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Abstract 
An important number of studies have addressed the importance of models in 

software engineering, mainly in the design of robust software systems. Although models 
have been proven to be helpful in a number of software engineering activities, such as 
providing a better medium for communication among designers and customers, there is 
still significant resistance to model-driven development in many software organizations. 
The main reason is that it is perceived to be expensive and not necessarily cost-effective. 
This paper investigates one specific aspect of this larger problem. It addresses the impact 
of using statecharts for testing class clusters that exhibit a state-dependent behavior. More 
precisely, it reports on a controlled experiment that investigates their impact on testing 
fault-detection effectiveness and cost. Code-based, structural testing is compared to 
statechart-based testing and their combination is investigated to determine whether they 
are complementary. Results show that there is no significant difference between the fault 
detection effectiveness of the two test strategies but that they are significantly more 
effective when combined. This implies that a cost-effective strategy could be to specify 
statechart-based test cases early on, execute them when the source code becomes 
available, and then complete them with code-based test cases based on coverage analysis. 
This article also investigates the reasons for undetected faults and how the statechart-
based testing of source code could be improved.   

1 INTRODUCTION 

There is an increasing interest in model-driven development for object-oriented 
systems, using for example the Unified Modeling Language (UML). In addition to be a 
key resource for designing object-oriented software and providing means for 
communicating ideas among designers and customers, models are very useful in testing 
object-oriented software. A number of model-based testing methodologies have been 
proposed based for example on use cases, class diagrams, and statecharts [8, 9, 11, 16, 
34, 36, 38, 40, 41].  

Model-based testing has been assessed in a number of empirical studies and 
showed to be useful in systematically defining test strategies and criteria, and deriving 
test cases and oracles [10, 12, 14, 17, 37, 38, 42]. A number of researchers conducted 
studies on the cost effectiveness of conventional testing strategies, i.e. white-box [21-23, 
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26, 46] and black-box testing strategies [44, 47] such as edge coverage and category-
partition respectively, while others focused on the cost-effectiveness of model-based 
testing strategies such as the Round-trip path technique [10]. This related work is further 
detailed in Section 2. 

Despite a growing number of studies [5, 9-12, 14, 16, 17, 36-38], little empirical 
evidence is found in literature on the importance of models in improving testing cost-
effectiveness. As a result, there is little incentive for testers to adopt model-driven testing 
practices and it is difficult to determine how they should be integrated, if at all, with 
traditional testing practices. This article focuses on the effectiveness of UML statechart-
based testing when compared and combined to white-box, structural testing. The main 
motivation for this choice is that structural coverage analysis is still the most common 
basic technique for testing components, but the most complex components in object-
oriented software are also the ones which, according to mainstream UML development 
methods, should be modeled with statecharts. So assessing the cost-effectiveness of 
testing techniques based on statecharts and comparing it with simpler, code coverage-
based techniques seems a logical investigation to undertake. The choice of UML 
statecharts is a practical one as UML is becoming a de facto standard. In this paper we 
perform both a quantitative analysis of differences in fault detection effectiveness and 
cost among test techniques, and a qualitative analysis to understand the reasons for these 
differences and the variations observed across drivers and class clusters.  

At a high level, this research entails addressing the following questions: 

• Are test cases identified and generated based on the statechart alone effective in 
detecting faults when compared to simple code-based, structural testing? 

• Are the faults detected by statechart-based testing and structural testing 
techniques complementary? 

• What are the different factors that impact the effectiveness of statechart-based 
testing techniques (e.g., statechart and code properties)? 

Empirical studies are required to answer such questions and this can be achieved by 
conducting experiments on a number of object-oriented class clusters with a state-
dependent behavior and their associated models. As a first step in that direction, this 
paper describes a controlled experiment conducted on two class clusters and which main 
contributions are:  

 A thorough experimental evaluation of the fault detection effectiveness and cost 
of the state-based, Round-trip path testing technique and a comparison with 
simple but common baseline: simple code-based, structural testing. 

 An investigation into the complementariness of statechart-based testing and 
structural testing to improve fault detection rates. 

 An investigation of the factors that could affect the relationship between test 
techniques and fault detection effectiveness, including code and statechart 
characteristics, coverage, and the type of faults.  

The paper is organized as follows: Section 2 discusses the related literature and 
Section 3 provides a detailed description of the conducted controlled experiment. Section 
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4 presents and analyses the results, while Section 4.6 summarizes the outcome of the 
experiment and provides learned lessons for upcoming experiments. Overall conclusions 
and future work are provided in Section 5. 

2 RELATED WORK 

Model-based testing methodologies have been proposed and advocated by 
researchers in a number of studies. One of the earliest works on state-based testing is the 
work by Chow [18] who proposed the W-method for finite state-machines. This method 
has been adapted to UML statecharts by Binder [8] under the name of round-trip paths 
strategy. In both techniques, the statechart is traversed as to construct a transition tree that 
includes all transitions in the statechart. 

Other state-based techniques were proposed by Offutt et al. [42]. The authors 
introduced test techniques for generating test data from formal state-based specifications. 
They defined four state-based testing criteria: (1) transition coverage, (2) full predicate 
coverage, (3) transition-pair coverage, and (4) complete sequence. A case study was used 
to compare the different criteria with a random selection of test cases. Results showed an 
important improvement in fault detection when using the full-predicate coverage 
criterion. Though transition coverage yielded a small number of test cases, these test 
cases showed the same fault detection rate and branch coverage (of the source code 
control flow graph) as the random selection test strategy. 

Additional testing strategies have been defined for statecharts. Hong et al. [25] 
propose a technique to derive extended finite state machines from statecharts. A 
statechart is then transformed into a flow graph modeling the control flow and data flow 
in the statechart thus enabling the application of conventional control and data flow 
analysis techniques. A modification of this method is described in [9] to address the 
compliance of an implementation of a system to its specification. 

UML use cases were also the base for model-based system testing methodologies. 
Briand and Labiche in [11] proposed the TOTEM system test methodology based on use 
cases and their related UML artifacts including sequence diagrams, class diagrams and 
OCL contracts. Functional test requirements would be derived from use cases, their 
parameters and their sequence constraints, then transformed into test cases using the other 
related artifacts. An issue that encountered this methodology is the exponential increase 
in number of test cases when conditions, such as pre and post conditions of methods in 
sequence diagrams, or guard conditions include more than one predicate. This limits the 
automation of the methodology. 

Nebut et al. defined a systematic approach for generating test-cases based on 
functional requirements expressed with UML use cases [37]. It is an attempt to fill-in the 
gap between functional specifications in form of UML use cases and concrete test cases. 
The authors propose a requirement-by-contract approach to add pre and post conditions 
to use cases. This approach is inspired by the design-by-contract approach of Meyer [35]. 
These contracts are used for ordering the functionalities of the system and consequently 
to generate correct sequence of use cases which they denote as test objective. Test 
scenarios are then generated from test objectives to produce executable test cases. At this 
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point, tester interaction may be needed to add input parameters to test cases. Note that to 
generate test scenarios additional information describing the scenarios corresponding to 
use cases are necessary (e.g. sequence diagrams). This principle of transformation has 
been inspired by the work of Briand and Labiche in [11]. All possible orderings of use 
cases are collected in one representation, the UTCS, from which a subset is selected 
based on one of the proposed coverage criteria as to generate test objectives. Criteria 
included: All edges, all vertices, all instantiated use cases, all precondition terms, and 
robustness criterion. The latter corresponds to exercising a use case in as many different 
ways as there are predicate combinations to make its precondition evaluate to false. The 
approach was evaluated in three case studies. Results showed that most code statements 
are covered by the proposed technique. The authors recommend the combination of the 
two criteria “all precondition terms and robustness to achieve a satisfactory trade-off 
between the efficiency of the obtained test set and its size [37]. 

A growing number of empirical studies address the cost effectiveness of testing 
strategies, in white-box context [21, 23, 46], black-box conventional context [47], or 
model-based context [2, 3, 10, 14, 37]. Many of these studies use the mutation strategy to 
seed faults and evaluate the fault detection effectiveness of the testing techniques. For 
instance, a simulation and analysis procedure [14] has been proposed and used to study 
the cost-effectiveness of four statechart-based coverage criteria, namely all-transitions, 
all-transition-pairs, full-predicate [42], and round-trip paths [8]. The results show that the 
cost effectiveness of testing criteria depends on the characteristics of the statechart. For 
complex statecharts (e.g., guard conditions), round-trip paths provide a good compromise 
between all-transitions and all-transition-pairs, the latter being far too expensive and the 
former rather ineffective. 

An empirical study in the context of white-box testing strategies was performed by 
Frankl and Weiss [21] where the all-uses and decision (all-edges) criteria were compared 
to each other and to the null criterion (random test suites). This study was performed on 
nine very small programs whose size ranges from 33 to 60 LOCs for which the authors 
had access to real faults (one fault per program was used). Results showed that all-uses 
strategy was not always more effective than the decision and the null criterion but that 
when it was more effective, it usually was much more so. For decision, when more 
effective than the null criterion, the difference was much smaller. In other words, results 
varied according to the program and fault analyzed.  

Briand et al. [10] focused on the cost effectiveness of the Round-trip path technique 
defined in [8]. The study was based on a series of controlled experiment where the 
Round-trip path technique was applied on a number of systems with two different levels 
of oracle precision. Results show that the state-based testing technique was useful in 
detecting faults but needed to be complemented with black-box method testing to achieve 
higher fault detection rates. Results of the comparison between the two oracle strategies 
indicate a significant difference between them in terms of fault detection and cost: precise 
oracles, checking the concrete state of objects after the execution of a transition, 
significantly increased the detection rate over state invariant oracles, though at a much 
higher cost. 

A controlled experiment reported in [3] investigated the impact of UML 
documentation on software maintenance. The results showed that for complex tasks and 
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past a certain learning curve, the availability of UML documentation may result in 
significant improvements of the functional correctness of changes as well as their design 
quality when compared to changes produced without access to UML documentation. The 
results also showed that for simpler tasks, the time needed to update UML documentation 
was substantial compared to the potential benefits [3]. 

As in [10], this paper investigates statechart-based testing based on a controlled 
experiment. However, in addition, it assesses whether there is any gain in terms of fault 
detection effectiveness compared to simple test suites driven by code structural coverage. 
Furthermore, it explores whether the two approaches are complementary and can be 
combined in a cost-effective way, and what are the factors that can affect these results.  

3 EXPERIMENT DESCRIPTION 

In this section, we follow the template provided by Wohlin et al. in [49] to 
describe the experiment. First, we define the objective of the experiment and its 
context (Section 3.1), next we describe the plan of the experiment including the 
context selection criteria, the research questions and the experiment design (Section 
3.2). In Section 3.3 we describe how we prepared the experiment and how we 
conducted it. Finally, we discuss threats to validity of the experiment in Section 3.4. 

3.1 Experiment definition and context 

We investigate whether statechart-based testing would somehow improve the cost-
effectiveness of testing class clusters, either by itself or when combined with simple 
structural testing. With that goal in mind, at a high level, our dependent variables will be 
based on the following constructs: 

• Fault detection effectiveness, overall and across different fault types to be 
defined in Section 3.2.5. 

• Cost for both test specification and execution. 

The experiment was conducted in the context of a laboratory for a fourth year 
engineering course on software testing. The experiment took place in the last two weeks 
of the course to make sure the students had gained an acceptable testing knowledge that 
would allow them to understand and execute the required tasks of the experiment. These 
students had all passed two previous courses on UML-based development and a number 
of courses involving Java programming.  

Statechart models do not only include the statecharts themselves but also the 
related artifacts that are required to understand them such as class diagrams, class public 
interfaces (signatures, attributes), contracts and state invariants, and a textual high level 
description of the software functionalities and objectives. However, as subjects working 
with the UML artifacts are expected to use the statechart diagram to generate test cases, 
for the sake of brevity, we will simply refer to them as a “statechart model” in the 
remainder of the paper. 
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The experiment involved two Java class clusters; both of them have a state-driven 
behavior depicted in a UML statechart: 

a) OrdSet, is a Java class (of 393 lines of code) where each instance represents a 
bounded, ordered set of integers. When an OrdSet is first created, its size gets 
initialized. The size of an OrdSet represents slots that can be used to add 
integers to the set. The size should be at least equal to the minimum set size and 
it should not exceed the maximum set size. The size of an OrdSet is always a 
multiple of the minimum set size. The user can choose a size for the OrdSet by 
providing an integer value to one of the constructors, but the actual size gets 
initialized based on the constraints above. The OrdSet class provides methods 
for adding a single element, removing a single element and creating the union 
of two ordered sets. An OrdSet gets resized when adding a new element if the 
set is full. The number of resizes allowed is set to a constant 
max_accepted_resizes. Trying to resize the set over the 
max_accepted_resizes or for a size that exceeds the maximum set size 
would not be allowed; in that case, an overflow in the instance of OrdSet is 
detected and no more insertion or removal of elements is allowed on the 
ordered set. An attempt to add or remove an element from an ordered set after 
an overflow is detected would raise an OverflowException. Figure 1 shows 
the statechart of class OrdSet with guard conditions in the Object Constraint 
Language (OCL). Some guard conditions are denoted by a letter and fully 
described in Appendix D to avoid cluttering the diagram. 

 

Empty Filled

Partially Filled

Overflow

remove(int val)

add(int n)
remove(int val)

[self ._set->includes(val) and self._set->size()=1]

add(int n)
[self._set->includes(n) 

or ((not self._set->includes(n))
and self._set->size() 
< self._set_size – 1)]

OrdSet(int[] v) [A]

add(int n)

OrdSet(int n)

OrdSet(int[] v)[v->isEmpty()]

s1.union(OrdSet s2) [s1.isEmpty() and s2.isEmpty()]

s1.union(OrdSet s2) [B]

add(int n)
[(not self._set->includes (n))

and (self._set->size() 
= self._set_size – 1)]

remove(int val)
[self ._set->includes (val)]

remove(int val)
[(self._set->includes(val) 
and self._set->size() > 1) 

or (not self._set->includes(val))]

remove(int val)

add(int n)
[_resized_times < max_accepted_resizes and 
_set_size + min_set_size <= max_set_size and 

not self._set->includes(n)]

add(int n) 
[self._set->includes(n)]

remove(int val) 
[not self._set->includes(val)]

add(int n)
[(_resized_times >= max_accepted_resizes or 

_set_size + min_set_size > max_set_size) 
and not self._set->includes(n)]

OrdSet(int[] v) [C]

s1.union(OrdSet s2) [D]

s1.union(OrdSet s2) [(not s1.isEmpty()) and (not s2.isEmpty()) and 
(s1.getActualSize () + s2.getActualSize() – s1.intersection(s2).getActualSize () > max_set_size)]

OrdSet(v) [v->asSet()->size() > max_set_size]

 
Figure 1: OrdSet state diagram 

 
b) Cruise Control is a cluster of four Java classes (358 lines of code) and its 

class diagram and statechart are shown in Figure 2 and Figure 3, respectively. 
Cruise Control is a simplified version of a complex Cruise Control system 
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implemented as a 4th year engineering project. It simulates a car engine and its 
cruising controller, and consists of a cluster of classes: 

a. CruiseControl: the container of the car simulator (engine simulator) and 
the cruise controller of that car. This is the facade of the cluster. It receives 
commands as strings and dispatches them to the car and the controller. 
The commands are: "engineOn" to start the engine, "engineOff" to stop 
the engine, "accelerator" to accelerate, "brake" to brake, "on" to turn the 
cruise control on, "off" to turn the cruise control off, and "resume" to 
enable the cruise control again with the earlier selected target cruise speed. 

b. CarSimulator: simulates a car engine, runs a thread while the car is 
started, and simulates car speed changes based on the throttle and brake 
settings as well as the controlled speed by the cruising system when the 
latter is enabled. 

c. Controller: simulates the cruise control of the car, it contains a 
SpeedControl thread that runs when cruising is enabled. It disables, 
enables or resumes cruising according to the commands received by 
CruiseControl. 

d. SpeedControl: a thread that runs in the Controller to adjust car speed 
whenever cruising is enabled. On enabling cruising ("on"), the current car 
speed is recorded to be maintained for the duration of cruising time. When 
resuming cruising, the latest target cruise speed is used as the speed to 
maintain while cruising. 

 

- ignition: boolean
- throttle: double
- speed: int
- distance: int
- brakepedal: int
maxSpeed: int = 120 {final}
maxThrottle: double = 10.0 {final}
maxBrake: int = 10 {final}

CarSimulator

DISABLED: int = 0 {final}
ENABLED: int = 1 {final}
- state: int = DISABLED
- setSpeed: int = 0

SpeedControl

INACTIVE: int = 0 {final}
ACTIVE: int = 1 {final}
CRUISING: int = 2 {final}
STANDBY: int = 3 {final}
- controlState: int = INACTIVE

Controller

“interface”
Runnable

CruiseControl

car

control

-sc

-cs

 
Figure 2: Cruise Control Class Diagram 
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Inactive/
Idle

Active/
Running

Cruising/
Running

Standby/
Running

“engineOn”/car.engineOn(); sc.clearSpeed()

“engineOff”/car.engineOff(); sc.disableControl()

“on”/sc.recordSpeed();
sc.enableControl()

“engineOff”/car.engineOff(); 
sc.disableControl()

“off”/sc.disableControl()
“accelerator”/car.accelerate(); sc.disable()

“brake”/car.brake(); sc.disable()

“on”/sc.recordSpeed(); sc.enableControl()
“resume”/sc.enableControl()

“engineOff”/car.engineOff(); 
sc.disableControl()

“on”/sc.recordSpeed();
sc.enableControl()

“brake”/car.brake()

“accelerator”/
car.accelerate()

“brake”/car.brake()

“accelerator”/
car.accelerate()

 
Figure 3: Cruise Control State Diagram 

The two above class clusters were selected in part because of their differences. 
They represent two typical cases where a statechart is used to model the behavior of a 
complex data structure (OrdSet) and a state-dependent control class in a control system 
(CruiseControl). Table 1 provides size data pertaining to the two code artifacts and 
statecharts. Although OrdSet is composed only of one class, one can note that its 
statechart and control flow are more complex than those of CruiseControl; this is visible 
from the number of control flow edges in the OrdSet source code and the number of 
transitions in its state diagram. Furthermore, the guard conditions in the OrdSet statechart 
adds to the complexity of the class, whereas Cruise Control is event-driven only. 

 Cruise Control OrdSet 
# classes 4 1 
# operations 34 23 
# attributes 14 5 
# LOC 358 393 
# control flow statements 33 36 
# nodes 106 111 
# edges 103 126 
# transitions 17 22 
# states 5 5 
# events 7 5 

Table 1: Size of source code and statecharts 
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3.2 Experiment planning 

3.2.1 Context Selection 
The subjects in this experiment were fourth-year students from a software or 

computer system engineering program. They were well versed in Java and UML and 
were attending a course on software testing that covers different white-box and black-box 
testing techniques with a focus on object-oriented testing. The experiment was conducted 
during the lab hours of that course as part of practical lab exercises. A total of 34 students 
participated in the experiment. The students did not know precisely what hypotheses 
were tested and were told that their test drivers will be marked for correctness and 
quality, as it would be expected from such lab exercises. 

The method for the selection of subjects follows a stratified random sampling [29]; 
subjects were first assigned to five blocks based on their background and knowledge of 
object-oriented design and development techniques, then they were randomly selected 
from the different blocks to form four groups with a similar distribution to ensure the 
results would not be affected by random variations in subject experience across groups. 
In addition, groups were defined to be of similar sizes (Table 3) to ensure a balanced 
contribution of test techniques/clusters combinations to the results. However, they were 
practical constraints regarding the availability of certain subjects and this limited the 
randomization of selection. In spite of this issue, we managed to ensure that we had 
comparable block distributions across groups where each block is represented by a 
similar number of subjects in every group.   

3.2.2 Research questions 
In this section we provide a detailed description of the research questions to be 

addressed by the experiment. Table 2 lists research questions to be investigated in order 
to address the objectives listed in section 3.1. The fault detection effectiveness of both 
statechart-based and code-based test techniques is addressed in research question 1. 
Research questions 3 and 4 are related to studying how complementary the two 
techniques are. Answering research questions 2 and 5 would help us identify factors that 
have an interaction effect with the test technique on fault detection effectiveness while 
answers to research questions 7 and 8 would be used to compare test techniques in 
regards to their cost and cost effectiveness. In research question 6 we try to identify fault 
types for which one of the test techniques is a better detector, while in research question 9 
we investigate the possibility of improving statechart-based testing to improve its fault 
detection effectiveness.  
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Number Research Question 

RQ1 What is the difference, in terms of fault detection effectiveness, between test cases 
generated from statecharts (Ts) and test cases generated only based on node and edge 
coverage of the source code control flow (Tc)? 

RQ2 Are there interaction effects regarding fault detection effectiveness between code 
coverage, learning effects, subject ability and software properties (code, statechart 
properties) and the test technique applied? 

RQ3 Are statechart-based testing and code-based testing complementary in terms of fault 
detection? 

RQ4 When using Ts together with Tc, is there a significant improvement in terms of faults 
detected over using Ts and Tc alone? 

RQ5 Is there an interaction effect between code characteristics of class clusters and test 
technique on the percentage of faults detected when combining Tc and Ts? 

RQ6 Are there specific fault types that are more likely to be detected by Ts or Tc and for 
which the combination of both sets of test cases is particularly effective? 

RQ7 How does the cost between statechart-based testing and code-based testing compare? 

RQ8 How does the cost-effectiveness between statechart-based testing and code-based 
testing compare? 

RQ9 Based on the faults not detected by Ts, what can be added to the statechart model to 
help generate test cases that target those types of faults? 

Table 2: Research questions 

3.2.3 Variable Selection 
Recall the dependent variables are fault detection effectiveness and test cost. There 

is one independent variable of interest (treatment): The type of artifacts provided as a 
base to testing (i.e., statechart model or code). However, as further discussed below, a 
number of other variables were checked to see whether they interact with the effect of our 
independent variable: code coverage, learning effects, subject ability and software 
properties.  

The treatments under investigation correspond to the following test artifacts: 
a) Code, complemented with some textual comments to define the meaning of the 

most complex variables and methods. We also provide a high level textual 
description of the cluster objectives and functionalities. 

b) Statechart describing the behavior of classes, plus the related public interface(s), 
class diagram, contracts, state invariants and a high level textual description of the 
software objectives and functionalities. 

When statecharts are used, subjects are expected to generate test sets based on the 
Round-trip Path (RTP) testing technique [8], a common state-based testing strategy that 
can scale up to large statecharts but that is more demanding than simply covering all 
transitions. A statechart would be represented as a tree graph called transition tree which 
includes (in a piecewise manner) all the transition sequences (paths) that begin and end 
with the same state, as well as simple paths (i.e., sequences of transitions that contain 
only one iteration for any loop present in the statechart) from the initial state to the final 
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state. A procedure based on a breadth-first traversal of the statechart is used for deriving 
the transition tree. More precisely, during the traversal of the graph corresponding to the 
statechart, a tree node is considered terminal when the state it represents is already 
present anywhere in the tree or is the final state. The Round-trip Path testing technique 
corresponds to covering all paths from the start node to the leaf nodes in a transition tree. 
This tree was provided to support statechart testing in order to ensure the conformance of 
test suites with the RTP strategy. We thus wanted to avoid the possible effect of 
variations due to alternative and possibly wrong transition trees. This would have made 
our results more difficult to interpret and alternative transition trees are in theory 
supposed to be “equivalent” in the sense that they all cover (in a piecewise manner) the 
round trip paths. 

For code-based testing, subjects were told to attempt covering all blocs (nodes, 
statements) and edges in the methods’ control flow graphs. This is a common practice 
when testing classes and it is therefore a realistic baseline of comparison for the 
statechart-based testing technique. 

For both treatments, we were aware of the fact that coverage was unlikely to be 
complete as time was limited and the skills of subjects were widely varying. However, 
we considered this was not avoidable and decided to account for it in the analysis by 
using coverage (statechart and code) as an interaction factor. For source code, both node 
and edge coverage were planned to be used in the analysis. It is often the case that 
controlled experiments have to choose between assessing the impact of a treatment on 
either the time to perform the tasks or their effectiveness, but not both [6]. We are in the 
latter case here.  

Possible learning effects were simply measured by accounting during the data 
analysis for the laboratory (see next section) in which the work took place. Subject ability 
was measured by considering the block to which they belonged (from 1 to 5) as described 
in Section 3.2.1. The experiment only involved two class clusters and it is therefore not 
possible to analyze the impact of code and statechart characteristics on fault detection 
through statistical analysis. We, however, perform an in-depth, systematic qualitative 
analysis of why certain faults fail to be detected by test drivers.  

3.2.4 Experiment design 
To avoid learning or fatigue effects or the specific class clusters to have a 

confounded effect with our treatments, each subject group performed the experiment in 
two separate labs with a different class cluster under test and a different treatment. Table 
3 shows the distribution of treatments among groups of subjects; the parentheses besides 
group numbers represent the number of subjects per group. Each treatment is executed by 
two different groups of subjects, in the first or the second lab (lab order). As a result, each 
group executed different combinations of treatment and class cluster in each lab. 

Every lab lasted 3 hours. Test drivers submitted by the different subjects were 
executed offline on a set of mutant programs (Section 3.2.5) to measure fault detection. 
Test drivers were also executed on an instrumented version of the original code of the 
software under test to collect node and edge coverage data. The development and data 
collection were done on the Eclipse 3.0 platform [27]. An Eclipse plug-in, Eclipse Test 
and Performance Tools Platform project (TPTP) [27] was used to collect cost related 
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data. The specification and execution cost of a driver is assumed to be proportional to the 
number of methods it calls in the classes under test and we therefore use this variable as a 
surrogate. Though this is clearly a strong assumption, for obvious practical reasons, it has 
been a common one in testing studies [2, 7, 14, 26, 48]. Given that most methods in 
object-oriented software are small, as the number of methods called grows, this count is 
likely to become a more precise surrogate measure for cost.  

 Group 1 (11) Group 2 (13) Group 3 (12) Group 4 (12) 
Lab 1  Cruise Control + 

Statechart OrdSet + Statechart Cruise Control + 
Code OrdSet + Code 

Lab 2 OrdSet + Code Cruise Control + 
Code OrdSet + Statechart Cruise Control + 

Statechart 

Table 3: Distribution of experiment treatments among groups 
For the sake of brevity, we will refer to statechart-based testing (drivers) of the 

code as statechart testing (drivers). The same applies to code-based testing (drivers) 
which is referred to as code testing (drivers). 

To address the research questions listed in Table 2, we measure the dependent 
variables as follows: 

1. The faults detected using statecharts (Fs) and source code (Fc). The purpose 
here is to compare the effectiveness of statechart testing and structural 
testing in terms of their fault detection capability. This is involved in 
research question RQ1. 

2. The faults detected by both test techniques (Fs ∩ Fc). This is a measure of 
how redundant the two techniques are. This is involved in research question 
RQ3. 

3. The faults detected only by statechart testing (Fs – Fc). We can thus 
evaluate the effectiveness of statechart testing to detect faults that are not 
detected by code drivers. This is another way to address RQ3.  

4. The faults detected only by code driver (Fc – Fs). This helps us to identify 
the weaknesses and limitations of statechart testing. This is another way to 
address RQ3. 

5. The ratio |Fs ∩ Fc| / |Fs|. The purpose here is to evaluate the proportion of 
statechart test cases which are complementary to code test cases. This is 
another way to address RQ3. 

6. The ratio |Fs ∩ Fc| / |Fc|. The purpose here is to evaluate the proportion of 
code test cases which are complementary to statechart test cases. This is 
another way to address RQ3. 

7. The faults detected when combining statechart and code test cases (Fs ∪ 
Fc). The purpose here is to evaluate the effectiveness of combining 
techniques to overcome their limitations. This is involved in research 
question RQ4. 
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8. The ratio |Fs ∪ Fc| / |Fc|. The purpose here is to evaluate the relative 
improvement in fault detection resulting from combining test techniques 
over code test cases. This is another way to address RQ4. 

9. The ratio |Fs ∪ Fc| / |Fs|. The purpose here is to evaluate the relative 
improvement in fault detection resulting from combining test techniques 
over statechart test cases. This is another way to address RQ4. 

10. The variables in 3, 4, and 7 for each specific type of fault (mutation operator 
as discussed in the following subsection). The purpose here is to answer the 
above questions for each mutation operator. We only show these three 
variables in the analysis below as the others can be deduced from them. 
This is involved in research question RQ6. 

11. The number of calls in test drivers to methods in classes under test (MC). 
The purpose here is to evaluate and compare the cost of testing strategies 
using a surrogate test driver size measure. This is involved in research 
question RQ7. 

12. For each test technique cost-effectiveness is computed as the ratio of faults 
detected over MC. This is involved in research question RQ8. 

Furthermore, a qualitative analysis of the statechart test drivers is performed to gain 
insights into the reasons for differences among techniques. Categories modeling possible 
reasons for not detecting a fault are defined and then used to classify all faults undetected 
by Ts. This, in turn, helps us address question RQ9.  

3.2.5 Mutation operators 
To compare Ts and Tc, we execute the different drivers delivered by the 

experiment subjects on a number of mutant programs (or mutants), that is versions of the 
program under test where one fault was seeded using a mutation operator [30, 31]. The 
mutants are generated automatically using MuJava [32]. MuJava uses two types of 
mutation operators, class level and traditional method level operators. The main 
motivations for following this procedure is to apply a systematic, automated, and 
independent mechanism to generate a large number of faults thus facilitating the data 
analysis [1]. Threats to validity related to mutation operators are discussed in section 3.4.  

One issue to be addressed is the detection of equivalent mutants, i.e. mutants that 
have the same behavior as the original program and therefore cannot be killed by test 
cases. Manually identifying equivalent mutants is the most common practice but is time 
consuming and error-prone. A number of studies addressed this issue and proposed 
optimization techniques to automate the detection of equivalent mutants [39, 43]. 
However, these methods have shown to detect on average only half of the equivalent 
mutants, and the detection ratio depends heavily on the program characteristics [43]. 
Instead, some authors proposed, as a heuristic, to consider live mutants not killed by any 
test case in the overall test pool as equivalent mutants [4, 15, 19]. This approximation is 
thought to be good enough especially when dealing with large number of mutants. But in 
our case we know the testing performed by our experiment subjects is incomplete and 
unlikely to kill all non-equivalent mutants. Therefore, we do not attempt to discard 
equivalent mutants but present our results based on all mutants and then perform a 
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manual, qualitative analysis of all undetected faults (Section 4.4) to assess the potential 
impact of equivalent mutants on the fault detection effectiveness results. 

Table 4 includes the list of all mutation operators used in this experiment along 
with a brief description.  

Mutation Operator Level Description 

AORB (Arithmetic Operator 
Replacement – Binary) 

method Replaces basic binary arithmetic operators with other binary 
arithmetic operators. 

AORS (Arithmetic Operator 
Replacement – Short-cut) 

method Replaces short-cut arithmetic operators (++, --) with other 
unary arithmetic operators. 

AOIU (Arithmetic Operator 
Insertion – Unary) 

method Inserts basic unary arithmetic operators. 

AOIS (Arithmetic Operator 
Insertion – Short-cut) 

method Inserts short-cut arithmetic operators. 

AODU (Arithmetic Operator 
Deletion – Unary) 

method Deletes basic unary arithmetic operators. 

ASRS (Assignment Operator 
Replacement – Short-Cut) 

method Replaces short-cut assignment operators (+=, -=, *=, /=, %=) 
with other short-cut operators of the same kind. 

ROR (Relational Operator 
Replacement) 

method Replaces relational operators with other relational operators. 

COR (Conditional Operator 
Replacement) 

method Replaces binary conditional operators with other binary 
conditional operators. 

COD (Conditional Operator 
Deletion) 

method Deletes unary conditional operators. 

COI (Conditional Operator 
Insertion) 

method Inserts unary conditional operators. 

LOI (Logical Operator 
Insertion) 

method Inserts unary logical operator. 

IOD (Inheritance – Overriding 
method Deletion) 

class Deletes an entire declaration of an over-riding method in a 
subclass so that references to the method use the parent's 
version. 

JDC (Java-supported Default 
constructor Creation)  

class Forces Java to create a default constructor by deleting the 
implemented default constructor.  

JID (Java – member variable 
Initialization Deletion) 

class Removes the initialization of member variables in the variable 
declaration so that member variables are initialized to the 
appropriate default values of Java. 

JSI (Java – Static modifier 
Insertion) 

class Adds the static modifier to change instance variables to class 
variables. 

JSD (Java – Static modifier 
Deletion) 

class Removes the static modifier to change class variables to 
instance variables. 

EAM (Encapsulation – 
Accessor Method change) 

class Changes an accessor method name for other compatible 
accessor method names, where compatible means that the 
signatures are the same. 

Table 4: Mutation operators 
Figure 4 shows the distribution of the created mutants among the different mutation 

operators for the two clusters. This distribution looks different for the two class clusters 
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under test due to differing code characteristics. For example, 11 mutants have been 
created with the AORS mutation operator (see Table 4) for OrdSet, and none for Cruise 
Control which has no shortcut arithmetic operators, i.e. ++ and --; 12 mutants have been 
created with the ASRS mutation operator (see Table 4) for Cruise Control, and none for 
OrdSet which has no shortcut assignment operator, i.e. +=, -=, /=, *= and %=. 
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Figure 4: Mutant distributions 

3.2.6 Overview of Statistical Analysis 
A variety of statistical techniques were applied to address research questions and 

we provide here a short overview, leaving the details for the section presenting the 
experimental results.  

Univariate analysis was performed to compare the isolated effect of an independent 
variable on a dependent variable. For example, two-sample t-tests were performed to 
compare test techniques in terms of fault-detection effectiveness and cost, and determine 
whether differences in means could be due to chance. The level of significance is set to α 
= 0.05 for all tests, though we also report p-values. To avoid potential threats due to the 
violation of the t-test assumptions, equivalent non-parametric tests (Wilcoxon rank sum 
tests [20]) were also performed and in the rare cases where differences of results can be 
observed, this is clearly stated.  

To help visualize results, we use both means diamonds and box plots. A mean 
diamond indicates the sample’s mean and 95% confidence interval and whether this is 
significantly different from other samples. Box Plots show selected quantiles of 
distributions and extreme values.  

Regarding multivariate analysis, depending on the covariates involved, we either 
perform a two-way analysis of variance (ANOVA) or a bivariate least-squares regression 
[20] to study the simultaneous effect of the test technique on fault detection and its 
interactions with other factors (e.g., coverage). This is important as the effect of test 
techniques can vary widely based on factors related to class cluster and statechart 
characteristics, subject ability, and so on.  
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3.3 Experiment operation 

3.3.1 Preparation 
The students were first introduced to the class clusters under test during the 

experiment to make sure they solely relied on the documentation presented to them. To 
prepare the students for the different tasks required for the experiment, they were also 
given a refresher on the basics of testing (test cases, test sets, testing criteria, drivers …), 
structural and functional testing, and class testing. Students applied the concepts and 
techniques they were taught in assignments on laboratory exercises prior to the start of 
the experiment’s tasks. 

To calculate node and edge coverage, the classes under test were instrumented 
using the Observer pattern [24] and by building the control flow graphs of their methods. 
The instrumentation code includes the definition of control flow nodes and edges, an 
Observer class that is informed of visited nodes and edges, and a Recorder class that 
generates coverage report. 

Each of the two labs lasted 3 hours, during which students were provided 
documentation and executable code to run their drivers on, and asked to write driver code 
following precise instructions. The following documents were provided to all students in 
all groups: 

1. Printed list of instructions to guide students through the different tasks to 
complete. 

2. High-level description of the cluster. 

3. Eclipse tutorial. 

4. Driver template (differs slightly depending on the testing strategy). 

For groups working with statecharts, the following documents were also provided: 

1. Class public interfaces 

2. Model documentation including class and statechart diagrams, operation’ 
contracts and state invariants in OCL, and a transition tree. 

3. An executable jar file of the class cluster. 

For the groups working on code testing an instrumented version of the code in a 
form of an executable jar file was provided along with the original non-instrumented 
source code of the class clusters. 

3.3.2 Execution 
During each lab, students were first asked to read the documentation of the class 

cluster to understand its functionalities; then they were asked to identify test cases based 
either on the provided transition tree (covering round-trip paths) or based on all-nodes 
and all-edges structural coverage criteria, depending on the group they belonged to. In the 
latter case, students were asked to write method sequences capturing realistic scenarios in 
their test cases, and they were advised to use Equivalence class testing or boundary 
analysis [28, 50] to help the identification of method parameter values. For code testing, 
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students were instructed to run their drivers on the instrumented version of the code to 
compute node and edge coverage; the generated report identifies the non-covered nodes 
and edges, which can guide students to identify new test cases to be added to their drivers 
to improve structural coverage.  

When applying statechart testing, students were instructed to use the common 
practice of state invariant assertions as oracles for their test cases; for code testing 
students were advised to write oracles checking expected output/attribute values against 
actual ones; it was recommended to add an oracle after each method execution in the 
method sequences to verify the validity of the outputs and changes to attribute values. 

After all test drivers were submitted to us by participants, we executed them on the 
original code of the two class clusters to inspect their correctness and to eliminate any 
inadequate drivers which could not be used for experimental purposes (such as drivers 
with no oracles). 

Perl scripts were created to automatically execute drivers on mutants and on code 
instrumented versions, in order to collect data required to compute mutation scores, node 
and edge coverage, and distributions of undetected fault types.  

For cost-related data, the profiling tool of Eclipse plug-in TPTP [27] was used to 
count the number of method calls. The notion of cost in the context of testing can be 
related to many factors such as test size, test case identification complexity, computer 
time usage and time to market. In many studies, the size of a test set (i.e., the number of 
test cases) has been adopted as a surrogate measure for cost [14, 26, 46], assuming that 
cost is overall proportional to test set size. In these studies, one test case often 
corresponds to one execution of a function/program (e.g., [26]). This corresponds in our 
study to one execution of a cluster method. We therefore use the number of method calls 
in a test set as a surrogate for cost.  

3.4 Threats to validity 

A brief summary of threats to validity [49] in our experiment is provided below. 

3.4.1 Conclusion validity 
Threats to conclusion validity are concerned with issues that affect the ability to 

draw the correct conclusion about relations between the treatment and the outcome of the 
experiment [49]. The threats to conclusion validity in our experiment could be related to: 
(1) low statistical power and (2) reliability of treatment implementation. 

Regarding (1), we were limited by the number of students enrolled in the testing 
course within which we conducted the experiment. To limit the impact of this threat on 
our conclusions, we designed the experiment in such a way that each group would work 
on a different treatment for two successive labs and thus doubled the number of 
observations. 

As for the reliability of the treatment, for code testing, there was significant 
variation in structural coverage for code testing. This is not the case for statechart testing 
as subjects were asked to implement test cases based on a given transition tree. The 
round-trip path technique is systematic: using one transition tree should result in a similar 
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outcome and this is especially true for the Cruise Control where no arguments are 
required to implement test sequences corresponding to paths in the transition tree. 
Though this problem does impact the fault-detection effectiveness of code drivers, we 
account for it when performing a bivariate analysis using both variables testing technique 
and coverage.  

3.4.2 Internal Validity 
An internal validity threat exists when the outcome of the experiment may not 

necessarily be caused by the treatment applied but caused by another factor not controlled 
in the experiment. One example of internal validity threats is the learning and fatigue 
effects that can occur when the experiment is run more than once with the same subject 
groups. This threat is addressed in our experiment by using different treatments and 
different class clusters in each of the labs conducted for each group. 

To tackle the selection threat that is related to the variation in human performance, 
we identified a number of blocks to which correspond the students. These blocks are 
based on students marks achieved in earlier courses on software engineering and design. 
Students were selected from the different blocks to have a stratified random sampling 
over the different groups. 

Another internal validity threat, the diffusion or imitation of treatments, was also 
limited by monitoring the labs and preventing the access to the experiment 
documentation outside the lab hours and by other groups’ members. Note that the 
experiment documentation is accessed through the course website only during lab hours 
with an address only known during the lab by members of the group working in that 
specific lab. 

To the difference with subjects working with the code treatment, those working 
with the statechart treatment were not instructed to use the Equivalence classes or 
boundary analysis to identify test cases parameters values. This threat is eliminated with 
the fact that for statechart testing in this experiment, no boundary analysis was needed: 
the Cruise Control’s statechart has no parameters, and boundary analysis of the OrdSet 
class was accounted for in the guard conditions in statechart as to eliminate any bias of 
using an additional testing technique with the statechart technique to be implemented. 

3.4.3 Construct validity 

The construct validity in our case is related to the fact that we used mutation 
analysis to measure the fault-detection effectiveness of testing strategies. The types of 
faults seeded may not be representative of “real” faults. To limit the likelihood for this 
threat to manifest itself, we used two class clusters with very different code 
characteristics (Section 3.1). Also, the results of the study reported in [1] show that faults 
seeded using mutation operators can be representative of real-faults when measuring fault 
detection effectiveness.  

3.4.4 External Validity 

External validity relates to the external aspects that interact with the treatments and 
limit the generalization of the results. The selection of fourth-year engineering students as 
subjects could be a threat to external validity as they could not be representative of “real” 
software developers. However, first we do not believe there is such a thing as a “real” 
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software developer population. It is well-known that productivity can vary a level of 
magnitude between the best and worst developers. Second, these students were on 
average good Java developers as this is the main language used throughout their four 
years of study and they are better acquainted with UML than most average practitioners 
since they undertook two full term courses on the subject. So, overall, for the specific 
tasks at hand, these students are probably comparable to at least average practitioners. 

The choice of the clusters to test in this experiment may be considered an external 
validity threat. However, while simple and small, the class clusters used in our 
experiment still can be considered representative of two common types of class clusters. 
The Cruise control is representative of real-time, reactive classes with a state-dependent 
behavior where the different class attributes are evaluated based on elapsed time between 
events and the current cluster state. The OrdSet class, on the other hand, is modeled by a 
large statechart with complex guard conditions. It is representative of classes 
encapsulating complex data structures with large transition trees (30 Round-trip paths). 

4 EXPERIMENT RESULTS 

In the first section, we report on the drivers’ mutation scores and code coverage for 
the two testing techniques. Then, we perform an analysis to determine the impact of the 
test techniques and other factors such as code coverage and cluster characteristics on fault 
detection effectiveness (Section 4.1). This analysis aims at answering research questions 
1 and 2 (Table 2). Next, in Section 4.2, we answer research questions 3, 4, 5 and 6 by 
investigating the complementariness of test techniques, their combination, and its impact 
on fault detection effectiveness. We further investigate the impact of combining test 
techniques on the fault detection effectiveness per mutation operator and we identify fault 
types for which statechart test cases are better detectors (research question 6). Cost 
analysis and cost-effectiveness analysis in Section 4.3 address research questions 7 and 8. 
In Section 4.4, a qualitative analysis investigates live mutants in order to determine the 
reasons for not detecting seeded faults and to understand the limitations of the statechart 
test technique. In the subsequent section (4.5) and based on the results of the qualitative 
analysis, improvements to the statechart test technique are proposed to increase fault 
detection with statechart drivers (research question 9).  

4.1 Impact of test techniques on fault detection effectiveness  
We discuss in this section the impact of the independent variable “test technique” 

(code vs. statechart) on the dependent variable “fault-detection effectiveness” which is 
measured as a mutation score (Section 4.1.1). Next, we investigate the possible 
interactions between the test technique and a number of factors and their impact on fault 
detection effectiveness (Section 4.1.2). These factors include: code coverage, lab order, 
subject ability and cluster characteristics. 

4.1.1 Univariate analysis 
Table 5 provides descriptive statistics of the mutation scores in each system and for 

both treatments. A graphical representation of mutation scores distribution is provided in 
Figure 5 where mean diamonds of the mutation scores obtained for test drivers are 
depicted. Results show that the maximum and mean mutation scores for both systems 
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were higher for code drivers than for statechart drivers. For the Cruise Control, this is 
mainly related to the real-time properties of the code. The statechart of Cruise Control 
(Figure 3) does not model its real-time behavior, thus subjects working with the statechart 
had no access to a description of how values of class attributes such as “car speed”, 
“throttle” and “total distance” are calculated and updated over time. These values depend 
on many factors such as time and air resistance and they are constantly changing when 
the car is running in the “active” state. An activity diagram as the one provided in Figure 
6 is more suitable to describe the real-time behavior of Cruise Control. For OrdSet, the 
difference in mutation scores of code drivers and statechart drivers can be explained by 
the fact that subjects working with code were provided an instrumented version of the 
code allowing them to identify uncovered nodes and edges and to write test cases that 
address them. 

Cluster Treatment Min Max Mean StdDev Range 
Statechart 12.66 79.17 50.27 17.20 66.51 

OrdSet 
Code 20.35 86.7 56.15 19.98 66.35 

Statechart 18.39 27.46 24.47 1.65 9.07 Cruise 
Control Code 11.4 48.19 27.69 10.24 36.79 

Table 5: Mutation scores descriptive statistics 
Results also show that Cruise Control drivers for both code and statechart testing 

had low mutation scores compared to OrdSet drivers’ mutation scores. This is again 
likely due to the real-time behavior of Cruise Control. As mentioned, subjects working 
with Cruise Control’s statechart had no access to documentation on the real-time 
behavior of the cluster and did not manage to exercise parts of the code. Although 
subjects working with the Cruise Control code noticed the importance of varying time in 
their drivers, it was hard for them to understand the real-time algorithm that manages the 
class attributes solely based on code. A thorough understanding would have required 
complex reverse engineering or access to documentation such as the activity diagram in 
Figure 6 that models the real-time algorithm control-flow managing a running car. 
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Figure 5: Mutation scores’ distribution  
Other noteworthy results from Table 5 are the standard deviations in mutation 

scores for the different drivers of a given cluster under test and test technique. For Cruise 
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Control, the standard deviation for statechart drivers is small (less than 2%). This can be 
easily explained: (1) the testing criterion is well defined and leaves little degree of 
freedom in its application (one must cover all Round trip paths), (2) the transition tree 
used is the same for all subjects: a decision we made to ensure the conformance of test 
suites with a correct transition tree [13] and (3) transitions in the statechart have no guard 
conditions and require no parameter setting. Therefore, by following the RTP technique, 
similar results should be obtained by all subjects causing a small standard deviation. The 
differences in mutation scores are related to wrong or incomplete implementation of state 
invariants in oracles, or are due to the incomplete coverage of the transition tree.  

Reset car speed and distance

Increment car speed with the value: (throttle - car speed/air  resistance - 2*brakepedal)

[car speed > maximum speed ] 

Set car speed to maximum speed

[car speed <= maximum speed ] 

Set car speed to 0

[car speed < 0] 

[car speed >= 0] 

Increment distance by (car speed / (36 * ticks per second ))

[throttle > 0] 

Decrement th rottle by (0.5 / ticks per second)Set throttle to 0

[throttle <= 0] 

wait for 200 ms

[Car is running] 

[Car is not running] 

 
Figure 6: Cruise Control - Running car activity diagram 

As opposed to Cruise Control, the mutation scores’ standard deviation for the 
OrdSet statechart drivers is fairly large (17% as opposed to 1.5% for Cruise Control). 
This can be easily explained: (a) only few subjects were able to cover all RTPs (35% 
RTP coverage on average) as test cases in their drivers covered various numbers of RTPs 
(see Table 6 for code and RTP coverage descriptive statistics), (b) the statechart has 
complex guard conditions and requires parameter settings which ten introduce variation 
in test cases, (c) some faults can be detected only with very specific parameter values or 
set content, and (d) wrong or incomplete implementation of state invariants in oracles. 
We assume that if testers had unlimited time to complete the implementation of all round 
trip paths as described in the test technique, the standard deviation would decrease and 
only depend on points (c) and (d) listed above. 
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Table 6 provides descriptive statistics on node, edge, and RTP coverage for both 
class clusters. Results show that statechart drivers have lower node and edge coverage 
than code drivers. The difference, which is relatively small (e.g., 7% in edge coverage for 
Cruise Control), can be explained by the fact that subjects working with code used node 
and edge coverage analysis to refine their test drivers and achieve better coverage. As for 
RTP coverage, OrdSet had much lower RTP coverage than Cruise Control (35% as 
opposed to 97%). This is mainly due to the complexity of the OrdSet statechart: 30 RTPs 
as opposed to 12 for Cruise Control and, in addition, complex guard conditions.  
 Cruise Control OrdSet 

 Statechart Code Statechart Code 

Coverage RTP Node Edge Node Edge RTP Node Edge Node Edge 

Median 100 85.85 69.9 86.79 75.73 45 71.17 61.90 81.08 73.02 

Mean 96.59 84.49 68.93 87.21 75.61 34.81 76.93 67.50 81.08 73.53 

95% 100 94.34 79.61 97.17 94.17 100 94.59 90.48 99.10 95.40 

90% 100 87.54 74.37 96.51 91.45 100 92.70 86.59 99.10 94.76 

75% 100 85.8 71.1 93.2 83.5 85 84.91 76.19 97.30 91.27 

25% 100 82.78 68.2 81.13 68.2 35 68.47 57.54 73.87 65.87 

10% 82.5 78.3 59.1 77.1 61.5 19 66.13 51.90 54.78 44.92 

5% 53.75 78.3 58.3 76.42 55.34 10 64.73 50.43 46.31 36.03 

Min 50 78.3 58.25 76.42 55.34 10 63.96 48.41 40.54 30.95 

Max 100 94.34 79.61 97.17 94.17 100 94.59 90.48 99.10 96.03 

Table 6: Code and statechart coverage descriptive statistics 
For both test techniques, mutation scores were definitely much higher for OrdSet 

than for Cruise Control. However, node and edge coverage for both class clusters were 
comparable for both test techniques (Table 6). This can be explained by the fact that for 
Cruise Control, most changes to class attributes such as “speed”, “distance” and “throttle” 
are computed in two methods (i.e., limited number of edges and nodes), which are the 
“run” methods of threads representing the car and its speed controller. Although these 
two methods are only of few lines of code, they include a significant number of 
computation and assignment statements for which the number of generated mutants is 
high. Many of these statements were not covered by statechart drivers because of their 
limited time of driver execution, due to a lack of understanding of real-time properties of 
the code.  

As discussed above, descriptive statistics show a difference in terms of percentage 
of faults detected (mutation scores) between the two test techniques. We performed a 
two-sample t-test [20] for each class cluster to assess the statistical significance of this 
difference. For research question 1 (Table 2) we tested the following null hypothesis: 
“There is no significant difference between the number of faults detected by statechart 
test cases (Ts) and code test cases (Tc)”. The results are reported in Table 7. For both 
clusters a t-test yielded a p value greater than α = 0.05 and therefore the null hypothesis 
cannot be rejected. No statistically significant difference in terms of mutation scores of 
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statechart drivers and code drivers can be observed and we cannot therefore claim that 
one type of drivers is more effective at detecting faults than the other.  

Mutation score mean 
Cluster DF 

Code Statechart 
t-value Pr > |t| 

OrdSet 31.6 56.15 50.27 0.93 0.359 

Cruise Control 15.8 27.69 24.47 1.35 0.197 

Table 7: t-test results for the mutation score comparison 

4.1.2 Interaction effects 
We study in this section the interaction effect with the test technique on mutation 

score of a number of factors: code coverage, cluster, lab order, and subject ability..  

a. Code coverage impact 

Figure 7 shows a comparison of mutation scores for code and statechart drivers 
with similar node and edge coverage. Drivers are grouped when in the same 5% coverage 
interval. For example, in Figure 7 we denote the percentage interval ]75, 80] as “80” and 
proceed the same way for subsequent intervals. Note that only a subset of intervals 
contain data points as there is no driver for certain levels of coverage. For Cruise Control, 
similar coverage values yielded overall similar mutation scores when comparing code 
and statechart drivers. For OrdSet, code drivers with low coverage rates show better fault 
detection rates than statechart drivers. This is due to the fact that the few statechart 
drivers having low code coverage have covered only a small subset of RTPs in their 
drivers, or they did not implement the test strategy as instructed, i.e. did not implement 
state invariant assertions in oracles. This suggests that when only a small subset of RTPs 
is implemented in the driver, it somehow contains RTPs that are less likely to detect 
faults than the "equivalent" code driver. Further investigation showed the first RTPs 
implemented were the simplest ones, and therefore the least likely to detect faults. But, 
for high coverage rates similar coverage yielded similar mutation scores.  

The similarity in node and edge curves suggests a linear dependency between the 
two variables. This is confirmed in Figure 8 where the linear fit line of the two variables 
is shown. The proportion of the variation that can be attributed to terms in the model 
rather than to random error (R2 = 0.9). Therefore, 90% of the variability in edge coverage 
can be attributed to node coverage. Based on this result, we limit any subsequent analysis 
to node coverage. 
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Figure 7: Mean mutation scores of code and statechart drivers as a function of node 

and edge coverage 
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Figure 8: Node - Edge coverage linear dependency 
A multiple regression analysis was performed to assess the impact of node 

coverage and its interaction effect with test technique on mutation scores. The results 
presented in Table 8 show a significant main effect of node coverage (or in general code 
coverage) on mutation scores (p < .0001), but also a significant interaction effect of node 
coverage and test technique. Figure 9 shows interaction plots for Node coverage and Test 
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technique for both clusters. For Cruise Control, when code coverage increases, code 
drivers tend to have higher mutation scores than statechart drivers. This can be explained 
by the fact subjects working with statecharts had no access to documentation on the real-
time behavior, and therefore did not explicitly target real-time faults and certain parts of 
the code. However, for low code coverage, statechart drivers show higher mutation 
scores. This is likely due to the use of state invariants assertions in oracles.  

As for OrdSet, the trend is reversed and statechart drivers show higher mutation 
scores for high code coverage rates. With precise and detailed guard conditions, the 
OrdSet statechart provides enough information for its users to cover the code to a large 
extent. This is different from the Cruise Control statechart where, even when fully 
covering the transition tree, one is unlikely to cover large parts of the code without 
precisely understanding the real-time properties. 

Cluster RSquare Factor Sum of 
Squares 

Parameter 
estimate F Ratio Prob > F 

Node Coverage 930.49 1.213 40.31 <.0001 

Test technique 20.92 -1.648 0.90 0.3489 Cruise 
Control 0.61 

Node Cov * Test technique 140.65 -0.927 6.09 0.0197 

Node Coverage 4985.58 0.901 59.74 <.0001 

Test technique 1395.79 15.684 16.72 0.0003 OrdSet 0.78 

Node Cov * Test technique 722.83 0.821 8.66 0.0061 

Table 8: ANOVA - Impact of node coverage and its interaction with test technique 
on mutation scores 
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Figure 9 : (Node Coverage x Test technique) interaction plots 

b. Lab Order impact 
In this subsection we study the main and interaction effects of lab order (learning 

effects) on mutation scores to account for learning effects. It is assumed that subjects 
would tend to perform better on the second lab than in the first lab, regardless of other 
factors. An analysis of variance (ANOVA) was performed and the results are presented in 
Table 9. Results showed no significant impact of lab order, either direct or through 
interactions, on mutation scores. A plausible reason is that subjects were well trained for 
the tasks from the start and learning effects were therefore limited.  
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Cluster RSquare Factor Sum of 
Squares 

Parameter 
estimate F Ratio Prob > F 

Lab Order 33.95 -1.456 0.60 0.4444 

Test technique 101.67 -3.565 1.80 0.1903 Cruise 
Control 0.08 

Lab Order * Test technique 27.26 1.846 0.48 0.4927 

Lab Order 510.38 -5.488 1.54 0.2239 

Test technique 509.90 -7.758 1.54 0.2241 OrdSet 0.099 

Lab Order * Test technique 79.18 3.057 0.23 0.6283 

Table 9 : ANOVA - Impact of lab order and its interaction with Test technique on 
mutation scores 

c. Subject ability impact 
Subject ability was measured based on grades in software design courses. When 

subject’s ability increases, mutation score would a priori be expected to increase as well. 
But Figure 10⎯which shows means, min and max values as well as 95% and 5% 
percentiles for mutations cores⎯provides a partially different picture. Although for 
Blocks 1 to 4 (decreasing order of ability) the mutation score decreases as expected, 
subjects in block 5 (supposedly the least skilled) developed drivers with high mutation 
scores. On average, their drivers had mutation scores close to those written by the most 
skilled subjects. To explain what might have happened, recall that blocks were based on 
the ability of students in software design (i.e., final marks in software design courses). 
The results in block 5 suggest that the method used for evaluating subject ability may not 
be optimal for this experiment as skills in programming and testing may not be entirely 
correlated to those of software design. The trend may also be due to the fact that our 
groups are small and may therefore be strongly and randomly affected by outliers. 
Checking more closely at the distribution of scores in group 5 we indeed see such 
outliers, though we have no explanations for them, except perhaps that our ability 
measurement may not be fully adequate.  

Though we used five blocks for the purpose of random subject assignment (Section 
3.2.4), in order to have large enough samples at each ability level (thus alleviating the 
outlier problem) and to ensure a balanced design to enable the use of ANOVA, we only 
use two ability levels to analyze the effects of ability on mutation score. We assign all 
subjects to either a HighAbility or LowAbility group, depending on whether the grade on 
which the blocks are defined was below or above the median grade1. 

The results of a two-way ANOVA with subject ability (2 levels) and its interaction 
with test technique on mutation scores are reported in Table 10. Results show that subject 
ability has significant main effect and a marginally significant interaction effect (slightly 
above 0.05) with the test technique for Cruise Control. Furthermore, as opposed to 
univariate results in Table 7, the impact of Test technique is also significant and similar 
in the variance it explains to that of Ability: code-based testing yields significantly higher 

                                                           
1 It is equivalent to merging blocks 1&2 and 3 to 5, respectively.  



Carleton University, TR SCE-06-15 September 2006 

27 

scores. This is not the case for OrdSet where subject ability or test technique have no 
effect on mutation scores. One plausible explanation is that despite the complexity of its 
statechart, the functionality of OrdSet is rather intuitive for engineering students and then 
the ability to understand the statechart and code were not as crucial as for CruiseControl. 
For Test technique, the need to understand code properties is not as crucial for OrdSet as 
the statechart is an accurate description of its behavior.  
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Figure 10: Relationship between subject skill and mutation score 

Cluster Factor Sum of Squares Parameter 
Estimate F Ratio Prob > F

Subject ability 281.08 -5.93 6.76 0.0147 
Test technique 268.71 4.10 6.46 0.01687 Cruise Control 

Subject ability * Test technique 171.59 -4.63 4.13 0.05177 
Subject ability 358.02 -6.50 1.05 0.31257 
Test technique 292.83 4.16 0.86 0.3603 OrdSet 

Subject ability * Test technique 1.06 -0.35 0.003 0.9558 

Table 10 : ANOVA - Impact of subject ability and its interaction with test technique 
on mutation scores 

Recall we have looked at the effect of Ability by grouping Blocks 1 & 2. If we now 
look at Block 1 (20% best subjects) in isolation (HighAbility = Block 1) and run 
ANOVA gain, we obtain the results shown in Table 11. Because the number of 
observations is not balanced anymore across Ability/Test Technique categories, the order 
in which variables are introduced in the ANOVA model matters. We have to perform 
sequential testing and select an order that makes sense: we estimate the contribution of 
each variable in order, where we compute the sum of squares explained by Ability and 
then in turn allocate the remaining sum of squares to Test technique. Once we have 
accounted for main effects we then estimate the impact of interaction effects between 
Ability and Test technique by computing the remaining sum of squares it accounts for. 
For OrdSet, the results do not change. But for CruiseControl, Ability still has a 
significant main effect but it has a much stronger interaction effect. 

Figure 11 shows an interaction plot of subject ability and test technique for Cruise 
Control when HighAbility = Block 1. It clearly shows that when following a code 
coverage test strategy, subject ability has an important effect on mutation scores: 
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mutation scores increase when subject ability increases. However, for statechart drivers, 
mutation scores were hardly affected by subject ability. This suggests that having a clear 
test model like statecharts and a precise test strategy like RTP alleviates the impact of the 
tester’s ability on test results. Test effectiveness is more predictable with statechart but 
the higher skilled subjects, when having access to code, would identify test cases that 
cannot be easily identified with statechart RTP testing and therefore perform better. An 
example of such test cases would be inserting waiting times in test drivers to allow for 
boundary testing (e.g., maximum speed).  
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Figure 11: (Subject Ability x Test technique) Interaction plot - Cruise Control 
Cluster Factor Seq SS F Ratio Prob > F 

Subject ability 256.23 7.018 0.0131 
Test technique 152.63 4.181 0.0504 Cruise 

Control 
Subject ability * Test technique 286.82 7.856 0.0091 

Subject ability 896.66 2.789 0.1053 
Test technique 270.24 0.841 0.3665 OrdSet 

Subject ability * Test technique 215.31 0.669 0.4196 

Table 11: ANOVA - Sequential test results (High ability =  Block 1) 

d. Class cluster characteristics impact 
The last factor to study in this section is class cluster characteristics. As we have 

seen the two clusters are different in terms of the complexity of their statechart and their 
code characteristics (e.g., real-time behavior). We performed a two-way ANOVA and the 
results are presented in Table 12. They show a significant impact of cluster characteristics 
on mutation scores but no interaction effect with test technique. This can be explained as 
follows: (1) Cruise Control has multithreaded code with real-time behavior and (2) the 
OrdSet statechart, even though more complex, describes the cluster better than the Cruise 
Control statechart. As already discussed, the latter provides an incomplete model of the 
cluster’s run-time behavior. 

Model 
RSquare Factor Sum of 

Squares 
Parameter 
estimate F Ratio Prob > F 

Cluster Characteristics 6675.04 -14.22 34.05 <.0001 
Test technique 511.79 -5.57 2.61 0.1112 0.499 

Cluster characteristics * Test technique 66.39 2.01 0.33 0.5627 

Table 12: ANOVA - Impact of cluster characteristics and its interaction with test 
technique on mutation scores 
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4.2 Combining test techniques to improve fault detection 
effectiveness 

In this section we address four research questions: 3, 4, 5 and 6. Section 4.2.1 
analyzes how complementary are the test cases generated based on statecharts (Ts) and 
those generated based on code (Tc). In Section 4.2.2, we evaluate the impact of 
combining Ts to Tc on the mutation score. Next, in Section 4.2.3, we investigate the 
possible interaction effect between the cluster under test and the test technique on the 
gain in mutation score when combining Ts and Tc. Last, we study in more details the 
effect of combining Ts and Tc per mutation operator (Section 4.2.4). 

When combining test cases, all pairs of drivers (statechart drivers x code drivers) 
must be taken into consideration to capture the variability among drivers written by 
different subjects. Having m statechart drivers and n code drivers implies that m x n 
combinations would be considered. However, drivers with low coverage do not represent 
realistic non-experimental situations with competent developers and a reasonably 
disciplined process. Those drivers had low coverage due to the combination of three 
reasons: poor development skills of their authors, lack of compliance to instructions to 
implement a specific testing strategy, and limited time in the labs. Therefore, we decided 
to compare only a subset of the drivers by eliminating drivers with low coverage to 
obtain more realistic analysis results.  

To understand how we selected a subset of drivers, one must look at the line charts 
in Figure 18 (Appendix A), which show the different plots for node, edge, and RTP 
coverage as well as the corresponding drivers’ mutation scores per cluster and per test 
technique. Drivers are sorted by node coverage for the code test technique and RTP 
coverage for the statechart test technique. As node coverage in code drivers (respectively 
RTP coverage in statechart drivers) increases, mutation score increases as well. Based on 
node coverage for code drivers and RTP coverage for statechart drivers, we identified the 
following criteria to select drivers for the remainder of this analysis: 

 Code drivers with node coverage greater than or equal to 85%. 

 Statechart drivers with RTP coverage of 100% for Cruise Control drivers and 
greater than or equal to 60% for OrdSet drivers. 

These thresholds are a compromise between the level of completeness of the test 
driver and the resulting number of selected drivers that must be large enough to allow 
analysis. Though it is common practice to seek high statement coverage rates during 
testing in industrial test environments [45], this rate does not usually reach 100% due to 
budget and time restrictions, as well as the presence of unreachable code. Thus we chose 
85% as a reasonable threshold for the selection of code drivers. As for RTP the decision 
is more complex as there is no much practice of statechart testing. We chose a 100% 
threshold for Cruise Control as only two subjects did not cover all RTPs in their drivers. 
But for OrdSet, very few subjects were able to cover all RTPs (see Table 6). In any case, 
we suspect that in a typical industrial environment, for a complex statechart with a large 
number of RTPs, only a subset of them is likely to be selected to fit within available time 
and effort. Thus we selected a 60% RTP coverage threshold for OrdSet so as to obtain a 
reasonably large subset of at least half-complete drivers. Table 13 lists the number of 
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selected and discarded drivers and the resulting total number of driver pairs to consider 
for the analysis of this section.  

 OrdSet Cruise Control 
# Selected code drivers 8 10 
# Selected statechart drivers 7 15 
# Discarded code drivers 9 6 
# Discarded statechart drivers 11 3 
Total number of pairs to combine 56 150 

Table 13: Drivers selection data for combining test techniques analysis 

4.2.1 How complementary are test techniques? 
To address question 2, we can first look at the set of faults detected by one type of 

driver and not the other. Such an analysis needs to be done for all possible pairs of 
statechart-code drivers and we therefore obtain distributions of joint mutation scores. 
Figure 12 shows the mutation score distributions and Box plots2 of all pairs for Ts, Tc, 
and the differences between their detected fault sets normalized by the total number of 
faults (F) and expressed in percentages. Appendix B includes all related descriptive 
statistics|. 

Fs–Fc|/|F|% represents the gain in mutation score of code drivers when augmented 
with test cases from statechart driver. One can note that the number of faults detected 
only by statechart drivers represent on average a relatively small percentage of all seeded 
faults in the cluster: 7% for Cruise Control and 12% for OrdSet (see Table 27 in 
Appendix B). However, this number can sometimes reach considerably larger values 
(39% in OrdSet) and is probably of practical significance whether to combine techniques.  

How much code testing is complementary to statechart testing is captured by |Fc–
Fs|%. This is probably a more realistic scenario than the one above as in practice one 
would probably first generate black-box test cases (e.g., based on a statechart), measure 
code coverage, and complement the test suite to achieve a certain level of coverage. The 
main reason is that generating large test suites from code coverage analysis only is a 
highly tedious, time consuming task [33]. The average of |Fc–Fs|/|F|% is 14% for Cruise 
Control and 11% for OrdSet. The maximum increase in mutation scores provided by code 
drivers was in Cruise Control (33%). This is due to the real-time behavior of this cluster 
which has kept statechart drivers from reaching high mutation scores.  

                                                           
2 Box plots show selected quantiles of continuous distributions and extreme values. The ends of the 

box are the 25th and 75th percentiles, also called the quartiles. The line across the middle of the box 
identifies the median sample value and the means diamond indicates the sample mean and 95% confidence 
interval. The dashed lines, sometimes called whiskers, extend from both ends to the outer-most data point 
that falls within the distances computed. The bracket along the edge of the box identifies the shortest half, 
which is the densest 50% of the observations. 
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Figure 12: Distributions of mutation scores for detected fault sets  
To further investigate the extent to which the two test techniques are 

complementary, we analyze the normalized intersection between the sets of detected 
faults by statechart and code drivers |Fs ∩ Fc| / |F|% and the mutation score proportion 
this intersection represents for each driver (|Fs ∩ Fc| / |Fs| and |Fs ∩ Fc| / |Fc|). Such 
proportions determine the importance of the contribution of each type of driver to the 
overall mutation score resulting from combining testing techniques. Distributions of the 
intersection and its ratios are presented in Figure 13. Related descriptive statistics are 
presented in Appendix B. 
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Figure 13: Distribution of intersections 
Results show that a practically significant proportion of faults were detected only 

by one type of drivers. For instance, the average of |Fs ∩ Fc| / |Fs| for Cruise Control is 
0.69. This means that on average roughly 30% of the faults detected by statechart drivers 
are not detected by code drivers. Similarly, on average more than 50% of faults detected 
by code drivers are not detected by statechart drivers. This further confirms that the two 
techniques are complementary in terms of fault detection and, as far as statechart testing 
is concerned, this leads to two questions: 

1. Why did the statechart test cases not detect faults detected by code test 
cases? 

2. And can the statechart testing strategy be improved to detect those faults 
detected only by code drivers? 

An attempt to answer these questions is presented in Sections 4.4 and 4.5. 

4.2.2 Impact of combining test techniques on fault detection effectiveness 
To address research question 4, we need to analyze the significance of the gain in 

mutation scores when combining statechart and code test cases. We need to test the 
following null hypothesis: “The fault detection rate when combining statechart testing 
and code testing is equivalent to that obtained with code testing alone and to that obtained 
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with statechart testing alone”. Two one-tailed t-tests for paired samples were performed 
to compare: (1) the means of mutation scores when including only code test cases and 
after adding statechart test cases to them, and (2) the means of mutation scores when 
including only statechart test cases and after adding code test cases to them. Recall each 
observation corresponds to one pair of code and statechart drivers. 

Results of the one tailed t-tests are shown in Table 14 and show that the gain in 
mutation scores, from either code testing or statechart testing alone, is statistically 
significant when combining test cases from the two testing techniques.  

In terms of practical significance, the improvements in mutation scores average 
between approximately 7% and 10% of all seeded faults across the two clusters when 
compared to code testing alone. And when compared to statechart testing, the 
improvement is on average around 13% of all seeded faults. 

Cluster Type of combination DF Mean of difference in 
mutation score t value Pr > |t| 

Statechart vs. combination 149 12.69 20.76 <.0001 Cruise 
Control Code vs. combination 149 7.28 25.00 <.0001 

Statechart vs. combination 55 13.41 11.75 <.0001 
OrdSet 

Code vs. combination 55 9.67 7.64 <.0001 

Table 14: Combining test techniques - Paired t-tests results 
Figure 14 shows the distributions for the following variables (Table 29 in Appendix 

B includes the corresponding descriptive statistics): 

• |Fs U Fc|/|F|%: represents the mutation score in percentage when combining 
statechart and code drivers. 

• |F – (Fs U Fc)|/|F|%: represents the percentage of faults that remain 
undetected after combining test cases from statechart and code drivers. 

• |Fs U Fc| / |Fs|: represents a ratio measure of the gain in mutation score 
when combining drivers compared to statechart drivers alone. 

• |Fs U Fc| / |Fc|: represents a ratio measure of the gain in mutation score 
when combining drivers compared to code drivers alone. 

It is interesting to note the combined techniques’ mutation scores were significantly 
improved compared to those obtained with each technique individually. For instance, for 
Cruise Control and OrdSet, the combined techniques’ mutation scores represent an 
average increase of 26% and 17%, respectively, when compared to code testing alone 
(refer to |Fs U Fc| / |Fc| column in Table 29 - Appendix B). And when comparing with 
statechart testing alone, the increase reaches an average of 57% and 29% for Cruise 
Control and OrdSet, respectively. Also, an important result to point is the high mutation 
scores of the combination achieved for OrdSet (an average of 84%). A more modest 
result is achieved for Cruise control (an average of 39%) but this can be attributed to the 
already discussed real-time behavior of this cluster. 
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Figure 14: Distribution of mutation scores after combining statechart and code test 
cases 

Another interesting result is the wide range of variability of |Fs U Fc| / |Fc|: [min, 
max] = [5%, 59%] for Cruise Control and [0%, 92%] for OrdSet. For Cruise control, this 
variability can be attributed to the variability in code driver mutation scores and their 
detected faults sets. Subjects working with code only, in both clusters, used a wide 
variety of test suites and applied different levels of precision in their oracles causing an 
important variability in code driver mutations scores. This is to be expected when one is 
only driven by coverage but that wasn’t the case for subjects working with statecharts as 
they were instructed to use the RTP test technique with a specified transition tree. This 
resulted into little variability is the implementation of the technique and therefore 
statechart drivers for Cruise Control had very close mutation scores and detected almost 
the same faults. For OrdSet, the variation in mutation score gain can also be attributed to 
the variability in the number of RTPs covered by the drivers.  

4.2.3 Impact of cluster characteristics on combining test cases from both test 
techniques 

We performed two-sample t-tests to study the impact of cluster characteristics on 
the mutation score gain of combining test techniques (1) when compared with test cases 
from statechart drivers, (2) when compared with test cases from code drivers, and (3) on 
the percentage of faults remaining undetected. Results are presented in Table 15 and 
show a statistically significant impact of cluster characteristics on the gain in mutation 
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scores and the number of faults undetected when combining code and statechart drivers. 
Results for OrdSet are much more promising than those for Cruise Control due to the 
already discussed code and statechart properties of the respective clusters.  

 DF Mean 
OrdSet 

Mean 
Cruise t value Pr > |t| 

Gain from code mutation score 57.24 9.63 4.51 -4.004 0.0002 
Gain from statechart mutation score 65.39 16.16 8.85 -5.087 <.0001 

Undetected faults 79.97 18.64 76.02 57.93 0.0000 

Table 15: Impact of cluster characteristics and its interaction with test technique on 
mutation scores 

4.2.4 Impact of combining test techniques on fault detection effectiveness per 
mutation operator 

Results discussed in the previous sections show that statechart testing and code 
testing are complementary overall. Both contribute significantly to fault detection rates. 
In this section we further investigate their impact on fault detection effectiveness at the 
mutation operator level.  

Table 16 lists the total number of mutants created per mutation operator (|F|), the 
number of mutants killed only by statechart drivers (|Fs-Fc|), those only killed by code 
drivers (|Fc-Fs|) and the total number of mutants killed when combining test cases from 
both drivers (|FsUFc|). Recall that the number of mutants for a mutation operator changes 
with the cluster under test as this number is related to the characteristics of the code. 
Related descriptive statistics are presented in Appendix C. 

Note that for better readability, only a minimal subset of variables was listed in 
Table 16. Other variables can be derived as follows: 

 Number of mutants killed by statechart drivers: |Fs| = |Fs U Fc| - |Fc – Fs|, 

 Number of mutants killed by code drivers: |Fc| = |Fs U Fc| - |Fs – Fc| 

 Number of mutants killed by both types of drivers: |Fs ∩ Fc| = |Fs U Fc| - (|Fc – 
Fc| + |Fs – Fc|) 

 Number of live mutants: |F| - |Fs U Fc| 

When combining the two test techniques, most faults seeded in OrdSet (mutants) 
were detected. Most undetected faults do not affect the results of the faulty method and 
therefore correspond to equivalent mutants. For example, a seeded right-shortcut on a 
parameter D (D++) in an assignment statement is computed after evaluating the 
statement. When D is not used afterwards in the faulty method, the error does not 
propagate and does not affect the output of the method. For JSD mutants, the faults 
cannot be detected as there is no code in OrdSet that changes the value of static attributes. 
For Cruise Control, JSI and JSD mutants (inserting and deleting static keyword) were not 
killed as drivers created only one instance of the car. JID mutants were not killed either 
(attribute initialization deleted) as attributes were set to default values, e.g., 0 for integer 
attributes. However, high numbers of other types of mutants were killed and the 
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remaining live mutants were mostly due to the difficulty of devising precise oracles with 
exact values for class attributes. 

OrdSet Cruise Control Mutation 
operator |F| |Fc-Fs| |Fs-Fc| |FsUFc| |F| |Fc-Fs| |Fs-Fc| |FsUFc| 

JSI 5 1 (20%) 0 4 (80%) 11 0 0 0 

JSD 3 0 0 0 11 0 0 0 

JID     9 0 0 0 

JDC     1 0 0 1 (100%) 

EAM 4 0 0 4 (100%) 5 3 (60%) 0 4 (80%) 

AORB 90 6 (6.7%) 4 (4.4%) 90 (100%) 32 28 (87.5%) 0 28 (87.5%) 

AORS 8 0 1 (12.5%) 8 (100%)     

AOIU 48 0 5 (10.4%) 48 (100%) 32 15 (47%) 0 26 (81%) 

AOIS 297 16 (5.4%) 2 (0.7%) 236(79.5%) 144 55 (38%) 1(0.7%) 94 (65%) 

AODU 4 0 0 4 (100%)     

ROR 47 3 (6.4%) 0 40 (85%) 79  25 (32%) 0 48 (60.8%) 

COR 6 0 1 (16.7%) 6 (100%)     

COD 1 0 0 1 (100%)     

COI 4 0 0 4 (100%) 1 0 0 1 (100%) 

LOI 107 3 (2.8%) 3 (2.8%) 106 (99%) 51 10 (19.6%) 0 37 (72.5%) 

ASRS 0 0 0 0 12 12 (100%) 0 12 (100%) 

Table 16: Count of detected and live mutants per mutation operator 
Results in Table 16 also help identify mutation operators for which a test technique 

is a better detector than the other (research question 6). A first trend to notice is that the 
cluster under test seems to be an important factor that impacts mutation operators for 
which statechart drivers are good detectors. For instance, out of the 90 AORB mutants 
created for OrdSet, 84 of them have been killed by statechart drivers. However, none of 
the 32 AORB mutants created for Cruise control has been killed by statechart drivers 
(|Fs- Fc| = |Fs U Fc|. The AORB mutation operator replaces a binary operator such as the 
addition operator with another binary operator. In Cruise Control, such faults are seeded 
in the algorithm computing class attributes when the car is running (car speed, throttle 
…). In order to detect such fault, a precise oracle is needed. However, it is extremely hard 
to know at some point in time what would be the value of car speed for example. Such 
value depends on many factors: execution time, processor speed, and number of running 
processes on CPU. Therefore, oracles for Cruise Control cannot be very precise; an 
attribute value can be only checked against an interval. However, for OrdSet, the 
characteristics of the class allow for precise oracles. At any point in time, one can check 
class attribute values against exact expected values. Also for AOIU mutants, the trend is 
inconsistent in the two tested clusters. For Cruise Control, more faults were detected by 
code drivers, as opposed to OrdSet where more faults were detected exclusively by 
statechart drivers. This result can be also attributed to the precision of oracles used in the 
two clusters. 
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For Cruise Control, no mutant of type ASRS was killed by statechart drivers, such 
a fault would alter the value of a numerical attribute. This again can be attributed to the 
fact that statechart drivers use state invariants as oracles and state invariants for Cruise 
Control are not very precise as described in the discussion above. It may not be possible 
to define an exact value for some class attributes, even in a method postcondition. Certain 
properties are just inherently hard to express with contracts. This is particularly true for 
contracts of computationally intensive methods for example. Writing such an oracle 
would consist in simply rewriting all the code statements in a language such as OCL and 
might end up to be more complex than the code it is supposed to describe. We expect that 
covering an activity diagram, such as the one presented in Figure 6 describing the 
algorithm that manages the Cruise Control class attributes, would help identify more 
precise oracles by narrowing down ranges of values to check and therefore would help to 
detect AORB and ASRS faults.  

For the other mutation operators, coherent trends are seen for both clusters. Only 
notice that OrdSet drivers had higher mutation scores than Cruise Control drivers. This is 
related to the different code and statechart properties of the two clusters that have been 
already discussed above. 

From the above discussion, we cannot conclude that statechart drivers are better 
fault detectors than code drivers for any of mutation operators. However, code drivers 
can be better fault detectors than statechart drivers depending on cluster characteristics. It 
is therefore important to investigate the possibility of improving statechart testing to 
address its main weaknesses. Section 4.4 will investigate in a thorough and systematic 
manner the main causes for statechart drivers to fail detecting faults.  

4.3 Comparing the cost-effectiveness of test techniques 
In this section we attempt to answer research questions 7 and 8 by studying the 

difference in terms of cost and cost-effectiveness between statechart testing and code 
testing.  

4.3.1 Cost Analysis 
Recall from section 3.3.2 that we assume the cost of a driver (a test set) to be 

proportional to the number of method calls to the classes under test. Figure 15 shows the 
distribution of drivers’ cost per cluster and per test technique. Related descriptive 
statistics are reported in Table 17. We can see that in both clusters, statechart drivers tend 
to have a higher average cost. Two-sample t-tests were performed to obtain statistical 
evidence about the impact of test technique on the cost of drivers (research question 7). 
Results reported in Table 18 show that the difference between the two test techniques is 
not significant. However, a non-parametric Wilcoxon test shows a significant difference 
in cost between test technique for Cruise Control (Prob > |Z| was evaluated to 0.0211). 
Since a t-test tends to be conservative when the observations’ distribution is not normal, 
we will tend to rather trust the Wilcoxon test results, thus concluding that statechart 
testing is significantly more expensive than code testing for Cruise Control. 
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Figure 15: Cost comparison of statechart and code drivers 

Cluster Treatment Min Max Mean StdDev Range 
Statechart 73 2732 875.55 781.48 2659 

OrdSet 
Code 84 1350 600.64 409.26 1266 

Statechart 230 683 502.17 114.60 453 Cruise 
Control Code 39 1155 382.43 310.08 1116 

Table 17: Cost descriptive statistics 

Cluster DF Mean Code Mean Statechart t value Pr > |t| 
Cruise Control 18.81 382.43 502.17 -1.453 0.1624 

OrdSet 25.98 600.64 875.55 -1.313 0.2004 

Table 18: t-test results for cost analysis 

4.3.2 Cost-effectiveness analysis 
We measure the cost-effectiveness of a driver as the ratio of its mutation score to its 

cost. We performed one-tailed t-tests to assess the impact of the test technique on the cost 
effectiveness of test drivers (research question 8). Results are reported in Table 19.  

Code testing is found to be significantly more cost-effective than statechart testing. 
However, from the previous section we have seen that code and statechart testing tend to 
be complementary. Also, we have seen that statechart testing tends to be less affected by 
the skills and ability of testers as it is better defined and more systematic. Last, statechart 
testing can be planned early on before any code is available. Therefore, despite a different 
in cost-effectiveness, these results do not suggest in any way that code testing should be 
the preferred choice over statechart testing. 

Cluster DF Mean Code Mean Statechart t value Pr > t 
Cruise Control 15.40 0.12 0.05 2.918 0.0052 

OrdSet 22.82 0.15 0.09 -1.935 0.0307 

Table 19: t-test results for cost effectiveneness 
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4.3.3 Investigating the variation is cost-effectiveness 

Figure 16 shows scatter plots for each cluster and test technique: mutation score as 
function of driver cost. We expect a positive, monotonic relationship between the two 
variables and we would expect low dispersion if the cost-effectiveness were similar 
across drivers. However, we can clearly see a great deal of dispersion on the plots for 
code testing, thus suggesting a lot of the variation in mutation score is not explained by 
the size of the driver.  
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Figure 16: Mutation Score - Cost scatter plots 

We performed a qualitative cost analysis of drivers to investigate the reasons for 
such variability. The results of this analysis are summarized in Table 20. The main cause 
for cost-effectiveness variability in code drivers is a frequent redundancy in test cases, 
writing multiple test cases that partially cover the same nodes/edges. Redundancy is 
however controlled in the case of statechart testing as the test cases are precisely 
specified by a test strategy (RTP) and therefore this leads to less code coverage 
redundancy. Another source for variability in cost effectiveness is the ineffective use of 
available public methods to implement certain functionalities. For example, in OrdSet, a 
set can be created with two constructors, one creates an empty set and another creates a 
set with content from an array of integers. Some subjects did not use the second type of 
constructors to create a non-empty set. Instead, they created an empty set and iteratively 
added elements to it with the “add one element” method. This increased the number of 
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called methods in their drivers considerably. Similarly, in Cruise Control, the inefficient 
use of command calls to accelerate or to brake to reach a certain speed unnecessarily lead 
to considerable increase in driver cost. For instance, calling the accelerate command 
twice in a sequence produces the same behavior as calling it any number of times. 
Cruise control – code drivers 

- High numbers of test cases, which are not necessarily good detectors of faults, i.e. 
redundancy in terms of node/edge coverage. 

- High precision in oracles, i.e. verifying values of all or most class attributes leading to high 
numbers of method calls. 

- Long paths of commands, for example 20 consecutive times of “accelerating” or 50 times 
“braking”, this is not necessarily helpful in detecting faults as the maximum speed or 
maximum brake value can be reached in less commands. Also when accelerating without 
waiting for speed to increase only two accelerating commands are equivalent to any number 
of accelerating commands above two. 

Cruise control – statechart drivers 

- Verifying oracles only after the last transition in a round-trip path (causing high variation) 
- Wrong implementation of round trip paths, i.e. implementing 16 RTPs instead of 12. 

OrdSet – code drivers 

- Creating of a set with content as an empty set and adding contents one by one afterwards by 
calling the method “add”; note that the creation of this kind of set can be created with a single 
method call, i.e. the constructor that accepts an array of integers as a parameter. 

- High number of test cases with less precise oracles. Note that even when the number of test 
cases increases, the mutation score may not increase as additional code coverage may not be 
proportional to the number of test cases. 

- High precision in oracles (every oracle checks for all attributes values). 
- No apparent use of a systematic testing strategy leading to high number of test cases. 

OrdSet – statechart drivers 

- Testing unnecessarily the values of test cases settings; for example, if a test case require an 
empty set as a parameter, the test case would include a test for the emptiness of the provided 
set. 

- Verifying oracles only after the last transition in a round-trip path (causing high variation). 
- Wrong implementation of state invariant assertions causing lower driver sizes; for example 

the state “Empty” is tested with the “isEmpty” method instead of testing the invariant of state 
Empty which includes the verification of additional attributes. 

- Creating of a set as an empty set and iteratively adding content by calling the method “add”; 
note this can be created with only one method call, i.e. the constructor that accepts an array of 
integers as a parameter. 

- Number of test cases (not all students were able to implement all RTPs in the transition tree). 

Table 20: Causes for variation in driver cost effectiveness 

4.4 Qualitative analysis of live mutants 

We discussed in Section 4.1 the fault detection effectiveness of statechart drivers 
and we have seen that large numbers of mutants in Cruise control were not detected and 
fewer numbers of mutants were not detected in OrdSet. To better understand why certain 
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faults are difficult to detect by statechart drivers, we performed a qualitative analysis to 
identify what execution conditions would be required to detect faults and whether these 
conditions were likely to be fulfilled by statechart testing. This also helps us identify how 
to improve statechart testing in order to increase its fault detection effectiveness. This 
analysis was systematic and included the following three steps:  

1. Running perl scripts to identify the following disjunctive sets of faults: (1) F-
(Fs U Fc) = set of faults not detected by any driver, (2) Fc-Fs = set of faults 
detected only by code drivers, (3) Fs-Fc = set of faults detected only by 
statechart drivers, and (4) FsUFc = set of faults detected by both types of 
drivers.  

2. Identifying the reasons for not detecting faults with a focus on F-(Fs U Fc) and 
Fc-Fs. This was done by executing the corresponding mutants and generating 
traces of execution. If the fault does not affect the output, the trace can then 
help us identify the reason. And if the fault does indeed affect the output, the 
trace then helps us understand why the oracle did not detect any failure. An 
example of such faults is one created by seeding a fault in the method 
“resizeArray” of the OrdSet class as shown below: 

 
private void resizeArray() { 

        int new_size = _set_size + min_set_size; 
if (new_size <=max_set_size && 
_resized_times<max_accepted_resizes) { 

            int[] _new_set = new int[new_size]; 
            for (int k = 0; k < _last + 1; k++) { 
                _new_set[k] = _set[k]; 
            } 
            _set_size = new_size; 
            _set = _new_set; 
            _resized_times++; 
        } else { 
            _overflow = true; 
        } 
    } 

Recall that the method resizeArray is called whenever an element is to be added 
to a full set. To cause a resize, the element to be added should not be already in 
the set. A resize can occur if two conditions are true: (1) the resized set size 
does not exceed the maximum set size (a constant), and (2) the number of 
resizes done on the set does not exceed the maximum resizes allowed (a 
constant). The error was seeded by replacing the index k highlighted above in 
the code by k++. The fault gets executed if a new element is to be added to a 
full set in which the conditions for a resize are fulfilled. When the fault is 
executed, the set is resized as expected, but with wrong content (some elements 
would be replaced by zero). In order to detect the fault, a verification of the set 
content is needed. This can be done by verifying the class invariant or the 
resizeArray postcondition in the oracle. An example of a test case that causes 
a failure if this fault is executed is to create an ordered set with content {1, 2, 3, 
6} then to add the element “4” to the set. The result one gets is {0, 2, 0, 4, 6} 
instead of {1, 2, 3, 4, 6}. 
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3. Classifying undetected faults according to the categories listed in Table 21 
below. 

Cruise Control  Total 

1 
Mutants corresponding to inserting or deleting “static” keyword were not detected by any 
driver as only one instance of the cruise system (Controller and Carsimulator) was running at 
a time in all drivers. 

20 

2 Deleting initial values of attributes were not detected as default values are equal to the initial 
values deleted. Example: an integer attribute that is supposed to be initialized to 0. 9 

3 

Faults that affect the algorithm that manages the speed and throttle. For example: (1) a fault 
that causes air resistance to become positive instead of negative, (2) a fault that causes the 
throttle to increase instead of decay with time when the accelerator is not pressed. These faults 
cause wrong values of class attributes such as speed. Such fault requires a very precise oracle 
in order to be detected. 

158 

4 Fault seeded in dead code cannot be detected. 1 

5 
Faults that do not cause a behavioral change in methods. They are just artifacts of the way we 
seeded faults using mutation. It is common to see so-called “equivalent” mutants when using 
mutation operators to seed faults [4, 39, 43].  

24 

6 

Faults that can be detected only with a specific test case, mainly requiring repeating a call of 
the same command in a test case (path) and/or causing the system to sleep to allow values of 
speed, throttle, or distance to change over time. Such faults may be detected by code drivers if 
a specific path is implemented, and they cannot be detected with statechart drivers because the 
testing technique used does not allow the repeating of commands more than once in a round 
trip path. 

10 

8 

Faults that can be detected with test cases for some paths that are not covered in the statechart, 
i.e. unspecified self-transitions or sneak paths (example, in state inactive, the event “on” is not 
represented with a self-transition). Subjects using statecharts implemented only paths in the 
transition tree in their driver and therefore do not account for sneak paths. Subjects working 
with code did not think of covering sneak paths as well probably because they correspond to 
omitted “else” statements in “if” statements. 

14 

9 Drivers did not execute the cluster during a long enough period of time with appropriate 
conditions to trigger specific code/behavior. 41 

OrdSet  

1 Faults that delete or add a static keyword. Static attributes are used in the cluster as constants. 
There is no code that affects static attributes values. Thus these faults cannot be detected. 4 

2 Faults that cause no behavioral change. These again, are equivalent mutants and are artifact 
of our fault seeding procedure.  58 

3 Faults that cause an infinite loop. No oracle checks whether execution takes too long. 49 
4 Faults that cause wrong set content and/or actual set size. These faults can be detected with 

methods’ post conditions and class invariant assertions in oracles. 41 

5 Faults that can only be detected with some specific parameters values in test cases, i.e. a 
specific set size or a specific content. 8 

Table 21: Classification of causes for not detecting faults 
By looking at Table 21 we notice that the identified categories of undetected faults 

are related to the characteristics of each cluster. Once again, how well a technique is 
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going to detect faults depends to a great extent on the characteristics of the software 
under test.  

For Cruise Control, most undetected faults are from the third category (158 faults). 
As previously discussed, the large number in this category can be attributed to the fact 
that the algorithm that determines the values of class attributes is not described by the 
statechart. These faults result in wrong values assigned to class attributes. In order to 
detect these faults, not only precise oracles should be implemented but also test driver 
execution time should be increased (add wait time) to allow for substantial changes in 
class attributes values. Another important category of undetected faults is the one 
associated with the real-time behavior of the software under test (category 9). These 
faults may be detected if more time is allowed for drivers’ execution, i.e. using the 
“sleep” method from the Thread class.  

For OrdSet, most undetected faults are from the second category. These “faults” 
correspond to equivalent mutants and cause no behavioral change in system: they should 
therefore be ignored in our analysis. Another important category of undetected faults is 
the third category: these faults cause infinite loops. They can only be detected if drivers 
are designed to detect abnormal execution times. Faults in category 4, which are frequent, 
can be addressed by implementing contract assertions in oracles.  

From the results above we note that equivalent mutants correspond only to 9% and 
36% of undetected faults and 6% and 9% of total seeded faults for Cruise Control and 
OrdSet, respectively. Therefore it confirms that a heuristic, sometimes used in testing 
empirical studies [1, 4, 15, 19, 39, 43], that consider all faults undetected by any driver as 
equivalent mutants and eliminate them from the total set of mutants cannot be applied in 
our case. However, we can adjust based on our qualitative analysis the mutation scores of 
all the test drivers of our experiment.  

Let Mb and Ma be the mutation score of a driver before and after removing 
equivalent mutants respectively, Ne the number of equivalent mutants and F the total 
number of mutants. Then Ma can be computed as follows: 

Ma = (Mb*F/100 – Ne)*100/F 

We computed Ma for all drivers and both clusters. Results are presented in Table 
22. All the mutation scores dropped but after re-running the various analyses we 
performed, these changes turned out not to make any difference in terms of the 
conclusions we have drawn in the previous sections.  

 Mean of drivers mutation scores 

 statechart 
drivers  code drivers  statechart + code 

drivers  
With equivalent mutants 24.47 27.69 35.86 Cruise 

Control Without equivalent mutants 16.73 20.28 31.61 
With equivalent mutants 50.27 56.15 71.41 

OrdSet 
Without equivalent mutants 45.17 51.65 68.48 

Table 22: Equivalent mutants’ impact on mutation scores 
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4.5 Proposition of improvements to statechart testing 

The qualitative analysis of live mutants (Section 4.4) helped us address research 
question 9 and identify additions to our statechart testing strategy in order to improve the 
fault detection ratio of statechart drivers. The proposed improvements as listed below are 
based on the two tested clusters but they can be easily generalized to many control and 
complex data structure classes: 

1. Use activity diagrams to model algorithms with high control flow 
complexity. They will help ensure minimal edge coverage for the most 
complex methods and would also help describing the impact of the “time” 
factor on the different class attributes in a real-time system. The coverage 
criterion would be to cover all paths in the activity diagram. If a loop exists, 
then typical loop coverage heuristics should be applied [8].   

2. Include contract assertions (class invariant and methods post conditions) in 
oracles in addition to state invariants.  

3. Complement the round-trip path technique with sneak path testing. This has 
been recommended by Binder [8] and our data clearly confirm this is 
required. Including explicit self-transitions in statecharts to account for 
sneak paths within RTPs would not be a convenient alternative as statechart 
would become unnecessarily complex.  

An example of an activity diagram for a running car in Cruise control is provided in 
Figure 17. Such an activity diagram helps identifying test cases that cannot be otherwise 
identified based on the statechart and using the Round-trip path technique. For instance, 
to perform boundary testing in the case of Cruise Control, we need to test the case where 
a car is running at maximum speed. However, to reach the maximum speed, the car 
should accelerate for some time as speed is a function of time (changes every 200 ms). 
This corresponds to executing the highlighted path in Figure 17 a number of times.  

Therefore, test driver execution time should be extended to allow speed to increase. 
Recall that the time factor does not show in the statechart. Also, one can note from the 
activity diagram that the speed is a function of the car throttle. The throttle value is 
increased by a fixed amount for every accelerate command (refer to method “accelerate” 
postcondition in Appendix E.1.3) and it decays with time as can be seen in the shadowed 
part in Figure 17. Therefore, in order to continue to bring speed to its maximum value, 
the command “accelerate” should be repeated a number of times. Implementing such a 
test case means that the same transition would be executed a number of times. This 
cannot be implemented with the RTP test technique where a transition cannot be 
executed in a path more than once. Covering all paths in the activity diagram implies that 
some paths would be traversed a number of times in order to be able to cover other paths. 
For example, to cover the path in the activity diagram where a speed is greater than 
maximum speed, the car speed should first reach maximum speed. In the discussion 
above we explained that in order to reach the maximum speed the highlighted path in 
Figure 17 should be executed a number of times. 
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 Reset car speed and distance

Increment car speed with the value: (throttle - car speed/air resistance - 2*brakepedal)

[car speed > maximum speed] 

Set car speed to maximum speed

[car speed <= maximum speed] 

Set car speed to 0

[car speed < 0] 

[car speed >= 0] 

Increment distance by (car speed / (36 * ticks per second))

[throttle > 0] 

Decrement throttle by (0.5 / ticks per second)Set throttle to 0

[throttle <= 0] 

wait for 200 ms

[Car is running] 

[Car is not running] 

 
Figure 17: Running car activity diagram with highlighted path 

Applying the second improvement to OrdSet would likely help to detect faults such 
as the AOIS faults. AOIS faults are seeded by inserting arithmetic shortcuts (++, --). 
They cause wrong content or order of elements in the set. Such faults can be detected if 
contracts are implemented in oracles to verify the content of a set and the order of its 
elements. 

For Cruise Control, applying the third improvement by including explicit self-
transitions with no actions to the statechart would increase the total number of RTPs in 
transition tree from 12 to 25. But any faults, such as AOIS faults that insert arithmetic 
shortcuts to state attributes causing a wrong output state, would be detected if sneak paths 
were tested. 

We implemented the above proposed improvements to the model to verify their 
impact on fault detection effectiveness for statechart drivers. We decided to implement 
the test drivers and not use the ones implemented by students. The main motivation was 
to accurately assess the impact of refining our test strategy by implementing fully correct 
and complete statechart drivers.  

For each cluster, we first implemented one base drivers with test cases 
corresponding to RTPs in the transition trees provided to subjects during the experiment 
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and using state invariants as oracles. We then augmented them with the suggested 
improvements. 

Only the second proposed improvement applies to OrdSet. A second test driver is 
created for OrdSet by augmenting test cases in the base driver with contract assertions in 
oracles. A comparison of the mutation scores, code coverage, and size (cost) of the two 
drivers is presented in Table 23. Results show an important increase in the number of 
killed mutants from 494 to 536 mutants (79% to 86%). As a comparison, the highest 
mutation score in code drivers is 541 mutants or 87% which is very close to the mutation 
score of the new statechart driver after implementing contract assertions. Node and edge 
coverage did not change much as no new test cases were added to the driver: changes 
were only made to oracles that called additional getter methods. Regarding driver cost, 
the increase is attributed to method calls in contracts where getters are called to verify 
attribute values. Even with an increase in cost of 15%, the increase in mutation score 
(8%) is of practical interest.  
 Mutation 

score 
Node 

Coverage 
Edge 

Coverage 
Cost  

(# of method calls) 

RTPs + state invariants 79.17 76.09 72.61 2136 
+ contract assertions in oracles 85.89 (+8%) 76.81 73.88 2490 (+15%) 

Table 23: Improvements to the model impact on OrdSet drivers 
Table 24 reports on the changes in the numbers of killed mutants per mutation 

operator after adding contract assertions to the OrdSet test driver. The mutation operators 
not showing in the table had no change in number of killed mutants. Note the important 
improvement in AOIS detection rate (from 209 to 235 killed mutants). This confirms our 
expectations earlier in this section that AOIS faults (insertion of shortcuts), which cause 
wrong content and element orders, would be better detected when contract assertions are 
added to oracles. 
 AORB AORS AOIU AOIS ROR LOI 
RTPs + state invariants 82 7 44 209 37 95 

+ contract assertions in oracles 87 
(+5.5%) 

8 
(+12.5%) 

45 
(+2%) 

235 
(+9%) 

40 
(+6%) 

101 
(+6%) 

Table 24: Comparison of number of killed mutants per mutation operator - OrdSet 
All three proposed improvements apply to Cruise control. Therefore drivers have 

been created to implement the three additions to base statechart driver. We first 
considered each improvement separately to study its isolated effect on fault detection. 
Next, we proceeded to combine test cases from the different proposed improvements to 
determine their combined effect.  

Mutation score, code coverage, and driver cost data are presented in Table 25. The 
first proposed improvement aim to cover all paths in the activity diagram and resulted in 
considerable mutation score improvement (from 25% to 42%). In fact, covering the 
activity diagram (one test case that covered all paths in the activity diagram) showed the 
most important impact on the mutation score.  
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 Mutation 
score 

Node 
Coverage 

Edge 
Coverage 

Cost 
 (# of method calls)

RTPs + state invariants 25.39 78.16 62.05 515 
+ activity diagram coverage 42.23 

(+17%) 
86.18 76.60 543 

+ sneak paths coverage 31.61 
(+6%) 

85.37 76.78 903 

+ contract assertions in oracles 31.87 
(+6.5%) 

79.83 64.53 565 

+ contract assertions & sneak paths coverage 39.38 
(+14%) 

82.58 74.96 1539 

+ contract assertions & activity diagram coverage 50.78 
(+25%) 

82.45 73.62 620 

+ sneak paths & activity diagram coverage 47.15 
(+22%) 

88.07 82.24 941 

+ all three proposed improvements coverage 58.29 
(+33%) 

88.07 82.24 2297 

Table 25: Improvements to the model’s impact on cruise control drivers mutation 
scores 

Performing all three improvements in the statechart driver caused an increase in the 
mutation score from 25% to 58% (Table 25). As a comparison, the highest mutation score 
of code drivers was 48%. Another interesting point to mention is that covering sneak 
paths had the highest impact on edge coverage. As for cost, sneak path coverage was the 
most expensive in terms of increase in number of method calls. This can be attributed to 
the large number of additional RTPs in the new transition tree. The least expensive 
proposed improvement was the coverage of the activity diagram. This was the most cost 
effective among the three proposed improvements and this can be easily explained as 
most undetected faults are real-time dependent (refer to Section 4.4). 

Table 26 reports on the changes in the numbers of killed mutants per mutation 
operator after adding the improvements to the Cruise control base driver. The mutation 
operators not showing in the table showed no change in number of killed mutants. As 
expected from our discussion in Section 4.2.4, the detection rates of AORB and ASRS 
were improved when covering the activity diagram. Also there was an important 
improvement to the AOIS detection rate especially when covering all the paths in the 
activity diagram. 
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 AORB AOIU AOIS ROR LOI ASRS 
RTPs + state invariants 0 9 32 23 27 0 

+ contract assertions in oracles 0 9 54 
(+15%) 

26 
(+4%) 

27 8 
(+67%) 

+ sneak paths coverage 0 9 48 
(+11%) 

29 
(+8%) 

29 
(+4%) 

0 

+ activity diagram coverage 5 
(+16%) 

14 
(+16%) 

66 
(+24%) 

31 
(+10%) 

32 
(+10%) 

8 
(+67%) 

+ contract assertions & sneak paths coverage 0 11 
(+6%) 

59 
(+19%) 

29 
(+8%) 

29 
(+4%) 

8 
(+67%) 

+ contract assertions & activity diagram 
coverage 

5 
(+16%) 

15 
(+19%) 

72 
(+28%) 

35 
(+15%) 

32 
(+10%) 

12 
(+100%) 

+ sneak paths & activity diagram coverage 5 
(+16%) 

14 
(+16%) 

78 
(+32%) 

35 
(+15%) 

34 
(+14%) 

8 
(+67%) 

+ all three proposed improvements coverage 5 
(+16%) 

15 
(+19%) 

82 
(+35%) 

36 
(+16%) 

34 
(+14%) 

12 
(+100%) 

Table 26: Comparison of number of killed mutants per mutation operator - Cruise 
Control 

4.6 Discussion of Results 

Despite being proposed as an efficient strategy for testing state-dependent class 
clusters [9, 10, 38], the statechart-based testing of source code does not appear more 
effective at detecting faults than simple structural testing. This is at least the case in the 
context of our experiment where the time allocated is limited and the same for both test 
strategies. However, our results also show clearly that statechart and structural testing are 
complementary in terms of the faults they detect and they should somehow be used 
together. Since statechart testing can be planned and prepared early before code is ready, 
and because structural testing is a difficult and tedious task requiring control flow 
analysis, it is probably better to recommend that statechart testing be used first and then 
complemented through coverage analysis to reach acceptable levels of code coverage. 
This is also consistent with the more general recommendation by Marick [33] on black-
box and white-box testing.  

Our results also show that the fault detection effectiveness of statechart-based 
testing varies to a large extent depending on how precisely the statechart describes the 
behavior of the software under test. In our experiment, for a Cruise Control class cluster 
which behavior is strongly driven by time-related properties, the statechart was only a 
rough model to base testing on. Only when complemented with test cases covering an 
activity diagram describing the computation of time dependent class attributes we were 
able to detect most seeded faults. Another source of variation in fault detection 
effectiveness is related to the level of precision of the statecharts and its related model 
elements (contracts, class diagram, and state invariants) which inherently depends on the 
nature of the software being modeled. For example, many real-time properties and 
complex computations are typically not represented in statecharts. Furthermore, certain 
operations cannot be precisely modeled with contracts: this is the case of complex 
computations. Considering that we are only scratching the surface of the problem here, it 
is very probable that to be practical and reliable, statechart testing must be complemented 
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with other testing strategies and that we need to provide precise guidelines regarding its 
usage and integration with other testing techniques. However, much more experimental 
research needs to be done to devise a complete strategy.  

Statechart driven testing can however be made much more effective by ensuring 
that illegal (often implicit) events be tested in every state and by implementing precise 
oracles based on class invariants and contract assertions, in addition to the standard state 
invariants. As previously discussed in another context [10], we see here that the test 
strategy is only part of the picture when investigating fault detection effectiveness. The 
strategy followed to implement oracles is at least as important.  

Code testing shows much more variation in effectiveness since it relies much more 
on the testers’ ability and skills as it offers much less guidance than statechart testing. 
Our results show that, despite being similarly effective overall at detecting faults as code 
testing, statechart testing is more effective for less skilled testers. In other words, it may 
be recommended if testers have little experience and weak programming skills and if a 
choice between the two test strategies has to be made. From a more general standpoint, 
these results suggest that human factors play an important role in the results of empirical 
test research. This is probably something that should be more often accounted for in 
testing research.   

5 CONCLUSIONS 

This paper investigates the cost-effectiveness of statechart testing of class clusters 
with state-driven behavior. This is of practical importance as state-driven testing has been 
often recommended for complex class clusters in literature [9, 10, 14, 16, 17, 38, 42]. As 
a baseline of comparison we compare statechart-driven testing with the common practice 
of using coverage analysis of code to drive the development of test suites. Furthermore 
we investigate whether the two strategies are complementary in detecting faults. We then 
investigate the factors that may affect how effective these strategies are in practice.  

To address these issues, this paper presents the results of a controlled experiment 
performed in a university environment with senior, carefully trained students. Results 
show, in a context where time is limited, that a well-known strategy for statechart testing 
(referred to as the W-method [18] or round-trip path testing [8]) is not more effective at 
detecting faults than testing driven by code coverage analysis. Furthermore, whether 
statechart testing is preferable to coverage driven testing seems also to depend on the 
programming and testing skills of the tester. However, the two test strategies also seem to 
be complementary in terms of the faults they detect and this suggests that they should 
probably be used together, as opposed to being alternatives. Because statecharts are 
available before code is available and because testing based on code coverage analysis is 
notoriously tedious and time consuming, it is probably wise to first test class clusters 
based on statecharts and then complement test suites based on coverage analysis.   

The results also suggest that the effectiveness of statechart testing strongly depends 
on the nature of the software under test, the statechart model itself, but also the way test 
oracles are implemented. As a result, it seems clear that much more research is needed in 
order to provide clear and precise guidelines to testers as to when to use statechart testing 
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and how to integrate it with other test strategies. For example, this paper shows cases 
where it is advisable to complement the statechart with activity diagrams describing the 
control flow of certain operations (e.g., modeling the way time-dependent class attributes 
are updated) and then trying to cover the paths in such activity diagrams to complement 
statechart testing. Our results also show the large extent of the impact of using precise 
oracles based on contract assertions and class invariants, as well as the necessity to test 
for illegal and often implicit events in statechart.  

Though our two class clusters involved in our experiment are small, they are 
representative of two typical types of clusters: complex data structures and control classes 
in a control system. Though our experiment subjects are students, there are fourth-year 
engineering students who are extensively trained as Java programmers and who have 
been formally taught black-box and white-box test techniques. Therefore, though 
replications of this experiment are needed, we believe that the results we provide in this 
paper and the conclusions we draw provide useful insights to practitioners and 
researchers alike.  
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Appendix A Plot of Mutation score, Node, Edge and RTP 
coverage  

 

 
a) Cruise Control – Statechart drivers 

 
c) Cruise Control – code drivers 
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b) OrdSet – Statechart drivers 

 
d) OrdSet – Code drivers 

Figure 18: Node, Edge and RTP coverage distributions 
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Appendix B Descriptive statistics tables 
 
 
 Cruise Control OrdSet 

 |Fs| | Fc| |Fs-Fc| 
/|F|% 

|Fc-Fs| 
/|F|% |Fs| | Fc| |Fs-Fc| 

/|F|% 
|Fc-Fs| 
/|F|% 

Median 96 108 6.48 10.49 449 452 10.10 10.90 
Mean 95 122 7.28 14.31 407 447 11.97 10.95 
Min 92 80 1.55 4.40 275 264 0.16 2.08 
Max 98 186 15.28 32.64 494 541 38.94 21.31 
95% 98 174 15.28 32.38 483 534 34.85 19.90 
90% 98 163 11.74 23.24 472 526 30.82 15.48 
75% 97 146 8.81 21.50 456 499 14.46 14.42 
25% 94 101 4.92 8.55 359 430 6.05 7.61 
10% 93 95 3.32 7.05 292 380 0.96 4.65 
5% 93 88 2.19 4.66 283 322 0.47 4.11 

Table 27: Mutation scores and difference fault sets scores 
 
 
 Cruise Control OrdSet 
 |Fs∩Fc| 

/|F|% 
|Fs∩Fc| / |Fs| |Fs∩Fc| / |Fc| |Fs∩Fc| 

/|F|% 
|Fs∩Fc| / |Fs| |Fs∩Fc| / |Fc| 

Median 18.13 0.73 0.61 62.18 0.89 0.83 
Mean 17.17 0.69 0.57 60.79 0.86 0.78 
Min 8.81 0.35 0.32 35.90 0.51 0.51 
Max 22.28 0.92 0.82 78.21 1.00 0.95 
95% 22.28 0.90 0.81 72.83 1.00 0.93 
90% 20.83 0.85 0.72 71.67 0.99 0.90 
75% 19.62 0.79 0.69 66.75 0.95 0.88 
25% 15.61 0.63 0.45 58.61 0.82 0.66 
10% 12.88 0.52 0.34 40.13 0.66 0.58 
5% 9.33 0.38 0.33 38.08 0.54 0.55 

Table 28: Intersection score and ratios 
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 Cruise Control OrdSet 
 |FsUFc| 

/|F|% 
|F – 

(FsUFc)| 
/|F|% 

|FsUFc| / 
|Fs| 

|FsUFc| / 
|Fc| 

|FsUFc| 
/|F|% 

|F – 
(FsUFc)| 

/|F|% 

|FsUFc| / 
|Fs| 

|FsUFc| / 
|Fc| 

Median 35.10 64.90 1.42 1.19 84.86 16.67 1.19 1.10 
Mean 38.76 61.24 1.57 1.26 83.70 18.64 1.29 1.17 
Min 28.50 43.01 1.15 1.05 72.92 11.70 1.03 1.00 
Max 56.99 71.50 2.38 1.59 88.30 41.83 1.97 1.92 
95% 56.74 70.98 2.29 1.59 87.84 28.13 1.80 1.78 
90% 47.38 69.04 1.97 1.55 87.66 27.00 1.69 1.37 
75% 46.11 67.10 1.85 1.31 86.90 21.83 1.36 1.19 
25% 32.90 53.89 1.33 1.15 81.17 13.42 1.12 1.04 
10% 30.96 52.62 1.26 1.10 78.38 12.42 1.08 1.01 
5% 29.02 43.26 1.17 1.07 76.67 12.30 1.06 1.00 

Table 29: Union and not detected faults scores and ratios 
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Appendix C Mutation scores per mutation operator 
 

 Mutation scores descriptive statistics in: 

 JDC (1) EAM (5) AORB (32) AOIU (32) AOIS (144) ROR (79) COI (1) LOI (51) ASRS (12) 

 Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc 
Median 100 0 0 0 0 0 28.13 3.13 23.61 11.11 29.11 3.8 100 0 52.94 6.86 0 0 
Mean 100 0 9.33 5.6 0 0 28.34 6.56 23.57 10.94 29.11 4.81 100 10 52.94 11.93 0 0 
95% 100 0 20 20 0 0 28.13 0 21.53 4.17 29.11 0 100 0 52.94 0 0 0 
90% 100 0 20 20 0 0 31.25 18.75 25.70 18.06 29.11 13.92 100 100 52.94 31.37 0 0 
75% 100 0 20 20 0 0 29.07 18.75 25.21 18.06 29.11 13.92 100 100 52.94 31.37 0 0 
25% 100 0 0 0 0 0 28.13 18.75 24.72 14.79 29.11 10.51 100 10 52.94 25.88 0 0 
10% 100 0 0 0 0 0 28.13 15.63 24.31 13.02 29.11 6.33 100 0 52.94 17.65 0 0 
5% 100 0 0 0 0 0 28.13 0 22.92 8.33 29.11 1.27 100 0 52.94 3.92 0 0 
Min 100 0 0 0 0 0 28.13 0 22.22 6.94 29.11 0 100 0 52.94 3.53 0 0 
Max 100 0 20 20 0 0 28.13 0 22.01 5.56 29.11 0 100 0 52.94 0 0 0 

Table 30: Mutation scores per mutation operator statistics for Cruise Control  
Only mutation operators for which a driver (code or statechart) had detected one or more faults had been included in results’ 

tables; for example, no column has been reported for the JSI mutation operator for Cruise Control as no driver had detected any of JSI 
faults. For each mutation operator in the results’ table, we present: (1) the number of created mutants per cluster (in brackets), (2) the 
percentage of detected mutants by statechart drivers of that particular mutation operator (the column named Fs), and (3) the 
percentage of detected mutants by statechart drivers, not detected by code drivers, of that particular mutation operator (the column 
named Fs-Fc). Drivers used to generate these results are those selected based on the criteria defined in Section 4.2. 
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 Mutation scores descriptive statistics in: 
 JSI (5) EAM (4) AORB (90) AORS (8) AOIU (48) AOIS (297) AODU (4) ROR (47) COR (6) COD (1) COI (4) 
 Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-F

Median 40 0 75 0 75.56 11.11 75 0 85.42 9.38 58.59 6.73 75 0 65.96 6.38 100 0 100 0 100 12.5
Mean 42.86 1.79 75 9.38 69.21 13.87 75 8.71 75.89 9.97 55.96 9.39 82.14 0.89 62.61 6.08 97.62 9.52 100 0 100 18.7
95% 40 0 75 0 38.89 0 50 0 50 0 38.72 0 75 0 42.55 0 83.33 0 100 0 100 0 
90% 60 20 75 75 91.11 57.78 87.5 37.5 91.67 41.67 65.32 36.7 100 25 78.72 21.28 100 33.33 100 0 100 50 
75% 54 20 75 75 88.78 48.06 87.5 37.5 90.42 37.5 65.12 31.4 100 0 76.81 14.89 100 33.33 100 0 100 50 
25% 48 0 75 75 86.44 25.56 87.5 25 89.17 14.58 64.92 17.51 100 0 74.89 13.83 100 33.33 100 0 100 50 
10% 40 0 75 0 81.67 18.89 87.5 12.5 86.46 12.5 63.64 13.22 87.5 0 71.28 10.64 100 16.67 100 0 100 31.2
5% 40 0 75 0 57.78 3.33 68.75 0 65.63 2.08 50.92 1.68 75 0 54.26 0 100 0 100 0 100 0 
Min 40 0 75 0 39.56 0 57.5 0 51.25 0 41.95 0.34 75 0 46.38 0 93.33 0 100 0 100 0 
Max 40 0 75 0 39.22 0 53.75 0 50.62 0 40.34 0 75 0 44.47 0 88.33 0 100 0 100 0 

Table 31: Mutation scores per mutation operator statistics for OrdSet  
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Appendix D OrdSet statechart guard conditions  
 
A:  ((v->size()).mod(min_set_size) = 0 and  

v->asSet()->size() < v->size()) 
   or ((v->size()).mod(min_set_size)<> 0) 
   or (v->size() > max_set_size and  

v->asSet()->size() < max_set_size) 
 
B: (s1.getSetElements()->size() +  

s2.getSetElements()->size()).mod(min_set_size) = 0 and  
s1.getSetElements()-> 
intersection(s2.getSetElements())->size() <> 0) 

   or (s1.getSetElements()->size() + 
s2.getSetElements()>size()).mod(min_set_size) <> 0) 

or (s1.getSetElements()t->size() +  
s2.getSetElements()->size() > max_set_size and 
s1.getSetElements()-> 
union(s2.getSetElements())->size() < max_set_size) 

 
C: ((v->size()).mod(min_set_size) = 0 and  

v->asSet()->size() = v->size()) 
or (v->size() > max_set_size and v->asSet()->size() = 
max_set_size) 

 
D: (s1.getSetElements()->size() +  

s2.getSetElements()->size()).mod(min_set_size) = 0 and  
s1.getSetElements()-> 
intersection(s2.getSetElements())->size() = 0) 

    or (s1.getSetElements()-> 
union(s2.getSetElements())->size() = max_set_size) 

 
E: s1.getSetElements()-> 

union(s2.getSetElements())->size() > max_set_size 
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Appendix E Contracts 
E.1 Cruise Control’s Contracts 
E.1.1 CruiseControl class 

context CruiseControl::handleCommand(command: String): Boolean 
pre: -- none 
post: result = Sequence{“engineOff”, “engineOn”, “accelerator”,  

“brake”, “on”, “off”,“resume”}->includes(command) 

E.1.2 SpeedControl class 
context SpeedControl:: SpeedControl(cs: CarSpeed) 
pre: not cs.ignition 
post: setSpeed = 0 and state = #DISABLED 
 
context SpeedControl::clearSpeed() 
pre: -- none 
post: self.speed = 0 
 
context SpeedControl::enableControl() 
pre: -- none 
post: self.state = #ENABLED  
 
context SpeedControl::disableControl() 
pre: -- none 
post: self.state = #DISABLED 
 
context SpeedControl::run() 
pre: -- none 
post: state = #DISABLED 
 
context SpeedControl::getState(): Integer 
pre: -- none 
post: result = self.state 

E.1.3 CarSimulator class 
context CarSimulator 
inv: throttle >=0 and throttle <=maxThrottle 
 and speed >= 0 and speed <= maxSpeed 
 and brakepedal >= 0 and brakepedal <= maxBrake 
 and ((ignition = false) implies (speed = 0 and distance = 0 and  

throttle = 0 and brakepedal = 0)) 
 
context CarSimulator::engineOn() 
pre: -- 
post: self.ignition 
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context CarSimulator::engineOff() 
pre: -- 
post: not self.ignition  
 
context CarSimulator::accelerate() 
pre: -- 
post: brakepedal=0 and (throttle=throttle@pre+5 or  

throttle=maxThrottle) 
 
context CarSimulator::brake() 
pre: -- 
post: throttle=0 and (brakepedal=brakepedal@pre+1 or  

brakepedal=maxBrake) 
 
context CarSimulator::run() 
pre: -- 
post: ignition = false 
 
context CarSimulator::setThrottle(val: Integer) 
pre: -- 
post: brakepedal=0 and  

((val>=0 and val <= maxThrottle) implies (throttle=val)) 
and (val<0 implies throttle =0) 
and (val >maxThrottle implies throttle=maxThrottle) 

 
context CarSimulator::getSpeed(): Integer 
pre: -- 
post: result=self.speed 
 
context CarSimulator::getDistance(): Integer 
pre: -- 
post: result=self.distance 
 
context CarSimulator::getBrakepedal(): Integer 
pre: -- 
post: result=self.brakepedal 
 
context CarSimulator::getIgnition(): Boolean 
pre: -- 
post: result=self.ignition 
 
context CarSimulator::getThrottle(): Double 
pre: -- 
post: result=self.throttle 
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E.1.4 Controller class 
context Controller 
inv: (self.controlState = INACTIVE) implies  
       (self.sc.state=DISABLED and self.sc.setSpeed >= 0  
        and not self.sc.cs.ignition) 
     and (self.controlState = ACTIVE) implies  
       (self.sc.state=DISABLED and self.sc.setSpeed = 0  
        and self.sc.cs.ignition) 
     and (self.controlState = CRUISING) implies  
       (self.sc.state=ENABLED and self.sc.setSpeed > 0  
        and self.sc.cs.ignition) 
     and (self.controlState = STANDBY) implies  
       (self.sc.state=DISABLED and self.sc.setSpeed > 0  
        and self.sc.cs.ignition) 
 
context Controller:: Controller(cs: CarSpeed) 
pre: not cs.ignition 
post: result.controlState = INACTIVE 
 
context Controller:: brake() 
pre: -- 
post: (controlState@pre=CRUISING) implies  

(sc.state=DISABLED and controlState=STANDBY) 
 
context Controller:: accelerator() 
pre: -- 
post: (controlState@pre=CRUISING) implies  

(sc.state=DISABLED and controlState=STANDBY) 
 
context Controller:: engineOff() 
pre: -- 
post: (controlState@pre<>INACTIVE) implies  

(sc.state=DISABLED and controlState=INACTIVE) 
 
context Controller:: engineOn() 
pre: -- 
post: (controlState@pre=INACTIVE) implies  

(sc.setSpeed=0 and controlState=ACTIVE) 
 

context Controller:: on() 
pre: -- 
post: (controlState@pre<>INACTIVE) implies  
(sc.setSpeed = sc.cs.speed and sc.state=ENABLED and  
controlState=CRUISING) 
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context Controller:: off() 
pre: -- 
post: (controlState@pre=CRUISING) implies  

(sc.state=DISABLED and controlState=STANDBY) 
 
context Controller:: resume() 
pre: -- 
post: (controlState@pre=STANDBY) implies  

(sc.state=ENABLED and controlState=CRUISING) 

E.2 OrdSet’s Contracts 
context OrdSet 
inv: _set_size >= min_set_size 
     and  _set_size <= max_set_size 
     and  _set_size.mod(min_set_size) = 0 
     and  _resize_times <= max_accepted_resizes 
     and  _last < _set_size 
     and  Sequence{1 .. _last+1}->  

forAll(i,j| (i<j) implies (_set->at(i) < _set->at(j)) 
     and  _last + 1 = self.getActualSize() 
     and  _last + 1 = self.getSetElements() ->size() 
 
context OrdSet::defSetSize(n: int): int  
pre: n >= 0 
post: (n < min_set_size) implies (result = min_set_size) 
     and  (n >= max_set_size) implies (result = max_set_size) 
     and  ((n > min_set_size and n < max_set_size) implies  

  (result.mod(min_set_size) = 0  and result <  
     n+min_set_size)) 

 
context OrdSet::initSetArray (v: int[])  
pre: none 
post: self._set_size = self.defSetSize(v->size()) 
      and  self._last < v->size() 
      and  Sequence{1.._last+1}->forAll(i |  
              v->includes(_set->at(i)) 
 
context OrdSet::resizeArray() 
pre: _last = _set_size - 1 
post: (_resized_times@pre < max_accepted_resizes and  
       _set_size@pre + min_set_size <= max_set_size) implies 

(_set_size = _set_size@pre + min_set_size and 
 _resized_times = _resized_times@pre + 1) 
and 
(_resized_times@pre == max_accepted_resizes or  
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  _set_size@pre + min_set_size > max_set_size) implies 
  (_overflow = true) 
 
context OrdSet::OrdSet (size: int)  
pre: none 
post: self._set_size = self.defSetSize(size) 
      and  self._resized_times = 0 
      and  _overflow = false 
      and  self._last = -1 
      and  self.getSetElements()->isEmpty 
 
context OrdSet::OrdSet(v: int[])  
pre: none 
post: self._set_size = self.defSetSize(v->size()) 
      and  self._last < v->size() 
      and  Sequence{1.._last+1}->forAll(i | v->includes(_set 

->at(i)) 
 
context OrdSet::getResizedTimes(): int 
pre: none 
post: result = _resized_times 
 
context OrdSet::getSetSize(): int 
pre: none 
post: result = _set_size 
 
context OrdSet::getActualSize(): int 
pre: none 
post: result = _last + 1 
 
context OrdSet::getSetLast(): int 
pre: none 
post: result = _last 
 
context OrdSet::getSetArray(): int[] 
pre: none 
post: result = _set 
 
context OrdSet::getSetElements(): int[] 
pre: none 
post: Sequence{0.._last}->forAll(i|result->at[i] =  

_set->at[i]) 
 
context OrdSet::isEmpty(): boolean 
pre: none 
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post: result = _set->isEmpty() 
 
context OrdSet::isOverflow(): boolean 
pre: none 
post: result = _overflow 
 
context OrdSet::equals(x: OrdSet): int  
pre: none 
post:  result = Sequence{0 .. last} 

->forAll(i|self.elementAt(i) = x.elementAt(i) 
 
context OrdSet::contains(n: int) : boolean 
pre: none 
post: result = self.getSetElements()->includes(n) 
 
context OrdSet::contains (x: OrdSet): boolean 
pre: x->notEmpty() 
post: result = self.getSetElements() 

->includesAll(x.getSetElements()) 
 
context OrdSet::remove (val: int): boolean  
pre: none 
post: not _overflow implies  
(result = self.getSetElements()@pre->includes(val) 

 and 
 not self.getSetElements()->includes(val)) 
 
context OrdSet::add(n: int)  
pre: none 
post: not _overflow implies  
(_set->includes(n) and ( 
(!_set@pre->includes(n) and _last=_last@pre + 1) or  
 (_set@pre->includes(n) and _last=_last@pre))) 

 
context OrdSet::elementAt(where: int): int  
pre: none 
post: (where < 0 or where > self._last) implies (result = -1) 
     and 

(where >= 0 and where <= self._last) implies (result = 
 _set->at(where + 1)) 

 
context OrdSet::make_a_free_slot(n: int): int  
pre: none 
post: result >= 0  
      and  result <= _last@pre+1) 
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      and  Sequence{0..result-1}->forAll(i|self.elementAt(i) =  
            self@pre.elementAt(i) 
      and  Sequence{result+1.._last}->forAll(i|self.elementAt(i) =  
            self@pre.elementAt(i-1) 
 
context OrdSet::union(s2: OrdSet): OrdSet 
pre: none 
post: result._set_size = defSetSize(self._last + s2._last + 2) 
      and  not result._overflow implies result.getSetElements()-> 

  forAll(item | self.getSetElements()->includes(item) or  
  s2.getSetElements()->includes(item)) 
 

context OrdSet::binSearch(a: int[],nElts: int, x: int): int 
pre: nElts >= 0 
post: (result = -1) implies (Sequence{1..nElts}->forAll(i|  

a->at(i) <> x)   
xor  a->at(result + 1) = x 

 
context OrdSet::toString(): String 
pre: none 
post: none 
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