therefore, a safety assessment of the system is performed
based on its architecture and intended behaviour, and using one or more safety
assessment methods such as the ones identified in section 2.1. The results of the
safety assessment are translated into safety requirements, and then the safety
requirements are assigned to the various subsystems. This step includes USAGE 1
as defined in section 2.4.
Output: Safety hazards identified in the safety assessment, and safety
requirements for the system and its subsystems.

S-5 Perform a critical review
Activity: The output of steps S-1 – S-4 are checked for consistency among each
other. Areas of interest in this step are whether the safety requirements are
complete with respect to the functional and non-functional requirements, and
whether there are any ambiguous, missing, or conflicting requirements. In addition,
the system architecture is analysed to determine whether there exists a more
suitable architecture for the identified safety requirements. Thus, the results of the
previous S1 – S4 steps iteration are analysed, which will be later used to determine
whether another iteration is necessary or not. In practice, such critical reviews are
common to hold with the project’s customer at selected milestones.
Output: A list of identified issues to be fixed. This list may be empty, but this will
be surprising unless steps S-1 – S-5 have already gone through at least two
iterations.

Carleton University, TR SCE-06-19 Decermber 2006

 124

Step Description

S-6 Are any issues identified?
Activity: The results from step S-5 are analysed. If any issues are encountered,
step S-1 is revisited to correct all identified issues. Otherwise, development is
progressed to step S-7.
Output: The decision on whether to perform another iteration of steps S-1 – S-5 or
not.

S-7 Develop the subsystems’ detailed design while monitoring safety
Activity: The subsystems’ detailed design is developed. The detailed design will
also include the specification of the system’s events of interest, and the desired
reactions to those events. The definition of the events and reactions will depend on
the safety requirements of the system. The proposed UML profile is used to design
the subsystems (USAGE 2 in section 2.4), and the design decisions are justified
(USAGE 3 in section 2.4). The design elements are traced back to the requirements
using the proposed UML profile’s stereotypes. While the subsystems are being
designed, the design’s conformance to the safety requirements is continuously
monitored (USAGE 4 in section 2.4). In practice, software implementation also
occurs in this step.
Output: The detailed design of the subsystems, the system events and reactions,
the justifications of the design decisions, and the safety monitoring information.

S-8 Certify system
Activity: The project’s safety and airworthiness engineers are engaged with the
certification authority to demonstrate the project’s compliance with the
certification requirements. In this step, safety information is obtained from the
software (USAGE 5 in section 2.4), and evidence of performing relevant activities
(such as USAGE 1, USAGE 2, USAGE 3, and USAGE 4 in section 2.4) are
presented. Any issues identified by the certification authority are corrected and the
certification is ensured to completion.
Output: Successful certification of the system.

Table 4: Details of the development methodology steps.

Carleton University, TR SCE-06-19 Decermber 2006

 125

6 GENERATION OF CERTIFICATION INFORMATION

Now that a UML profile is defined, it can be used to model software that requires

certification according to the airworthiness standard. This section shows how a UML

model using the proposed UML profile can be used to automatically generate information

that can either be submitted to the certification authorities, or can be used to track issues

of relevance to the certification authorities. In either case, this information improves

communication between airworthiness engineers and software engineers. The

information required for submission to the certification authorities for each software level

is listed in section 11 and annex A in the airworthiness standard, RTCA DO-178B [4].

6.1 Technological Requirements

In order to be able to generate certification information from UML models, there are

technological requirements that software development tools must support. Those

requirements can be summarized in one requirement, namely the ability to search UML

models based on the stereotypes that are applied to model elements and the values of the

stereotypes’ tagged values.

For example, consider a scenario when one needs to identify all safety-critical model

elements. In this case, the modeling tool must be able to search the UML model and

identify all model elements, such as classes in class diagrams, that have been stereotyped

with <<SafetyCritical>> (5.2.17). If the user of the tool needs to identify all safety-

critical model elements that are assigned software level A, for example, then the tool

must be able to read the “CriticalityLevel” tagged value of the <<SafetyCritical>>

(5.2.17) stereotype and identify when it is set to “A”. This is why the proposed UML

profile emphasizes specifying information in machine-readable language.

In practice, there are several possible methods to achieve this technological requirement

of being able to search UML models. Below is a list of some methods to guide the users

of the proposed UML profile.

Carleton University, TR SCE-06-19 Decermber 2006

 126

6.1.1 Integrated Support in UML Modeling Tools

One convenient method to extract safety information from UML models is to provide a

mechanism to do so in the UML modeling tool itself. UML modeling tools already offer

some sort of search capabilities for the designers. For example, ARTiSAN Studio [31],

which is a UML modeling tool from ARTiSAN Software Inc., allows designers to

identify where specific model elements are used. That is one example of ARTiSAN’s

search capabilities. Another example of a modeling tool is International Business

Machines Corporation’s (IBM) Rational Software Architect [32]. A third example is

Telelogic’s Rhapsody [33]. This UML model-driven development tool allows designers

to search UML models for uses of specific stereotypes. In addition, it supports the Visual

Basic for Applications (VBA) scripting language, which allows modelers to write their

own scripts and execute them on models. This could be used to perform search queries.

The Eclipse Modeling Framework (EMF) for Java [34] is a popular, and easily

extensible, software development framework. Some of EMF’s extensions include the

capability to use the Object Constraint Language (OCL) [35] to specify search queries on

UML models, and then write Java code to execute them. Examples of the search

capabilities of this technology include the capability to search for all objects that are

instances of a specific class. However, the current state of this technology does not

support searching UML models based on the stereotypes applied to model elements and

the values assigned to the tagged values. Nevertheless, the integration of EMF and OCL

is a promising approach that should be easibly extensible to support search queries based

on stereotypes and tagged values.

6.1.2 Exporting UML Models using XMI

XMI [36] is an OMG standard for representing, and therefore exchanging, models and

metadata in an XML-based language.

In practice, UML modeling tools can export UML models in the XMI language. This

would create an XML file containing all the model data. Since XMI is a standard format,

it can be imported by any other tool, thus establishing a common format across different

Carleton University, TR SCE-06-19 Decermber 2006

 127

tools. For example, imagine project A that is using Rational Software Architect to model

its software. Further, assume that project A is similar in nature to a previously completed

project B that used ARTiSAN Studio to model its software. Project A now wants to reuse

the software model from project B. To achieve this, one would use a feature from

ARTiSAN Studio that would export an XMI file containing all the software model for

project B. Then, project A can import this XMI file using an import XMI file feature in

Rational Software Architect. Thus, the model would be transfered from project B to

project A.

In our case of generating certification information, the model would be exported from the

modeling tool by generating an XMI file. Once an XMI file containing the software

model is available, it can be easily parsed and searched. This is possible in many ways,

but the most appropriate method would probably involve the use of the Extensible

Stylesheet Language (XSL) [37]. XSL is used to parse and transform XML-based files,

such as XMI files, to any desired format. Such transformation is achieved by using XSL

files called stylesheets. The purpose of XSL stylesheets is then to display the same model

data in different formats or views, just like the Model-View-Controller (MVC) software

pattern displays the same model information in different views. Using this approach, XSL

stylesheets can be developed to execute search queries on the model data in the XMI

files.

6.2 Examples

The examples presented below are specified in a high-level Structured Query Language

(SQL)-like language. It is intended to be pseudocode-like, result in shorter text (see

below), and be implementation-independent. Developers can also use them to implement

using existing development tools and frameworks (refer to documentation of the existing

tools and frameworks for more detail). It does not require the reader to have any

knowledge of other tools or frameworks. The grammar for the language used is specified

in an extension of the Extended Backus-Naur Form (EBNF), which is a popular syntax

for specifiying languages [38]. The EBNF language itself is specified in the EBNF

Carleton University, TR SCE-06-19 Decermber 2006

 128

standard [39]. One popular example of a language specified in EBNF is the Ada language

as specified in the Ada 95 Language Reference Manual [40].

The EBNF meta-symbols used in this section are:

1. “::=” means “is defined as”.

2. “|” means “or”.

3. Literal strings are enclosed in double-quotes “”.

4. Angle brackets “<>” are used around category names.

5. Optional items (zero or one) are enclosed in square brackets “[]”.

6. Repetitive items (zero or more) are enclosed in braces “{}”.

The grammar for the search language used in this section, represented in EBNF form, is:

<search-query> ::= "SEARCH FOR " <subject> [" " <stereotype-criteria>]

<subject> ::== "all model elements"

<stereotype-criteria> ::= "STEREOTYPED WITH (" <stereotype-criterion> ")
{" AND STEREOTYPED WITH (" <stereotype-criterion> } ")"

<stereotype-criterion> ::= "<<" <stereotype-name> ">>" [<tagged-value-
criteria]

<stereotype-name> ::= <string>

<tagged-value-criteria> ::= "WITH TAGGED VALUE (" <tagged-value-
criterion> ") " {"AND WITH TAGGED VALUE (" <tagged-value-criterion> ")"}

<tagged-value-criterion> ::= <tagged-value-name> "=" <tagged-value> |
<tagged-value-element-dereference> "IS " <stereotype-criteria>

<tagged-value-element-dereference> ::= <tagged-value-name> ".Element"

<tagged=value-name> ::= <string>

The <tagged-value-element-dereference> is used to obtain the model element to

which a tagged value refers.

6.2.1 Hardware/Software Interfaces

Section 11.1 bullet a. in the airworthiness standard RTCA DO-178B [4] requires that the

project’s Plan for Software Aspects of Certification (PSAC), which is submitted to the

Carleton University, TR SCE-06-19 Decermber 2006

 129

certification authority, include a description of hardware/software interfaces in the

system. Furthermore, section 11.9 bullet f. in the airworthiness standard RTCA DO-178B

[4] requires that hardware/software interfaces be documented and the requirements of

their protocols, frequency of input, and frequency of outputs be presented.

A list of hardware/software interfaces can be extracted from the model using the

following search query:

SEARCH FOR all model elements STEREOTYPED WITH (<<Interface>>

WITH TAGGED VALUE (IsBetweenHardwareAndSoftware = true))

From the results of this query, the “ProtocolID”, “InputFunctionParameter”, and

“OutputFunctionParameter” tagged values of the <<Interface>> (5.2.25) stereotype can

be read to present the information described above. For example, executing this search

query on the model in Figure 8 gives the following results: RadarInterface.

6.2.2 Contributions to Failure Conditions

Section 11.1 bullet c. in the airworthiness standard RTCA DO-178B [4] requires that the

project’s PSAC include a description of software’s contributions to failure conditions.

A list of software that can contribute to failure conditions, along with the severity of the

failure conditions, can be extracted from the model using the following search query:

SEARCH FOR all model elements STEREOTYPED WITH

(<<SafetyCritical>>)

From the results of this query, the “CriticalityLevel” tagged value of the

<<SafetyCritical>> (5.2.17) stereotype can be read to identify the failure condition levels

that each safety-critical software component contributes to. For example, executing this

search query on the model in Figure 9 gives the following results:

LandingWheelsController, LandingWheelsInterface, RadarInterface.

Carleton University, TR SCE-06-19 Decermber 2006

 130

6.2.3 COTS Software

Section 11.1 bullet g. in the airworthiness standard RTCA DO-178B [4] requires that the

project’s PSAC include a description of COTS software used.

A list of COTS software can be extracted from the model using the following search

query:

SEARCH FOR all model elements STEREOTYPED WITH (<<Nature>>

WITH TAGGED VALUE (Kind = COTS))

For example, executing this search query on the model in Figure 17 (discussed in

Appendix G.1) gives the following results: SafeFlightPaths.

6.2.4 Software Partitioning

Section 11.3 bullet f. in the airworthiness standard RTCA DO-178B [4] requires that the

project specify which methods are used to verify the integrity of partitions performed.

Furthermore, section 11.9 bullet h. requires that partitioning requirements allocated to

software, as well as the software level(s) for each partition, be specified.

A list of partitions can be extracted from the model using the following search query:

SEARCH FOR all model elements STEREOTYPED WITH

(<<Partition>>)

From the results of this query, the “PartitionedFrom” tagged value of the <<Partition>>

(5.2.18) stereotype can be read to determine which software component this partition was

partitioned from. Furthermore, the “Reference” tagged value of the <<Partition>>

(5.2.18) stereotype can be read to determine the requirement that resulted in this partition.

For example, executing this search query on the model in Figure 18 (discussed in

Appendix G.2) gives the following results: AutoPilotController,

ConvertibleSteeringInformation.

A list of partitions that have been assigned software levels, along with the software level

for each partition, can be extracted from the model using the following search query:

Carleton University, TR SCE-06-19 Decermber 2006

 131

SEARCH FOR all model elements STEREOTYPED WITH

(<<Partition>>) AND STEREOTYPED WITH (<<SafetyCritical>>)

From the results of this query, the “CriticalityLevel” tagged value of the

<<SafetyCritical>> (5.2.17) stereotype can be read to determine the software level for

each partition. For example, executing this search query on the model in Figure 18 gives

the following results: AutoPilotController.

6.2.5 Requirements and Traceability

Section 11.9 in the airworthiness standard RTCA DO-178B [4] requires that the software

requirements data be available. Furthermore, the airworthiness standard RTCA DO-178B

[4] requires that the software design (e.g. UML model) be traced to the software

requirements for software assigned level D or above. It also requires that the source code

be traceable to the requirements for software assigned level C or above.

A list of model elements traceable to software requirements can be extracted from the

model using the following search query:

SEARCH FOR all model elements STEREOTYPED WITH

(<<Requirement>>)

For example, executing this search query on the model in Figure 19 (discussed in

Appendix G.3) gives the following results: PilotKeyboardInterface, Commands, and

the diagram itself. Those are stereotype with <<Requirement>> (5.2.9) whose IDs,

respectively, are: LREQ 1, LREQ 2, HREQ 1.

For requirements that are only relevant for safety purposes, the following search query

can be used:

SEARCH FOR all model elements STEREOTYPED WITH

(<<Requirement>> WITH TAGGED VALUE (Kind = Safety))

For example, executing this search query on the model in Figure 19 (discussed in

appendix G.3) gives the following results: PilotKeyboardInterface, Commands, and the

diagram itself. Those are stereotype with <<Requirement>> (5.2.9) whose IDs,

respectively, are: LREQ 1, LREQ 2, HREQ 1.

Carleton University, TR SCE-06-19 Decermber 2006

 132

For a list of all design decisions that are a result of safety-related requirements, the

following search query can be used:

SEARCH FOR all model elements STEREOTYPED WITH (<<Rationale>>

WITH TAGGED VALUE (Reference.Element IS STEREOTYPED WITH

(<<Requirement>> WITH TAGGED VALUE (Kind = Safety))))

The search query can be read as follows: Find all model elements that are stereotyped

with <<Rationale>> (5.2.14). Then, pick only those elements where the “Reference”

tagged value points to safety requirements (as indicated in the model with the

<<Requirement>> (5.2.9) stereotype and its “Kind” tagged value). Thus, the above

search query specifies that the results are all model elements that are stereotyped with

<<Rationale>> (5.2.14), and where the “Reference” tagged value of the <<Rationale>>

(5.2.14) stereotype is a reference to another model element stereotyped with

<<Requirement>> (5.2.9) whose “Kind” tagged value is “Safety”. For example,

executing this search query on the model in Figure 19 gives the following result:

SafeFlightPaths.

6.2.6 Multiple-Version Dissimilar Software

Section 11.1 bullet g. in the airworthiness standard RTCA DO-178B [4] requires that the

project’s PSAC include a description of the multiple-version dissimilar software used.

Furthermore, section 11.3 bullet j. in the airworthiness standard RTCA DO-178B [4]

requires that a description of the software verification process activities used to verify

multiple-version dissimilar software be presented.

A list of multiple-version dissimilar software can be extracted from the model using the

following search query:

SEARCH FOR all model elements STEREOTYPED WITH

(<<Replicated>>)

For example, executing this search query on the model in Figure 20 (discussed in

Appendix G.4) gives the following results: RadarFilter1, RadarFilter2,

RadarFilter3.

Carleton University, TR SCE-06-19 Decermber 2006

 133

6.2.7 Recursive Software

Section 11.7 bullet e. in the airworthiness standard RTCA DO-178B [4] requires that the

software design standards specify which constraints on the software design exist. Such

design constraints could require the exclusion of software recursion.

If software recursion is used, then its use can be identified in the model. A list of

recursive software can then be extracted from the model using the following search

query:

SEARCH FOR all model elements STEREOTYPED WITH

(<<ImplementationStyle>> WITH TAGGED VALUE (Kind =

Recursive))

For example, executing this search query on the model in Figure 8 gives the following

results: KalmanFilter.

If recursive software is not permitted by the software design standard but this rule was

broken for some reason in some place, then a list of similar deviations from the standard

can be extracted using the following search query:

SEARCH FOR all model elements STEREOTYPED WITH (<<Deviation>>

WITH TAGGED VALUE (Kind = UsingRecursiveAlgorithm))

From the results of this query, the “Reference” and “Explanation” tagged values of the

<<Deviation>> (5.2.10) stereotype can be read to determine the standard from which this

deviation existed and the rationale for this deviation. For example, executing this search

query on the model in Figure 8 gives the following results: KalmanFilter

Carleton University, TR SCE-06-19 Decermber 2006

 134

7 CASE STUDY – NAVIGATION CONTROLLER

In this section, an aircraft’s navigation system is analysed, and its navigation controller

subsystem is designed using the proposed UML profile (section 5.1). The goal is to

demonstrate, through a realistic case study the usefulness of the profile in the context of

the usage scenarios we defined (section 2.4). In order to be complete and provide enough

insights about the system to the reader, we also go through the development methodology

described in section 5.4.

Here is a mapping between the steps of the development methodology (Figure 11 in

section 5.4) and the subsections where they are addressed:

S-1 Define the system’s high-level functional requirements: In section 7.1, an

overview of the system is introduced, which describes in high-level language

the major functionalities of the system.

S-2 Define the system architecture: The system architecture is presented and

explained in section 7.2.

S-3 Develop the detailed functional and non-functional requirements (excluding

safety): The functional requirements of the subsystem under study are presented

and explained in section 7.3.

S-4 Perform a safety assessment and develop safety requirements: A safety

assessment is performed in section 7.4 using four standard, complementary

methods. Its results are presented in sections 7.4.1 – 7.4.4, from which the

safety requirements are derived and presented in section 7.4.5.

S-5 Perform a critical review: Due to space constraints, only the final results are

presented in this case study rather than the actual iterations used to develop the

system. Therefore, the results of this step are not presented.

Carleton University, TR SCE-06-19 Decermber 2006

 135

S-6 Are any issues identified?: For the same reasons as above, the results of this

step are not presented.

S-7 Develop the subsystems’ detailed design while monitoring safety: The design of

the subsystem under study, including aspects related the defined safety

requirements, is presented in section 7.5.

S-8 Certify system: In section 7.6, the usage scenarios of our proposed UML profile

are discussed in the context of our case study. Their results are generally

submitted to the certification authorities to certify the system, particularly the

results of usage USAGE 5 (Get Safety Information), which are discussed in

section 7.6.5.

7.1 Overview

The navigation controller subsystem is used to control the aircraft’s flight paths through

both automatic pilot and manual input from the pilots.

It is worth reviewing the following terminology before proceeding with the case study:

1. Fly-To-Point (FTP): An FTP specifies a location on earth that the aircraft plans to

fly to. For example, an aircraft flying from London to Paris will have at least one

FTP, which is Paris.

2. Latitude/Longitude (LAT/LONG): A LAT/LONG specifies a particular

geographic position on earth in latitude and longitude. LAT/LONG values are the

standard measures for specifying geographic positions in navigation systems. The

unit of both LAT and LONG are degrees, with LAT ranging from 90 South to 90

North, and Longitude ranging from 180 Westward to 180 Eastward. LAT/LONG

values are generally used to specify FTP positions.

3. Bearing: The bearing on an aircraft is the direction in which it is flying. The

bearing is generally specified in degrees, with a range of [0, 360[. A bearing of

Carleton University, TR SCE-06-19 Decermber 2006

 136

zero is in a direction starting from the aircraft’s position and towards the North

Pole.

4. Dead-Reckoning: Dead-reckoning an aircraft’s position means that the aircraft’s

position is being approximated using a previously known position at a given point

of time, the current speed and bearing (direction). Ideally, the navigation system

uses a Global Positioning System (GPS) to determine the aircraft’s LAT/LONG

position. If the GPS system fails, however, the navigation system can then

approximate the position by dead-reckoning it.

The aircraft’s navigation controller subsystem has the following primary responsibilities:

1. Autopilot (Automatic): Based on the source and destination of the aircraft, this

subsystem can choose an appropriate flight path. During the entire flight period, it

can also guide the aircraft by generating appropriate commands to the aircraft’s

wings and engines to change the speed and bearing (i.e. direction) as required.

2. Supporting Custom Flight Paths (Semi-Automatic): This subsystem can accept

commands from the pilots such as a specific position’s latitude and longitude

(LAT/LONG). Then, it controls the aircraft’s speed and bearing to get to the

desired FTP that was indicated by the pilot.

In order to perform such functionality, this subsystem needs to have continuous input

from the aircraft’s navigation system, which reports the current position and altitude of

the aircraft at all time. In addition, it needs to be able to command the aircraft’s wings

and engines to change the speed and bearing.

7.2 System Architecture

Recall that software safety is only meaningful within the context of the system in which

the software is used. As a result, it is mandatory to consider the system architecture as a

whole to determine the safety aspects of NavigationControllerSubsystem. The system

architecture, in which NavigationControllerSubsystem appears, is shown in Figure

Carleton University, TR SCE-06-19 Decermber 2006

 137

12, and is discussed below. In the discussion, the rationale for assigning each software

level is explained. The software levels were defined in section 2.2.

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=B}

MechanicalSteeringWheelSubsystem

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=D}

NavigationUserInterfaceSubsystem

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=D}

LEDDisplaySubsystem

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Partition>>
{PartitionedFrom=NavigationSubsystem}

NavigationControllerSubsystem

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=B}

NavigationSubsystem

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=A}

WingsAndEnginesSubsystem

<<Subsystem>>

<<SafetyCritical>> {CriticalityLevel=C}

NavigationDatabaseSubsystem

<<SafetyContext>>

Figure 12: System architecture (structure).

The system is composed of the following subsystems:

1. WingsAndEnginesSubsystem: This subsystem represents the wings and the

engines of the aircraft, and is used to control them. Therefore, it is the most

important element to control the aircraft’s speed and bearing. Thus, it is safety-

critical and is assigned level A, as the <<SafetyCritical>> (5.2.17) stereotype

illustrates, because its failure prevents the continued safe flight and landing. This

subsystem will not be considered any further in this case study.

2. MechanicalSteeringWheelSubsystem: This subsystem represents the pilots’

mechanical steering wheel. They can use it to manually change the aircraft’s

speed and bearing. Thus, it is safety-critical and is assigned level B, as the

<<SafetyCritical>> (5.2.17) stereotype illustrates, because its failure prevents the

pilots from performing their tasks correctly and accurately, but the aircraft’s speed

Carleton University, TR SCE-06-19 Decermber 2006

 138

and bearing can still be controlled by other subsystems. This subsystem will not

be considered any further in this case study.

3. NavigationSubsystem: This subsystem represents the navigation system that

determines the current position, altitude, speed, and bearing of the aircraft through

a GPS system and other technologies. Thus, it is safety-critical and is assigned

level B, as the <<SafetyCritical>> (5.2.17) stereotype illustrates, because its

failure prevents the pilots from performing their tasks correctly and accurately,

but the pilots can approximate the aircraft’s navigation information by observing

ground landmarks. This subsystem will not be considered any further in this case

study.

4. LEDDisplaySubsystem: This subsystem represents a simple Light-Emitting

Diode (LED) display to the pilots showing continuous navigation information as

it is read from the “Navigation” subsystem. LEDs are a classical kind of

information display technology. Thus, it is safety-critical and is assigned level D,

as the <<SafetyCritical>> (5.2.17) stereotype illustrates, because its failure

increases the pilots’ workload and discomfort, but they can still read the

navigation information from NavigationUserInterfaceSubsystem. In case

LEDDisplaySubsystem fails, they can approximate navigation information

through ground landmarks or through radio communication with ground stations

or other aircrafts. This subsystem will not be considered any further in this case

study.

5. NavigationDatabaseSubsystem: This subsystem stores and manages all the

possible flight paths relevant to this aircraft. It is safety-critical and is assigned

level C, as the <<SafetyCritical>> (5.2.17) stereotype illustrates, because the

NavigationControllerSubsystem subsystem (at level “C”) depends on it. This

is a rule in the airworthiness standard – components are assigned to the highest

level of the components whose operations depend on it. This subsystem will not

be considered any further in this case study.

Carleton University, TR SCE-06-19 Decermber 2006

 139

6. NavigationControllerSubsystem: This subsystem is in charge of automatically

guiding the aircraft through pre-determined flight paths and FTPs. The pilots can

use it for the autopilot feature, or to fly to specific points. It is safety-critical and

is assigned level C, as the <<SafetyCritical>> (5.2.17) stereotype illustrates,

because its failure increases the pilots’ workload and discomfort and may cause

injuries because the pilots will not necessarily be able to safely fly the aircraft

without it as this would require them to use the mechanical steering wheels. It is

partitioned away from NavigationSubsystem, as indicated by the <<Partition>>

(5.2.18) stereotype, because it has a software level that is lower than that of

NavigationSubsystem (i.e. level C is lower than level B). This partitioning

allows NavigationSubsystem to continue providing information to other relevant

subsystems such as LEDDisplaySubsystem even if

NavigationControllerSubsystem fails. This subsystem is the topic of this case

study, and is the only subsystem considered further here.

7. NavigationUserInterfaceSubsystem: This subsystem serves as the pilots’

interface to NavigationControllerSubsystem. It can be used to read navigation

information including flight paths, and to command

NavigationControllerSubsystem to use the autopilot feature or to fly to

specific FTPs. It is safety-critical and is assigned level C, as the

<<SafetyCritical>> (5.2.17) stereotype illustrates, because its failure increases the

pilots’ workload and discomfort and may cause injuries because the pilots will

only be able to control the aircraft through

MechanicalSteeringWheelSubsystem. This subsystem will not be considered

any further in this case study.

7.3 Functional Requirements

The following functional requirements are assigned to

NavigationControllerSubsystem:

FREQ 1 NavigationControllerSubsystem shall be able to list pre-determined

flight paths for a requested source/destination pair.

Carleton University, TR SCE-06-19 Decermber 2006

 140

FREQ 2 NavigationControllerSubsystem shall provide an autopilot feature

where it flies the aircraft through a requested flight path.

FREQ 3 NavigationControllerSubsystem shall be able to fly the aircraft to a

requested FTP.

FREQ 4 NavigationControllerSubsystem shall provide the capability to guide

the pilots through a requested flight path when the pilot is controlling the

aircraft through MechanicalSteeringWheelsSubsystem.

FREQ 5 NavigationControllerSubsystem shall be able to provide navigation

information received from NavigationSubsystem.

7.4 Safety Assessment

A safety assessment of NavigationControllerSubsystem was performed based on the

functional requirements listed in section 7.3 and the system architecture presented in

Figure 12. This is common practice because such a safety assessment on the system helps

identify potential hazards and their causes. This results in developing safety requirements

to treat the hazards, which in turn impact the system and software design. Therefore, the

safety assessment is performed at the early stages of the design because, unlike risk

assessment, it emphasizes designing the system and software with safety in mind rather

than adding safety features to a completed design.

The safety assessment in this case study was performed using various methods to identify

additional safety-related requirements. Each one of the following sections (7.4.1 – 7.4.4)

first presents and explains a safety assessment method. A description and analysis of the

various safety assessment methods can be found in [1]. Several safety assessment

methods are used in practice because they are complementary. Safety assessment

methods differ in terms of inputs, outputs, objectives, and scalability. (Refer to section

2.1 for more detail.) Then, in each section, we apply the corresponding safety assessment

method on the system, and only report on the results that are relevant to our case study

(i.e., NavigationControllerSubsystem).

Carleton University, TR SCE-06-19 Decermber 2006

 141

Section 7.4.5 then presents safety requirements for NavigationControllerSubsystem

based on the safety assessments performed in sections 7.4.1 – 7.4.4.

7.4.1 Action Error Analysis (AEA)

AEA is a qualitative safety-analysis technique used to analyse human behaviour and

identify actions that can potentially cause accidents. It focuses on potential deviations of

human behaviour from the normal or intended behaviour. Examples of scenarios

considered in this analysis include forgetting to do a step, doing a step at the wrong time,

incorrect ordering of steps, taking too long to do a step, or doing an unintended step.

Therefore, it uses a forward search strategy to identify what could result from such errors

in human behaviour. It is very similar to FMEA, but it is applied to human behaviour

instead [1]. More detailed discussions of AEA can be found in [1] and [42].

The following potentially unsafe human actions, which could result in hazards, were

analysed using this method:

AEA 1 A pilot attempts to manually control the aircraft through

MechanicalSteeringWheelSubsystem while the aircraft is in autopilot

mode.

AEA 2 A pilot requests flying to an FTP that is in an unsafe area.

AEA 3 A pilot requests flying to an FTP where the path to it requires passing

through an unsafe area.

AEA 4 A pilot requests a long flight path or a far FTP that would cause the aircraft

to run out of fuel before landing.

7.4.2 Failure Modes and Effects Analysis (FMEA)

FMEA is a popular analysis technique, which was developed by reliability engineers.

Therefore, it focuses on the failures of components and, using a forward search approach,

analyses the effects of such failures. It is also used in safety assessments because the

effects of such failures could include potential hazards and risks. When applied to safety

Carleton University, TR SCE-06-19 Decermber 2006

 142

assessments, however, it is important to realize that not all failures result in hazards or

accidents. In addition, it pays little attention to human errors because it focuses on the

failure of components. Therefore, FMEA and AEA complement each other. More

detailed discussions of FMEA can be found in [1] and [43].

Using FMEA, failures that would result in the failure of

NavigationControllerSubsystem were identified. Such failures could potentially result

in hazards because NavigationControllerSubsystem is safety-critical. They include

the potential failure of NavigationControllerSubsystem itself and any of the

subsystems on which it depends.

The following failures, which could result in hazards, were identified using this method:

FMEA 1 NavigationControllerSubsystem fails.

FMEA 2 WingsAndEnginesSubsystem fails.

FMEA 3 NavigationDatabaseSubsystem fails.

FMEA 4 NavigationSubsystem fails.

7.4.3 Hazards and Operability Analysis (HAZOP)

HAZOP is an analysis technique that assumes that accidents are caused by deviations

from the design or operating intentions. Therefore, it encourages creative thinking about

all the possible ways in which hazards or operating problems may arise as a result of

using the system in a mode other than its intended operating conditions. Because HAZOP

considers a design and investigates what hazards could be caused by each design and

operating deviation, it can discover new hazards that were not previously identified. More

detailed discussions of HAZOP can be found in [1] and [44].

The following deviation from the operating intention, which could result in hazards, was

identified using this method:

Carleton University, TR SCE-06-19 Decermber 2006

 143

HAZOP 1 The autopilot mode is being used when NavigationSubsystem is unable

to use the GPS feature and is instead dead-reckoning (i.e. periodically

approximating) the aircraft’s position.

7.4.4 Interface Analyses (IA)

IA is an analysis method that is used to evaluate connections and relationships between

components. It examines the interfaces between components and determines whether

failures can be propagated between components. The types of problems that are often

examined include, but are not limited to, failure to receive inputs from the connection,

unstable connection, and erroneous output. IA is similar in use to HAZOP because

interface problems are deviations from the intended design operation, but it is more

general because it considers other types of problems. More detailed discussions of IA can

be found in [1] and [45].

The following connection problems, which could result in hazards, were identified using

this method:

IA 1 NavigationControllerSubsystem can no longer communicate with

WingsAndEnginesSubsystem.

IA 2 NavigationControllerSubsystem can no longer communicate with

NavigationSubsystem.

7.4.5 Safety Requirements

The following safety requirements are assigned to NavigationControllerSubsystem

based on the results of the safety assessment performed above. Notice that sections 7.4.1

- 7.4.4 describe the events that could occur and the hazards that could result from them,

whereas this section describes the positive reactions to those events, which would

eliminate or reduce the hazards. The parenthesis specify the hazards that each safety

requirement guards against:

SREQ 1 NavigationControllerSubsystem shall disable autopilot and FTP

features when the pilot is using MechanicalSteeringWheelSubsystem,

Carleton University, TR SCE-06-19 Decermber 2006

 144

and re-enable them when the pilot stops using

MechanicalSteeringWheelSubsystem (AEA 1).

SREQ 2 NavigationControllerSubsystem shall be able to identify whether a

specific LAT/LONG position is in a safe area or not, and not fly the

aircraft to unsafe positions unless explicitly confirmed by the pilot (AEA

2).

SREQ 3 NavigationControllerSubsystem shall be able to determine whether

flying to a specific LAT/LONG position requires flying through unsafe

areas or not, and not fly the aircraft through unsafe areas unless explicitly

confirmed by the pilot (AEA 3).

SREQ 4 NavigationControllerSubsystem shall alert the pilot when the next

FTP cannot be reached without having to refuel the aircraft (AEA 4).

SREQ 5 When NavigationControllerSubsystem fails, an alert shall be raised

and, until NavigationControllerSubsystem is operational again, the

pilot shall be required to manually fly the aircraft using

MechanicalSteeringWheelsSubsystem (FMEA 1).

SREQ 6 NavigationControllerSubsystem shall ensure that the autopilot and

FTP features are enabled only when all of the following conditions hold:

SREQ 6.1 WingsAndEnginesSubsystem is functional (FMEA 2).

SREQ 6.2 NavigationDatabaseSubsystem is functional (FMEA 3).

SREQ 6.3 NavigationSubsystem is functional (FMEA 4).

SREQ 6.4 NavigationControllerSubsystem is able to communicate with

WingsAndEnginesSubsystem (IA 1).

SREQ 6.5 NavigationControllerSubsystem is able to communicate with

NavigationSubsystem (IA 2).

Carleton University, TR SCE-06-19 Decermber 2006

 145

SREQ 7 NavigationControllerSubsystem shall require explicit confirmation to

continue autopilot or FTP flight modes every 5 minutes until

NavigationSubsystem indicates that the GPS feature is functional again.

If the confirmation is not performed for a period of 7 consecutive minutes,

then NavigationControllerSubsystem shall signal an emergency to the

pilots (HAZOP 1).

7.5 Subsystem Design

This section further defines NavigationControllerSubsystem, and then it introduces

its UML model. Sections 7.5.1 – 7.5.4 aim at further defining the subsystem by

understanding its events of interest, and how the subsystem should react to those events.

Section 7.5.1 explains how the events and reactions can be derived from the safety

requirements. Section 7.5.2 defines the events that are of interest to the subsystem, and

section 7.5.3 defines how the subsystem behaves, or reacts, in response to those events.

Thus, they provide an event-reaction relationship that defines the system behaviour. To

ensure that the system’s behaviour is complete with respect to the events and reactions,

the reactions are traced to the events that caused them. This is explained in section 7.5.4.

Once the subsystem’s behaviour is understood, its software design in presented in section

7.5.5. While the limited space in the diagrams makes it difficult to list all the possible

stereotypes and tagged values that could be used, the safety information that is modeled

is varied enough to show different kinds of safety information, stereotypes, and tagged

values. It is important to note that, in practice, a UML modeling tool would allow the

designers to specify as many stereotypes and tagged values while giving them the choice

to show or hide specific stereotypes (or stereotype categories such as a particular profile’s

stereotypes) on diagrams while retaining the information in the tool’s database.

Furthermore, the model is also stereotyped according to Gomaa’s class classification as

presented in [7] and summarized in Appendix E.

The discussions in the sections below will often cross-reference events and reactions

through their numbers, prefixed by either an “E” for events or “R” for reactions.

Whenever an event is cross-referenced, the number between parenthesis represents its

Carleton University, TR SCE-06-19 Decermber 2006

 146

number as listed in section 7.5.2. Whenever a reaction is cross-referenced, similarly, the

number between parenthesis represents its number as listed in section 7.5.3. For example,

the ControllerFailed (E5) event is described in section 7.5.2, but the

DisableController (R4) reaction is described in section 7.5.3.

7.5.1 Identification of Events and Reactions

To design safety into the system, it is important to identify all events (3.2.3.8) that could

have safety implications, and the reactions (3.2.3.9) to those events. To identify the

events, one needs to ask: Which inputs to the system, or changes in its state, should the

system respond to because they may impact its safety? To identify the reactions, one

needs to ask: How should the system behave when any of the identified events occurs?

The answers to those questions are found in the safety requirements. For example,

consider safety requirement SREQ 1 from section 7.4.5:

NavigationControllerSubsystem shall disable autopilot and FTP features

when the pilot is using MechanicalSteeringWheelSubsystem, and re-

enable them when the pilot stops using

MechanicalSteeringWheelSubsystem (1091HAEA 1).

From this requirement, one can identify at least two events of interest: (1) The event of

when the pilot starts using MechanicalSteeringWheelSubsystem; (2) The event of

when the pilot stops using MechanicalSteeringWheelSubsystem. Also from this

requirement, and from the identified events, one can identify at least the following

reactions: (1) The reaction of disabling the autopilot and FTP features when the pilot

starts using MechanicalSteeringWheelSubsystem; (2) The reaction of enabling the

autopilot and FTP features when the pilot stops using

MechanicalSteeringWheelSubsystem.

Carleton University, TR SCE-06-19 Decermber 2006

 147

7.5.2 Events

<<Event>>

SystemEvent (E1)

<<Event>>

DependentSubsystemEvent (E10)

<<Event>>

NavigationEvent (E21)

<<Event>>

NavigationDatabaseEvent (E11)

<<Event>>

WingsAndEnginesEvent (E14)

<<Event>>
{EffectOnSafetyDirection=Negative}

NavigationFailed (E22)

<<Event>>
{EffectOnSafetyDirection=Positive}

NavigationRestored (E23)

<<Event>>
{EffectOnSafetyDirection=Negative}

NavigationConnectionLost (E24)

<<Event>
{EffectOnSafetyDirection=Positive}

NavigationConnectionEstablished (E25)

<<Event>>
{EffectOnSafetyDirection=Negative}

StartDeadReckoningAircraftPosition (E26)

<<Event>>
{EffectOnSafetyDirection=Positive}

UseGPSForAircraftPosition (E27)

<<Event>>
{EffectOnSafetyDirection=Negative}

NavigationDatabaseFailed (E12)

<<Event>>
{EffectOnSafetyDirection=Positive}

NavigationDatabaseRestored (E13)

<<Event>>
{EffectOnSafetyDirection=Negative}

WingsAndEnginesFailed (E15)

<<Event>>
{EffectOnSafetyDirection=Positive}

WingsAndEnginesRestored (E16)

<<Event>>
{EffectOnSafetyDirection=Negative}

WingsAndEnginesConnectionLost (E17)

<<Event>
{EffectOnSafetyDirection=Positive}

WingsAndEnginesConnectionEstablished (E18)

<<Event>>

IndependentSubsystemEvent (E2)

<<Event>
{EffectOnSafetyDirection=Negative,

EffectOnSafetyContext=‘Autopilot or FTP Mode is ON’}

WingsAndEnginesControlledByOtherSubsystem (E19)

<<Event>
{EffectOnSafetyDirection=Positive}

WingsAndEnginesNotControlled
ByOtherSubsystems (E20)

<<Event>>

PilotInputEvent (E7)

<<Event>>

ChangeFlightPath (E8)

<<Event>>

EditFTPList (E9)

<<Event>>
{EffectOnSafetyDirection=Negative,

When=‘Aircraft is expected to run out of fuel’}

FuelShortageExpected (E3)

<<Event>>
{EffectOnSafetyDirection=Negative}

FuelShortageNotExpected (E4)

<<Event>>
{EffectOnSafetyDirection=Negative,

When=‘Aircraft is not expected to run out of fuel’}

ControllerFailed (E5)

<<Event>>
{EffectOnSafetyDirection=Positive}

ControllerRestored (E6)

Figure 13: NavigationControllerSubsystem’s events (structure).

Figure 13 shows all the system events of interest. Each concrete class (i.e., leaf class in

the generalization hierarchy) represents a unique event type, and an instantiation of a

concrete event class represents a unique event. Each event class is stereotyped with

<<Event>> (5.2.15) to indicate that it is an event of interest, and its

“EffectOnSafetyDirection” and “Context” tagged values are set where applicable.This

figure is primarily used here to arrange events in a hierachy and therefore facilitate

discussion and analysis. During design, these events may not necessarily tranlate into

actual classes in the subsystem class diagram (and implementation).

Carleton University, TR SCE-06-19 Decermber 2006

 148

Here is a description of each event class:

E1 SystemEvent: This event represents any event that occurs in the system. It can

be raised by any class in the system. It is abstract and it serves as a parent class

for other event classes. A direct or indirect subclass of SystemEvent may have

a negative, neutral, or positive effect on the overall safety level. However, we

limit the discussion here to only those events that can have a positive or

negative effect on safety.

E2 IndependentSubsystemEvent: This event represents any event that originates

in NavigationControllerSubsystem, excluding the interface classes to other

subsystems that it uses. It is abstract and it serves as a parent class for other

event classes.

E3 FuelShortageExpected: This event is raised when the

InvestigateFuelShortage (R6) reaction executes and it determines that the

aircraft is expected to run out of fuel during the flight according to the current

flight and navigation information (i.e. the flight path, list and sequence of FTPs,

wind speed and bearing, … etc).

E4 FuelShortageNotExpected: This event is raised when the

InvestigateFuelShortage (R6) reaction executes and it determines that the

aircraft is not expected to run out of fuel during the flight according to the

current flight and navigation information. This is of importance when, just

before the InvestigateFuelShortage (R6) reaction executes, the aircraft was

expected to run out of fuel during the flight.

E5 ControllerFailed: This event is raised when the main controller class has

failed and is not functioning correctly or at all.

E6 ControllerRestored: This event is raised when the main controller class has

transitioned from a failure state to a functional state and is now functioning

correctly.

Carleton University, TR SCE-06-19 Decermber 2006

 149

E7 PilotInputEvent: This event represents any event that occurs as a direct result

of the pilot’s usage of the subsystem through the user interface, namely

NavigationUserInterfaceSubsystem. It is abstract and it serves as a parent

class for other event classes.

E8 ChangeFlightPath: This event is raised when the pilot has requested, through

NavigationUserInterfaceSubsystem, that the flight path for autopilot mode

be changed.

E9 EditFTPList: This event is raised when the pilot has requested that, through

NavigationUserInterfaceSubsystem, the list of FTPs be changed (such as

changing an FTP’s position or resequencing a list of more than one FTP).

E10 DependentSubsystemEvent: This event represents any event that originates in

a subsystem on which NavigationControllerSubsystem depends, namely

WingsAndEnginesSubsystem, NavigationDatabaseSubsystem, and

NavigationSubsystem. It is abstract and it serves as a parent class for other

event classes.

E11 NavigationDatabaseEvent: This event represents any event that originates in

NavigationDatabaseSubsystem. It is abstract and it serves as a parent class

for other event classes.

E12 NavigationDatabaseFailed: This event is raised when

NavigationDatabaseSubsystem has failed and is not functioning correctly or

at all.

E13 NavigationDatabaseRestored: This event is raised when

NavigationDatabaseSubsystem has transitioned from a failure state to a

functional state and is now functioning correctly.

E14 WingsAndEnginesEvent: This event represents any event that originates in

WingsAndEnginesSubsystem. It is abstract and it serves as a parent class for

other event classes.

Carleton University, TR SCE-06-19 Decermber 2006

 150

E15 WingsAndEnginesFailed: This event is raised when

WingsAndEnginesSubsystem has failed and is not functioning correctly or at

all.

E16 WingsAndEnginesRestored: This event is raised when

WingsAndEnginesSubsystem has transitioned from a failure state to a

functional state and is now functioning correctly.

E17 WingsAndEnginesConnectionLost: This event is raised when connection to

WingsAndEnginesSubsystem has been lost.

E18 WingsAndEnginesConnectionEstablished: This event is raised when

connection to WingsAndEnginesSubsystem was lost but has now been

established.

E19 WingsAndEnginesControlledByOtherSubsystem: This event is raised when

WingsAndEnginesSubsystem is now being controlled by a subsystem other

than NavigationControllerSubsystem. Based on the system architecture in

Figure 12, this means that MechanicalSteeringWheelSubsystem is now

controlling WingsAndEnginesSubsystem.

E20 WingsAndEnginesNotControlledByOtherSubsystem: This event is raised

when WingsAndEnginesSubsystem is no longer being controlled by a

subsystem other than NavigationControllerSubsystem. Based on the system

architecture in Figure 12, this means that

MechanicalSteeringWheelSubsystem has just stopped controlling

WingsAndEnginesSubsystem.

E21 NavigationEvent: This event represents any event that originates in

NavigationSubsystem. It is abstract and it serves as a parent class for other

event classes.

E22 NavigationFailed: This event is raised when NavigationSubsystem has

failed and is not functioning correctly or at all.

Carleton University, TR SCE-06-19 Decermber 2006

 151

E23 NavigationRestored: This event is raised when NavigationSubsystem has

transitioned from a failure state to a functional state and is now functioning

correctly.

E24 NavigationConnectionLost: This event is raised when connection to

NavigationSubsystem has been lost.

E25 NavigationConnectionEstablished: This event is raised when connection to

NavigationSubsystem was lost but has now been established.

E26 StartDeadReckoningAircraftPosition: This event is raised when the

position of the aircraft is now being periodically estimated by the computer

based on the knowledge of the current aircraft’s position, speed, and bearing

and the wind’s speed and bearing. This occurs if the aircraft’s

NavigationSubsystem is no longer able to continuously determine the

aircraft’s position based on the GPS signals, most likely because it is no longer

able to receive the GPS satelittes signals.

E27 UseGPSForAircraftPosition: This event is raised when the position of the

aircraft is now being determined by the signals received from the GPS satelittes.

This occurs when the aircraft’s position was being dead-reckoned (see

StartDeadReckoningAircraftPosition (E26) event), but the aircraft is now able

to determine its position based on the GPS satellite signals, most likely because

it is again able to receive the GPS satellite signals.

7.5.3 Reactions

Figure 14 shows all the system reactions to events of interest. Each class represents a

unique reaction type, and an instantiation of a concrete reaction class (leaf class in the

generalization hierarchy) represents a unique reaction. Each reaction class is stereotyped

with <<Reaction>> (5.2.16) to indicate that it is a reaction to an event of interest, and its

tagged values are set where applicable. Like for events, the figure is primarily used to

facilitate discussion and analysis. During design, these reactions will unlikely translate

Carleton University, TR SCE-06-19 Decermber 2006

 152

into actual subsystem classes, but rather will likely translate into class operations

stereotyped <<Reaction>>.

<<Reaction>>

SystemReaction (R1)

<<Reaction>>

ReactionToIndependentSubsystemEvent (R5)

<<Reaction>>

ReactionToDependentSubsystemEvent (R2)

<<Reaction>>
{ConsequenceOf=DisableController,
ConsequenceOf=ControllerFailed,
EffectOnSafetyDirection=Positive}

<<Rationale>>
{Reference=“SREQ 5”,
Reference=“SREQ 6”}

RaiseSubsystemFailureAlert (R9)

<<Reaction>>
{ConsequenceOf=EnableController,

ConsequenceOf=ControllerRestored,
EffectOnSafetyDirection=Positive}

<<Rationale>>
{Reference=“SREQ 5”,
Reference=“SREQ 6”}

HideSubsystemFailureAlert (R10)

<<Reaction>>
{ConsequenceOf=FuelShortageExpected,

EffectOnSafetyDirection=Positive}

<<Rationale>>
{Reference=“SREQ 4”}

RaiseFuelShortageExpectedAlert (R11)

<<Reaction>>
{ConsequenceOf=FuelShortageNotExpected,

EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference=“SREQ 4”}

HideFuelShortageExpectedAlert (R12)

<<Reaction>>
{ConsequenceOf=StartDeadReckoningAircraftPosition,

ConsequenceOf=UseGPSForAircraftPosition,
When=‘(Controller in Autopilot or FTP mode) AND (Every 5 Minutes

Until UseGPSForAircraftPosition Event Occurs),
EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference=“SREQ 7”}

RequirePilotConfirmation (R8)

<<Reaction>>
{ConsequenceOf=WingsAndEnginesFailed,

ConsequenceOf=NavigationFailed,
ConsequenceOf=NavigationDatabaseFailed,

ConsequenceOf=WingsAndEnginesConnectionLost,
ConsequenceOf=NavigationConnectionLost,

ConsequenceOf= WingsAndEnginesControlledByOtherSubsystem,
EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference=“SREQ 1”, Reference=“SREQ 6”}

DisableController (R4)

<<Reaction>> {ConsequenceOf=WingsAndEnginesRestored,
ConsequenceOf=NavigationRestored,

ConsequenceOf=NavigationDatabaseRestored,
ConsequenceOf=WingsAndEnginesConnectionEstablished,

ConsequenceOf=NavigationConnectionEstablished,
ConsequenceOf=WingsAndEnginesNotControlledByOtherSubsystems,

When=‘Connections Available to Functional Subsystems’,
EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference=“SREQ 1”, Reference=“SREQ 6”}

EnableController (R3)

<<Reaction>>
{ConsequenceOf=ChangeFlightPath,

ConsequenceOf=EditFTPList,
EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference=“SREQ 4”}

InvestigateFuelShortage (R6)

<<Reaction>>
{ConsequenceOf=ChangeFlightPath,

ConsequenceOf=EditFTPList,
EffectOnSafetyDirection=Positive}

<<Rationale>> {Reference=“SREQ 2”,
Reference=“SREQ 3”}

EnsureFlightPathOverSafeAreas (R7)

Figure 14: NavigationController subsystem reactions (structure).

Here is a description of each reaction class:

R1 SystemReaction: This represents any reaction that occurs in the system, which

generally occurs in response to an event that is a subclass of SystemEvent (E1).

It is abstract and it serves as a parent class for other reaction classes. A direct or

indirect subclass of SystemReaction may have negative, neutral, or positive

effect on the overall safety level. However, all the concrete class reactions

presented in this section have positive effect on safety, as indicated by the

“EffectOnSafetyDirection” tagged value of the <<Reaction>> (5.2.16)

Carleton University, TR SCE-06-19 Decermber 2006

 153

stereotype, because they implement the safety requirements described in section

7.4.5.

R2 ReactionToDependentSubsystemEvent: This represents any reaction that

occurs in response to an event class that is a subclass of the abstract

DependentSubsystemEvent (E10) event. It is abstract and it serves as a parent

class for other event classes.

R3 EnableController: This reaction enables the main controller class to start

functioning. As the “ConsequenceOf” tagged values of the <<Reaction>>

(5.2.16) stereotype indicate, this reaction can be triggered by the occurrence of

any of the following events: WingsAndEnginesRestored (E16),

NavigationRestored (E23), NavigationDatabaseRestored (E13),

WingsAndEnginesConnectionEstablished (E18), NavigationConnection-

Established (E25), WingsAndEnginesNotControlledByOtherSubsystems

(E20). Furthermore, the “When” tagged value indicates that this reaction (i.e.

enabling the controller) only executes when connections are available to all

functional subsystems on which the main controller class depends, namely

WingsAndEnginesSubsystem, NavigationDatabaseSubsystem, and

NavigationSubsystem. The <<Rationale>> (5.2.14) stereotype and its

“Reference” tagged values indicate that this reaction class helps implement

safety requriements SREQ 1 and SREQ 6.

R4 DisableController: This reaction disables the main controller class. As the

“ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) stereotype

indicate, this reaction can be triggered by the occurrence of any of the following

events: WingsAndEnginesFailed (E15), NavigationFailed (E22),

NavigationDatabaseFailed (E12), WingsAndEnginesConnectionLost

(E17), NavigationConnectionLost (E24), WingsAndEnginesControlledBy-

OtherSubsystems (E19). The <<Rationale>> (5.2.14) stereotype and its

“Reference” tagged values indicate that this reaction class helps implement

safety requriements SREQ 1 and SREQ 6.

Carleton University, TR SCE-06-19 Decermber 2006

 154

R5 ReactionToIndependentSubsystemEvent: This represents any reaction that

occurs in response to an event that is a subclass of the abstract

IndependentSubsystemEvent (E2) event. It is abstract and it serves as a parent

class for other event classes.

R6 InvestigateFuelShortage: This represents a reaction that calculates the fuel

quantity needed to fly the aircraft according to the current settings, which

include the aircraft’s position, flight path, list of FTPs, and wind speed and

bearing. As the “ConsequenceOf” tagged values of the <<Reaction>> (5.2.16)

stereotype indicate, this reaction is triggered by either the ChangeFlightPath

(E8) or EditFTPList (E9) events. The “Reference” tagged value of the

<<Rationale>> (5.2.14) stereotype indicates that this reaction implements safety

requirement SREQ 4. If the execution of this reaction determines that the

aircraft is expected to run out of fuel, then a FuelShortageExpected (E3)

event is raised. Otherwise, a FuelShortageNotExpected (E4) event is raised.

This is specified in the diagram using the “When” tagged value of the

<<Event>> (5.2.15) stereotype applied on the FuelShortageExpected (E3)

and FuelShortageNotExpected (E4) events.

R7 EnsureFlightPathOverSafeAreas: This represents a reaction that ensures that

the aircraft flies only over safe areas. As the “ConsequenceOf” tagged values of

the <<Reaction>> (5.2.16) stereotype indicate, this reaction is triggered by

either the ChangeFlightPath (E8) or EditFTPList (E9) events. The

“Reference” tagged values of the <<Rationale>> (5.2.14) stereotype indicate

that this reaction implements safety requirements SREQ 2 and SREQ 3.

R8 RequirePilotConfirmation: This represents a reaction that prompts the pilot

to confirm the use of autopilot or FTP mode every 5 minutes as long as the pilot

is in autopilot or FTP mode and the aircraft’s position is being dead-reckoned

instead of calculated using the GPS satellite signals, i.e. the

UseGPSForAircraftPosition (E27) event has not been raised yet. As the

“ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) stereotype

Carleton University, TR SCE-06-19 Decermber 2006

 155

indicate, this reaction is triggered by two events, namely

StartDeadReckoningAircraftPosition (E26) or UseGPSForAircraft-

Position (E27). The “Reference” tagged value of the <<Rationale>> (5.2.14)

stereotype indicates that this reaction implements safety requirement SREQ 7.

R9 RaiseSubsystemFailureAlert: This represents a reaction that raises an alert

to the pilots indicating that NavigationControllerSubsystem has failed,

possibly because one of the subsystems on which it depends has failed as well.

As the “ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) stereotype

indicate, this reaction is triggered by the DisableController (R4) reaction or

the ControllerFailed (E5) event. The “Reference” tagged value of the

<<Rationale>> (5.2.14) stereotype indicates that this reaction implements safety

requirements SREQ 5 and SREQ 6.

R10 HideSubsystemFailureAlert: This represents a reaction that hides an alert,

which was previously raised to the pilots as part of the

RaiseSubsystemFailureAlert (R9) reaction, because

NavigationControllerSubsystem has recovered from a previous failure. As

the “ConsequenceOf” tagged values of the <<Reaction>> (5.2.16) stereotype

indicate, this reaction is triggered by the EnableController (R3) reaction or

the ControllerRestored (E6) event. The “Reference” tagged values of the

<<Rationale>> (5.2.14) stereotype indicate that this reaction implements safety

requirements SREQ 5 and SREQ 6.

R11 RaiseFuelShortageExpectedAlert: This represents a reaction that raises an

alert to the pilots indicating that the aircraft is expected to run out of fuel before

the final destination of the selected flight path or FTPs is reached. As the

“ConsequenceOf” tagged value of the <<Reaction>> (5.2.16) stereotype

indicates, this reaction is triggered by the FuelShortageExpected (E3) event.

The “Reference” tagged values of the <<Rationale>> (5.2.14) stereotype

indicate that this reaction implements safety requirement SREQ 4.

Carleton University, TR SCE-06-19 Decermber 2006

 156

R12 HideFuelShortageExpectedAlert: This represents a reaction that hides an

alert, which was previously raised to the pilots as part of the

RaiseFuelShortageExpectedAlert (R11) reaction, because the flight path or

FTPs have changed and it is not expected that they will cause fuel shortage

anymore. As the “ConsequenceOf” tagged values of the <<Reaction>> (5.2.16)

stereotype indicate, this reaction is triggered by the FuelShortageNotExpected

(E4) event. The “Reference” tagged values of the <<Rationale>> (5.2.14)

stereotype indicate that this reaction implements safety requirement SREQ 4.

7.5.4 Event-Reaction Relationships

A traceability matrix can be constructed as follows:

1. Identify the Events and Reactions: If the events (resp. reactions) are not explicitly

identified and listed, then search for all model elements stereotyped with

<<Event>> (5.2.15) (resp. <<Reaction>> (5.2.16)). In general, only concrete

events (resp. reactions) are those of interest here.

2. Create the Traceability Matrix: Create an (N+M) x M matrix, where N is the

number of unique events, and M is the number of unique reactions. Recall from

section 3.2.3.9 that reactions are events by inheritance.

3. Identify Relationships: For every <<Reaction>> (5.2.16) stereotype, look at the

“ConsequenceOf” tagged values. This tagged value identifies the events that can

cause this reaction to occur. Therefore, this traces each reaction to the events that

can cause it.

4. Analyse Traceability: In general, each event must trigger at least one reaction.

Each reaction may trigger zero or more reactions.

The relationships and traceability between the events described in section 7.5.2 and the

reactions in section 7.5.3 are shown in Table 5 in the form of a traceability matrix, as

described above. If a “Yes” exists in a particular cell, this means that the event identified

Carleton University, TR SCE-06-19 Decermber 2006

 157

by its row may trigger the reaction identified by its column. Only concrete events and

reactions appear in the table.

Reactions Events
R3 R4 R6 R7 R8 R9 R10 R11 R12 Total

E3 Yes 1
E4 Yes 1
E5 Yes 1
E6 Yes 1
E8 Yes Yes 2
E9 Yes Yes 2

E12 Yes 1
E13 Yes 1
E15 Yes 1
E16 Yes 1
E17 Yes 1
E18 Yes 1
E19 Yes 1
E20 Yes 1
E22 Yes 1
E23 Yes 1
E24 Yes 1
E25 Yes 1
E26 Yes 1
E27 Yes 1
R3 Yes 1
R4 Yes 1
R6 0
R7 0
R8 0
R9 0

R10 0
R11 0
R12 0

Total 6 6 2 2 1 3 2 1 1 24

Table 5: Relationships between events and reactions.

By analysing Table 5 we notice that there is an n-to-n relationship between events and

reactions. More specifically:

1. Every event causes at least one reaction: Since all the reactions described in

section 7.5.3 have a positive effect on safety, every event that may introduce

hazards is being handled in a way that increases the level of safety by masking,

Carleton University, TR SCE-06-19 Decermber 2006

 158

reducing, or removing the hazard. Note, however, that reactions do not always

cause other reactions to occur.

2. Every reaction can be triggered by at least one event: In essence, this means that

none of the reactions will result in dead code that is never executed. In addition, a

reaction’s code may occur if any of a number of events occur (e.g.

ChangeFlightPath (E8) occurs if either InvestigateFuelShortage (R6) or

EnsureFlightPathOverSafeAreas (R7) occurs).

3. Some reactions are triggered by other reactions: the RaiseSystemFailureAlert

(R9) reaction is triggered by the DisableController (R4) reaction; the

HideSystemFailureAlert (R10) reaction is triggered by the EnableController

(R3) reaction.

4. Every event causes a finite number of reactions: In other words, it is guaranteed

that the triggering of an event would eventually cause a reaction that does not

trigger other reactions. If that was not the case, then the system could never

restore itself to a steady-state.

Note that we have initially defined our stereotypes (and associated tagged values) for a

subset of the UML metamodel, specifically for metaclasses Class, Operation, and

Relationship. The behavior suggested by these event-reaction relationships would, during

a complete realistic design, also be modeled by one or several statechart diagrams. These

statechart diagrams would specify which reactions (i.e., actions on transitions and states)

result from which events (triggering transitions). The transitions’ guard conditions would

then correspond to the “When” tagged value of the <<Reaction>> (5.2.16) stereotype

above. This suggests that our UML profile needs to be extended to model elements of

UML statechart diagrams. This will be considered in future work, and we do not foresee

any major difficulty for doing so.

Carleton University, TR SCE-06-19 Decermber 2006

 159

7.5.5 High-Level Design

Figure 15 illustrates the NavigationControllerSubsystem high-level design, which

contains safety information indicating requirements traceability, certification information,

and safety monitoring. This will be elaborated further in the remainder of this section.

<<state dependent control>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Handler>> {HandelableEvent=PilotInputEvent,
PerformedReaction=InvestigateFuelShortage}

<<Rationale>> {Reference=“FREQ 1, FREQ 2, FREQ 3,
FREQ 4, FREQ 5, SREQ 2, SREQ 3, SREQ 4”}

Controller

<<system interface>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“FREQ 1”}

<<Interface>> {IsBetweenHardwareAndSoftware=false,
InterfaceFor=NavigationDatabaseSubsystem}

NavigationDatabaseInterface

<<system interface>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“FREQ 2, FREQ 3,
FREQ 4, FREQ 5, SREQ 4”}

<<Interface>> {IsBetweenHardwareAndSoftware=true,
InterfaceFor=NavigationSubsystem}

NavigationInterface

<<system interface>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“FREQ 2, FREQ 3””}

<<Interface>> {IsBetweenHardwareAndSoftware=true,
InterfaceFor=WingsAndEnginesSubsystem}

WingsAndEnginesInterface

<<coordinator>>

<<Monitor>> {Kind=Safety,
MonitoredEntity=NavigationDatabaseInterface,
DetectableEvent=NavigationDatabaseEvent,

EventHandler=ExternalSubsystemsEventHandler}

<<Rationale>
{Reference=“SREQ 6.2”}

NavigationDatabaseMonitor

<coordinator>>

<<Monitor>> {Kind=Safety,
MonitoredEntity=NavigationInterface,
DetectableEvent=NavigationEvent,

EventHandler=ExternalSubsystemsEventHandler}

<<Rationale>>
{Reference=“SREQ 6.3, SREQ 6.5, SREQ 7”}

NavigationMonitor

<<coordinator>>

<<Monitor>> {Kind=Safety,
MonitoredEntity=WingsAndEnginesInterface,
DetectableEvent=WingsAndEnginesEvent,

EventHandler=ExternalSubsystemsEventHandler}

<<Rationale>>
{Reference=“SREQ 1, SREQ 6.1, SREQ 6.4”}

WingsAndEnginesMonitor

<<state dependent control>>

<<Handler>> {HandleableEvent=DependentSubsystemEvent,
PerformedReaction=ReactionToDependentSubsystemEvent}

<<Rationale>>
{Reference=“SREQ 1, SREQ 6, SREQ 7”}

ExternalSubsystemsEventHandler

<<algorithm>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“FREQ 2, FREQ 3,
SREQ 3”}

PathProjector

<<system interface>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Interface>>
{InterfaceFor=NavigationControllerSubsystem}

ControllerInterface

Monitors MonitorsMonitors

Notifies

Monitors

Reads and Writes Reads StatusCommands and Reads Status

Queries and
Commands

Commands

NotifiesNotifies

Executes

Executes

Reads Status

<<SafetyContext>>

<<Requirement>> {Kind=Functional, Specification=‘Fulfills all FREQs’}
<<Requirement>> {Kind=Safety, Specification=‘Fulfills all SREQs’}

<<algorithm>>

<<SafetyCritical>> {CriticalityLevel=C}

<<Rationale>> {Reference=“SREQ 2, SREQ 3”}

SafePointDeterminator

<<coordinator>>
<Monitor>> {Kind=Safety, MonitoredEntity=Controller,

DetectableEvent=IndependentSubsystemEvent,
EventHandler=ControllerMonitorAndHandler}

<<Handler>> {HandelableEvent=IndependentSubsystemEvent,
PerformedReaction=ReactionToIndependentSubsystemEvent}

<Rationale>> {Reference=“SREQ 4, SREQ 5, SREQ 7”}

ControllerMonitorAndHandler

Executes

Figure 15: NavigationController subsystem’s high-level design (structure).

One key area of interest is tracing model elements, or classes, to requirements as

described in section 2.5. This will be discussed in detail here as each classes contributing

to the implementation of a requirement will be explained. The discussion will say that a

class CLASS1 implements requirement REQ1 if, as a minimum, class CLASS1 partially

implements requirement REQ1.

Carleton University, TR SCE-06-19 Decermber 2006

 160

The diagram is stereotyped with <<SafetyContext>> (5.2.1) to indicate that it contains

information that is relevant to safety. Furthermore, it is also stereotyped with

<<Requirement>> (5.2.9) twice. The first <<Requirement>> (5.2.9) stereotype has a

“Kind” tagged value equal to “Functional” to indicate that it is a functional requirement,

and its “Specification” tagged value is set to “Fulfills all FREQs” to indicate that the

design in this diagram must fulfill all the FREQ functional requirements of the subsystem

(section 7.3). The second <<Requirement>> (5.2.9) stereotype has a “Kind” tagged value

equal to “Safety” to indicate that it is a safety requirement, and its “Specification” tagged

value is set to “Fulfills all SREQs” to indicate that the design in this diagram must fulfill

all SREQ safety requirements of the subsystem (section 7.4.5).

Most classes in Figure 15 use the <<Rationale>> (5.2.14) stereotype and its “Reference”

tagged value. For clarity and brevity, the “Reference” tagged value was used once to list

more than one requirement. For example, Controller has a <<Rationale>> (In 5.2.14)

stereotype with a “Reference” tagged value set to “FREQ 1, FREQ 2, FREQ 3, FREQ 4,

FREQ 5, SREQ 2, SREQ 3”. This abbreviation is used in this , we say that a class CLASS1

depends on class CLASS2 if there is an association between CLASS1 and CLASS2 in which

CLASS1 is the source end of the uni-directional association and CLASS2 is the target end.

Additionally, we say that CLASS1 depends on CLASS2 if a usage dependency exists for

CLASS1 on CLASS2, which would be the case study to indicate that the sterotype actually

has several “Reference” tagged values, and each “Reference” tagged value identifies only

if CLASS2 is a parameter to at least one requirement. Therefore, the {Reference=“FREQ

1, FREQ 2, FREQ 3, FREQ 4, FREQ 5, SREQ 2, SREQ 3”} string is actually identical to

{Reference=“FREQ 1”, Reference=“FREQ 2”, Reference=“FREQ 3”,

Reference=“FREQ 4”, Reference=“FREQ 5”, Reference=“SREQ 2”, Reference=“SREQ

3”}. Whereas the latter format is what the proposed UML profile defines and therefore

would be used when the design is modeled in a UML modeling tool, we have used the

former abbreviated format in the figuremethod in this section to make the UML diagram

clearer and easier to understand.

Similarly, the “Explanation” tagged value of the <<Rationale>> (5.2.14) stereotype is not

shown in Figure 15 because the explanation text is large and would have cluttered the

Carleton University, TR SCE-06-19 Decermber 2006

 161

diagram. Instead, the explanation can be found below in the subsections describing each

class: each time we provide the text (i.e., the value of the “Explanation” tagged value)

that would be used by a UML CASE tool supporting our profile.

The different classes in the class diagram of Figure 15 are now described in sections

7.5.5.1 to 7.5.5.10.

7.5.5.1 Description of class Controller

Controller is the key and central element of the subsystem. It is stereotyped with

<<SafetyCritical> (5.2.17) and assigned software level C, as indicated by the

“CriticalityLevel” tagged value, because its failure results in the failure of the entire

subsystem, which is assigned software level C itself. Furthermore, Controller is

stereotyped with <<Handler>> (5.2.19) whose “HandleableEvent” tagged value is set to

“PilotInputEvent” to indicate that it handles all concrete events that are subclasses of

PilotInputEvent (E7). In addition to normal code execution (e.g. changing the flight

path in response to a ChangeFlightPath (E8) input event), Controller also executes

the InvestigateFuelShortage (R6) reaction to decide whether the changes requested

by the pilots will result in a fuel shortage or not. This reaction results in sending one of

two events (discussed later): FuelShortageExpected (E3) and

FuelShortageNotExpectedEvent (E4). There is not a separate monitor shown here,

using the <<Monitor>> (5.2.20) stereotype, because those events are explicit invocation

calls through NavigationInterface.

WingsAndEnginesInterface is NavigationControllerSubsystem’s interface to

WingsAndEnginesSubsystemSubsystem. Therefore, it is stereotyped with <<Interface>>

(5.2.25). Its “IsBetweenHardwareAndSoftware” tagged value is set to “true” to indicate

the class interfaces directly with hardware, and its “InterfaceFor” tagged value is set to

WingsAndEnginesSubsystemSubsystem to specify the subsystem for which this class is

an interface for.

Controller implements all the functional requirements assigned to the subsystem,

namely FREQ 1, FREQ 2, FREQ 3, FREQ 4, and FREQ 5. This is explicitly indicated in

Carleton University, TR SCE-06-19 Decermber 2006

 162

the diagram by stereotyping Controller with <<Rationale>> (5.2.14) and identifying

the functional requirements through the “Reference” tagged value. Furthermore,

Controller also implements three safety requirements, namely SREQ 2, SREQ 3, and

SREQ 4, which are also listed in the “Reference” tagged value of the <<Rationale>>

(5.2.14) stereotype. The “Explanation” tagged value for each requirement is:

1. FREQ 1: To implement this functional requirement, Controller uses

NavigationDatabaseInterface (see section 7.5.5.10) to read pre-determined

flight paths from NavigationDatabaseSubsystem.

2. FREQ 2: To implement this functional requirement, Controller needs to provide

an autopilot functionality, which requires continuously controlling the aircraft’s

wings and engines through WingsAndEnginesInterface, as well as using

NavigationInterface to read the navigation parameters and determine the

correct input parameters to the wings and engines (section 7.5.5.10). If the

requested flight path is not pre-determined (i.e. loaded from the navigation

database), then Controller uses PathProjector (section 7.5.5.9) to determine

the most appropriate flight path based on the pilots’ input parameters.

3. FREQ 3: To implement this functional requirement, Controller needs to be able

to fly the aircraft to a specific FTP, which requires continuously controlling the

aircraft’s wings and engines through WingsAndEnginesInterface , as well as

using NavigationInterface to read the navigation parameters (section 7.5.5.10).

To determine the flight path from the aircraft’s current position to the requested

FTP, Controller uses PathProjector to determine what the most appropriate

flight path based on the pilots’ requested FTP (section 7.5.5.9).

4. FREQ 4: To implement this functional requirement, Controller needs to be able

to guide the pilots with navigation directions by tracking the aircraft’s position

and bearing, following the flight path, without controlling the aircraft’s wings and

engines through WingsAndEnginesInterface. In this mode, the pilot manually

controls the aircraft through MechanicalSteeringWheelSubsystem. However,

Controller uses NavigationInterface to read the navigation parameters and

Carleton University, TR SCE-06-19 Decermber 2006

 163

be able to provide correct flight guidance to the pilots (section 7.5.5.10). This

operating mode requires Controller to calculate the required inputs to

WingsAndEnginesSubsystem, which is then displayed to the pilots. Such

calculations take various factors into account, including the aircraft’s navigation

information, wind navigation information, and unsafe areas.

5. FREQ 5: To implement this functional requirement, Controller needs to be able

to read the navigation information (e.g., aircraft’s and the wind’s position and

speed) from NavigationSubsystem (section 7.5.5.10).

6. SREQ 2: To implement this safety requirement, Controller needs to be able to

execute an algorithm that determines whether a specific LAT/LONG position is in

safe area or not. This is the responsibility of SafePointDeterminator (section

7.5.5.8).

7. SREQ 3: To implement this safety requirement, Controller needs to be able to

execute an algorithm that projects a flight path based on the current aircraft’s

position and the target FTP, and then determines whether this path includes flying

in unsafe areas. This algorithm is the responsibility of PathProjector (section

7.5.5.9). Once a path is determined, then an algorithm in

SafePointDeterminator is executed to determine whether the flight path is safe

or not (section 7.5.5.8).

8. SREQ 4: To implement this safety requirement, Controller needs to be able to

investigate whether a fuel shortage is expected, based on the current navigation

information and flight information, or not. The navigation information is available

through NavigationInterface (section 7.5.5.10). The determination of whether

fuel shortage is expected or not occurs in the execution of the

InvestigateFuelShortage (R6) reaction. As a result of this execution, it raises

either the FuelShortageExpected (E3) event or the FuelShortageNotExpected

(E4) event. Raising an event is the explicit indication that a particular event has

occurred, which would normally result in the detection of the event and its

Carleton University, TR SCE-06-19 Decermber 2006

 164

appropriate handing by executing the corresponding reactions. The event is then

detected and handled by ControllerMonitorAndHandler (section 7.5.5.6).

7.5.5.2 Description of class WingsAndEnginesMonitor

WingsAndEnginesMonitor is a safety monitoring class as indicated by the <<Monitor>>

(5.2.20) stereotype and its “Kind” tagged value, which is set to “Safety”. The purpose of

this class is to continuously monitor WingsAndEnginesSubsystem through

WingsAndEnginesInterface to detect any event that may impact safety. This is

specified in the “MonitoredEntity” tagged value, which is set to

“WingsAndEnginesInterface” because, as far as NavigationControllerSubsystem is

concerned, WingsAndEnginesInterface is the single point of interface with

WingsAndEnginesSubsystem. The safety-related events that WingsAndEnginesMonitor

detects are specified in the “DetectableEvent” tagged value, which is set to

“WingsAndEnginesEvent” to indicate that it detects all events of type

WingsAndEnginesEvent and its subclasses. Furthermore, the “EventHandler” tagged

value is set to “ExternalSubsystemsEventHandler” to indicate that

ExternalSubsystemsEventHandler is the event handler for the events that

WingsAndEnginesMonitor detects.

The requirements that WingsAndEnginesMonitor implements are indicated by the

“Reference” tagged value of the <<Rationale>> (5.2.14) stereotype, namely SREQ 1,

SREQ 6.1, and SREQ 6.4. The “Explanation” tagged values of stereotype <<Rationale>>

are:

1. SREQ 1: It implements this safety requirement by monitoring

WingsAndEnginesInterface for the following two events:

WingsAndEnginesControlledByOtherSubsystem (E19) and

WingsAndEnginesNotControlledByOtherSubsystem (E20). If any of them is

detected, ExternalSubsystemsEventHandler is notified accordingly to handle

the event (section 7.5.5.5).

Carleton University, TR SCE-06-19 Decermber 2006

 165

2. SREQ 6.1: It implements this safety requirement by monitoring

WingsAndEnginesInterface for the WingsAndEnginesFailed (E15) and

WingsAndEnginesRestored (E16) events. If any of them is detected,

ExternalSubsystemsEventHandler is notified accordingly to handle the event

(section 7.5.5.5).

3. SREQ 6.4: It implements this safety requirement by monitoring

WingsAndEnginesInterface for the WingsAndEnginesConnectionLost (E17)

and WingsAndEnginesConnectionEstablished (E18) events. If any of them is

detected, ExternalSubsystemsEventHandler is notified accordingly to handle

the event (section 7.5.5.5).

7.5.5.3 Description of class NavigationDatabaseMonitor

NavigationDatabaseMonitor is a safety monitoring class as indicated by the

<<Monitor>> (5.2.20) stereotype and its “Kind” tagged value, which is set to “Safety”.

The purpose of this class is to continuously monitor NavigationDatabaseSubsystem

through NavigationDatabaseInterface to detect any events that may impact safety.

This is specified in the “MonitoredEntity” tagged value, which is set to

“NavigationDatabaseInterface” because, as far as NavigationControllerSubsystem is

concerned, NavigationDatabaseInterface is the single point of interface with

NavigationDatabaseSubsystem. The safety-related events that NavigationDatabase-

Monitor detects are specified in the “DetectableEvent” tagged value, which is set to

“NavigationDatabaseEvent” to indicate that it detects all events of

NavigationDatabaseEvent and its subclasses. Furthermore, the “EventHandler” tagged

value is set to “ExternalSubsystemsEventHandler” to indicate that

ExternalSubsystemsEventHandler is the event handler for the events that

NavigationDatabaseMonitor detects.

The requirements that NavigationDatabaseMonitor implements are indicated by the

“Reference” tagged value of the <<Rationale>> (5.2.14) stereotype, namely SREQ 6.2.

The detectable events are NavigationDatabaseFailed (E12) and

NavigationDatabaseRestored (E13). If any of them is detected,

Carleton University, TR SCE-06-19 Decermber 2006

 166

ExternalSubsystemsEventHandler is notified accordingly to handle the event (section

7.5.5.5). The “Explanation” tagged value of the <<Rationale>> (5.2.14) stereotype is

exactly the explanation provided in this paragraph.

7.5.5.4 Description of class NavigationMonitor

NavigationMonitor is a safety monitoring class as indicated by the <<Monitor>>

(5.2.20) stereotype and its “Kind” tagged value, which is set to “Safety”. The purpose of

this class is to continuously monitor NavigationSubsystem through

NavigationInterface to detect any events that may impact safety. This is specified in

the “MonitoredEntity” tagged value, which is set to “NavigationInterface” because, as far

as NavigationControllerSubsystem is concerned, NavigationInterface is the single

point of interface with NavigationSubsystem. The safety-related events that

NavigationMonitor detects are specified in the “DetectableEvent” tagged value, which

is set to “NavigationEvent” to indicate that it detects all events of NavigationEvent and

its subclasses. Furthermore, the “EventHandler” tagged value is set to

“ExternalSubsystemsEventHandler” to indicate that ExternalSubsystemsEventHandler

is the event handler for the events that NavigationMonitor detects. This is an example

of using the same class as both a monitor and an event handler, which may be more

appropriate in cases where the events and reactions are relatively simple, possibly

because the “MonitoredEntity” is a single class, namely, Controller. Each of the other

monitors in the subsystem monitors an entire subsystem, through its interface. Those

monitored subsystems reside on different nodes, and therefore there are several other

factors that monitors need to be aware of, such as communication through data buses.

The requirements that NavigationMonitor implements are indicated by the “Reference”

tagged value of the <<Rationale>> (5.2.14) stereotype, namely SREQ 6.3, SREQ 6.5, and

SREQ 7. The “Explanation” tagged values of the <<Rationale>> (5.2.14) stereotype are:

1. SREQ 6.3: It implements this safety requirement by monitoring

NavigationInterface for the NavigationFailed (E22) and

NavigationRestored (E23) events.

Carleton University, TR SCE-06-19 Decermber 2006

 167

2. SREQ 6.5: It implements this safety requirement by monitoring

NavigationInterface for the NavigationConnectionLost (E24) and

NavigationConnectionEstablished (E25) events.

3. SREQ 7: It implements this safety requirement by monitoring

NavigationInterface for the StartDeadReckoningAircraftPosition (E26)

and UseGPSForAircraftPosition (E27) events.

If any of these events is detected, ExternalSubsystemsEventHandler is notified

accordingly to handle the event (section 7.5.5.5).

7.5.5.5 Description of class ExternalSubsystemsEventHandler

ExternalSubsystemsEventHandler is an event handler as indicated by the

<<Handler>> (5.2.19) stereotype. Thus, the “HandleableEvent” tagged value is set to

“DependentSubsystemEvent”, which is the event class, and its subclasses, that

ExternalSubsystemsEventHandler can recognize and handle. All the events that are

passed to ExternalSubsystemsEventHandler from WingsAndEnginesMonitor,

NavigationDatabaseMonitor, or NavigationMonitor are subclasses of the

DependentSubsystemEvent (E10). The reactions that

ExternalSubsystemsEventHandler performs in response to those events are the

concrete subclasses of ReactionToDependentSubsystemEvent (R2) and its subclasses.

The “Reference” tagged value of the <<Rationale>> (5.2.14) stereotype specifies the

requirements that ExternalSubsystemsEventHandler fulfills by performing the

reactions to the event, namely1 SREQ 1, SREQ 6 (and its sub-requirements), and SREQ

7. Specifically, it implements each requirement by invoking the corresponding reaction

for each event it is notified with. As before, the “Explanation” tagged value of the

<<Rationale>> (5.2.14) stereotype is not shown in the diagram because it is large and

1 WingsAndEnginesMonitor, NavigationDatabaseMonitor, and NavigationMonitor send events
that are handled by ExternalSubsystemsEventHandler to implement requirements SREQ 1,
SREQ 6.1, and SREQ 6.4 (WingsAndEnginesMonitor–section 7.5.5.2), SREQ 6.2
(NavigationDatabaseMonitor–section 7.5.5.3), SREQ 6.3, SREQ 6.5, and SREQ 7
(NavigationMonitor–section 7.5.5.4).

Carleton University, TR SCE-06-19 Decermber 2006

 168

would have cluttered the diagram, but the explanation provided in this paragraph is

actually the value of the “Explanation” tagged value and is what would be captured in a

UML tool.

7.5.5.6 Description of class ControllerMonitorAndHandler

ControllerMonitorAndHandler is a safety monitoring class that monitors Controller.

Unlike the monitoring classes discussed above, this class is also the handler for the events

it detects. It was a design decision to combine those two functionalities in one class

because all of the events detected, and reactions performed, by this class are simple

enough to combine both in one class. On the other hand, WingsAndEnginesMonitor,

NavigationDatabaseMonitor, and NavigationMonitor are designed to detect more

complex events. Those complex events require the monitors to continuously interact with

the subsystems they monitor by sending and receiving inter-subsystem messages through

their interface classes.

The <<Monitor>> (5.2.20) stereotype on ControllerMonitorAndHandler explicitly

indicates that the class is a monitor, and the “Kind” tagged value, which is set to

“Safety”, indicates that its purpose is to monitor safety. The “MonitoredEntity” tagged

value is set to “Controller” to indicate ControllerMonitorAndHandler monitors

Controller for safety-related events. The “DetectableEvent” tagged value is set to

“IndependentSubsystemEvent” to indicate that it detects all events of

IndependentSubsystemEvent and its subclasses. Furthermore, the “EventHandler”

tagged value is set to “ControllerMonitorAndHandler” to indicate that

ControllerMonitorAndHandler itself is the event handler for the events that it detects.

The <<Handler>> (5.2.19) stereotype explicitly indicates that

ControllerMonitorAndHandler also handles the events that it detects. The

“HandleableEvents” tagged value is set to “IndependentSubsystemEvent” to indicate that

the class can handle all IndependentSubsystemEvent events and its subclasses.

Furthermore, the “PerformedReaction” tagged value is set to

“ReactionToIndependentSubsystemEvent” to indicate that ControllerMonitor-

Carleton University, TR SCE-06-19 Decermber 2006

 169

AndHandler performs all reactions of ReactionToIndependentSubsystemEvent and its

subclasses in response to the events.

ControllerMonitorAndHandler is also stereotyped with <<Rationale>> (5.2.14) whose

“Reference” tagged value is set to “SREQ 4, SREQ 5, SREQ 7”. The “Explanation”

tagged values of the <<Rationale>> (5.2.14) stereotype are:

1. SREQ 4: It implements this safety requirement by monitoring Controller for the

FuelShortageExpected (E3) and FuelShortageNotExpected (E4) events

(section 7.5.5.1). Since ControllerMonitorAndHandler is also an event handler,

it executes the RaiseFuelShortageExpectedAlert (R11) reaction in response to

the FuelShortageExpected (E3) event, and the

HideFuelShortageExpectedAlert (R12) reaction in response to the

FuelShortageNotExpected (E4) event.

2. SREQ 5: It implements this safety requirement by monitoring Controller for the

ControllerFailed (E5) and ControllerRestored (E6) events (section 7.5.5.1).

It is ControllerMonitorAndHandler that creates those events based on how it

observes the behaviour of Controller to be. Since

ControllerMonitorAndHandler is also an event handler, it executes the

RaiseSubsystemFailureAlert (R9) reaction in response to the

FuelShortageExpected (E5) event, and the HideSubsystemFailureAlert

(R10) reaction in response to the ControllerRestored (E6) event.

3. SREQ 7: It implements this safety requirement by monitoring Controller, and

by being sensitive to the StartDeadReckoningAircraftPosition (E26) and

UseGPSForAircraftPosition (E27) events (section 7.5.5.1). Since

ControllerMonitorAndHandler is also an event handler, it executes the

RequirePilotConfirmation (R8) reaction, which periodically requires the

pilot’s confirmation as long as the aircraft’s position is being dead-reckoned, in

response to the StartDeadReckoningAircraftPosition (E26) and

UseGPSForAircraftPosition (E27) events.

Carleton University, TR SCE-06-19 Decermber 2006

 170

7.5.5.7 Description of class ControllerInterface

ControllerInterface serves as the façade of NavigationControllerSubsystem to the

other subsystems. This has two implications. First of all, it is safety-critical and has a

software level equal to that of NavigationControllerSubsystem. This is indicated by

stereotyping it with <<SafetyCritical>> (5.2.17) and setting its “CriticalityLevel” tagged

value to “C”. Secondly, it is stereotyped with <<Interface>> (5.2.25) and has its

“InterfaceFor” tagged value set to “NavigationControllerSubsystem” to indicate that it

serves as an interface for NavigationControllerSubsystem. The services this interface

provides is quering Controller, and consequently other classes that it depends on, and

commanding Controller to perform certains functionalities such as activating autopilot

or FTP mode. Notice that ControllerInterface is not stereotyped with <<Rationale>>

(5.2.14) in this diagram because it is Controller that implements the functional

requirements. In the class diagram for some other subsystem, such as

NavigationUserInterfaceSubsystem, ControllerInterface serves as the façade of

NavigationControllerSubsystem and its classes, including Controller. In that

context, it is likely to include ControllerInterface and stereotype it with

<<Rationale>> (5.2.14) and include all the FREQ ans SREQ requirements in its

“Reference” tagged value. This is what was done here for the interfaces for other

subsystems (WingsAndEnginesInterface, NavigationDatabaseInterface, and

NavigationInterface).

7.5.5.8 Description of class SafePointDeterminator

SafePointDeterminator implements an algorithm that determines whether a specific

LAT/LONG position is in a safe area or not. Similarly, it implements an algorithm that

determines whether a flight path is safe or not. These services are provided to

Controller to implement requirements SREQ 2 and SREQ 3 (see section 7.5.5.1).

Therefore SafePointDeterminator participates in the implementation of this

requirement and is stereotyped with <<Rationale>> (5.2.14) whose “Reference” tagged

value includes “SREQ 2” and “SREQ 3”.

Carleton University, TR SCE-06-19 Decermber 2006

 171

Additionally, SafePointDeterminator is stereotyped with <<SafetyCritical>> (5.2.17)

whose “CriticalityLevel” tagged value is set to “C” because2 it is used by Controller

which is itself safety critical at level “C”.

7.5.5.9 Description of class PathProjector

PathProjector provides services to Controller, such as obtaining the source and

destination LAT/LONG positions, specific intermediate flight points, … of a path, when

Controller does not have a pre-determined flight path (see section 7.5.5.1). Therefore,

PathProjector participates in implementing requirement FREQ 2. Similarly,

PathProjector participates in implementing requirement FREQ 3 (see section 7.5.5.1).

Additionally, PathProjector implements an algorithm that projects a flight path based

on the current aircraft’s position and the target FTP. This service is also used by

Controller to implement requirement SREQ 3. PathProjector is therefore stereotyped

with <<Rationale>> (5.2.14) whose “Reference” tagged value includes “FREQ 2”,

“FREQ 3”, and “SREQ 3”.

Additionally, PathProjector is stereotyped with <<SafetyCritical>> (5.2.17) whose

“CriticalityLevel” tagged value is set to “C” because2 it is used by Controller which is

itself safety critical at level “C”.

7.5.5.10 Description of WingsAndEnginesInterface, NavigationDatabase-

Interface, and NavigationInterface classes

Finally, the class diagram for NavigationControllerSubsystem includes three

interface classes that communicate with other subsystems. For each one of those interface

(client) classes, there exists a server class in the corresponding subsystem that

communicates with it by receiving messages, usually known as requests in such

2 According to the rules for determining software levels described in the airworthiness standard RTCA DO-
178B [4], when a safety critical component has a specific criticality level, then all the components it
depends on are safety critical and have at least this criticality level (‘A’ is more critical than ‘B’, which is
more critical than ‘C’, …). In our case, components are classes, and a class depends on another class if the
former class requires services from the latter class, which is specified in the class diagram as an association
that can be navigated from the former to the latter.

Carleton University, TR SCE-06-19 Decermber 2006

 172

distributed systems, from the interface and then responding to them. Those interface

classes are:

1. WingsAndEnginesInterface, which belongs to WingsAndEnginesSubsystem. It

is NavigationControllerSubsystem’s interface to WingsAndEngines-

Subsystem. Therefore, it is stereotyped with <<Interface>> (5.2.25). Its

“IsBetweenHardwareAndSoftware” tagged value is set to “true” to indicate the

class interfaces directly with hardware, and its “InterfaceFor” tagged value is set

to WingsAndEnginesSubsystemSubsystem to specify the subsystem for which

this class is an interface for. WingsAndEnginesInterface is stereotyped with

<<Rationale>> (5.2.14) whose “Reference” tagged value includes “FREQ 2” and

“FREQ 3” because it is used by class Controller to implement these

requirements (see section 7.5.5.1).

2. NavigationDatabaseInterface, which belongs to the

NavigationDatabaseSubsystem. It is NavigationControllerSubsystem’s

interface to NavigationDatabaseSubsystem. Therefore, it is stereotyped with

<<Interface>> (5.2.25). Its “IsBetweenHardwareAndSoftware” tagged value is set

to “false” to indicate the class does not interface with hardware, and its

“InterfaceFor” tagged value is set to “NavigationDatabaseSubsystem” to specify

the subsystem for which this class is an interface for.

NavigationDatabaseInterface is stereotyped with <<Rationale>> (5.2.14)

whose “Reference” tagged value includes “FREQ 1” because it is used by class

Controller to implement this requirement (see section 7.5.5.1).

3. NavigationInterface, which belongs to the NavigationSubsystem. It is

NavigationControllerSubsystem’s interface to NavigationSubsystem.

Therefore, it is stereotyped with <<Interface>> (5.2.25). Its

“IsBetweenHardwareAndSoftware” tagged value is set to “true” to indicate the

class interfaces directly with hardware, and its “InterfaceFor” tagged value is set

to “NavigationSubsystem” to specify the subsystem for which this class is an

interface for. NavigationInterface is stereotyped with <<Rationale>> (5.2.14)

Carleton University, TR SCE-06-19 Decermber 2006

 173

whose “Reference” tagged value includes “FREQ 2”, “FREQ 3”, “FREQ 4”,

“FREQ 5”, and “SREQ 4” because it provide navigation parameters, such as the

aircraft’s and the wind’s bearing and speed, the aircraft’s and the wind’s position

and speed, to the Controller class to implement these requirements (see section

7.5.5.1).

Last, these three classes are stereotyped with <<SafetyCritical>> (5.2.17) whose

“CriticalityLevel” tagged value is set to “C” because2 they are used by Controller

which is itself safety critical at level “C”.

7.5.6 Low-Level Design of Events and Reactions

There are several possible ways to design and implement the events and reactions in

software. One approach would be to design them as classes. In this case, the class

diagram for each the events would be exactly the one shown in Figure 13, and the class

diagram for reactions would be exactly the one shown in Figure 14. A concrete event

instance is simply an instantiation of its corresponding class. This object instance would

then be passed from a monitor, stereotyped with <<Monitor>> (5.2.20), to a handler

<<Handler>> (5.2.19). A reaction would also be an instantiation of a reaction class.

Executing it would simply correspond to passing an event object instance to a procedure

in the reaction object instance. For example, here is a sample code for

ControllerMonitorAndHandler illustrating how reactions to the ChangeFlightPath

(E8) event are executed:
ChangeFlightPath event = new ChangeFlightPath (params);

InvestigateFuelShortage reaction1 =

 new InvestigateFuelShortage (params);

EnsureFlightPathOverSafeAreas reaction2 =

 new EnsureFlightPathOverSafeAreas (params);

reaction1.handle (event);

reaction2.handle (event);

However, it is not necessary to have a separate class for each reaction. In fact, only one

procedure, in a Handler (3.2.3.12) class, is generally needed to describe and execute a

reaction instead of an entire class, although this is dependent on the application details

and the sizes of the events and reactions (i.e. it is up to the designers to ensure that events

Carleton University, TR SCE-06-19 Decermber 2006

 174

and reactions are appropriately defined). Therefore, it is often feasible to group all related

reaction procedures together and include them in the class that is stereotyped with

<<Handler>> (5.2.19). That way, the handler does not need to keep track on which

reactions should occur in response to which events. This would simplify the design and

implementation. Here is a sample code illustrating this concept:
switch (event.Kind)

{

 case CHANGE_FLIGHT_PATH:

 investigateFuelShortage (event);

 ensureFlightPathOverSafeAreas (event);

 break;

 case ...:

 ... etc.

}

Either way, the Handler class would be invoked as follows:
ChangeFlightPath event = new ChangeFlightPath (params);

PersistentEventHandler.handle (event);

Thus, the PersistentEventHandler static class would know exactly that it should

execute the InvestigateFuelShortage (R6) and EnsureFlightPathOverSafeAreas

(R7) reactions. This is a better approach as it would relief the clients from knowing the

reaction specifics. In other words, they can call the handle procedure of the event

handler without needing to know what the event is and what its reactions are.

The concepts of events and reactions in this research are related to the UML concepts of

signals and operations. A signal is intended to indicate the occurrence of an event of

interest. The occurrence of a signal could result in the occurrence of another signal, or in

the invocation of an operation. Therefore, either a signal or an operation may be the

response to a signal. Thus, signals and operations may be reactions to other signals

(“events” in the safety analysis domain).

In summary, structuring and interpreting events and reaction is an implementation detail

rather than a significant design decision. Therefore, it will not be pursued any further in

this case study.

Carleton University, TR SCE-06-19 Decermber 2006

 175

7.6 Design Analysis

Now that NavigationControllerSubsystem is designed according to the functional and

safety requirements, the design model is analysed according to the UML profile’s usage

scenarios identified in section 2.4. This section will illustrate the usefulness of modeling

safety information in the UML model using the proposed UML profile.

7.6.1 USAGE 1: Provide Safety Requirements

Safety requirements are provided by the safety and airworthiness engineers. In this case

study, the safety requirements resulted from the safety assessment performed in section

7.4, and the safety requirements were listed in section 7.4.5.

Two general requirements were specified in the class diagram for

NavigationControllerSubsystem in Figure 15 (see the top of the diagram). One of

them was a functional requirement, which indicated that the class diagram must fulfill all

FREQ requirements of the subsystem. The second one was a safety requirement, which

indicated that the class diagram must fulfill all SREQ requirements of the subsystem. To

ensure that every functional and safety requirement is addressed by at least one class, one

needs to ensure that every functional and safety requirement is referenced by at least one

class using an appropriate stereotype and its tagged values. The <<Rationale>> (5.2.14)

stereotype is the most common for such usage. This is a step towards ensuring that the

diagram fulfills those two high-level diagram requirements.

In addition, safety (and functional) requirements were referenced in the UML model

using the <<Rationale>> (5.2.14) stereotype. Each model element that implemented at

least one safety (or functional) requirement was stereotyped with <<Rationale>> (5.2.14).

Thus, the design was explicitly and precisely related to the safety requirements. This had

several advantages. One particular advantage that is relevant for this usage scenario is

that software engineers better consider safety requirements if they have to explicitly

relate the design model elements to them. This improves the communication between

software and airworthiness/safety engineers because software engineers are now better

able to relate the safety requirements to their software designs.

Carleton University, TR SCE-06-19 Decermber 2006

 176

7.6.2 USAGE 2: Design Safety Requirements in Systems

Safety requirements were decomposed into events and reactions in section 7.5, which

helped design the safety requirements in the software. Event handlers, which perform

reactions to events, were designed and stereotyped with <<Handler>> (5.2.19). When

events and reactions were modeled, either as a class or as an operation, they were

stereotyped with <<Event>> (5.2.15) and <<Reaction>> (5.2.16), respectively.

As a result of decomposing safety requirements into events and reactions, designing

safety requirements in the system reduces to ensuring that safety-related events are

detected and that the relevant reactions are properly executed. The events are listed and

described in section 7.5.2, and the reactions are listed and described in section 7.5.3. This

can be ensured by analysing event handling classes in Figure 15, which were stereotyped

with <<Handler>> (5.2.19), and ensuring that the “HandleableEvent” tagged values

include all previously identified safety-related events. In addition, it must be ensured that

all previously identified safety-related reactions are included in the “PerformedReaction”

tagged values, and that all such reactions are properly executed in response to the events

that trigger them. This helps ensure that all previously identified safety requirements are

accounted for in the design.

All classes that implement safety requirements are stereotyped with <<Rationale>>

(5.2.14) and their “Reference” tagged values explicitly identify all the requirements that

they implement. Therefore, another way to ensure that the safety requirements are

accounted for in the design is to analyse the UML model and identify all <<Rationale>>

(5.2.14) stereotypes. Then, their “Reference” tagged values are analysed to ensure that

every safety requirement is referenced by at least one class. A class references a safety

requirement if it implements it or at least helps implement it.

One particular use of the <<Rationale>> (5.2.14) stereotype and its “Reference” tagged

value is to associate reactions to the safety requirements that they implement. This is

evident in Figure 14 as each modeled reaction is stereotyped with <<Rationale>> (5.2.14)

to identify the safety requirements that it implements.

Carleton University, TR SCE-06-19 Decermber 2006

 177

Since this is a highly-safety critical subsystem that has almost as many safety

requirements as functional requirements, safety-monitoring is emphasized. Safety

monitors are needed to design the safety requirements in the software. Thus, that

subsystem has several safety monitors, one for each subsystem on which it depends and

one for itself. The monitors can be identified by analysing the model and identifying all

classes that are stereotyped with <<Monitor>> (5.2.20). Each monitor class explicitly

identifies what it monitors through the “MonitoredEntity” tagged value. Therefore,

NavigationControllerSubsystem will be able to track subsystem and class failures and

ensure that this does not cause any safety hazards. In fact, once a monitor detects an event

of interest, it notifies an appropriate event handler, which is stereotyped with

<<Handler>> (5.2.19) itself.

The monitors were designed to detect the safety-critical events of interest to the safety

requirements. Once such an event is detected, the appropriate event handler is notified.

Once notified, the event handler executes the corresponding reaction for each event. The

reactions are intended to alleviate the safety hazards introduced by each event, which is

indicated by stereotyping each reaction with <<Reaction>> (5.2.16) and setting its

“EffectOnSafetyDirection” tagged value to “Positive”. The safety monitoring classes,

which are stereotyped with <<Monitor>> (5.2.20) in the design are

WingsAndEnginesMonitor, NavigationDatabaseMonitor, NavigationMonitor, and

ControllerMonitorAndHandler. The event handlers, stereotyped with <<Handler>>

(5.2.19) in the design are ExternalSubsystemsEventHandler and

ControllerMonitorAndHandler.

7.6.3 USAGE 3: Justify Design Decisions

Justifying design decisions is captured in the “Explanation” tagged value of the

<<Rationale>> (5.2.14) stereotype. In this case study, a detailed explanation on how the

class implements each safety requirement, and often even functional requirement,

assigned to it was discussed. This explanation was presented in section 7.5.5 and each

occurrence was explicitly identified as the value of an “Explanation” tagged value.

Carleton University, TR SCE-06-19 Decermber 2006

 178

7.6.4 USAGE 4: Monitor Safety

There are many approaches to monitoring the design and ensuring that it fulfills safety

requirements. One way is to ensure that each safety requirement has design elements

traceable to it. This case study has used the <<Rationale>> (5.2.14) stereotype to trace

design elements to safety requirements and provide justifications for this. The following

search query can be executed to determine which model elements. Including classes and

reactions, are traceable to (e.g. implement) safety requirements:

SEARCH FOR all model elements STEREOTYPED WITH (<<Rationale>>)

The results can be analysed to determine how safety requirements were designed into the

system in USAGE 2, and the “Explanation” tagged value of the <<Rationale>> (5.2.14)

stereotype can be read to determine the justifications, performed in USAGE 3, for the

design decisions performed in USAGE 2.

Executing this search query and then sorting the results per software requirement (i.e.

according to the “Reference” tagged value of the <<Rationale>> stereotype) tells us

which classes and reactions implement each safety requirement. Notice that we do not

have events stereotyped with <<Rationale>> (5.2.14) because they do not contain

executable code that implements safety requirements. The results (classes and reactions)

of the above query for each safety requirement are:

SREQ 1 WingsAndEnginesMonitor, ExternalSubsystemsEventHandler,
EnableController (R3), DisableController (R4)

SREQ 2 Controller, SafePointDeterminator,
EnsureFlightPathsOverSafeAreas (R7)

SREQ 3 Controller, SafePointDeterminator,
PathProjector, EnsureFlightPathsOverSafeAreas (R7)

SREQ 4 ControllerMonitorAndHandler, InvestigateFuelShortage (R6),
RaiseFuelShortageExpectedAlert (R11),
HideFuelShortageExpectedAlert (R12)

SREQ 5 ControllerMonitorAndHandler, RaiseSubsystemFailureAlert (R9),
HideSubsystemFailureAlert (R10).

SREQ 6 WingsAndEnginesMonitor, NavigationDatabaseMonitor,
NavigationMonitor, ExternalSubsystemsEventHandler,
EnableController (R3), DisableController (R4),
RaiseSubsystemFailureAlert (R9), HideSubsystemFailureAlert (R10)

SREQ 7 NavigationMonitor, ExternalSubsystemsEventHandler,

Carleton University, TR SCE-06-19 Decermber 2006

 179

ControllerMonitorAndHandler, and RequirePilotConfirmation (R8)

Furthermore, monitoring safety includes ensuring that each event that can have negative

effect on safety has one or more appropriate reactions that have a positive effect on

safety. This basically means that all hazards caused by events must be treated, and

technically removed, by reactions. Thus, each class stereotyped with <<Event>> (5.2.15)

must be referenced at least once by a “ConsequenceOf” tagged value of a <<Reaction>>

(5.2.16) stereotype of some class. In this case study, this was presented in sections 7.5.4

and 7.5.4, specifically in Figure 14 and Table 5, respectively.

Furthermore, one must ensure that all the safety-related events are detectable by

monitors. This is ensured through the “DetectableEvent” tagged value of the

<<Monitor>> (5.2.20) stereotype. Notice that a monitor can recognize events, but it does

not know which reactions may execute in response to each event. In fact, this is the

responsibility of an event handler. The following search query can be executed to obtain

a list of monitors:

SEARCH FOR all model elements STEREOTYPED WITH (<<Monitor>>)

Executing this query on the design in Figure 15 gives the following result:

ControllerMonitorAndHandler, WingsAndEnginesMonitor, NavigationDatabase-

Monitor, and NavigationMonitor.

Then, looking into the “DetectableEvent” tagged value of the <<Monitor>> (5.2.20)

stereotype for each of the classes in the result above tells us which events are detected by

the identified monitors. This tells us whether all events of interest are detectable (i.e. the

design of monitors is complete) or not.

In addition, events detected by monitors must be handled by event handlers. The

“EventHandler” tagged value of the <<Monitor>> (5.2.20) stereotype for each monitor

class identifies the classes that the monitor notifies when any of the events represented by

the “DetectableEvent” tagged value occurs.

This case study contained two event handlers, each of which explicitly specifies the

events it can handle and the reactions that it performs in response to those events. This

Carleton University, TR SCE-06-19 Decermber 2006

 180

information was presented in the “HandleableEvent” and “PerformedReaction” tagged

values, respectively, of the <<Handler>> (5.2.19) stereotype. A list of event handlers can

be obtained by executing the following search query:

SEARCH FOR all model elements STEREOTYPED WITH (<<Handler>>)

Executing this search query on the design model in Figure 15 gives the following result:

ExternalSubsystemsEventHandler, and ControllerMonitorAndHandler.

Then, one needs to ensure that the “HandleableEvent” and “PerformedReaction” of the

<<Handler>> (5.2.19) stereotype for all handler classes reference all the previously

determined events and their reactions. This tells us whether all safety-related events of

interest are properly handled, through the execution of appropriate reactions, or not.

7.6.5 USAGE 5: Get Safety Information

Safety information that is required to prove compliance with airworthiness requirements

includes ensuring that each safety requirement is implemented. This was discussed in

sections 7.6.1 - 7.6.4.

In addition, safety information that is required by the certification authorities also

includes determining hardware/software interfaces as explained in section 6.2.1. This can

be obtained by executing the search query described in section 6.2.1. The search query is:

SEARCH FOR all model elements STEREOTYPED WITH (<<Interface>>

WITH TAGGED VALUE (IsBetweenHardwareAndSoftware = true))

Executing it on NavigationControllerSubsystem (section 7.5.5) gives:

WingsAndEnginesInterface, and NavigationInterface.

Furthermore, the certification authorities require that software levels be specified and

submitted as explained in section 6.2.2. This can be obtained by executing the search

query in section 6.2.2. This search query is:

SEARCH FOR all model elements STEREOTYPED WITH

(<<SafetyCritical>>)

Carleton University, TR SCE-06-19 Decermber 2006

 181

Executing it on the system architecture in section 7.2 gives all the subsystems, namely:

MechanicalSteeringWheelSubsystem, NavigationUserInterfaceSubsystem,

LEDDisplaySubsystem, NavigationControllerSubsystem, WingsAndEngines-

Subsystem, NavigationDatabaseSubsystem, NavigationSubsystem.

The software levels can be obtained from the “CriticalityLevel” tagged value of the

<<SafetyCritical>> (5.2.17) stereotype for each of the above subsystems.

Other information that is required by the certification authorities includes the partitions in

the system as explained in section 6.2.4. This can be obtained by executing the search

query described in section 6.2.4. The search query is:

SEARCH FOR all model elements STEREOTYPED WITH

(<<Partition>>)

Executing it on the system architecture in section 7.2 gives:

NavigationControllerSubsystem.

Furthermore, the airworthiness rules specify that the software level for each subsystem or

class be equal to at least that of the highest software level for all subsystems or classes

that depend on it2. This can be automatically verified in the model by executing the

following pseudocode:
for each CLIENT model element stereotyped with <<SafetyCritical>

 if CLIENT has a “CriticalityLevel” assigned then

 for each SERVER model element on which it depends

 ensure that SERVER is stereotyped with

 <<SafetyCritical>> and has a “CriticalityLevel”

 assigned equal to at least the “CriticalityLevel”

 of the CLIENT model element

 end loop

 end if

end loop

Moreover, the certification authorities require a list and description of all safety monitors.

The monitors and handlers were discussed in sections 7.6.2 and 7.6.4.

Carleton University, TR SCE-06-19 Decermber 2006

 182

8 CONCLUSION

This research has proposed a UML profile for developing software to be compliant with

the airworthiness standard, RTCA DO-178B [4]. The profile was based on the safety-

related concepts that were extracted from the airworthiness standard as well as their

refined concepts. As a result, the UML extensions provided by this profile are a

consequence of the concepts emphasized by the airworthiness standard.

For example, the airworthiness standard emphasized traceability across requirements,

design, and source code. The proposed profile provides specific extensions to model

traceability of design elements to requirements, deviation of design elements from

original requirements, requirements in the UML model, justification of design and

implementation styles according to requirements, and partitioning of the architecture

according to the requirements. A detailed analysis on how the UML profile can be used

to fulfill each information requirement is presented in section 8.1.

Furthermore, this research has shown how a software model using an appropriate UML

profile can be used to effectively generate airworthiness-related information. Such

information can be submitted to the certification authorities, or it can be used by the

airworthiness engineers to track how software evolves over the lifetime of a project from

an airworthiness point of view.

The profile’s completeness and usefulness was validated by performing a case study. An

aircraft’s navigation subsystem was defined and analysed by performing a safety

assessment. It was then modeled using the proposed UML profile. Analysing the model

showed that the UML profile effectively supported the previously identified usage

scenarios for safety information. In addition, it is effective in tracing model elements to

safety requirements and in automatically generating certification information from a

UML model.

To achieve the results presented above, this research had to define the used safety-related

concepts precisely. The original safety-related concepts that were extracted from the

Carleton University, TR SCE-06-19 Decermber 2006

 183

airworthiness standard were refined into concepts that better grouped related concepts.

Furthermore, each safety related concept was described in detail, and attributes were

defined to describe the various aspects and dimensions of each concept. A conceptual

model (class diagram) was also defined and presented, which precisely defined the

relationships across safety-related concepts and modeled them as associations and

inheritance relationships. Furthermore, the profile precisely defined the tagged values for

each stereotype including its type and multiplicity, and mapped each stereotype and its

tagged values to the refined concepts and their attributes and relationships.

It is also important to note that this UML profile builds on top of existing UML model

diagrams within a project. In other words, using this UML profile does not require the

software engineers to create new diagrams but they must stereotype model elements

accordingly. Therefore, the amount of effort involved in using this profile is minimal.

This also contribute towards improving communication between safety and airworthiness

engineers on the one hand, and software engineers on the other hand.

8.1 Fulfilling Requirements

The proposed UML profile was defined based on the refined safety-related concepts

specified in section 3.2. As section 5 illustrates, there exists a stereotype for each of the

refined concepts. Therefore, the proposed UML profile is able to model all the refined

concepts. Table 6 illustrates how each information requirement is fulfilled by the

proposed UML profile.

IREQ # How to Fulfill the Information Requirement

IREQ 1 Use <<SafetyContext>> (5.2.1) stereotype
IREQ 2 Use <<ReliabilityContext>> (5.2.2) stereotype
IREQ 3 Use <<IntegrityContext>> (5.2.3) stereotype
IREQ 4 Use <<PerformanceContext>> (5.2.4) stereotype
IREQ 5 Use <<ConcurrencyContext>> (5.2.5) stereotype
IREQ 6 Use <<CertificationContext>> (5.2.6) stereotype
IREQ 7 Use <<ConfigurationContext>> (5.2.8) stereotype
IREQ 8 Use <<DesignContext>> (5.2.7) stereotype
IREQ 9 Use <<Requirement>> (5.2.9) stereotype and its “Kind” and “Specification” tags

IREQ 10 Use <<Requirement>> (5.2.9) stereotype and its “OfGoal” tag

Carleton University, TR SCE-06-19 Decermber 2006

 184

IREQ # How to Fulfill the Information Requirement

IREQ 11 Use <<Deviation>> (5.2.10) stereotype
IREQ 12 Use <<ImplementationStyle>> (5.2.11) stereotype and its “Kind” tag
IREQ 13 Use <<BehaviouralStyle>> (5.2.12) stereotype with its “Kind” tag equal to “Time-

Related”
IREQ 14 Use <<BehaviouralStyle>> (5.2.12) stereotype with its “Kind” tag equal to “State-

Related”
IREQ 15 Use <<Nature>> (5.2.13) stereotype and its “Reference” and “Explanation” tags with

its “Kind” tag equal to “COTS”
IREQ 16 Use <<Nature>> (5.2.13) stereotype and its “Reference” and “Explanation” tags with

its “Kind” tag equal to “Previously Developed”
IREQ 17 Use <<Nature>> (5.2.13) stereotype and its “Reference” and “Explanation” tags with

its “Kind” tag equal to “Deactivated”
IREQ 18 Use <<Rationale>> (5.2.14) stereotype
IREQ 19 Use <<Rationale>> (5.2.14) stereotype and its “Reference” and “Explanation” tags
IREQ 20 Use <<Event>> (5.2.15) stereotype
IREQ 21 Use <<Event>> (5.2.15) stereotype and its “EffectOnSafetyDirection” and

“EffectOnSafetyValue” tags
IREQ 22 Use <<Reaction>> (5.2.16) stereotype
IREQ 23 Use <<Reaction>> (5.2.16) stereotype and its “ConsequenceOf” tag
IREQ 24 Use <<Reaction>> (5.2.16) stereotype and its “EffectOnSafetyDirection” and

“EffectOnSafetyValue” tags
IREQ 25 Use <<SafetyCritical>> (5.2.17) stereotype
IREQ 26 Use <<SafetyCritical>> (5.2.17) stereotype and its “CriticalityLevel” tag
IREQ 27 Use <<Partition>> (5.2.18) stereotype
IREQ 28 Use <<Handler>> (5.2.19) stereotype
IREQ 29 Use <<Monitor>> (5.2.20) stereotype
IREQ 30 Use <<Monitor>> (5.2.20) stereotype with its “Kind” tag equal to “Safety”
IREQ 31 Use <<Monitor>> (5.2.20) stereotype with its “Kind” tag equal to “Fault Tolerance”
IREQ 32 Use <<Monitor>> (5.2.20) stereotype with its “Kind” tag equal to “Integrity”
IREQ 33 Use <<Simulator>> (5.2.21) stereotype
IREQ 34 Use <<Simulator>> (5.2.21)stereotype and its “SimulatedEntity” and

“SimulationParameter” tags
IREQ 35 Use <<Strategy>> (5.2.22) stereotype with its “Kind” tag equal to “Safety”
IREQ 36 Use <<Strategy>> (5.2.22) stereotype with “Kind” tag equal to “Scheduling”
IREQ 37 Use <<Formalism>> (5.2.23) stereotype
IREQ 38 Use <<Complexity>> (5.2.24) stereotype and its “Measure” and “Value” tags
IREQ 39 Use <<Interface>> (5.2.25) stereotype with its “IsBetweenHardwareAndSoftware”

tag equal to “true”

Carleton University, TR SCE-06-19 Decermber 2006

 185

IREQ # How to Fulfill the Information Requirement

IREQ 40 Use <<Interface>> (5.2.25) stereotype and its “ProtocolID”,
“InputFunctionParameter”, and “OutputFunctionParameter” tags

IREQ 41 Use <<Concurrent>> (5.2.26) stereotype with its “Role” tag equal to “Active”
IREQ 42 Use <<Concurrent>> (5.2.26) stereotype with its “Role” tag equal to “Passive”
IREQ 43 Use <<Concurrent>> (5.2.26) stereotype with its “Role” tag equal to “Resource”
IREQ 44 Use <<Concurrent>> (5.2.26) stereotype and its “IsShared” tag with its “Role” tag

equal to “Resource”
IREQ 45 Use <<Defensive>> (5.2.27) stereotype
IREQ 46 Use <<Defensive>> (5.2.27) stereotype and its “DefendableInput” tag
IREQ 47 Use <<Configurable>> (5.2.28) stereotype
IREQ 48 Use <<Configurable>> (5.2.28) stereotype and its “Kind” tag
IREQ 49 Use <<Configurable>> (5.2.28) stereotype and its “When” tag
IREQ 50 Use <<Loadable>> (5.2.29) stereotype
IREQ 51 Use <<Configurator>> (5.2.30) stereotype
IREQ 52 Use <<Replicated>> (5.2.31) stereotype
IREQ 53 Use <<Comparator>> (5.2.32) stereotype
IREQ 54 Use <<Comparator>> (5.2.32) stereotype and its “PolicyParameter” tag

Total All 54 information requirements are fulfilled

Table 6: Using the proposed UML profile to fulfill the information requirements.

8.2 Open Issues and Future Work

This research has defined a software safety UML profile and demonstrated how it can

help solve the identified challenges. Numerous examples of its usage have been presented

(section 5.3). Furthermore, the profile has been applied in a case study (section 7)

involving an aircraft navigation controller system – a key software element in every

aircraft. Future work could include applying the profile for other systems in diverse

organizations, and then soliciting the engineers participating in those projects to identify

the strengths and weaknesses of this profile. Such solicitations can be used to generate

qualitative and quantitative results in an approach similar to the one used in [46].

This research has focused on modeling safety information in class diagrams. It

demonstrated how the proposed UML profile’s stereotypes and tagged values can be used

to model information in class diagrams. There was little discussion of other types of

Carleton University, TR SCE-06-19 Decermber 2006

 186

diagrams, such as dynamic diagrams including object diagrams and statecharts. This has

been left for future work. However, the proposed UML profile should be easily

transferable for dynamic diagrams.

The proposed UML profile lists the UML meta classes on which each stereotype may be

applied (section 5.1). This list may not necessarily be sufficient for all usages. More

specifically, certain applications of this profile may determine that it is useful to apply

certain stereotypes on UML meta classes that are not listed here. Nevertheless, this will

form the path in which this profile can evolve in the future.

The refined safety-related concepts (section 3.2), which formed the basis of the UML

profile, are mostly based on the general safety-related concepts identified in the

airworthiness standard [4]. A standard is normally written in a high-level language as to

not restrict the developers following it. Different projects have different airworthiness

requirements and/or technical solutions to airworthiness requirements, and hence may

have additional refined concepts. This is because UML models can be used as an

interface between safety engineers and software developers. This may introduce the need

for additional profile stereotypes and tagged values.

Although airworthiness is a subset of safety, it is specific to the aerospace industry. Many

other industries exist where safety-critical software is used such as the medical, nuclear,

transport, and defence industries. This research was based on the airworthiness standard,

and therefore is intended to meet requirements of the aerospace industry. Those

requirements may or may not be sufficient in other industries that use different safety-

related standards. However, an attempt has been made in this research to generalize

results as much as possible without compromising the ability to model specific

airworthiness concepts and needs. Therefore, this UML profile should be easily tailorable

and applicable to other industries.

It was initially thought that it would be best to propose a UML profile that would be as

compliant as possible with existing OMG UML profiles. However, it was found that it

was better to define concepts for which similar stereotypes existed in other profiles (e.g.

<<Requirement>> (5.2.9) stereotype is similar to the <<QoSConstraint>> and its

Carleton University, TR SCE-06-19 Decermber 2006

 187

subtypes in the QoS and FT OMG UML profile [5]). This redefinition allowed this

profile to be simple, clear, and most importantly self-contained and independent of other

existing profiles. This is important from a maintainability point of view because we may

not necessarily need to modify this profile if other OMG UML profiles are revised and

newer versions are available.

While some of its stereotypes and tagged values can be used to model safety-related

information for systems, this UML profile has focused on modeling them for software.

This is jusitified by the fact that the airworthiness standard [4] focuses on software itself.

Nevertheless, it may be useful to model such information for systems in future work. In

that regard, the OMG System Modeling Language [47], which resuses and extends a

subset of UML [30] to model systems, may be helpful. In fact, it may be merged with

UML to constitute the base modeling language for a new systems and software UML

profile.

Certain extension mechanisms that describe the code were added. Examples of these

include using <<ImplementationStyle>> (5.2.11) to identify recursive code, or code that

dynamically allocates memory. Another example is using the <<Complexity>> (5.2.24)

stereotype to identify constraints on the level of code nesting. While they were provided

here for completeness and their need in software certification, some of them are generally

better addressed by a software code analysis tool that could parse software code, analyse

it, and extract this information. The later approach would provide more complete and

accurate results, and it would relieve the developers from maintaining this information in

the model. Therefore, it may be more appropriate to use such stereotypes and tagged

values as placeholders for data entered by software analysis tools. This UML profile does

not specify the source of the information entered by the software engineers. Thus, a

possible future extension could explicitly address this distinction and potentially provide

two different values for each piece of information – a specified value, which is entered by

the engineers to indicate requirements, and an analysis value, which is entered by a tool

to indicate a predicted or measured value. Then, a tool can compare those two sets of

values to detect violations.

Carleton University, TR SCE-06-19 Decermber 2006

 188

Most enumeration tagged values for some stereotypes were left open for extension by the

users of this profile. This recognizes the fact that each software application may have

specific needs or usages whose level of detail that is not addressed here. Therefore, this

gives flexibility in a seemingly open UML profile. However, this UML profile lists

sample values for each enumeration type that are deemed most useful. Thus, users of this

UML profile do not need to do extra work in defining the enumeration values unless they

truly need to.

Search queries on UML models were used to illustrate how certification-relevant

information can be extracted from a UML model. Those search queries were specified in

a Structured Query Language (SQL)-like textual language. This could be refined and

eventually lead into the development of an SQL-variant language that is used specifically

to search and query UML models. Such a language should be defined such as it is

independent of the UML profiles used.

Alternatively, the integration of EMF and OCL seems to be a promising integration of

technologies to query UML models. The current state of this technology does not support

querying UML models for model elements according to criteria specifying the

stereotypes and tagged values applied on the model elements. However, EMF and OCL

should be easily extensible to support this because it already supports some form of

querying UML models and class objects. Such an extension would be supportive of this

UML profile as it will allow developers to dynamically query this information.

Carleton University, TR SCE-06-19 Decermber 2006

 189

9 SUMMARY

This research has investigated the relationship between UML and software safety. The

airworthiness standard [4] is widely considered as the de-facto safety standard in the

aerospace industry. Therefore, modeling software that has to be developed in an

environment satisfying the airworthiness standard was considered. Since UML has

become the de-facto software modeling language, it was fitting to define a UML profile

for modeling safety-critical software. Therefore, even high-level requirements were

identified for a UML profile to be able to effectively model safety-critical software

developed under the airworthiness standard.

The airworthiness standard was analysed to determine safety-related concepts of interest.

A list of 65 safety-related concepts was formed, and the concepts were categorized in

eight different but related categories: safety, reliability, integrity, performance,

concurrency, certification, design, and configuration.

Given the language difference between standards and UML modeling techniques, the 65

safety-related concepts were refined into 27 concepts that were more appropriate from a

software modeling perspective. This refined list of concepts removed duplication across

similar concepts, and it defined additional concepts that were not covered by the original

65. The 27 refined safety-related concepts were explained in detail and their inter-concept

relationships were formalized through a conceptual model. This allowed us to define 54

information requirements for a candidate UML profile to model those concepts. Those 54

information requirements were traced back to the original 7 high-level concepts.

After analyzing several existing UML profiles and concluding that they did not fulfill an

acceptable percentage of the 54 information requirements, a UML profile was proposed.

The profile, composed of 32 stereotypes and their tagged values, was presented in detail.

Several examples of using the profile were presented and explained in detail. The profile

fulfilled the 54 information requirements and guidance was presented on how it can be

used to fulfill each one of the information requirements.

Carleton University, TR SCE-06-19 Decermber 2006

 190

One specific usage of the profile was the ability to automatically provide airworthiness

and certification information from a UML model. Therefore, examples of such usage

were presented. Each example identified a specific need from the airworthiness standard,

and then it presented search queries that a UML modeling tool can execute on a model

employing the proposed profile to automatically generate the required information. This

is handy for submitting software-related information to the certification authority as well

as continuous project monitoring and control by managers and airworthiness engineers

that are likely to be less experienced with software.

The UML profile was validated by using it to design and analyse an aircraft’s navigation

controller subsystem – a key element in every aircraft. The overall system’s architecture

was presented and explained, and then the navigation controller’s subsystem’s functional

requirements were defined. Then, a safety assessment using the AEA, FMEA, HAZOP,

and IA methods was performed, which identified 11 safety hazards relevant to the

subsystem under study. Those resulted in 7 safety requirements for the subsystem’s

software. The subsystem was then designed using the UML profile, and an analysis of the

model was performed. The analysis showed that the resultant UML model contained

information on how the model elements were traceable to the safety requirements, as well

as additional information relevant to the certification authorities.

Future work in this area could include using the profile in real-life projects and soliciting

participating stakeholders for improvement information.

Carleton University, TR SCE-06-19 Decermber 2006

 191

REFERENCES

[1] Nancy G. Leveson, Safeware – System Safety and Computers, Addison-Wesley, 1995

[2] Tom Pender, UML Bible, Wiley, 2003

[3] A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven Architecture

- Practice and Promise, Addison-Wesley, First Edition, 2003

[4] Radio Technical Commission for Aeronautics (RTCA) Inc., DO-178B – Software

Considerations in Airborne Systems and Equipment Certification, December 1992

[5] Object Management Group (OMG) Inc., UML Profile for Modeling Quality of Service

and Fault Tolerance Characteristics and Mechanisms, http://www.omg.org/docs/ptc/05-

05-02.pdf, May 2005

[6] Object Management Group (OMG) Inc., UML Profile for Schedulability,

Performance, and Time Specification, http://www.omg.org/docs/formal/05-01-02.pdf,

January 2005

[7] Hassan Gomaa, Designing Concurrent, Distributed, and Real-Time Applications with

UML, Addison-Wesley, 2000

[8] RTC Magazine, Certification Requirements for Safety-Critical Software,

http://www.rtcmagazine.com/home/article.php?id=100010, June 2004

[9] Debra S. Hermann, Software Safety and Reliability, IEEE Computer Society, 1999

[10] Kelly J. Hayhurst and C. Michael Holloway, Challenges in Software Aspects of

Aerospace Systems, NASA Langley Research Center, 2001

[11] US Department of Defense, MIL-STD-498 – Software Development and

Documentation, 1994

Carleton University, TR SCE-06-19 Decermber 2006

 192

[12] Institute of Electrical and Electronics Engineers/Electronics Industry Association

(IEEE/EIA), IEEE/EIA 12207 – Standard for Software Lifecycle Processing, March 1998

[13] Merriam-Webster Inc., Merriam-Webster’s Collegiate Dictionary, Tenth Edition,

1993

[14] Nancy G. Leveson, Stephen S. Cha, John C. Knight, Timothy Shimeall, The Use of

Self Checks and Voting in Software Error Detection: An Empirical Study, July 1985

[15] Barry W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems, Addison-

Wesley, Reading, Massachusetts, 1989

[16] Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard Glossary of

Software Engineering Terminology 610.12-1990, Volume 1: Customer and Terminology

Standards, IEEE Press, 1999

[17] B. Edmonds, Complexity and Scientific Modelling, Proceedings of the 20th

International Wittgenstein Symposium, Austria, August 1997

[18] John J. Marcinak, Encyclopedia of Software Engineering, Wiley-Interscience, 1994

[19] W. P. Stevens, G. J. Myers, L. L. Constantine, Structural Designs, IBM System

Journal 13 (2) 115-139, 1974

[20] R. W. Jensen, C. C. Tonies, Software Engineering, Prentice Hall, 1979

[21] G. J. Myers, Software Reliability Principles and Practices, John Wiley & Sons, 1976

[22] Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall, Second

Edition, 1997

[23] J. B. Wordsworth, The Best from Formal Methods, Information and Software

Technology 41(14), pp. 1027-1032, November 1999

[24] International Electrotechnical Commission (IEC), IEC 61508 – Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-Related Systems, December 1998

Carleton University, TR SCE-06-19 Decermber 2006

 193

[25] US Department of Defense, MIL-STD-1553B – Aircraft Internal Time-Division

Command/Response Multiplex Data Bus, 1986

[26] Jean-Noël Meunier, Frank Lippert, and Ravi Jadhav, RT Modeling with UML for

Safety Critical Applications – the HIDOORS Project Example, 2003

[27] Jan Jürjens, Developing Safety-Critical Systems with UML, 2003

[28] Kai T. Hansen and Ingolf Gullesen, Utilizing UML and Patterns for Safety Critical

Systems, 2002

[29] Object Management Group (OMG) Inc., Unified Modeling Language:

Infrastructure, http://www.omg.org/docs/formal/05-07-05.pdf, March 2006

[30] Object Management Group (OMG) Inc., Unified Modeling Language:

Superstructure, http://www.omg.org/docs/formal/05-07-04.pdf, August 2005

[31] ARTiSAN Software Inc., ARTiSAN Studio,

http://www.artisansw.com/pdf/product_sheets/studio.pdf, September 2006

[32] International Business Machines (IBM) Software, Rational Software Architect,

http://www-306.ibm.com/software/awdtools/architect/swarchitect/, August 2006

[33] Telelogic, Rhapsody, http://www.ilogix.com/sublevel.aspx?id=53, October 2006

[34] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, Timothy J. Grose,

Eclipse Modeling Framework: A Developer's Guide, Addison-Wesley, August 2003

[35] Object Management Group (OMG) Inc., Object Constraint Language,

http://www.omg.org/docs/formal/06-05-01.pdf, May 2006

[36] Object Management Group (OMG) Inc., MOF 2.0/XMI Mapping Specification v2.1,

http://www.omg.org/docs/formal/05-09-01.pdf, September 2005

[37] World Wide Web Consortium, The Extensible Stylesheet Language Family (XSL),

http://www.w3.org/Style/XSL/, September 2005

Carleton University, TR SCE-06-19 Decermber 2006

 194

[38] Daniel P. Friedman, Mitchell Wand, Christopher T. Haynes, Essentials of

Programming Languages, Second Edition, The MIT Press, January 2001

[39] International Organization for Standardization/ International Electrotechnical

Commission, ISO/IEC 14977:1996 – Information Technology – Syntactic Metalanguage

– Extended BNF, First Edition, 1996

[40] International Organization for Standardization/ International Electrotechnical

Commission, ISO/IEC 8652:1995 – Information Technology – Programming Languages

– Ada, 1995

[41] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. Sevcik, Quantitative System

Performance, Prentice Hall, 1984

[42] Juoko Suokas, The Role of Safety Analysis in Accident Prevention, 1988

[43] D. H. Stamatis, Failure Mode and Effect Analysis: FMEA From Theory to

Execution, Second Edition, 2003

[44] Trevor Kletz, Lessons from Disaster, Gulf Publishing Company, Houston, 1993

[45] William B. Noble, Developing safe software for critical airborne applications, IEEE

6th Digital Conference, Baltimore, December 1984

[46] Bente Anda, Kai Hansen, Ingolf Gullesen, and Hanne Kristin Thorsen, Experiences

from Introducing UML-based Development in a Large Safety-Critical Project, 2004

[47] Object Management Group (OMG) Inc., Systems Modeling Language,

http://www.omg.org/cgi-bin/apps/doc?ptc/06-05-04.pdf, May 2006

Carleton University, TR SCE-06-19 Decermber 2006

 195

Appendix A Examples of Safety/Risk Assessment Methods

Method Analyzed Subjects Output Comments

Action Error

Analysis (AEA)

Human-machine

interactions

Consequences of

actions that operators

perform at the wrong

time, or do not perform

when they should

Similar to FMEA but is

applied to steps in human

procedures rather than

hardware or components

Cause-

Consequence

Analysis (CCA)

Critical events Causes and

consequences of critical

events

Unlike fault trees, it

explicitly shows the

sequence of events.

Unlike event trees, it

allows the representation

of time delays, alternative

consequence paths, and

combination of events

Event Tree

Analysis (ETA)

Critical events Consequences of

critical events

Is a version of FTA that

is tailored to large and

complex systems. Breaks

large problems into

smaller ones to which

FTA may be applied

Failure Modes and

Effects Analysis

(FMEA)

Possible failures Probabilities of failures.

Overall probability that

the product will operate

without a failure for a

specific period of time

Reliability-oriented rather

than safety-oriented.

Emphasizes correct

functioning rather than

hazards and risks.

Concentrates on single

events of failures

Carleton University, TR SCE-06-19 Decermber 2006

 196

Method Analyzed Subjects Output Comments

Failure Modes,

Effects, and

Criticality

Analysis

(FMECA)

Possible failures Same as FMEA but it

includes the criticalities

of failures

Is an extended FMEA

that examines the

criticality of each event in

more detail. Concentrates

on single events of

failures

Fault Hazard

Analysis (FHA)

Possible failures

that may result in

accidents

Similar to FMEA or

FMECA, but it

considers a different

scope

Causes of failures are

considered over a wide

scope that even includes

human errors, procedural

deficiencies, and

environmental conditions.

Concentrates on single

events of failures that

may cause accidents

Fault Tree

Analysis (FTA)

Previously-

identified hazards

Causes of the

previously-identified

hazards, fault trees and

Boolean expressions

for them

Hazards should have

already been identified by

other methods. A popular

method but not scalable

to large and complex

systems. Considers

relationships across

events that cause hazards

Hazards and

Operability

Analysis

(HAZOP)

System design and

operating intentions

Possible deviations

from the design and

operating intentions,

and hazards that result

from them

Uses a qualitative

approach. Labour

intensive. Does not

require that the hazards

be previously identified

Interface Analyses

(IA)

Inter-component

interfaces

Connection failures that

can lead to failure

propagations

Similar to HAZOP but is

more general

Carleton University, TR SCE-06-19 Decermber 2006

 197

Method Analyzed Subjects Output Comments

Management

Oversight and

Risk Tree Analysis

(MORT)

Managerial

functions, human

behaviour, and

environmental

factors

Problems, defects, and

oversights that create

hazards or prevent their

early identification by

poor planning,

inadequate operational

checks, or limited

information-exchange

within the organization.

Checklist-based

State Machine

Hazard Analysis

(SMHA)

Hazardous states in

software state

machines

Conditions that cause

the software to enter

the hazardous states

Intended for software.

Works on the model

rather than the design

itself

Table 7: Examples of safety or risk assessment methods.

Carleton University, TR SCE-06-19 Decermber 2006

 198

Appendix B Examples of Safety-Related Standards

Industry Owner Standard

Radio Technical

Commission for

Aeronautics (RTCA)

DO-178B, Software Considerations in Airborne

Systems and Equipment Certification

European Space Agency

(ESA)

Set of Several Standards – ECSS-Q-00A, ECSS-Q-

20A, ECSS-Q-30A, ECSS-Q-40A, ECSS-Q-80A,

ECSS-Q-80-2, ECSS-Q-80-3, ECSS-Q-80-4

National Aeronautics and

Space Administration

(NASA)

NASA-STD-8719.13A – Software Safety,

September 1997

National Aeronautics and

Space Administration

(NASA)

NASA-GB-1740.13-96 – NASA Guidebook for

Safety Critical Software - Analysis and

Development, September 1997

Aerospace

American Institute of

Aeronautics and

Astronautics (AIAA)

R-013-1992 – Recommended Practice: Software

Reliability, 1992

Biomedical International

Electrotechnical

Commission (IEC)

601-1-4(1996-06) – Medical Electrical Equipment

- Part 1: General Requirements for Safety - 4.

Collateral Standard: Programmable Electric

Medical Systems, June 1996

U.S. Department of

Defense (DoD)

MIL-STD-882D – Standard Practice for System

Safety, February 2000

U.K. Ministry of Defence

(MoD)

DEF STAN 00-55 – Requirements for Safety

Related Software in Defence Equipment, August

1997

Defence

North Atlantic Treaty

Organization (NATO)

Commercial Off-the-Shelf (COTS) Software

Acquisition Guidelines and COTS Policy Issues,

January 1996

Carleton University, TR SCE-06-19 Decermber 2006

 199

Industry Owner Standard

International

Electrotechnical

Commission (IEC)

61508:1986-09 – Software for Computers in Safety

Systems of Nuclear Power Stations, including the

First Supplement, 60880-1 (FDIS), 1977

Nuclear Power

Ontario Hydro Nuclear and

Atomic Energy Canada,

Ltd. (AECL)

CE-1001-STD – Standard for Software

Engineering of Safety Critical Software, January

1995

European Committee for

Electrotechnical

Standardisation

(CENELEC)

EN 50128:2001 – Railway Applications: Software

for Railway Control and Protection Systems

Motor Industry Software

Reliability Association

(MISRA)

Development Guidelines for Vehicle-Based

Software, November 2001

Transportation

Society of Automotive

Engineers (SAE)

JA 1002 – Software Reliability Program Standard,

July 2004

International

Electrotechnical

Commission (IEC)

61508-3:1998-12 – Functional Safety of

Electrical/Electronic/Programmable Electronic

Safety-Related Systems - Part 3: Software

Requirements, December 1998

International

Electrotechnical

Commission (IEC)

300-3-9:1995-12 – Dependability Management -

Part 3: Application Guide - Section 9: Risk

Analysis of Technological Systems, December

1995

International Organization

for Standardization (ISO)

15026:1998-04-29 – System and Software

Integrity Levels, April 1998

Non-Industry

Specific

Institution of Electrical

Engineers (IEE)

Software Engineering Methods for Safe

Programmable Logic Controllers (SEMSPLC)

Guidelines – Safety-Related Application Software

for Programmable Logic Controllers, September

1996

Carleton University, TR SCE-06-19 Decermber 2006

 200

Industry Owner Standard

Institute of Electrical &

Electronic Engineers

(IEEE)

Std. 982.1-1989 and 982.2-1989 – Measures to

Produce Reliable Software

Institute of Electrical &

Electronic Engineers

(IEEE)

Std. 1228-1994 – Standard for Software Safety

Plans, 1994

Table 8: Some of the many safety-related standards that exist for several industries.

Carleton University, TR SCE-06-19 Decermber 2006

 201

Appendix C Concept Identification and Categorization from

the Airworthiness Standard

C.1 Primarily Safety Concepts

Concept Description RTCA DO-
178B Section

Failure Condition The effect that one or more failures cause on, or

contribute to, the aircraft and its occupants, directly or

indirectly, considering relevant adverse operational and

environmental conditions [4].

2.2

Failure Condition

Category

Failure conditions are categorized according to the

severity of their effects as defined in some standard [4].

2.2

2.2.1

Level of Confidence In the context of software safety, the level of confidence

is the extent of the assurance to which the software is

believed to exhibit the desired behaviour of safety, with

respect to the system in which it is deployed.

4.1

6.4

Loadable Software

Indicator

A hardware or software that is used to indicate the status

of the field-loadable software (see section C.7). This

indicator should be able to detect incorrect software

and/or hardware and/or aircraft combinations and should

provide protection appropriate to the failure condition of

the function [4].

2.5

Safeguard A technical contrivance to prevent accident [13]. 7.2.8

11.4

Safety Feature A prominent part or characteristic [13], which is

intended to increase the safety of the system.

4.4

11.1

Carleton University, TR SCE-06-19 Decermber 2006

 202

Concept Description RTCA DO-
178B Section

Safety Monitoring Safety monitoring is a means of protecting against

specific failure conditions by directly monitoring a

function for failures which would contribute to the

failure condition. Monitoring is usually associated with

activities done over an extended period of time where

100% witnessing is considered impractical or

unnecessary. Monitoring permits authentication that the

claimed activity was performed as planned [4].

Examples of safety-monitors include watchdog timers,

reasonableness checks, and cross-channel comparisons

[4].

2.1.1

2.3.2

11.9

Safety Objective A safety-related goal, which often results in safety

requirements and safety constraints.

4.1

Safety Requirement A safety requirement is a non-functional requirement

whose objective is to increase the level of safety. And

while functional requirements often focus on what the

system shall do, safety-related requirement focus on

both what the system shall and shall not do [1].

2.1.1

5.1

Safety Response A safety response is an action that a software component

performs as a result of detecting the occurrence of some

safety-related failure condition that it provides immunity

to.

2.1.1

Safety Strategy A strategy is the art of devising or employing plans or

stratagems toward a goal [13]. The goal of a safety

strategy is to increase the safety of a system, which is

often done through design decisions.

2.1.1

Carleton University, TR SCE-06-19 Decermber 2006

 203

Concept Description RTCA DO-
178B Section

Safety-Critical A safety-critical system is any system that can directly

or indirectly cause a loss of human life [1]. Examples of

such systems include transportation vehicles, air traffic

controllers, medical devices, nuclear reactors, and

military equipment and vehicles. A loss of human life

may be caused by accidents, which may be the results of

hazards introduced by the system.

Software Level Assigning different levels to software components is a

means of classifying software components according to

their contribution to potential failure conditions as

determined by the system safety assessment process.

Having different software levels imply different levels

of effort are required to show compliance with different

failure condition categories [4].

2.2

2.2.2

Unsafe Action An action that can directly or indirectly contribute to the

occurrence of a hazardous system state, which may

result in an accident. Such an action may occur with or

without an explicit action by the software or system

user.

Table 9: Safety-related concepts that are classified as “primarily safety”.

Carleton University, TR SCE-06-19 Decermber 2006

 204

C.2 Primarily Reliability Concepts

Concept Description RTCA DO-
178B Section

Comparator (Voter) When multiple-version dissimilar software is used,

voting refers to detecting faults caused by some

dissimilar versions of the software. This is done by

assuming that the majority of the dissimilar software

versions produce a correct output [14]. A voter or a

comparator is a software component that analyzes the

results of the multiple software versions and outputs the

result of the voting.

2.3.2

Defensive

Programming

Defensive programming is based on the principle that

the programmer makes as few assumptions as

reasonably possible. Extra code is written to check that

the software is in correct state at selected checkpoints,

such as the beginning or end of an operation. This

allows the software to detect incorrect states and react

appropriately to ensure the continued execution of the

system.

4.5

Error Detection The process of realizing that an error has occurred [15].

In a fault-tolerant design, this may be implemented as

part of the software or hardware.

4.2

Exception Handling Exception handling is a programming technique of most

modern programming languages to handle situations

where abnormal conditions arise. When an exception

occurs, the software flow of control resumes in an

exception handler, which generally handles selected

exceptions and allows the software execution to

continue.

11.7

Carleton University, TR SCE-06-19 Decermber 2006

 205

Concept Description RTCA DO-
178B Section

Failure A failure is the inability of a system or system

component to perform a required function within

specified limits. It may be produced when a fault is

encountered [4].

2.2

Fault A fault is a manifestation of an error in software that, if

it occurs, may cause a failure [4], which is a deviation in

the expected performance of the system [15].

2.1.1

Fault Containment In designing and implementing fault tolerant systems,

fault containment is the process of preventing an error

from propagating within a system. Fault containment is

one of four steps required to reconfigure a system from

a faulty state back to some operational state. The other

three steps are fault detection, fault location, and fault

recovery [15].

2.1.2

Fault Detection The process of realizing that a fault has occurred [15]. In

a fault-tolerant design, this may be implemented as part

of the software or hardware.

2.1.1

11.9

Fault Tolerance The built-in capability of a system or software to

provide continued correct execution in the presence of a

limited number of hardware or software faults [4].

2.1.1

4.4

11.1

Immunity The quality or state of being immune [13]. A system or

software is immune to some failure condition if it can

detect it and perform an appropriate safety response that

renders it harmless.

2.1.1

Multiple-Version

Dissimilar Software

A form of fault tolerance design technique where a set

of two or more programs developed separately to satisfy

the same functional requirements are used. Errors

specific to one of the versions are detected by

comparison of the multiple outputs [4].

2.1.1

2.3.2

11.1

11.3

Carleton University, TR SCE-06-19 Decermber 2006

 206

Concept Description RTCA DO-
178B Section

Software

Redundancy

Redundancy is the use of redundant components, which

is exceeding what is necessary or normal [13]. Software

redundancy implies using multiple-version dissimilar

software.

2.1.1

11.1

Table 10: Safety-related concepts that are classified as “primarily reliability”.

C.3 Primarily Integrity Concepts

Concept Description RTCA DO-
178B Section

Accuracy Degree of conformity of a measure to a standard or a

true value [13].

11.9

Discontinuity A mathematical discontinuity is the property of not

being continuous. A continuous function has the

property that the absolute value of the numerical

difference between the value at a given point and the

value at any point in a neighbourhood of the given point

can be made as close to zero as desired by choosing the

neighbourhood small enough [13].

6.3.2

Integrity Check The act of testing or verifying the integrity of an object.

Integrity is the quality or state of being complete [13],

accurate, and precise.

11.16

Precision The degree of refinement with which an operation is

performed or a measurement stated [13].

11.9

Software Protector Software that provides protection for user modifications

in user-modifiable software, option-selectable software,

and commercial-off-the-shelf software [4].

2.4

Table 11: Safety-related concepts that are classified as “primarily integrity”.

Carleton University, TR SCE-06-19 Decermber 2006

 207

C.4 Primarily Performance Concepts

Concept Description RTCA DO-
178B Section

Scheduling Strategy A strategy is the art of devising or employing plans or

stratagems toward a goal [13]. The goal of a scheduling

strategy is to determine how various active components

share resources. Examples of scheduling strategies

include round robin, rate monotonic, and earliest

deadline first [6].

11.1

Time-Related Software functionality whose output or behaviour is a

function of time such as filters, integrators, and delays.

6.4.2.1

Table 12: Safety-related concepts that are classified as “primarily performance”.

C.5 Primarily Concurrency Concepts

Concept Description RTCA DO-
178B Section

Active An active component is a component that is capable of

generating stimuli concurrently or pseudo (seemingly)

concurrently without being prompted by an explicit

stimulus instance (i.e., devices that appear capable of

“spontaneous” unprompted behaviour such as hardware,

operating system processes and threads, etc.) [6]. In

terms of a software component, package, or object,

activeness implies that a thread is continually executing

within the context of that software component, package,

or object.

12.3.3

Multi-Tasking Software that runs with more than one flow of control,

i.e. concurrent software. Different flows of control may

interact at which point their interactions need to be

managed.

11.7

Carleton University, TR SCE-06-19 Decermber 2006

 208

Concept Description RTCA DO-
178B Section

Passive A passive component is a component that cannot

generate its own behaviour, but only reacts when

prompted by a stimulus [6]. In terms of a software

component, package, or object, passiveness implies that

there is no thread that is continually executing within the

context of that software component, package, or object,

but its code is executed as a result of some other active

software component, package, or object. A passive

element is generally event-driven.

11.7

12.3.3

Shared Resource A resource that is shared across multiple software

modules or flows of control (software threads or

processes). Examples of resources include memory,

CPU cycles, network, and others.

11.1

Table 13: Safety-related concepts that are classified as “primarily concurrency”.

Carleton University, TR SCE-06-19 Decermber 2006

 209

C.6 Primarily Certification Concepts

Concept Description RTCA DO-
178B Section

Certification Certification is the legal recognition by the certification

authority that a product, service, organization or person

complies with some requirements. Such certification

comprises the activity of technically checking the

product, service, organization or person and the formal

recognition of compliance with the applicable

requirements by issue of a certificate, license, approval

or other documents as required by national laws and

procedures. In particular, certification of a produt

involves: (a) the process of assessing the design of the

product to ensure that it complies with a set of standards

to that type of product so as to demonstrate an

acceptable level of safety; (b) the process of assessing

the product to ensure that it conforms with the certified

type design; (c) the issuance of a certificate required by

national laws to declare that compliance or conformity

has been found with standards in accordance with items

(a) or (b) above [4]. Certified software is software that is

legally recognized to be compliant with some

certification criteria by a certification authority as it is

used in a particular system context.

5.4.3

9

10

11.1

Certification

Requirement

A requirement that needs to be fulfilled in order for a

product, service, organization, or person to be certified

by a certification authority according to some

certification criteria.

2.1.1

Derived

Requirement

Additional requirement resulting from the software

development process, which may not be directly

traceable to higher level requirements [4]. Derived

requirements often appear in the form of implementation

constraints [4].

5.1.1

Carleton University, TR SCE-06-19 Decermber 2006

 210

Concept Description RTCA DO-
178B Section

Deviation Difference in the output or execution of a process, such

as the design or implementation processes, from its plan.

8.2

Hardware / Software

Interface

The boundary at which software and hardware directly

communicate with each other. This is usually done at

the bit or byte level.

6.4.3

11.1

11.9

Traceability The evidence of an association between items, such as

between process outputs, between an output and its

originating process, or between a requirement and its

implementation [4]. Horizontal traceability expresses

relationship between items in different phases of the

development life cycle, such as the relationship between

a design component and software requirements. On the

other hand, vertical traceability expresses relationship

between items in the same phase of the development life

cycle, such as the relationship between two software

requirements.

5.3.1

5.5

Table 14: Safety-related concepts that are classified as “primarily certification”.

C.7 Primarily Design Concepts

Concept Description RTCA DO-
178B Section

COTS Software Commercially available applications sold by vendors

through public catalogue listings. COTS software is not

intended to be customized or enhanced. Contract-

negotiated software developed for a specific application

is not COTS software [4].

2.4

11.1

Compacted

Expression

A shorter, but equal, form of an expression such as a

mathematical expression.

11.7

Carleton University, TR SCE-06-19 Decermber 2006

 211

Concept Description RTCA DO-
178B Section

Complexity The degree to which a system, software, or component

has a design and implementation that is difficult to

understand and verify [16]. Increasing the complexity

level of software makes it harder to formulate its overall

behaviour, even when given almost complete

information about its atomic components and their inter-

relations [17]. It also makes it harder to verify the

software design and the fulfilment of the safety

objectives [4]. Examples of complexity measures

include level of nesting, cyclomatic complexity,

conditional structure, unconditional branches, number of

entries into a code component, and number of exits from

a code component.

5.2.2

6.3.4

11.7

Coupling Coupling is a factor of the inter-module complexity of

software [18], which represents the strength of

connection between two modules [19], [20]. Myers

identified several types of coupling in [21], namely,

content coupling, common coupling, external coupling,

control coupling, stamp coupling, and data coupling.

11.8

Data Alias In software, a data alias is a name for a software

variable, which is also accessible through another

different name. Essentially, the same data is known and

accessed under different names. Although allowed by

programming languages, this technique is generally

avoided in safety-critical software as they may introduce

confusion.

11.7

Carleton University, TR SCE-06-19 Decermber 2006

 212

Concept Description RTCA DO-
178B Section

Deactivated Code Executable object code (or data) which by design is

either (a) not intended to be executed (code) or used

(data), for example, a part of a previously developed

software component, or (b) is only executed (code) or

used (data) in certain configurations of the target

computer environment, for example, code that is

enabled by a hardware pin selection or software

programmed option [4].

4.2

5.4.3

11.10

Design by Contract Design by contract is a technique for software

development where inter-module interactions are

constrained by an agreement, or contract, which defines

the requirements and obligations of each interacting

software entity. A contract is composed of three parts

[22]: (a) class (module) invariants, which define

conditions that are always true (in steady-state), (b)

operation preconditions, which define conditions that

are true before calling the operation, and (c) operation

postconditions, which define conditions that are true

after an operation finishes execution.

Dynamic Memory Memory that is allocated during the execution of the

software through special calls to the underlying

operating system, rather than at compile-time by pre-

reserving its memory space. The use of dynamic

memory is generally avoided in safety-critical software.

A dynamic object is an object that resides in dynamic

memory space.

11.7

Error A software error is a mistake in its requirements, design,

or code [4].

4.2

Error Prevention A technique that attempts to avoid or prevent the

occurrence of errors. Error prevention and error

avoidance are used interchangeably.

4.2

4.4

Carleton University, TR SCE-06-19 Decermber 2006

 213

Concept Description RTCA DO-
178B Section

Field-Loadable

Software

Field-loadable software refers to software or data tables

that can be loaded without removing the system or

equipment from its installation [4].

2.5

6.4.3

11.1

Formal Method A formal method of software development is a process

for developing software that exploits the power of

mathematical notation and mathematical proofs [23]. It

involves the use of formal logic, discrete mathematics,

and computer readable languages to improve the

specification and verification of software [4].

12.3.1

Loader A hardware or software that is used to load field-

loadable software.

2.5

Partitioning Software partitioning is a technique for providing

isolation between functionally independent software

components to contain and/or isolate faults and

potentially reduce the effort of the software verification

process. It prevents specific interactions and cross-

coupling interference [4].

2.1.1

2.3.1

5.2.2

6.3.3

11.3

11.9

11.10

Previously

Developed Software

Software that was developed in a previous project. It

may or may not have been previously certified for use in

one or more systems.

11.1

11.3

12.1

Recursion Recursion is a software implementation approach to

solve a problem by breaking it into a smaller problem

that is easier to solve. Recursion is generally avoided in

airborne and safety-critical software due to their high

demand of resources.

6.3.3

11.7

Carleton University, TR SCE-06-19 Decermber 2006

 214

Concept Description RTCA DO-
178B Section

Simulator A device that enables the operator to reproduce or

represent under test conditions phenomena likely to

occur in actual performance [13]. A simulator may be an

actual device, computer program, or a system, which

interfaces to other software or hardware system in the

same manner as the actual devices, which will be

eventually used in the final system. Simulators are often

used when testing software.

12.3.3.5

Software Patch A modification to an object program, in which one or

more of the planned steps of re-compiling, re-

assembling or re-linking is bypassed. This does not

include identifiers embedded in the software product,

for example, part numbers and checksums [4].

5.4.3

State-Related Related to a state machine or its states or transitions. 6.4.2.1

Table 15: Safety-related concepts that are classified as “primarily design”.

C.8 Primarily Configuration Concepts

Concept Description RTCA DO-
178B Section

Configuration A system can have multiple configurations, not all of

which are intended to be used in every application.

Therefore, a configuration represents a set of enabled

and disabled functionality. This can lead to deactivated

code that cannot be executed or data that is not used [4].

5.4.3

Option-Selectable

Software

Software that contains software-programmed options,

which may be configured by the user to produce

different possible configurations.

2.4

11.1

Carleton University, TR SCE-06-19 Decermber 2006

 215

Concept Description RTCA DO-
178B Section

User-Modifiable

Software

Software that is designed to be modifiable by its users.

Examples include a single memory bit used to select one

of two equipment options, a table of messages, or a

memory area that can be programmed, compiled, and

linked for aircraft maintenance functions [4].

2.4

4.2

5.2.3

11.1

Table 16: Safety-related concepts that are classified as “primarily configuration”.

Carleton University, TR SCE-06-19 Decermber 2006

 216

Appendix D Conceptual Model—Concept Relationships

Source End Relationship Analysis Destination End

Requirement

[0..*]

Is Requirement Of: Each Requirement may be

traceable to zero or more higher-level Requirements.

Conversely, a Requirement may have zero or more

lower-level Requirements (traceable to it).

Requirement

[0..*]

Deviation

[0..*]

References: Each Deviation must deviate from at

least one, potentially more, Requirement. Moreover,

there may exist more than one Deviation from a

particular Requirement. However, not every

Requirement may have Deviations from it, which

would be the case when the design fully conforms to

the Requirements.

Requirement

[1..*]

ImplementationStyle Is Child Class Of: Each ImplementationStyle is a

Style.

Style

ImplementationStyle

[0..*]

References: Each ImplementationStyle may

conform to, or deviate from, zero or more

Requirements. Conversely, a Requirement may

require zero or more ImplementationStyles. In the

case where an ImplementationStyle is not associated

with any Requirements, the ImplementationStyle

signifies a design decision rather than an obligation

or a requirement.

Requirement

[0..*]

BehaviouralStyle Is Child Class Of: Each BehaviouralStyle is a Style. Style

Carleton University, TR SCE-06-19 Decermber 2006

 217

Source End Relationship Analysis Destination End

BehaviouralStyle

[0..*]

References: Each BehaviouralStyle may conform to,

or deviate from, zero or more Requirements.

Conversely, a Requirement may require zero or more

BehaviouralStyles. In the case where a

BehaviouralStyle is not associated with any

Requirements, the BehaviouralStyle signifies a

design decision rather than an obligation or a

requirement.

Requirement

[0..*]

Nature

[0..*]

References: A Nature may have been used solely as

a design decision, in which case it is not associated

with any Requirements, or it may have been used to

conform to one or more Requirements. Conversely, a

Requirement may exist but not cause any Natures, or

it may cause one or more Natures.

Requirement

[0..*]

Rationale

[0..*]

References: Each Rationale must be associated with

at least one, potentially more, Requirement.

Moreover, there may exist more than one Rationale

associated with a particular Requirement. However,

not every Requirement may have Rationales

associated with it. However, such a case is

uncommon because it would mean that there are no

design elements traceable to this Requirement.

Requirement

[1..*]

Reaction Is Child Class Of: Each Reaction is an Event. Event

Reaction

[0..*]

Is Consequence Of: Each Reaction is a consequence

of one or more Events because it is executed in

response to the Events. However, each Event may

not cause any reactions at all, or it may cause one or

several Reactions. Since Reactions are Events by

inheritance, then a terminal Reaction, which is the

last Reaction in a chain of Reactions, does not cause

any more Reactions.

Event

[1..*]

Carleton University, TR SCE-06-19 Decermber 2006

 218

Source End Relationship Analysis Destination End

SafetyCritical

[1..*]

Triggers: A SafetyCritical entity may trigger zero or

or more Events. A particular Event may not be

triggered by any SafetyCritical entity, or it may be

triggered by one or more SafetyCritical entities.

Event

[0..*]

Partition

[0..*]

References: A Partition may exist to fulfill one or

more Requirements, or it may exist as a design

decision to isolate functionally independent elements

such that a failure in one component does not cause

the other to fail. Conversely, a Requirement may or

may not require one or more Partitions to be

performed.

Requirement

[0..*]

Partition

[0..*]

Is Partitioned From: By definition, a Partition is

always Partitioned from one or more SafetyCritical

entities. However, a SafetyCritical entity may not

necessarily have one or more Partitions from it.

SafetyCritical

[1..*]

Handler

[0..*]

Handles: A Handler handles at least one Event, and

it usually handles more than one Event. However,

one or more Events may not necessarily be handled

by a Handler. The latter case may occur for Events

that are not of interest in the system, such as non-

safety-critical events. In addition, it usually occurs

for many Reactions, which are Events by

inheritance.

Event

[1..*]

Handler

[0..*]

Performs: A Handler performs one or more

Reactions. However, a Reaction may not necessarily

be performed by a Handler, or it may be performed

by one or more Handlers.

Reaction

[1..*]

Carleton University, TR SCE-06-19 Decermber 2006

 219

Source End Relationship Analysis Destination End

Monitor

[0..*]

Monitors: A Monitor monitors one or more

SafetyCritical entities. However, not every

SafetyCritical entity is monitored by a monitor. It is

also possible for a SafetyCritical entity to be

monitored by more than one Monitor.

SafetyCritical

[1..*]

Monitor

[0..*]

Detects: A Monitor detects at least, but usually more

than, one Event. However, an Event may go

undetected by Monitors, or it may be detected by one

or more Monitors.

Event

[1..*]

Monitor

[1..*]

Notifies: Each Handler is notified by at least one

Monitor. However, some Monitors may not

necessarily notify any Handlers, and a Monitor may

notify more than one Handler.

Handler

[0..*]

Simulator

[0..*]

Simulates: A Simulator simulates at least one

SafetyCritical entity. A SafetyCritical entity may not

have any Simulators, or it may have one or more

Simulators. For example, a radar may have two

simulators, with each one simulating the radar’s

behaviour under different environmental conditions.

Another example is having two different versions for

a particular Simulator.

SafetyCritical

[1..*]

Strategy

[0..1]

Describes Design Of: A Strategy describes the

design of one or more SafetyCritical entities. In

addition, a SafetyCritical entity’s design may, or

may not, be described by a Strategy.

SafetyCritical

[1..*]

Formalism

[0..1]

Describes Formalism Of: A Formalism describes

the formalism of one or more SafetyCritical entities.

In addition, a SafetyCritical entity’s formalism may,

or may not, be described by a Formalism.

SafetyCritical

[1..*]

Carleton University, TR SCE-06-19 Decermber 2006

 220

Source End Relationship Analysis Destination End

Complexity

[0..1]

Describes Complexity Of: A Complexity describes

the complexity of one or more SafetyCritical entities.

In addition, a SafetyCritical entity’s complexity may,

or may not, be described by a Complexity.

SafetyCritical

[1..*]

Interface

[0..*]

Is Interface For: Each Interface is for one or more

SafetyCritical entities or components. In addition, a

specific SafetyEntity may have one or more

Interfaces. An example of the latter case would be

where a subsystem has one Interface to it in each of

the other subsystems in the complete system.

SafetyCritical

[1..*]

Concurrent

[0..*]

Triggers: Each Concurrent entity may trigger zero

or more Events. Conversely, each Event may be

triggered by zero or more Concurrent entities. A

Concurrent entity may not trigger any Events if it is

passive.

Event

[0..*]

Defensive

[0..1]

Performs: A Defensive entity protects against

unusual inputs by performing one or more Reactions

to such unusual inputs, or Events. However,

Reactions are not necessarily performed by

Defensive entities.

Reaction

[1..*]

Configurable

[1..1]

Is Defaulted To: Each Configurable entity must be

defaulted to a particular Configuration.

Configuration

[1..1]

Configurable

[1..*]

Is Configurable To: Each Configurable entity may

be configured to produce one or more

Configurations. In addition, each Configuration can

be produces by configuration one or more

Configurable entities in a particular way.

Configuration

[1..*]

Loadable

[1..*]

Is Loadable On: Each Loadable entity is loadable

on one or more Configurable entities. Conversely,

every Configurable entity can be configured by

loading one or more Loadables on it.

Configurable

[1..*]

Carleton University, TR SCE-06-19 Decermber 2006

 221

Source End Relationship Analysis Destination End

Loadable

[0..*]

Requires: Loading a Loadble entity may require

specific base Configurations for it to be Loaded. For

example, loading a particular software patch may

require pre-loading earlier patches. However, there

may not be such a requirement if the patch is a

complete and comprehensive patch, rather than an

incremental patch. Conversely, not every

Configuration is required by Loadable entities.

Configuration

[0..*]

Loadable

[1..*]

Produces: A Configuration may be produced by

loading a Loadable. A Loadable may produce more

than Configuration if loaded on different base

Configurations. For a Configuration to be produced,

at least one Loadable must be loaded.

Configuration

[1..*]

Configurator

[1..*]

Configures: A Configurator configures one or more

Configurable entities. A Configurable entity may be

configured by more than one Configurator, such as

the case where the Configurators configure different

aspects of the Configurable entity.

Configurable

[1..*]

Configurator

[1..*]

Loads: A Configurator loads one or more Loadables.

In addition, a Loadable is loaded by one or more

Configurators.

Loadable

[1..*]

Comparator

[1..1]

Compares: A Comparator compares the outputs of

at least two Replicated entities. The output of a

Replicated entity is compared by exactly one

Comparator.

Replicated

[2..*]

ReplicationGroup

[1..1]

Owns: Each ReplicationGroup has exactly one

Comparator.

Comparator

[1..1]

ReplicationGroup

[1..1]

Owns: Each ReplicationGroup has at least two

Replicated entities.

Replicated

[2..*]

Table 17: Analysis of conceptual model concept relationships.

Carleton University, TR SCE-06-19 Decermber 2006

 222

Appendix E Gomaa’s Class Classification

This section identifies Gomaa’s class classifications as described in [7]. Each

classification is represented by a unique stereotype. The stereotypes are shown in Figure

16.

<<application>>

<<interface>> <<entity>> <<control>> <<application
logic>>

<<user
interface>>

<<device
interface>>

<<system
interface>>

<<input
device

interface>>

<<output
device

interface>>

<<input/output
device

interface>>

<<timer>> <<state
dependent
control>>

<<coordinator>>

<<algorithm>><<business
logic>>

Figure 16: Gomaa’s classification of application classes using stereotypes [7].

Carleton University, TR SCE-06-19 Decermber 2006

 223

Appendix F Assessing Existing Profiles based on the

Information Requirements

F.1 Quality of Service and Fault Tolerance OMG Profile (discussed in

Section 4.1)

IREQ # Fulfilled Comment
IREQ 1 Yes Use <<QoSContext>> stereotype
IREQ 2 Yes Use <<FTFaultTolerantDomain>> stereotype
IREQ 3 No Can reuse <<QoSContext>> stereotype, but then cannot differentiate it

from IREQ 1
IREQ 4 No Can reuse <<QoSContext>> stereotype, but then cannot differentiate it

from IREQ 1
IREQ 5 No Can reuse <<QoSContext>> stereotype, but then cannot differentiate it

from IREQ 1
IREQ 6 No Can reuse <<QoSContext>> stereotype, but then cannot differentiate it

from IREQ 1
IREQ 7 No
IREQ 8 No
IREQ 9 Yes Use <<QoSConstraint>> stereotype and its child classes

IREQ 10 No
IREQ 11 No
IREQ 12 No
IREQ 13 No
IREQ 14 Yes Use <<QoSLevel>> and <<QoSTransition>> stereotypes
IREQ 15 No
IREQ 16 No
IREQ 17 No
IREQ 18 No
IREQ 19 No
IREQ 20 No
IREQ 21 Yes Use <<QoSDimension>> stereotype
IREQ 22 No
IREQ 23 Yes Use <<Initiate>> stereotype
IREQ 24 Yes Use <<QoSDimension>>
IREQ 25 Yes Use <<Asset>> stereotype, but it is not suitable for all uses
IREQ 26 Yes Use <<QoSCharacteristic>> and <<QoSDimension>> stereotypes
IREQ 27 No
IREQ 28 No

Carleton University, TR SCE-06-19 Decermber 2006

 224

IREQ # Fulfilled Comment
IREQ 29 Yes Use <<FTReplicationStyle>> and <<FTFaultTolerantDomain>>

stereotypes
IREQ 30 No
IREQ 31 Yes Use <<FTReplicationStyle>> and <<FTFaultTolerantDomain>>

stereotypes
IREQ 32 No
IREQ 33 No
IREQ 34 Yes The simulation parameters may be specified by using the

<<QoSValue>> stereotype and its child classes
IREQ 35 No
IREQ 36 No
IREQ 37 No
IREQ 38 Yes Can use <<QoSValue>> stereotype, but it may get confusing with others

such as IREQ 40
IREQ 39 No
IREQ 40 Yes Use <<QoSValue>> stereotype and its child classes
IREQ 41 No
IREQ 42 No
IREQ 43 No
IREQ 44 No
IREQ 45 No
IREQ 46 No
IREQ 47 No
IREQ 48 No
IREQ 49 No
IREQ 50 No
IREQ 51 No
IREQ 52 Yes Use Fault-Tolerance sub-profile
IREQ 53 Yes Use Fault-Tolerance sub-profile, and specifically the

<<FTReplicationStyle>> stereotype
IREQ 54 Yes Use Fault-Tolerance sub-profile, and specifically the

<<FTReplicationStyle>> and <<FTFaultTolerantDomain>> stereotypes
Total 17 Only 17 information requirements out of 54 are fulfilled

Table 18: Assessing the Quality of Service and Fault Tolerance OMG profile based

on the information requirements.

Carleton University, TR SCE-06-19 Decermber 2006

 225

F.2 Schedulability, Performance, and Time OMG Profile (discussed in

Section 4.2)

IREQ # Fulfilled Comment
IREQ 1 No
IREQ 2 No
IREQ 3 No
IREQ 4 Yes Use <<PAcontext>> stereotype
IREQ 5 Yes Use <<SAsituation>> stereotype
IREQ 6 No
IREQ 7 No
IREQ 8 No
IREQ 9 No

IREQ 10 No
IREQ 11 No
IREQ 12 No
IREQ 13 No
IREQ 14 No
IREQ 15 No
IREQ 16 No
IREQ 17 No
IREQ 18 No
IREQ 19 No
IREQ 20 Yes Use <<SAtrigger>> stereotype
IREQ 21 No
IREQ 22 Yes Use <<SAresponse>> stereotype
IREQ 23 No
IREQ 24 No
IREQ 25 No
IREQ 26 No
IREQ 27 No
IREQ 28 No
IREQ 29 No
IREQ 30 No
IREQ 31 No
IREQ 32 No
IREQ 33 No
IREQ 34 No
IREQ 35 No
IREQ 36 No
IREQ 37 No

Carleton University, TR SCE-06-19 Decermber 2006

 226

IREQ # Fulfilled Comment
IREQ 38 No
IREQ 39 No
IREQ 40 No
IREQ 41 Yes Use <<CRconcurrent>> stereotype
IREQ 42 No
IREQ 43 Yes Use <<PAresource>> and <<SAresource>> stereotypes
IREQ 44 No
IREQ 45 No
IREQ 46 No
IREQ 47 No
IREQ 48 No
IREQ 49 No
IREQ 50 No
IREQ 51 No
IREQ 52 No
IREQ 53 No
IREQ 54 No

Total 6 Only 6 information requirements out of 54 are fulfilled

Table 19: Assessing the Schedulability, Performance, and Time OMG profile based

on the information requirements.

Carleton University, TR SCE-06-19 Decermber 2006

 227

F.3 HIDOORS Profile (discussed in Section 4.3)

IREQ # Fulfilled Comment
IREQ 1 No
IREQ 2 No
IREQ 3 No
IREQ 4 Yes Reuse <<PAcontext>> stereotype from SPT profile
IREQ 5 Yes Reuse << SAsituation>> stereotype from SPT profile
IREQ 6 No
IREQ 7 No
IREQ 8 No
IREQ 9 No

IREQ 10 No
IREQ 11 No
IREQ 12 No
IREQ 13 No
IREQ 14 No
IREQ 15 No
IREQ 16 No
IREQ 17 No
IREQ 18 No
IREQ 19 No
IREQ 20 Yes Use the <<HIEvent>> stereotype, or reuse <<SAtrigger>> stereotype

from SPT profile
IREQ 21 No
IREQ 22 Yes Reuse << SAresponse>> stereotype from SPT profile
IREQ 23 No
IREQ 24 No
IREQ 25 No
IREQ 26 No
IREQ 27 No
IREQ 28 No
IREQ 29 No
IREQ 30 No
IREQ 31 No
IREQ 32 No
IREQ 33 No
IREQ 34 No
IREQ 35 No
IREQ 36 No
IREQ 37 No
IREQ 38 No

Carleton University, TR SCE-06-19 Decermber 2006

 228

IREQ # Fulfilled Comment
IREQ 39 No
IREQ 40 No
IREQ 41 Yes Use the <<HIConcurrent>> stereotype, or reuse <<CRconcurrent>>

stereotype from SPT profile
IREQ 42 No
IREQ 43 Yes Reuse <<PAresource>> and <<SAresource>> stereotypes from SPT

profile
IREQ 44 No
IREQ 45 No
IREQ 46 No
IREQ 47 No
IREQ 48 No
IREQ 49 No
IREQ 50 No
IREQ 51 No
IREQ 52 No
IREQ 53 No
IREQ 54 No

Total 6 Only 6 information requirements out of 54 are fulfilled

Table 20: Assessing the HIDOORS profile based on the information requirements.

Carleton University, TR SCE-06-19 Decermber 2006

 229

F.4 Effects of Message Loss, Delay, and Corruption (discussed in

Section 4.4)

IREQ # Fulfilled Comment
IREQ 1 Yes Use <<safe behaviour>>, <<safe dependency>>, and <<safe links>>

stereotypes
IREQ 2 No
IREQ 3 No
IREQ 4 No
IREQ 5 No
IREQ 6 No
IREQ 7 No
IREQ 8 No
IREQ 9 Yes Use <<guarantee>> stereotype

IREQ 10 No
IREQ 11 No
IREQ 12 No
IREQ 13 No
IREQ 14 No
IREQ 15 No
IREQ 16 No
IREQ 17 No
IREQ 18 No
IREQ 19 No
IREQ 20 No
IREQ 21 No
IREQ 22 No
IREQ 23 No
IREQ 24 No
IREQ 25 Yes Use <<critical>> stereotype
IREQ 26 Yes Use <<critical>> stereotype and its “level” tagged value
IREQ 27 No
IREQ 28 Yes Use <<error handling>> stereotype
IREQ 29 Yes Use <<containment>> stereotype
IREQ 30 No
IREQ 31 No
IREQ 32 No
IREQ 33 No
IREQ 34 No
IREQ 35 No
IREQ 36 No
IREQ 37 No

Carleton University, TR SCE-06-19 Decermber 2006

 230

IREQ # Fulfilled Comment
IREQ 38 No
IREQ 39 No
IREQ 40 No
IREQ 41 No
IREQ 42 No
IREQ 43 No
IREQ 44 No
IREQ 45 No
IREQ 46 No
IREQ 47 No
IREQ 48 No
IREQ 49 No
IREQ 50 No
IREQ 51 No
IREQ 52 Yes Use <<redundancy>> stereotype
IREQ 53 No
IREQ 54 No

Total 7 Only 7 information requirements out of 54 are fulfilled

Table 21: Assessing the Effects of Messages profile based on the information

requirements.

Carleton University, TR SCE-06-19 Decermber 2006

 231

F.5 Patterns for Reliability and Safety (discussed in Section 4.5)

IREQ # Fulfilled Comment
IREQ 1 No
IREQ 2 No
IREQ 3 No
IREQ 4 No
IREQ 5 No
IREQ 6 No
IREQ 7 No
IREQ 8 No
IREQ 9 No

IREQ 10 No
IREQ 11 No
IREQ 12 No
IREQ 13 No
IREQ 14 No
IREQ 15 No
IREQ 16 No
IREQ 17 No
IREQ 18 No
IREQ 19 No
IREQ 20 No
IREQ 21 No
IREQ 22 No
IREQ 23 No
IREQ 24 No
IREQ 25 No
IREQ 26 Yes Use “qosSafety” constraint
IREQ 27 No
IREQ 28 No
IREQ 29 No Paper introduces some patterns to model this, but only for use cases
IREQ 30 No
IREQ 31 No
IREQ 32 No
IREQ 33 No
IREQ 34 No
IREQ 35 No
IREQ 36 No
IREQ 37 No
IREQ 38 No
IREQ 39 No

Carleton University, TR SCE-06-19 Decermber 2006

 232

IREQ # Fulfilled Comment
IREQ 40 No
IREQ 41 No
IREQ 42 No
IREQ 43 No
IREQ 43 No
IREQ 46 No
IREQ 47 No
IREQ 48 No
IREQ 49 No
IREQ 50 No
IREQ 51 No
IREQ 52 No Paper introduces some patterns to model this, but only for use cases
IREQ 53 No
IREQ 54 No

Total 1 Only 1 information requirement out of 54 is fulfilled

Table 22: Assessing patterns for Reliability and Safety based on the information

requirements.

Carleton University, TR SCE-06-19 Decermber 2006

 233

F.6 Assessing Existing Profiles based on the Safety Information

Requirements—Summary (discussed in section 4.6)

IREQ # OMG
QoS &

FT

OMG
SPT

HIDOORS Effects of
Messages

Patterns All
Combined

IREQ 1 Yes Yes Yes
IREQ 2 Yes Yes
IREQ 3
IREQ 4 Yes Yes Yes
IREQ 5 Yes Yes Yes
IREQ 6
IREQ 7
IREQ 8
IREQ 9 Yes Yes Yes

IREQ 10
IREQ 11
IREQ 12
IREQ 13
IREQ 14 Yes Yes
IREQ 15
IREQ 16
IREQ 17
IREQ 18
IREQ 19
IREQ 20 Yes Yes Yes
IREQ 21 Yes Yes
IREQ 22 Yes Yes Yes
IREQ 23 Yes Yes
IREQ 24 Yes Yes
IREQ 25 Yes Yes Yes
IREQ 26 Yes Yes Yes Yes
IREQ 27
IREQ 28 Yes Yes
IREQ 29 Yes Yes Yes
IREQ 30
IREQ 31 Yes Yes
IREQ 32
IREQ 33
IREQ 34 Yes Yes
IREQ 35
IREQ 36

Carleton University, TR SCE-06-19 Decermber 2006

 234

IREQ # OMG
QoS &

FT

OMG
SPT

HIDOORS Effects of
Messages

Patterns All
Combined

IREQ 37
IREQ 38 Yes Yes
IREQ 39
IREQ 40 Yes Yes
IREQ 41 Yes Yes Yes
IREQ 42
IREQ 43 Yes Yes Yes
IREQ 44
IREQ 45
IREQ 46
IREQ 47
IREQ 48
IREQ 49
IREQ 50
IREQ 51
IREQ 52 Yes Yes Yes
IREQ 53 Yes Yes
IREQ 54 Yes Yes

Total (Max
= 54)

17 6 6 7 1 24

Percentage
(%)

31% 11% 11% 13% 2% 44%

Table 23: Assessment summary of existing UML profiles based on the information

requirements.

Carleton University, TR SCE-06-19 Decermber 2006

 235

Appendix G Additional UML Profile Examples

G.1 COTS Software

The example in Figure 17 shows an aircraft navigation controller, which controls the

flight of the aircraft including all auto pilot programmes.

NavigationController controls the aircraft’s flight paths. Therefore, it is a safety-

critical element. This is marked explicitly on the diagram by stereotyping

NavigationController with a <<SafetyCritical>> (5.2.17) stereotype. Because the

failure of this system can result in conditions difficult to handle by the aircraft’s crew,

this class has been assigned software level C. This is indicated by the “CriticalityLevel”

tagged value of the <<SafetyCritical>> (5.2.17) stereotype.

NavigationController needs to know the allowed flight paths of the aircraft. In this

example, SafeFlightPaths serves as the database that contains all the navigation

information relevant to the currently needed flight paths. It is safety-critical because a

safety-critical class, namely NavigationController, depends on it. This is marked

explicitly on the diagram by stereotyping it with a <<SafetyCritical>> (5.2.17) stereotype

and assigning it a software level equal to at least that of the class that depends on it as

indicated by the “CriticalityLevel” tagged. The developers of this navigation controller

system decided to purchase COTS software and use it to store the flight paths. This is

indicated in the diagram by stereotyping SafeFlightPaths with <<Nature>> (5.2.13)

and setting the “Kind” tagged value to “COTS”.

For the aircraft’s flight paths to be meaningful, maps of the world are needed. They are

necessary for verifying the safe flight paths as well as displaying them to the pilots.

Unlike the flight paths, they are static information that rarely change, and therefore they

are maintained as a separate class outside of SafeFlightPaths. They are maintained in

CurrentlyUsedWorldMaps, which contains the world maps that are needed for the

current flight. It is safety-critical because a safety-critical class, namely

SafeFlightPaths, depends on it. This is marked explicitly on the diagram by

Carleton University, TR SCE-06-19 Decermber 2006

 236

stereotyping it with a <<SafetyCritical>> (5.2.17) stereotype and assigning it a software

level equal to at least that of the class that depends on it as indicated by the

“CriticalityLevel” tagged.

This diagram shows safety-critical model elements. Hence, it is stereotyped with

<<SafetyContext>> (5.2.1). In addition, COTS software is a crucial element of the

software’s certification aspects in airworthiness. Therefore, they must be declared to the

certification authorities. For this reason, this diagram is stereotyped with

<<CertificationContext>> (5.2.6) to indicate that it contains information that is highly

relevant to the certification authorities.

<<state dependent control>>

<<SafetyCritical>>
{CriticalityLevel=C}

NavigationController

<<entity>>

<<SafetyCritical>>
{CriticalityLevel=C}

<<Nature>> {Kind=COTS}

SafeFlightPaths

<<SafetyContext>>
<<CertificationContext>>

<<entity>>

<<SafetyCritical>>
{CriticalityLevel=C}

CurrentlyUsedWorldMaps

1 1 1 1Reads Based On

Figure 17: Aircraft’s navigation controller using COTS software (structure).

G.2 Software Partitioning

Software partitioning is a technique for providing isolation between functionally

independent software components to contain and/or isolate faults and potentially reduce

the effort of the software verification process. It prevents specific interactions and cross-

coupling interference [1]. Its key advantages are in separating safety-critical software

elements that have different safety levels, so that the failure of the less critical software

does not result in the failure of the more critical software.

The example in Figure 18 shows another section of a navigation system. This system,

which can be put on auto-pilot, has a steering controller that is highly safety-critical.

SteeringController controls the steering of the aircraft and its movement. Therefore, it

is highly safety-critical and is assigned software level B. Thus, it is stereotyped

<<SafetyCritical>> (5.2.17) and its “CriticalityLevel” tagged value is set to level B.

Because it is highly safety-critical, it also employs defensive programming methods to

Carleton University, TR SCE-06-19 Decermber 2006

 237

protect against unsafe inputs, whether they are manual input from the pilot through

PilotKeyboardInterface, or from the software’s auto pilot system through

AutoPilotController. SteeringController does not perform any action that requires

the aircraft to fly on an altitude below 100 meters unless the aircraft is in the process of

landing. Therefore, it is stereotyped with <<Defensive>> (5.2.27) and has a

“DefendableInput” tagged value set to “Altitude < 100 m”. It also does not perform any

action that requires the aircraft to change its flight direction in angles of greater than 90

degrees. Thus, another instance of the “DefendableInput” tagged value is set to “Angle >

90 deg”. In both cases, SteeringController reports that an illegal operation has

occurred by exeuting the ReportIllegationOperation reaction procedure, as evident

from the “Reaction” tagged value that is set to “ReportIllegalOperation” .

AutoPilotController is also safety-critical, but less critical than

SteeringController. This is because the failure of AutoPilotController only results

in inconvenience for the pilots rather than significantly compromising the level of safety.

If the auto pilot feature fails, the pilots can always manually control the aircraft through

PilotKeyboardInterface or some other mechanical device inputs. Therefore,

AutoPilotController was assigned software level D. Thus, it is stereotyped with

<<SafetyCritical>> (5.2.17) and its “CriticalityLevel” tagged value is set to level D. The

interesting thing to note in this example is that AutoPilotController was partitioned

from SteeringController for this very reason – if the auto pilot feature fails, the

steering controller can still execute correctly and ensure the safe flight of the aircraft.

This is stated in the model by stereotyping AutoPilotController with <<Partition>>

(5.2.18) and using its “PartitionedFrom” tagged value, set to “SteeringController”, and

“Explanation” tagged value, set to “Lower Criticality Level”, to specify this exact

information.

ConvertibleSteeringInformation is used by PilotDisplayInterface to display the

current aircraft steering information. What is special about this class is that it can read the

information from SteeringController and convert it to appropriate units for the pilots

such as conversion from metric units to imperial units, and vice-versa. Again,

ConvertibleSteeringInformation was partitioned away from SteeringController

Carleton University, TR SCE-06-19 Decermber 2006

 238

because it is only relevant for displaying the information to the pilots. If it fails, the

aircraft can still resume safe flight through either manual input through

PilotKeyboardInterface or auto pilot through AutoPilotController. As a result,

ConvertibleSteeringInformation was stereotyped with <<Partition>> (5.2.18) and its

“PartitionedFrom” and “Explanation” tagged values were used to specify that it was

partitioned from SteeringController because it was “Not Safety Critical”.

It is clear from this discussion that this example has emphasis on safety. Therefore, the

diagram was stereotyped with <<SafetyContext>> (5.2.1). It should also be noted that

partitioning information has to be submitted to the certification authorities. Therefore, the

diagram was also stereotyped with <<CertificationContext>> (5.2.6). Finally, we also

decided to stereotype it with <<DesignContext>> (5.2.7) because it is the result of design

decisions on how software classes are organized with respect to safety. In fact, the

partitioning concept was identified as a design concept in section C.7

<<algorithm>>

<<Partition>>
{PartitionedFrom=“SteeringController”,

Explanation=“Not Safety Critical}

ConvertibleSteeringInformation

<<SafetyContext>>
<<CertificationContext>>

<<DesignContext>>

<<coordinator>>

<<SafetyCritical>> {CriticalityLevel=B}

<<Defensive>>
{DefendableInput=‘Altitude < 100 m’,
DefendableInput=‘Angle > 90 deg’,
Reaction=ReportIllegalOperation}

SteeringController .
-ReportIllegalOperation() <<Reaction>> {…}

<<state dependent control>>

<<SafetyCritical>> {CriticalityLevel=D}

<<Partition>>
{PartitionedFrom=“SteeringController”,
Explanation=“Lower Criticality Level”}

AutoPilotController

<<output device interface>>

PilotDisplayInterface

<<input device interface>>

PilotKeyboardInterface

*
1

Commands

1 Commands 1

1 Uses 1

1
1

Reads

Figure 18: Aircraft steering controller (structure).

One final note is that the higher the software level is, the more expensive it is to develop

it. A direct positive result of the partitioning in this example is that

AutoPilotController and ConvertibleSteeringInformation do not have to go

Carleton University, TR SCE-06-19 Decermber 2006

 239

through the rigorous development and testing methods required for

SteeringController, which is of level B.

G.3 Requirements and Traceability

The example in Figure 19 shows safety-related requirements in the aircraft steering

controller system presented in Figure 18. Most of the stereotypes on the classes were

explained in Appendix G.2. Therefore, only new stereotypes are explained here. Such

systems are generally safety-critical, and are often allocated safety requirements. As a

result, this diagram has been stereotyped with <<SafetyContext>> (5.2.1).

Generally, a project identifies high-level safety requirements that must be fulfilled. Then,

low-level safety requirements are developed to ensure that the high-level goals are

fulfilled. This diagram specifies and elaborates on a safety goal that was identified for

this model, namely to ensure that the aircraft always flies in “Safe Flight Paths”. This

goal is captured in the diagram by stereotyping it with <<Requirement>> (5.2.9). The

“ID” tagged value specified the unique ID of the requirement. The “Kind” tagged value is

set to “Safety” to identify that this is a safety-related requirement, and its “Specification”

tagged value states what the requirement is, namely ensuring “Safe Flight Paths”.

Because of its high software level, SteeringController is checked for correctness

using a formal method, namely “Theorem-Proving”. Therefore, it is stereotyped with

<<Formalism>> (5.2.23) and its “Method” tagged value is set to “Theorem-Proving”. Its

“Kind” tagged value is set to “Full” to indicate that a fully formal method is used.

PilotKeyboardInterface serves as an input interface to the pilot. The pilot can use it to

change the flight path of the aircraft. PilotKeyboardInterface has been assigned a

safety requirement to request confirmation from the pilots whenever they wish to change

the flight path. Therefore, it was stereotyped with <<Requirement>> (5.2.9). Its “ID”

tagged value specifies the unique ID of the requirement, which is “LREQ 1”. Its “Kind”

tagged value was set to “Safety” to indicate that it is a safety requirement. Its

“OfRequirement” tagged value specifies the high-level requirement that this low-level

requirement can be traced to. In this example, it is the “HREQ 1” high-level requirement

Carleton University, TR SCE-06-19 Decermber 2006

 240

that was applied as a stereotype on the diagram. The “Specification” tagged value

specifies that there must be a user confirmation for every path change.

The second safety requirement for “HREQ 1” was assigned to the association between

AutoPilotController and SteeringController. The association was stereotyped with

<<Requirement>> (5.2.9) whose “Kind” tagged value is also set to “Safety”. Its “ID”

tagged value specifies the unique ID of the requirement. The “OfRequirement” tagged

value specifies that this requirement is traceable to the “HREQ 1” requirement. The

“Specification” tagged value specifies that the association must ensure that the “Chosen

Aircraft Flight Path is in Safe Flight Paths Set”. Therefore, AutoPilotController must

not command SteeringController to fly in a flight path that is not in the safe flight

paths set.

AutoPilotController determines whether a particular flight path is allowed or not by

reading the data managed by SafeFlightPaths. The availability of such information is

the only reason for the existence of SafeFlightPaths. Therefore, it was stereotyped with

<<Rationale>> whose “Reference” tagged value is set to “LREQ 2” to identify the

requirement whose existence resulted developing this class.

<<SafetyContext>>

<<Requirement>>
{ID=“HREQ 1”, Kind=Safety, Specification=“Safe Flight Paths”}

<<state dependent control>>

<<SafetyCritical>>
{CriticalityLevel=D}

AutoPilotController

<<input device interface>>

<<Requirement>>
{ID=“LREQ 1”, Kind=Safety,
OfRequirement=“HREQ 1”,

Specification=‘Exists User Confirmation
for every Path Change’}

PilotKeyboardInterface<<Requirement>>
{ID=“LREQ 2”, Kind=Safety,
OfRequirement=“HREQ 1”,

Specification=‘Chosen Aircraft Flight Path is
in Safe Flight Paths Set’}

Commands

<<coordinator>>

<<SafetyCritical>> {CriticalityLevel=B}

<<Formalism>>
{Kind=Full, Method=Theorem-Proving,

FormalismOf=SteerinController}

SteeringController

1 1

*
1

Commands

<<entity>>

<<Rationale>>
{Reference=LREQ 2}

SafeFlightPaths

1

1
Reads

Figure 19: Safety-requirements for an aircraft steering system (structure).

Finally, notice that the language used in the “Specification” tagged value for the

<<Requirement>> (5.2.9) stereotype is more detailed and specific for low-level

Carleton University, TR SCE-06-19 Decermber 2006

 241

requirements than for the high-level requirements. In fact, the “Specification” tagged

values for the low-level requirements can be written as mathematical expressions.

G.4 Multiple-Version Dissimilar Software

Multiple-version dissimilar software is a common technical solution to reliability

challenges in highly reliable and safety-critical software. The example in Figure 20

shows three dissimilar software versions that function as a radar filter. Those three

dissimilar versions are RadarFilter1, RadarFilter2, and RadarFilter3. Each one of

them is stereotyped with <<Replicated>> to indicate that it is a dissimilar version for

some other class. The “ID” tagged value uniquely identifies the ID of that class within the

replication group that is specified in the “ReplicationGroup” tagged value. In this

example, the replication group is called “RadarFilter”.

Each version of the radar filter logs its output to RadarFilterResults.

RadarFilterResults compares all three outputs from RadarFilter1, RadarFilter2,

and RadarFilter3, and determines what the accepted value should be and then it updates

the pilot’s display accordingly. Because of this behaviour, RadarFilterResults is

stereotyped with <<Comparator>> (5.2.32) to indicate that it compares outputs from

dissimilar software versions. The “ReplicationGroup” tagged value identifies the

replication group of the multiple version dissimilar software. It is equal to the

“ReplicatedGroup” tagged values of the <<Replicated>> (5.2.31) stereotypes for each of

the replicated software versions. The “PolicyParameter” tagged value of the

<<Comparator>> stereotype indicates that RadarFilterResults determines the

accepted output based on a majority voting policy. This means that if two of the three

replicated classes agree on a value, their output is accepted as the correct one. The

“ReplicatedEntity” tagged values of the <<Comparator>> (5.2.32) stereotype identify the

classes whose outputs are considered for voting.

Since multiple-version dissimilar software is a reliability-related solution, the diagram

was stereotyped with <<ReliabilityContext>> (5.2.2).

Carleton University, TR SCE-06-19 Decermber 2006

 242

Notice that in this case, the classes stereotyped with <<Replicated>> (5.2.31) depend

(navigability of association) on the one stereotyped with <<Comparator>> (5.2.32). This

is only because of a design decision in this model where the radar filters are active

components that read the radar input and inform the comparator class accordingly.

However, this will not always be the case. There can be cases where the comparator class

depends on the replicated classes. Therefore, stereotypes <<comparator>> and

<<replicated>> do not suggest any specific association navigability between stereotyped

classes.

<<algorithm>>

<<Comparator>>
{ReplicationGroup=“RadarFilter”,
PolicyParameter=MajorityVoting,
ReplicatedEntity=RadarFilter1,
ReplicatedEntity=RadarFilter2,
ReplicatedEntity=RadarFilter3}

RadarFilterResults

<<ReliabilityContext>>

<<algorithm>>

<<Replicated>> {ID=“0003”,
ReplicationGroup=“RadarFilter”}

RadarFiter3

<<aglorithm>>

<<Replicated>> {ID=“0001”,
ReplicationGroup=“RadarFilter”}

RadarFiter1

<<algorithm>>

<<Replicated>> {ID=“0002”,
ReplicationGroup=“RadarFilter”}

RadarFiter2

<<output device interface>>

PilotDisplayInterface

Log Result
1

11
Log ResultLog Result 1

11

1

Update Display

1

Figure 20: Multiple-version radar filter system (structure).

G.5 Concurrent Software

This example shows concurrent access to the database presented in Figure 19. As Figure

21 shows, SafeFlightPaths is COTS software as indicated by the <<Nature>>

stereotype and its “Kind” tagged value. This class is a resource that is subject to

concurrent access from other classes. Therefore, it is stereotyped with <<Concurrent>>

(5.2.26) to indicate that it is relevant from a concurrency point of view. Its “Role” tagged

value is set to “Resource” and its “IsShared” “tagged value is set to “true” to indicate that

it is a shared resource.

SafeFlightPaths is subject to concurrent access from

SatelliteCommunicationInterface, RadarInterface, and UserInterface. Each one

Carleton University, TR SCE-06-19 Decermber 2006

 243

of those classes is an active class that may initiate action without explicit invocation from

other software classes in the system. Therefore, each one of them is stereotyped with

<<Concurrent>> (5.2.26) whose “Role” tagged value was set to “Active”. Each one of

them has an association to SafeFlightPaths to show that it can read from and write to

it.

<<entity>>

<<Nature>> {Kind=COTS}

<<Concurrent>>
{Role=Resource, IsShared=true}

SafeFlightPaths

<<ConcurrencyContext>>
<<PerformanceContext>>

<<user interface>>

<<Concurrent>> {Role=Active}

UserInterface

<<system interface>>

<<Concurrent>> {Role=Active}

SatelliteCommunicationInterface

<<system interface>>

<<Concurrent>> {Role=Active}

RadarInterface
*
1Reads and Writes *

1

Reads and Writes
1

1

Reads and Writes

Figure 21: Concurrent access to an aircraft’s COTS software (structure).

Because this diagram involves a concurrency discussion, it is stereotyped with

<<ConcurrencyContext>> (5.2.5). It is also stereotyped with <<PerformanceContext>>

(5.2.4) because concurrent access to a shared resource is also relevant from a

performance point of view especially because RadarInterface and

SatelliteCommunicationInterface are likely to have high-frequency accesses to

SafeFlightPaths.

G.6 Software Monitoring

The example in Figure 22 shows safety-monitoring software. Its purpose is to detect

when the aircraft’s engine temperature becomes too high, and then to react by lowering

the temperature to an acceptable level.

EngineInterface serves as an interface for the aircraft’s engine. Hence, it is stereotyped

with <<Interface>> (5.2.25) and its “InterfaceFor” tagged value is set to

Carleton University, TR SCE-06-19 Decermber 2006

 244

“AircraftEngine”. Because the aircraft’s engine is a hardware component, its

“IsBetweenHardwareAndSoftware” tagged value is set to “true”.

EngineInterface is monitored by EngineMonitor, which is stereotyped with

<<Monitor>> (5.2.20). Its “Kind” tagged value is set to “Safety” to indicate that the

purpose of the monitor is to increase the safety level of the system. The

“MonitoredEntity” tagged value is set to “EngineInterface” to indicate that the class

being monitored is EngineInterface. The “DetectableEvent” tagged value specifies the

event that can be detected by EngineMonitor, which is EngineTooHot. The

“EventHandler” tagged value is set to “AircraftEngineController” to indicate that

AircraftEngineController will be notified when this event occurs.

EngineTooHot represents the event that the engine’s temperature has risen to an

unacceptable level. Thus, it is stereotyped with <<Event>> (5.2.15) and its

“EffectOnSafetyDirection” tagged value is set to “Negative” to indicate that the

occurrence of this event can have unsafe consequences.

NormalizeEngineTemperature contains the reaction code that will be executed when

the EngineTooHot event occurs. Therefore, it is stereotyped with <<Reaction>> (5.2.16)

and its “ConsequenceOf” tagged value is set to “EngineTooHot”, which is the class name

of the event that triggers the reaction. The “EffectOnSafetyDirection” is set to “Positive”

to indicate that the reaction is intended to increase the safety level.

AircraftEngineController is a safety-critical class because it determines how to

control the aircraft’s engine. Thus, it is stereotyped with <<SafetyCritical>> (5.2.17).

Moreover, it serves as an event handler by recognizing the EngineTooHot event and

executing the NormalizeEngineTemperature reaction code. Therefore, it is also

stereotyped with <<Handler>> (5.2.19) stereotype whose “HandleableEvent” tagged

value is set to the “EngineTooHot” event, and its “PerformedReaction” tagged value is

set to the “NormalizeEngineTemperature” reaction.

Because this diagram discusses safety aspects of the system, it is stereotyped with

<<SafetyContext>> (5.2.1). Furthermore, it is stereotyped with <<Strategy>> (5.2.22)

Carleton University, TR SCE-06-19 Decermber 2006

 245

and its “Kind” tagged value is set to “Safety” to indicate that it is a technical solution to

increase the safety level.

<<state dependent control>>

<<SafetyCritical>>

<<Handler>>
{HandelableEvent=EngineTooHot,

PerformedReaction=NormalizeEngineTemperature}

AircraftEngineController

<<input/output device interface>>

<<Interface>>
{IsBetweenHardwareAndSoftware=true,

InterfaceFor=AircraftEngine}

EngineInterface

<<coordinator>>

<<Monitor>> {Kind=Safety,
MonitoredEntity=EngineInterface,
DetectableEvent=EngineTooHot,

EventHandler=AircraftEngineController}

EngineMonitor

<<Event>>
{EffectOnSafetyDirection=Negative}

EngineTooHot

<<algorithm>>

<<Reaction>>
{ConsequenceOf=EngineTooHot,
EffectOnSafetyDirection=Positive}

NormalizeEngineTermperature

<<SafetyContext>>

<<Strategy>>
{Kind=Safety>,

DesignOf=EngineMonitor} 1

1

Monitors

11

Posts
Detected
Events

1

1
Creates

11

Recognizes 1

1Executes
1
1

Processes

1

1

Sends Commands

Figure 22: Monitoring the aircraft’s engine’s temperature (structure).

	1 INTRODUCTION
	1.1 Safety and UML
	1.2 Research Problem
	1.3 Document Organization
	1.4 Research Method

	2 INDUSTRIAL PRESPECTIVE
	2.1 Safety Assessments
	2.2 Safety-Related Standards
	2.3 Challenges in Software Safety
	2.4 Usage Scenarios for Safety Information
	2.5 Traceability Requirements
	2.6 UML APPROACH
	2.6.1 Disadvantages
	2.6.2 Advantages
	2.6.3 Requirements of an Effective UML Profile

	3 SAFETY-RELATED CONCEPTS
	3.1 Concept Identification and Categorization
	3.2 Concept Refinement
	3.2.1 Conceptual Model
	3.2.2 Concept Details
	3.2.3 Concepts Specifications
	3.2.3.1 Requirement
	3.2.3.2 Deviation
	3.2.3.3 Style
	3.2.3.4 ImplementationStyle
	3.2.3.5 BehaviouralStyle
	3.2.3.6 Nature
	3.2.3.7 Rationale
	3.2.3.8 Event
	3.2.3.9 Reaction
	3.2.3.10 SafetyCritical
	3.2.3.11 Partition
	3.2.3.12 Handler
	3.2.3.13 Monitor
	3.2.3.14 Simulator
	3.2.3.15 Strategy
	3.2.3.16 Formalism
	3.2.3.17 Complexity
	3.2.3.18 Interface
	3.2.3.19 Concurrent
	3.2.3.20 Defensive
	3.2.3.21 Configuration
	3.2.3.22 Configurable
	3.2.3.23 Loadable
	3.2.3.24 Configurator
	3.2.3.25 Replicated
	3.2.3.26 Comparator
	3.2.3.27 ReplicationGroup

	3.2.4 Providing Traceability

	3.3 Information Requirements
	4.1 Quality of Service and Fault Tolerance OMG Profile
	4.2 Schedulability, Performance, and Time OMG Profile
	4.3 HIDOORS Profile
	4.4 Effects of Message Loss, Delay, and Corruption
	4.5 Patterns for Reliability and Safety
	4.6 Summary
	5.1 UML Profile—Template Description
	5.2 Profile Description
	5.2.1 <<SafetyContext>>
	5.2.2 <<ReliabilityContext>>
	5.2.3 <<IntegrityContext>>
	5.2.4 <<PerformanceContext>>
	5.2.5 <<ConcurrencyContext>>
	5.2.6 <<CertificationContext>>
	5.2.7 <<DesignContext>>
	5.2.8 <<ConfigurationContext>>
	5.2.9 <<Requirement>>
	5.2.10 <<Deviation>>
	5.2.11 <<ImplementationStyle>>
	5.2.12 <<BehaviouralStyle>>
	5.2.13 <<Nature>>
	5.2.14 <<Rationale>>
	5.2.15 <<Event>>
	5.2.16 <<Reaction>>
	5.2.17 <<SafetyCritical>>
	5.2.18 <<Partition>>
	5.2.19 <<Handler>>
	5.2.20 <<Monitor>>
	5.2.21 <<Simulator>>
	5.2.22 <<Strategy>>
	5.2.23 <<Formalism>>
	5.2.24 <<Complexity>>
	5.2.25 <<Interface>>
	5.2.26 <<Concurrent>>
	5.2.27 <<Defensive>>
	5.2.28 <<Configurable>>
	5.2.29 <<Loadable>>
	5.2.30 <<Configurator>>
	5.2.31 <<Replicated>>
	5.2.32 <<Comparator>>

	5.3 Examples
	5.3.1 Hardware/Software Interfaces
	5.3.2 Contributions to Failure Conditions
	5.3.3 Software Configurations

	5.4 Development Methodology
	6.1 Technological Requirements
	6.1.1 Integrated Support in UML Modeling Tools
	6.1.2 Exporting UML Models using XMI

	6.2 Examples
	6.2.1 Hardware/Software Interfaces
	6.2.2 Contributions to Failure Conditions
	6.2.3 COTS Software
	6.2.4 Software Partitioning
	6.2.5 Requirements and Traceability
	6.2.6 Multiple-Version Dissimilar Software
	6.2.7 Recursive Software

	7.1 Overview
	7.2 System Architecture
	7.3 Functional Requirements
	7.4 Safety Assessment
	7.4.1 Action Error Analysis (AEA)
	7.4.2 Failure Modes and Effects Analysis (FMEA)
	7.4.3 Hazards and Operability Analysis (HAZOP)
	7.4.4 Interface Analyses (IA)
	7.4.5 Safety Requirements

	7.5 Subsystem Design
	7.5.1 Identification of Events and Reactions
	7.5.2 Events
	7.5.3 Reactions
	7.5.4 Event-Reaction Relationships
	7.5.5 High-Level Design
	7.5.5.1 Description of class Controller
	7.5.5.2 Description of class WingsAndEnginesMonitor
	7.5.5.3 Description of class NavigationDatabaseMonitor
	7.5.5.4 Description of class NavigationMonitor
	7.5.5.5 Description of class ExternalSubsystemsEventHandler
	7.5.5.6 Description of class ControllerMonitorAndHandler
	7.5.5.7 Description of class ControllerInterface
	7.5.5.8 Description of class SafePointDeterminator
	7.5.5.9 Description of class PathProjector
	7.5.5.10 Description of WingsAndEnginesInterface, NavigationDatabase-Interface, and NavigationInterface classes

	7.5.6 Low-Level Design of Events and Reactions

	7.6 Design Analysis
	7.6.1 USAGE 1: Provide Safety Requirements
	7.6.2 USAGE 2: Design Safety Requirements in Systems
	7.6.3 USAGE 3: Justify Design Decisions
	7.6.4 USAGE 4: Monitor Safety
	7.6.5 USAGE 5: Get Safety Information

	8.1 Fulfilling Requirements
	8.2 Open Issues and Future Work

