
Carleton University, TR SCE-06-15 September 2006

1

Assessing, Comparing, and Combining Statechart-
based testing and Structural testing: An Experiment

Samar Mouchawrab, Lionel C. Briand, Yvan Labiche

Software Quality Engineering Laboratory
Carleton University, Ottawa, Canada

Abstract
An important number of studies have addressed the importance of models in

software engineering, mainly in the design of robust software systems. Although models
have been proven to be helpful in a number of software engineering activities, such as
providing a better medium for communication among designers and customers, there is
still significant resistance to model-driven development in many software organizations.
The main reason is that it is perceived to be expensive and not necessarily cost-effective.
This paper investigates one specific aspect of this larger problem. It addresses the impact
of using statecharts for testing class clusters that exhibit a state-dependent behavior. More
precisely, it reports on a controlled experiment that investigates their impact on testing
fault-detection effectiveness and cost. Code-based, structural testing is compared to
statechart-based testing and their combination is investigated to determine whether they
are complementary. Results show that there is no significant difference between the fault
detection effectiveness of the two test strategies but that they are significantly more
effective when combined. This implies that a cost-effective strategy could be to specify
statechart-based test cases early on, execute them when the source code becomes
available, and then complete them with code-based test cases based on coverage analysis.
This article also investigates the reasons for undetected faults and how the statechart-
based testing of source code could be improved.

1 INTRODUCTION

There is an increasing interest in model-driven development for object-oriented
systems, using for example the Unified Modeling Language (UML). In addition to be a
key resource for designing object-oriented software and providing means for
communicating ideas among designers and customers, models are very useful in testing
object-oriented software. A number of model-based testing methodologies have been
proposed based for example on use cases, class diagrams, and statecharts [8, 9, 11, 16,
34, 36, 38, 40, 41].

Model-based testing has been assessed in a number of empirical studies and
showed to be useful in systematically defining test strategies and criteria, and deriving
test cases and oracles [10, 12, 14, 17, 37, 38, 42]. A number of researchers conducted
studies on the cost effectiveness of conventional testing strategies, i.e. white-box [21-23,

Carleton University, TR SCE-06-15 September 2006

2

26, 46] and black-box testing strategies [44, 47] such as edge coverage and category-
partition respectively, while others focused on the cost-effectiveness of model-based
testing strategies such as the Round-trip path technique [10]. This related work is further
detailed in Section 2.

Despite a growing number of studies [5, 9-12, 14, 16, 17, 36-38], little empirical
evidence is found in literature on the importance of models in improving testing cost-
effectiveness. As a result, there is little incentive for testers to adopt model-driven testing
practices and it is difficult to determine how they should be integrated, if at all, with
traditional testing practices. This article focuses on the effectiveness of UML statechart-
based testing when compared and combined to white-box, structural testing. The main
motivation for this choice is that structural coverage analysis is still the most common
basic technique for testing components, but the most complex components in object-
oriented software are also the ones which, according to mainstream UML development
methods, should be modeled with statecharts. So assessing the cost-effectiveness of
testing techniques based on statecharts and comparing it with simpler, code coverage-
based techniques seems a logical investigation to undertake. The choice of UML
statecharts is a practical one as UML is becoming a de facto standard. In this paper we
perform both a quantitative analysis of differences in fault detection effectiveness and
cost among test techniques, and a qualitative analysis to understand the reasons for these
differences and the variations observed across drivers and class clusters.

At a high level, this research entails addressing the following questions:

• Are test cases identified and generated based on the statechart alone effective in
detecting faults when compared to simple code-based, structural testing?

• Are the faults detected by statechart-based testing and structural testing
techniques complementary?

• What are the different factors that impact the effectiveness of statechart-based
testing techniques (e.g., statechart and code properties)?

Empirical studies are required to answer such questions and this can be achieved by
conducting experiments on a number of object-oriented class clusters with a state-
dependent behavior and their associated models. As a first step in that direction, this
paper describes a controlled experiment conducted on two class clusters and which main
contributions are:

 A thorough experimental evaluation of the fault detection effectiveness and cost
of the state-based, Round-trip path testing technique and a comparison with
simple but common baseline: simple code-based, structural testing.

 An investigation into the complementariness of statechart-based testing and
structural testing to improve fault detection rates.

 An investigation of the factors that could affect the relationship between test
techniques and fault detection effectiveness, including code and statechart
characteristics, coverage, and the type of faults.

The paper is organized as follows: Section 2 discusses the related literature and
Section 3 provides a detailed description of the conducted controlled experiment. Section

Carleton University, TR SCE-06-15 September 2006

3

4 presents and analyses the results, while Section 4.6 summarizes the outcome of the
experiment and provides learned lessons for upcoming experiments. Overall conclusions
and future work are provided in Section 5.

2 RELATED WORK

Model-based testing methodologies have been proposed and advocated by
researchers in a number of studies. One of the earliest works on state-based testing is the
work by Chow [18] who proposed the W-method for finite state-machines. This method
has been adapted to UML statecharts by Binder [8] under the name of round-trip paths
strategy. In both techniques, the statechart is traversed as to construct a transition tree that
includes all transitions in the statechart.

Other state-based techniques were proposed by Offutt et al. [42]. The authors
introduced test techniques for generating test data from formal state-based specifications.
They defined four state-based testing criteria: (1) transition coverage, (2) full predicate
coverage, (3) transition-pair coverage, and (4) complete sequence. A case study was used
to compare the different criteria with a random selection of test cases. Results showed an
important improvement in fault detection when using the full-predicate coverage
criterion. Though transition coverage yielded a small number of test cases, these test
cases showed the same fault detection rate and branch coverage (of the source code
control flow graph) as the random selection test strategy.

Additional testing strategies have been defined for statecharts. Hong et al. [25]
propose a technique to derive extended finite state machines from statecharts. A
statechart is then transformed into a flow graph modeling the control flow and data flow
in the statechart thus enabling the application of conventional control and data flow
analysis techniques. A modification of this method is described in [9] to address the
compliance of an implementation of a system to its specification.

UML use cases were also the base for model-based system testing methodologies.
Briand and Labiche in [11] proposed the TOTEM system test methodology based on use
cases and their related UML artifacts including sequence diagrams, class diagrams and
OCL contracts. Functional test requirements would be derived from use cases, their
parameters and their sequence constraints, then transformed into test cases using the other
related artifacts. An issue that encountered this methodology is the exponential increase
in number of test cases when conditions, such as pre and post conditions of methods in
sequence diagrams, or guard conditions include more than one predicate. This limits the
automation of the methodology.

Nebut et al. defined a systematic approach for generating test-cases based on
functional requirements expressed with UML use cases [37]. It is an attempt to fill-in the
gap between functional specifications in form of UML use cases and concrete test cases.
The authors propose a requirement-by-contract approach to add pre and post conditions
to use cases. This approach is inspired by the design-by-contract approach of Meyer [35].
These contracts are used for ordering the functionalities of the system and consequently
to generate correct sequence of use cases which they denote as test objective. Test
scenarios are then generated from test objectives to produce executable test cases. At this

Carleton University, TR SCE-06-15 September 2006

4

point, tester interaction may be needed to add input parameters to test cases. Note that to
generate test scenarios additional information describing the scenarios corresponding to
use cases are necessary (e.g. sequence diagrams). This principle of transformation has
been inspired by the work of Briand and Labiche in [11]. All possible orderings of use
cases are collected in one representation, the UTCS, from which a subset is selected
based on one of the proposed coverage criteria as to generate test objectives. Criteria
included: All edges, all vertices, all instantiated use cases, all precondition terms, and
robustness criterion. The latter corresponds to exercising a use case in as many different
ways as there are predicate combinations to make its precondition evaluate to false. The
approach was evaluated in three case studies. Results showed that most code statements
are covered by the proposed technique. The authors recommend the combination of the
two criteria “all precondition terms and robustness to achieve a satisfactory trade-off
between the efficiency of the obtained test set and its size [37].

A growing number of empirical studies address the cost effectiveness of testing
strategies, in white-box context [21, 23, 46], black-box conventional context [47], or
model-based context [2, 3, 10, 14, 37]. Many of these studies use the mutation strategy to
seed faults and evaluate the fault detection effectiveness of the testing techniques. For
instance, a simulation and analysis procedure [14] has been proposed and used to study
the cost-effectiveness of four statechart-based coverage criteria, namely all-transitions,
all-transition-pairs, full-predicate [42], and round-trip paths [8]. The results show that the
cost effectiveness of testing criteria depends on the characteristics of the statechart. For
complex statecharts (e.g., guard conditions), round-trip paths provide a good compromise
between all-transitions and all-transition-pairs, the latter being far too expensive and the
former rather ineffective.

An empirical study in the context of white-box testing strategies was performed by
Frankl and Weiss [21] where the all-uses and decision (all-edges) criteria were compared
to each other and to the null criterion (random test suites). This study was performed on
nine very small programs whose size ranges from 33 to 60 LOCs for which the authors
had access to real faults (one fault per program was used). Results showed that all-uses
strategy was not always more effective than the decision and the null criterion but that
when it was more effective, it usually was much more so. For decision, when more
effective than the null criterion, the difference was much smaller. In other words, results
varied according to the program and fault analyzed.

Briand et al. [10] focused on the cost effectiveness of the Round-trip path technique
defined in [8]. The study was based on a series of controlled experiment where the
Round-trip path technique was applied on a number of systems with two different levels
of oracle precision. Results show that the state-based testing technique was useful in
detecting faults but needed to be complemented with black-box method testing to achieve
higher fault detection rates. Results of the comparison between the two oracle strategies
indicate a significant difference between them in terms of fault detection and cost: precise
oracles, checking the concrete state of objects after the execution of a transition,
significantly increased the detection rate over state invariant oracles, though at a much
higher cost.

A controlled experiment reported in [3] investigated the impact of UML
documentation on software maintenance. The results showed that for complex tasks and

Carleton University, TR SCE-06-15 September 2006

5

past a certain learning curve, the availability of UML documentation may result in
significant improvements of the functional correctness of changes as well as their design
quality when compared to changes produced without access to UML documentation. The
results also showed that for simpler tasks, the time needed to update UML documentation
was substantial compared to the potential benefits [3].

As in [10], this paper investigates statechart-based testing based on a controlled
experiment. However, in addition, it assesses whether there is any gain in terms of fault
detection effectiveness compared to simple test suites driven by code structural coverage.
Furthermore, it explores whether the two approaches are complementary and can be
combined in a cost-effective way, and what are the factors that can affect these results.

3 EXPERIMENT DESCRIPTION

In this section, we follow the template provided by Wohlin et al. in [49] to
describe the experiment. First, we define the objective of the experiment and its
context (Section 3.1), next we describe the plan of the experiment including the
context selection criteria, the research questions and the experiment design (Section
3.2). In Section 3.3 we describe how we prepared the experiment and how we
conducted it. Finally, we discuss threats to validity of the experiment in Section 3.4.

3.1 Experiment definition and context

We investigate whether statechart-based testing would somehow improve the cost-
effectiveness of testing class clusters, either by itself or when combined with simple
structural testing. With that goal in mind, at a high level, our dependent variables will be
based on the following constructs:

• Fault detection effectiveness, overall and across different fault types to be
defined in Section 3.2.5.

• Cost for both test specification and execution.

The experiment was conducted in the context of a laboratory for a fourth year
engineering course on software testing. The experiment took place in the last two weeks
of the course to make sure the students had gained an acceptable testing knowledge that
would allow them to understand and execute the required tasks of the experiment. These
students had all passed two previous courses on UML-based development and a number
of courses involving Java programming.

Statechart models do not only include the statecharts themselves but also the
related artifacts that are required to understand them such as class diagrams, class public
interfaces (signatures, attributes), contracts and state invariants, and a textual high level
description of the software functionalities and objectives. However, as subjects working
with the UML artifacts are expected to use the statechart diagram to generate test cases,
for the sake of brevity, we will simply refer to them as a “statechart model” in the
remainder of the paper.

Carleton University, TR SCE-06-15 September 2006

6

The experiment involved two Java class clusters; both of them have a state-driven
behavior depicted in a UML statechart:

a) OrdSet, is a Java class (of 393 lines of code) where each instance represents a
bounded, ordered set of integers. When an OrdSet is first created, its size gets
initialized. The size of an OrdSet represents slots that can be used to add
integers to the set. The size should be at least equal to the minimum set size and
it should not exceed the maximum set size. The size of an OrdSet is always a
multiple of the minimum set size. The user can choose a size for the OrdSet by
providing an integer value to one of the constructors, but the actual size gets
initialized based on the constraints above. The OrdSet class provides methods
for adding a single element, removing a single element and creating the union
of two ordered sets. An OrdSet gets resized when adding a new element if the
set is full. The number of resizes allowed is set to a constant
max_accepted_resizes. Trying to resize the set over the
max_accepted_resizes or for a size that exceeds the maximum set size
would not be allowed; in that case, an overflow in the instance of OrdSet is
detected and no more insertion or removal of elements is allowed on the
ordered set. An attempt to add or remove an element from an ordered set after
an overflow is detected would raise an OverflowException. Figure 1 shows
the statechart of class OrdSet with guard conditions in the Object Constraint
Language (OCL). Some guard conditions are denoted by a letter and fully
described in Appendix D to avoid cluttering the diagram.

Empty Filled

Partially Filled

Overflow

remove(int val)

add(int n)
remove(int val)

[self ._set->includes(val) and self._set->size()=1]

add(int n)
[self._set->includes(n)

or ((not self._set->includes(n))
and self._set->size()
< self._set_size – 1)]

OrdSet(int[] v) [A]

add(int n)

OrdSet(int n)

OrdSet(int[] v)[v->isEmpty()]

s1.union(OrdSet s2) [s1.isEmpty() and s2.isEmpty()]

s1.union(OrdSet s2) [B]

add(int n)
[(not self._set->includes (n))

and (self._set->size()
= self._set_size – 1)]

remove(int val)
[self ._set->includes (val)]

remove(int val)
[(self._set->includes(val)
and self._set->size() > 1)

or (not self._set->includes(val))]

remove(int val)

add(int n)
[_resized_times < max_accepted_resizes and
_set_size + min_set_size <= max_set_size and

not self._set->includes(n)]

add(int n)
[self._set->includes(n)]

remove(int val)
[not self._set->includes(val)]

add(int n)
[(_resized_times >= max_accepted_resizes or

_set_size + min_set_size > max_set_size)
and not self._set->includes(n)]

OrdSet(int[] v) [C]

s1.union(OrdSet s2) [D]

s1.union(OrdSet s2) [(not s1.isEmpty()) and (not s2.isEmpty()) and
(s1.getActualSize () + s2.getActualSize() – s1.intersection(s2).getActualSize () > max_set_size)]

OrdSet(v) [v->asSet()->size() > max_set_size]

Figure 1: OrdSet state diagram

b) Cruise Control is a cluster of four Java classes (358 lines of code) and its

class diagram and statechart are shown in Figure 2 and Figure 3, respectively.
Cruise Control is a simplified version of a complex Cruise Control system

Carleton University, TR SCE-06-15 September 2006

7

implemented as a 4th year engineering project. It simulates a car engine and its
cruising controller, and consists of a cluster of classes:

a. CruiseControl: the container of the car simulator (engine simulator) and
the cruise controller of that car. This is the facade of the cluster. It receives
commands as strings and dispatches them to the car and the controller.
The commands are: "engineOn" to start the engine, "engineOff" to stop
the engine, "accelerator" to accelerate, "brake" to brake, "on" to turn the
cruise control on, "off" to turn the cruise control off, and "resume" to
enable the cruise control again with the earlier selected target cruise speed.

b. CarSimulator: simulates a car engine, runs a thread while the car is
started, and simulates car speed changes based on the throttle and brake
settings as well as the controlled speed by the cruising system when the
latter is enabled.

c. Controller: simulates the cruise control of the car, it contains a
SpeedControl thread that runs when cruising is enabled. It disables,
enables or resumes cruising according to the commands received by
CruiseControl.

d. SpeedControl: a thread that runs in the Controller to adjust car speed
whenever cruising is enabled. On enabling cruising ("on"), the current car
speed is recorded to be maintained for the duration of cruising time. When
resuming cruising, the latest target cruise speed is used as the speed to
maintain while cruising.

- ignition: boolean
- throttle: double
- speed: int
- distance: int
- brakepedal: int
maxSpeed: int = 120 {final}
maxThrottle: double = 10.0 {final}
maxBrake: int = 10 {final}

CarSimulator

DISABLED: int = 0 {final}
ENABLED: int = 1 {final}
- state: int = DISABLED
- setSpeed: int = 0

SpeedControl

INACTIVE: int = 0 {final}
ACTIVE: int = 1 {final}
CRUISING: int = 2 {final}
STANDBY: int = 3 {final}
- controlState: int = INACTIVE

Controller

“interface”
Runnable

CruiseControl

car

control

-sc

-cs

Figure 2: Cruise Control Class Diagram

Carleton University, TR SCE-06-15 September 2006

8

Inactive/
Idle

Active/
Running

Cruising/
Running

Standby/
Running

“engineOn”/car.engineOn(); sc.clearSpeed()

“engineOff”/car.engineOff(); sc.disableControl()

“on”/sc.recordSpeed();
sc.enableControl()

“engineOff”/car.engineOff();
sc.disableControl()

“off”/sc.disableControl()
“accelerator”/car.accelerate(); sc.disable()

“brake”/car.brake(); sc.disable()

“on”/sc.recordSpeed(); sc.enableControl()
“resume”/sc.enableControl()

“engineOff”/car.engineOff();
sc.disableControl()

“on”/sc.recordSpeed();
sc.enableControl()

“brake”/car.brake()

“accelerator”/
car.accelerate()

“brake”/car.brake()

“accelerator”/
car.accelerate()

Figure 3: Cruise Control State Diagram

The two above class clusters were selected in part because of their differences.
They represent two typical cases where a statechart is used to model the behavior of a
complex data structure (OrdSet) and a state-dependent control class in a control system
(CruiseControl). Table 1 provides size data pertaining to the two code artifacts and
statecharts. Although OrdSet is composed only of one class, one can note that its
statechart and control flow are more complex than those of CruiseControl; this is visible
from the number of control flow edges in the OrdSet source code and the number of
transitions in its state diagram. Furthermore, the guard conditions in the OrdSet statechart
adds to the complexity of the class, whereas Cruise Control is event-driven only.

 Cruise Control OrdSet
classes 4 1
operations 34 23
attributes 14 5
LOC 358 393
control flow statements 33 36
nodes 106 111
edges 103 126
transitions 17 22
states 5 5
events 7 5

Table 1: Size of source code and statecharts

Carleton University, TR SCE-06-15 September 2006

9

3.2 Experiment planning

3.2.1 Context Selection
The subjects in this experiment were fourth-year students from a software or

computer system engineering program. They were well versed in Java and UML and
were attending a course on software testing that covers different white-box and black-box
testing techniques with a focus on object-oriented testing. The experiment was conducted
during the lab hours of that course as part of practical lab exercises. A total of 34 students
participated in the experiment. The students did not know precisely what hypotheses
were tested and were told that their test drivers will be marked for correctness and
quality, as it would be expected from such lab exercises.

The method for the selection of subjects follows a stratified random sampling [29];
subjects were first assigned to five blocks based on their background and knowledge of
object-oriented design and development techniques, then they were randomly selected
from the different blocks to form four groups with a similar distribution to ensure the
results would not be affected by random variations in subject experience across groups.
In addition, groups were defined to be of similar sizes (Table 3) to ensure a balanced
contribution of test techniques/clusters combinations to the results. However, they were
practical constraints regarding the availability of certain subjects and this limited the
randomization of selection. In spite of this issue, we managed to ensure that we had
comparable block distributions across groups where each block is represented by a
similar number of subjects in every group.

3.2.2 Research questions
In this section we provide a detailed description of the research questions to be

addressed by the experiment. Table 2 lists research questions to be investigated in order
to address the objectives listed in section 3.1. The fault detection effectiveness of both
statechart-based and code-based test techniques is addressed in research question 1.
Research questions 3 and 4 are related to studying how complementary the two
techniques are. Answering research questions 2 and 5 would help us identify factors that
have an interaction effect with the test technique on fault detection effectiveness while
answers to research questions 7 and 8 would be used to compare test techniques in
regards to their cost and cost effectiveness. In research question 6 we try to identify fault
types for which one of the test techniques is a better detector, while in research question 9
we investigate the possibility of improving statechart-based testing to improve its fault
detection effectiveness.

Carleton University, TR SCE-06-15 September 2006

10

Number Research Question

RQ1 What is the difference, in terms of fault detection effectiveness, between test cases
generated from statecharts (Ts) and test cases generated only based on node and edge
coverage of the source code control flow (Tc)?

RQ2 Are there interaction effects regarding fault detection effectiveness between code
coverage, learning effects, subject ability and software properties (code, statechart
properties) and the test technique applied?

RQ3 Are statechart-based testing and code-based testing complementary in terms of fault
detection?

RQ4 When using Ts together with Tc, is there a significant improvement in terms of faults
detected over using Ts and Tc alone?

RQ5 Is there an interaction effect between code characteristics of class clusters and test
technique on the percentage of faults detected when combining Tc and Ts?

RQ6 Are there specific fault types that are more likely to be detected by Ts or Tc and for
which the combination of both sets of test cases is particularly effective?

RQ7 How does the cost between statechart-based testing and code-based testing compare?

RQ8 How does the cost-effectiveness between statechart-based testing and code-based
testing compare?

RQ9 Based on the faults not detected by Ts, what can be added to the statechart model to
help generate test cases that target those types of faults?

Table 2: Research questions

3.2.3 Variable Selection
Recall the dependent variables are fault detection effectiveness and test cost. There

is one independent variable of interest (treatment): The type of artifacts provided as a
base to testing (i.e., statechart model or code). However, as further discussed below, a
number of other variables were checked to see whether they interact with the effect of our
independent variable: code coverage, learning effects, subject ability and software
properties.

The treatments under investigation correspond to the following test artifacts:
a) Code, complemented with some textual comments to define the meaning of the

most complex variables and methods. We also provide a high level textual
description of the cluster objectives and functionalities.

b) Statechart describing the behavior of classes, plus the related public interface(s),
class diagram, contracts, state invariants and a high level textual description of the
software objectives and functionalities.

When statecharts are used, subjects are expected to generate test sets based on the
Round-trip Path (RTP) testing technique [8], a common state-based testing strategy that
can scale up to large statecharts but that is more demanding than simply covering all
transitions. A statechart would be represented as a tree graph called transition tree which
includes (in a piecewise manner) all the transition sequences (paths) that begin and end
with the same state, as well as simple paths (i.e., sequences of transitions that contain
only one iteration for any loop present in the statechart) from the initial state to the final

Carleton University, TR SCE-06-15 September 2006

11

state. A procedure based on a breadth-first traversal of the statechart is used for deriving
the transition tree. More precisely, during the traversal of the graph corresponding to the
statechart, a tree node is considered terminal when the state it represents is already
present anywhere in the tree or is the final state. The Round-trip Path testing technique
corresponds to covering all paths from the start node to the leaf nodes in a transition tree.
This tree was provided to support statechart testing in order to ensure the conformance of
test suites with the RTP strategy. We thus wanted to avoid the possible effect of
variations due to alternative and possibly wrong transition trees. This would have made
our results more difficult to interpret and alternative transition trees are in theory
supposed to be “equivalent” in the sense that they all cover (in a piecewise manner) the
round trip paths.

For code-based testing, subjects were told to attempt covering all blocs (nodes,
statements) and edges in the methods’ control flow graphs. This is a common practice
when testing classes and it is therefore a realistic baseline of comparison for the
statechart-based testing technique.

For both treatments, we were aware of the fact that coverage was unlikely to be
complete as time was limited and the skills of subjects were widely varying. However,
we considered this was not avoidable and decided to account for it in the analysis by
using coverage (statechart and code) as an interaction factor. For source code, both node
and edge coverage were planned to be used in the analysis. It is often the case that
controlled experiments have to choose between assessing the impact of a treatment on
either the time to perform the tasks or their effectiveness, but not both [6]. We are in the
latter case here.

Possible learning effects were simply measured by accounting during the data
analysis for the laboratory (see next section) in which the work took place. Subject ability
was measured by considering the block to which they belonged (from 1 to 5) as described
in Section 3.2.1. The experiment only involved two class clusters and it is therefore not
possible to analyze the impact of code and statechart characteristics on fault detection
through statistical analysis. We, however, perform an in-depth, systematic qualitative
analysis of why certain faults fail to be detected by test drivers.

3.2.4 Experiment design
To avoid learning or fatigue effects or the specific class clusters to have a

confounded effect with our treatments, each subject group performed the experiment in
two separate labs with a different class cluster under test and a different treatment. Table
3 shows the distribution of treatments among groups of subjects; the parentheses besides
group numbers represent the number of subjects per group. Each treatment is executed by
two different groups of subjects, in the first or the second lab (lab order). As a result, each
group executed different combinations of treatment and class cluster in each lab.

Every lab lasted 3 hours. Test drivers submitted by the different subjects were
executed offline on a set of mutant programs (Section 3.2.5) to measure fault detection.
Test drivers were also executed on an instrumented version of the original code of the
software under test to collect node and edge coverage data. The development and data
collection were done on the Eclipse 3.0 platform [27]. An Eclipse plug-in, Eclipse Test
and Performance Tools Platform project (TPTP) [27] was used to collect cost related

Carleton University, TR SCE-06-15 September 2006

12

data. The specification and execution cost of a driver is assumed to be proportional to the
number of methods it calls in the classes under test and we therefore use this variable as a
surrogate. Though this is clearly a strong assumption, for obvious practical reasons, it has
been a common one in testing studies [2, 7, 14, 26, 48]. Given that most methods in
object-oriented software are small, as the number of methods called grows, this count is
likely to become a more precise surrogate measure for cost.

 Group 1 (11) Group 2 (13) Group 3 (12) Group 4 (12)
Lab 1 Cruise Control +

Statechart OrdSet + Statechart Cruise Control +
Code OrdSet + Code

Lab 2 OrdSet + Code Cruise Control +
Code OrdSet + Statechart Cruise Control +

Statechart

Table 3: Distribution of experiment treatments among groups
For the sake of brevity, we will refer to statechart-based testing (drivers) of the

code as statechart testing (drivers). The same applies to code-based testing (drivers)
which is referred to as code testing (drivers).

To address the research questions listed in Table 2, we measure the dependent
variables as follows:

1. The faults detected using statecharts (Fs) and source code (Fc). The purpose
here is to compare the effectiveness of statechart testing and structural
testing in terms of their fault detection capability. This is involved in
research question RQ1.

2. The faults detected by both test techniques (Fs ∩ Fc). This is a measure of
how redundant the two techniques are. This is involved in research question
RQ3.

3. The faults detected only by statechart testing (Fs – Fc). We can thus
evaluate the effectiveness of statechart testing to detect faults that are not
detected by code drivers. This is another way to address RQ3.

4. The faults detected only by code driver (Fc – Fs). This helps us to identify
the weaknesses and limitations of statechart testing. This is another way to
address RQ3.

5. The ratio |Fs ∩ Fc| / |Fs|. The purpose here is to evaluate the proportion of
statechart test cases which are complementary to code test cases. This is
another way to address RQ3.

6. The ratio |Fs ∩ Fc| / |Fc|. The purpose here is to evaluate the proportion of
code test cases which are complementary to statechart test cases. This is
another way to address RQ3.

7. The faults detected when combining statechart and code test cases (Fs ∪
Fc). The purpose here is to evaluate the effectiveness of combining
techniques to overcome their limitations. This is involved in research
question RQ4.

Carleton University, TR SCE-06-15 September 2006

13

8. The ratio |Fs ∪ Fc| / |Fc|. The purpose here is to evaluate the relative
improvement in fault detection resulting from combining test techniques
over code test cases. This is another way to address RQ4.

9. The ratio |Fs ∪ Fc| / |Fs|. The purpose here is to evaluate the relative
improvement in fault detection resulting from combining test techniques
over statechart test cases. This is another way to address RQ4.

10. The variables in 3, 4, and 7 for each specific type of fault (mutation operator
as discussed in the following subsection). The purpose here is to answer the
above questions for each mutation operator. We only show these three
variables in the analysis below as the others can be deduced from them.
This is involved in research question RQ6.

11. The number of calls in test drivers to methods in classes under test (MC).
The purpose here is to evaluate and compare the cost of testing strategies
using a surrogate test driver size measure. This is involved in research
question RQ7.

12. For each test technique cost-effectiveness is computed as the ratio of faults
detected over MC. This is involved in research question RQ8.

Furthermore, a qualitative analysis of the statechart test drivers is performed to gain
insights into the reasons for differences among techniques. Categories modeling possible
reasons for not detecting a fault are defined and then used to classify all faults undetected
by Ts. This, in turn, helps us address question RQ9.

3.2.5 Mutation operators
To compare Ts and Tc, we execute the different drivers delivered by the

experiment subjects on a number of mutant programs (or mutants), that is versions of the
program under test where one fault was seeded using a mutation operator [30, 31]. The
mutants are generated automatically using MuJava [32]. MuJava uses two types of
mutation operators, class level and traditional method level operators. The main
motivations for following this procedure is to apply a systematic, automated, and
independent mechanism to generate a large number of faults thus facilitating the data
analysis [1]. Threats to validity related to mutation operators are discussed in section 3.4.

One issue to be addressed is the detection of equivalent mutants, i.e. mutants that
have the same behavior as the original program and therefore cannot be killed by test
cases. Manually identifying equivalent mutants is the most common practice but is time
consuming and error-prone. A number of studies addressed this issue and proposed
optimization techniques to automate the detection of equivalent mutants [39, 43].
However, these methods have shown to detect on average only half of the equivalent
mutants, and the detection ratio depends heavily on the program characteristics [43].
Instead, some authors proposed, as a heuristic, to consider live mutants not killed by any
test case in the overall test pool as equivalent mutants [4, 15, 19]. This approximation is
thought to be good enough especially when dealing with large number of mutants. But in
our case we know the testing performed by our experiment subjects is incomplete and
unlikely to kill all non-equivalent mutants. Therefore, we do not attempt to discard
equivalent mutants but present our results based on all mutants and then perform a

Carleton University, TR SCE-06-15 September 2006

14

manual, qualitative analysis of all undetected faults (Section 4.4) to assess the potential
impact of equivalent mutants on the fault detection effectiveness results.

Table 4 includes the list of all mutation operators used in this experiment along
with a brief description.

Mutation Operator Level Description

AORB (Arithmetic Operator
Replacement – Binary)

method Replaces basic binary arithmetic operators with other binary
arithmetic operators.

AORS (Arithmetic Operator
Replacement – Short-cut)

method Replaces short-cut arithmetic operators (++, --) with other
unary arithmetic operators.

AOIU (Arithmetic Operator
Insertion – Unary)

method Inserts basic unary arithmetic operators.

AOIS (Arithmetic Operator
Insertion – Short-cut)

method Inserts short-cut arithmetic operators.

AODU (Arithmetic Operator
Deletion – Unary)

method Deletes basic unary arithmetic operators.

ASRS (Assignment Operator
Replacement – Short-Cut)

method Replaces short-cut assignment operators (+=, -=, *=, /=, %=)
with other short-cut operators of the same kind.

ROR (Relational Operator
Replacement)

method Replaces relational operators with other relational operators.

COR (Conditional Operator
Replacement)

method Replaces binary conditional operators with other binary
conditional operators.

COD (Conditional Operator
Deletion)

method Deletes unary conditional operators.

COI (Conditional Operator
Insertion)

method Inserts unary conditional operators.

LOI (Logical Operator
Insertion)

method Inserts unary logical operator.

IOD (Inheritance – Overriding
method Deletion)

class Deletes an entire declaration of an over-riding method in a
subclass so that references to the method use the parent's
version.

JDC (Java-supported Default
constructor Creation)

class Forces Java to create a default constructor by deleting the
implemented default constructor.

JID (Java – member variable
Initialization Deletion)

class Removes the initialization of member variables in the variable
declaration so that member variables are initialized to the
appropriate default values of Java.

JSI (Java – Static modifier
Insertion)

class Adds the static modifier to change instance variables to class
variables.

JSD (Java – Static modifier
Deletion)

class Removes the static modifier to change class variables to
instance variables.

EAM (Encapsulation –
Accessor Method change)

class Changes an accessor method name for other compatible
accessor method names, where compatible means that the
signatures are the same.

Table 4: Mutation operators
Figure 4 shows the distribution of the created mutants among the different mutation

operators for the two clusters. This distribution looks different for the two class clusters

Carleton University, TR SCE-06-15 September 2006

15

under test due to differing code characteristics. For example, 11 mutants have been
created with the AORS mutation operator (see Table 4) for OrdSet, and none for Cruise
Control which has no shortcut arithmetic operators, i.e. ++ and --; 12 mutants have been
created with the ASRS mutation operator (see Table 4) for Cruise Control, and none for
OrdSet which has no shortcut assignment operator, i.e. +=, -=, /=, *= and %=.

OrdSet Mutants Distribution

90

8
48

297

4
47

6 1 4

107

5 3 4
0

50
100
150
200
250
300
350

AORB
AORS

AOIU
AOIS

AODU
ROR

COR
COD

COI
LO

I
JS

I
JS

D
EAM

OrdSet Mutants Distribution

Cruise Control Mutants Distribution

32 32

144

79

1

51

12 11 9 9 1 5
0

20
40
60
80

100
120
140
160

AORB
AOIU

AOIS
ROR

COI
LO

I

ASRS JS
I

JS
D JID JD

C
EAM

Cruise Control Mutants Distribution

Figure 4: Mutant distributions

3.2.6 Overview of Statistical Analysis
A variety of statistical techniques were applied to address research questions and

we provide here a short overview, leaving the details for the section presenting the
experimental results.

Univariate analysis was performed to compare the isolated effect of an independent
variable on a dependent variable. For example, two-sample t-tests were performed to
compare test techniques in terms of fault-detection effectiveness and cost, and determine
whether differences in means could be due to chance. The level of significance is set to α
= 0.05 for all tests, though we also report p-values. To avoid potential threats due to the
violation of the t-test assumptions, equivalent non-parametric tests (Wilcoxon rank sum
tests [20]) were also performed and in the rare cases where differences of results can be
observed, this is clearly stated.

To help visualize results, we use both means diamonds and box plots. A mean
diamond indicates the sample’s mean and 95% confidence interval and whether this is
significantly different from other samples. Box Plots show selected quantiles of
distributions and extreme values.

Regarding multivariate analysis, depending on the covariates involved, we either
perform a two-way analysis of variance (ANOVA) or a bivariate least-squares regression
[20] to study the simultaneous effect of the test technique on fault detection and its
interactions with other factors (e.g., coverage). This is important as the effect of test
techniques can vary widely based on factors related to class cluster and statechart
characteristics, subject ability, and so on.

Carleton University, TR SCE-06-15 September 2006

16

3.3 Experiment operation

3.3.1 Preparation
The students were first introduced to the class clusters under test during the

experiment to make sure they solely relied on the documentation presented to them. To
prepare the students for the different tasks required for the experiment, they were also
given a refresher on the basics of testing (test cases, test sets, testing criteria, drivers …),
structural and functional testing, and class testing. Students applied the concepts and
techniques they were taught in assignments on laboratory exercises prior to the start of
the experiment’s tasks.

To calculate node and edge coverage, the classes under test were instrumented
using the Observer pattern [24] and by building the control flow graphs of their methods.
The instrumentation code includes the definition of control flow nodes and edges, an
Observer class that is informed of visited nodes and edges, and a Recorder class that
generates coverage report.

Each of the two labs lasted 3 hours, during which students were provided
documentation and executable code to run their drivers on, and asked to write driver code
following precise instructions. The following documents were provided to all students in
all groups:

1. Printed list of instructions to guide students through the different tasks to
complete.

2. High-level description of the cluster.

3. Eclipse tutorial.

4. Driver template (differs slightly depending on the testing strategy).

For groups working with statecharts, the following documents were also provided:

1. Class public interfaces

2. Model documentation including class and statechart diagrams, operation’
contracts and state invariants in OCL, and a transition tree.

3. An executable jar file of the class cluster.

For the groups working on code testing an instrumented version of the code in a
form of an executable jar file was provided along with the original non-instrumented
source code of the class clusters.

3.3.2 Execution
During each lab, students were first asked to read the documentation of the class

cluster to understand its functionalities; then they were asked to identify test cases based
either on the provided transition tree (covering round-trip paths) or based on all-nodes
and all-edges structural coverage criteria, depending on the group they belonged to. In the
latter case, students were asked to write method sequences capturing realistic scenarios in
their test cases, and they were advised to use Equivalence class testing or boundary
analysis [28, 50] to help the identification of method parameter values. For code testing,

Carleton University, TR SCE-06-15 September 2006

17

students were instructed to run their drivers on the instrumented version of the code to
compute node and edge coverage; the generated report identifies the non-covered nodes
and edges, which can guide students to identify new test cases to be added to their drivers
to improve structural coverage.

When applying statechart testing, students were instructed to use the common
practice of state invariant assertions as oracles for their test cases; for code testing
students were advised to write oracles checking expected output/attribute values against
actual ones; it was recommended to add an oracle after each method execution in the
method sequences to verify the validity of the outputs and changes to attribute values.

After all test drivers were submitted to us by participants, we executed them on the
original code of the two class clusters to inspect their correctness and to eliminate any
inadequate drivers which could not be used for experimental purposes (such as drivers
with no oracles).

Perl scripts were created to automatically execute drivers on mutants and on code
instrumented versions, in order to collect data required to compute mutation scores, node
and edge coverage, and distributions of undetected fault types.

For cost-related data, the profiling tool of Eclipse plug-in TPTP [27] was used to
count the number of method calls. The notion of cost in the context of testing can be
related to many factors such as test size, test case identification complexity, computer
time usage and time to market. In many studies, the size of a test set (i.e., the number of
test cases) has been adopted as a surrogate measure for cost [14, 26, 46], assuming that
cost is overall proportional to test set size. In these studies, one test case often
corresponds to one execution of a function/program (e.g., [26]). This corresponds in our
study to one execution of a cluster method. We therefore use the number of method calls
in a test set as a surrogate for cost.

3.4 Threats to validity

A brief summary of threats to validity [49] in our experiment is provided below.

3.4.1 Conclusion validity
Threats to conclusion validity are concerned with issues that affect the ability to

draw the correct conclusion about relations between the treatment and the outcome of the
experiment [49]. The threats to conclusion validity in our experiment could be related to:
(1) low statistical power and (2) reliability of treatment implementation.

Regarding (1), we were limited by the number of students enrolled in the testing
course within which we conducted the experiment. To limit the impact of this threat on
our conclusions, we designed the experiment in such a way that each group would work
on a different treatment for two successive labs and thus doubled the number of
observations.

As for the reliability of the treatment, for code testing, there was significant
variation in structural coverage for code testing. This is not the case for statechart testing
as subjects were asked to implement test cases based on a given transition tree. The
round-trip path technique is systematic: using one transition tree should result in a similar

Carleton University, TR SCE-06-15 September 2006

18

outcome and this is especially true for the Cruise Control where no arguments are
required to implement test sequences corresponding to paths in the transition tree.
Though this problem does impact the fault-detection effectiveness of code drivers, we
account for it when performing a bivariate analysis using both variables testing technique
and coverage.

3.4.2 Internal Validity
An internal validity threat exists when the outcome of the experiment may not

necessarily be caused by the treatment applied but caused by another factor not controlled
in the experiment. One example of internal validity threats is the learning and fatigue
effects that can occur when the experiment is run more than once with the same subject
groups. This threat is addressed in our experiment by using different treatments and
different class clusters in each of the labs conducted for each group.

To tackle the selection threat that is related to the variation in human performance,
we identified a number of blocks to which correspond the students. These blocks are
based on students marks achieved in earlier courses on software engineering and design.
Students were selected from the different blocks to have a stratified random sampling
over the different groups.

Another internal validity threat, the diffusion or imitation of treatments, was also
limited by monitoring the labs and preventing the access to the experiment
documentation outside the lab hours and by other groups’ members. Note that the
experiment documentation is accessed through the course website only during lab hours
with an address only known during the lab by members of the group working in that
specific lab.

To the difference with subjects working with the code treatment, those working
with the statechart treatment were not instructed to use the Equivalence classes or
boundary analysis to identify test cases parameters values. This threat is eliminated with
the fact that for statechart testing in this experiment, no boundary analysis was needed:
the Cruise Control’s statechart has no parameters, and boundary analysis of the OrdSet
class was accounted for in the guard conditions in statechart as to eliminate any bias of
using an additional testing technique with the statechart technique to be implemented.

3.4.3 Construct validity

The construct validity in our case is related to the fact that we used mutation
analysis to measure the fault-detection effectiveness of testing strategies. The types of
faults seeded may not be representative of “real” faults. To limit the likelihood for this
threat to manifest itself, we used two class clusters with very different code
characteristics (Section 3.1). Also, the results of the study reported in [1] show that faults
seeded using mutation operators can be representative of real-faults when measuring fault
detection effectiveness.

3.4.4 External Validity

External validity relates to the external aspects that interact with the treatments and
limit the generalization of the results. The selection of fourth-year engineering students as
subjects could be a threat to external validity as they could not be representative of “real”
software developers. However, first we do not believe there is such a thing as a “real”

Carleton University, TR SCE-06-15 September 2006

19

software developer population. It is well-known that productivity can vary a level of
magnitude between the best and worst developers. Second, these students were on
average good Java developers as this is the main language used throughout their four
years of study and they are better acquainted with UML than most average practitioners
since they undertook two full term courses on the subject. So, overall, for the specific
tasks at hand, these students are probably comparable to at least average practitioners.

The choice of the clusters to test in this experiment may be considered an external
validity threat. However, while simple and small, the class clusters used in our
experiment still can be considered representative of two common types of class clusters.
The Cruise control is representative of real-time, reactive classes with a state-dependent
behavior where the different class attributes are evaluated based on elapsed time between
events and the current cluster state. The OrdSet class, on the other hand, is modeled by a
large statechart with complex guard conditions. It is representative of classes
encapsulating complex data structures with large transition trees (30 Round-trip paths).

4 EXPERIMENT RESULTS

In the first section, we report on the drivers’ mutation scores and code coverage for
the two testing techniques. Then, we perform an analysis to determine the impact of the
test techniques and other factors such as code coverage and cluster characteristics on fault
detection effectiveness (Section 4.1). This analysis aims at answering research questions
1 and 2 (Table 2). Next, in Section 4.2, we answer research questions 3, 4, 5 and 6 by
investigating the complementariness of test techniques, their combination, and its impact
on fault detection effectiveness. We further investigate the impact of combining test
techniques on the fault detection effectiveness per mutation operator and we identify fault
types for which statechart test cases are better detectors (research question 6). Cost
analysis and cost-effectiveness analysis in Section 4.3 address research questions 7 and 8.
In Section 4.4, a qualitative analysis investigates live mutants in order to determine the
reasons for not detecting seeded faults and to understand the limitations of the statechart
test technique. In the subsequent section (4.5) and based on the results of the qualitative
analysis, improvements to the statechart test technique are proposed to increase fault
detection with statechart drivers (research question 9).

4.1 Impact of test techniques on fault detection effectiveness
We discuss in this section the impact of the independent variable “test technique”

(code vs. statechart) on the dependent variable “fault-detection effectiveness” which is
measured as a mutation score (Section 4.1.1). Next, we investigate the possible
interactions between the test technique and a number of factors and their impact on fault
detection effectiveness (Section 4.1.2). These factors include: code coverage, lab order,
subject ability and cluster characteristics.

4.1.1 Univariate analysis
Table 5 provides descriptive statistics of the mutation scores in each system and for

both treatments. A graphical representation of mutation scores distribution is provided in
Figure 5 where mean diamonds of the mutation scores obtained for test drivers are
depicted. Results show that the maximum and mean mutation scores for both systems

Carleton University, TR SCE-06-15 September 2006

20

were higher for code drivers than for statechart drivers. For the Cruise Control, this is
mainly related to the real-time properties of the code. The statechart of Cruise Control
(Figure 3) does not model its real-time behavior, thus subjects working with the statechart
had no access to a description of how values of class attributes such as “car speed”,
“throttle” and “total distance” are calculated and updated over time. These values depend
on many factors such as time and air resistance and they are constantly changing when
the car is running in the “active” state. An activity diagram as the one provided in Figure
6 is more suitable to describe the real-time behavior of Cruise Control. For OrdSet, the
difference in mutation scores of code drivers and statechart drivers can be explained by
the fact that subjects working with code were provided an instrumented version of the
code allowing them to identify uncovered nodes and edges and to write test cases that
address them.

Cluster Treatment Min Max Mean StdDev Range
Statechart 12.66 79.17 50.27 17.20 66.51

OrdSet
Code 20.35 86.7 56.15 19.98 66.35

Statechart 18.39 27.46 24.47 1.65 9.07 Cruise
Control Code 11.4 48.19 27.69 10.24 36.79

Table 5: Mutation scores descriptive statistics
Results also show that Cruise Control drivers for both code and statechart testing

had low mutation scores compared to OrdSet drivers’ mutation scores. This is again
likely due to the real-time behavior of Cruise Control. As mentioned, subjects working
with Cruise Control’s statechart had no access to documentation on the real-time
behavior of the cluster and did not manage to exercise parts of the code. Although
subjects working with the Cruise Control code noticed the importance of varying time in
their drivers, it was hard for them to understand the real-time algorithm that manages the
class attributes solely based on code. A thorough understanding would have required
complex reverse engineering or access to documentation such as the activity diagram in
Figure 6 that models the real-time algorithm control-flow managing a running car.

M
ut

at
io

n
Sc

or
e

10

20

30

40

50

60

70

80

90

code statechart

Treatment

a) OrdSet

M
ut

a
tio

n
 S

co
re

10

15

20

25

30

35

40

45

50

code statechart

Treatment

b) Cruise Control

Figure 5: Mutation scores’ distribution
Other noteworthy results from Table 5 are the standard deviations in mutation

scores for the different drivers of a given cluster under test and test technique. For Cruise

Carleton University, TR SCE-06-15 September 2006

21

Control, the standard deviation for statechart drivers is small (less than 2%). This can be
easily explained: (1) the testing criterion is well defined and leaves little degree of
freedom in its application (one must cover all Round trip paths), (2) the transition tree
used is the same for all subjects: a decision we made to ensure the conformance of test
suites with a correct transition tree [13] and (3) transitions in the statechart have no guard
conditions and require no parameter setting. Therefore, by following the RTP technique,
similar results should be obtained by all subjects causing a small standard deviation. The
differences in mutation scores are related to wrong or incomplete implementation of state
invariants in oracles, or are due to the incomplete coverage of the transition tree.

Reset car speed and distance

Increment car speed with the value: (throttle - car speed/air resistance - 2*brakepedal)

[car speed > maximum speed]

Set car speed to maximum speed

[car speed <= maximum speed]

Set car speed to 0

[car speed < 0]

[car speed >= 0]

Increment distance by (car speed / (36 * ticks per second))

[throttle > 0]

Decrement th rottle by (0.5 / ticks per second)Set throttle to 0

[throttle <= 0]

wait for 200 ms

[Car is running]

[Car is not running]

Figure 6: Cruise Control - Running car activity diagram

As opposed to Cruise Control, the mutation scores’ standard deviation for the
OrdSet statechart drivers is fairly large (17% as opposed to 1.5% for Cruise Control).
This can be easily explained: (a) only few subjects were able to cover all RTPs (35%
RTP coverage on average) as test cases in their drivers covered various numbers of RTPs
(see Table 6 for code and RTP coverage descriptive statistics), (b) the statechart has
complex guard conditions and requires parameter settings which ten introduce variation
in test cases, (c) some faults can be detected only with very specific parameter values or
set content, and (d) wrong or incomplete implementation of state invariants in oracles.
We assume that if testers had unlimited time to complete the implementation of all round
trip paths as described in the test technique, the standard deviation would decrease and
only depend on points (c) and (d) listed above.

Carleton University, TR SCE-06-15 September 2006

22

Table 6 provides descriptive statistics on node, edge, and RTP coverage for both
class clusters. Results show that statechart drivers have lower node and edge coverage
than code drivers. The difference, which is relatively small (e.g., 7% in edge coverage for
Cruise Control), can be explained by the fact that subjects working with code used node
and edge coverage analysis to refine their test drivers and achieve better coverage. As for
RTP coverage, OrdSet had much lower RTP coverage than Cruise Control (35% as
opposed to 97%). This is mainly due to the complexity of the OrdSet statechart: 30 RTPs
as opposed to 12 for Cruise Control and, in addition, complex guard conditions.
 Cruise Control OrdSet

 Statechart Code Statechart Code

Coverage RTP Node Edge Node Edge RTP Node Edge Node Edge

Median 100 85.85 69.9 86.79 75.73 45 71.17 61.90 81.08 73.02

Mean 96.59 84.49 68.93 87.21 75.61 34.81 76.93 67.50 81.08 73.53

95% 100 94.34 79.61 97.17 94.17 100 94.59 90.48 99.10 95.40

90% 100 87.54 74.37 96.51 91.45 100 92.70 86.59 99.10 94.76

75% 100 85.8 71.1 93.2 83.5 85 84.91 76.19 97.30 91.27

25% 100 82.78 68.2 81.13 68.2 35 68.47 57.54 73.87 65.87

10% 82.5 78.3 59.1 77.1 61.5 19 66.13 51.90 54.78 44.92

5% 53.75 78.3 58.3 76.42 55.34 10 64.73 50.43 46.31 36.03

Min 50 78.3 58.25 76.42 55.34 10 63.96 48.41 40.54 30.95

Max 100 94.34 79.61 97.17 94.17 100 94.59 90.48 99.10 96.03

Table 6: Code and statechart coverage descriptive statistics
For both test techniques, mutation scores were definitely much higher for OrdSet

than for Cruise Control. However, node and edge coverage for both class clusters were
comparable for both test techniques (Table 6). This can be explained by the fact that for
Cruise Control, most changes to class attributes such as “speed”, “distance” and “throttle”
are computed in two methods (i.e., limited number of edges and nodes), which are the
“run” methods of threads representing the car and its speed controller. Although these
two methods are only of few lines of code, they include a significant number of
computation and assignment statements for which the number of generated mutants is
high. Many of these statements were not covered by statechart drivers because of their
limited time of driver execution, due to a lack of understanding of real-time properties of
the code.

As discussed above, descriptive statistics show a difference in terms of percentage
of faults detected (mutation scores) between the two test techniques. We performed a
two-sample t-test [20] for each class cluster to assess the statistical significance of this
difference. For research question 1 (Table 2) we tested the following null hypothesis:
“There is no significant difference between the number of faults detected by statechart
test cases (Ts) and code test cases (Tc)”. The results are reported in Table 7. For both
clusters a t-test yielded a p value greater than α = 0.05 and therefore the null hypothesis
cannot be rejected. No statistically significant difference in terms of mutation scores of

Carleton University, TR SCE-06-15 September 2006

23

statechart drivers and code drivers can be observed and we cannot therefore claim that
one type of drivers is more effective at detecting faults than the other.

Mutation score mean
Cluster DF

Code Statechart
t-value Pr > |t|

OrdSet 31.6 56.15 50.27 0.93 0.359

Cruise Control 15.8 27.69 24.47 1.35 0.197

Table 7: t-test results for the mutation score comparison

4.1.2 Interaction effects
We study in this section the interaction effect with the test technique on mutation

score of a number of factors: code coverage, cluster, lab order, and subject ability..

a. Code coverage impact

Figure 7 shows a comparison of mutation scores for code and statechart drivers
with similar node and edge coverage. Drivers are grouped when in the same 5% coverage
interval. For example, in Figure 7 we denote the percentage interval]75, 80] as “80” and
proceed the same way for subsequent intervals. Note that only a subset of intervals
contain data points as there is no driver for certain levels of coverage. For Cruise Control,
similar coverage values yielded overall similar mutation scores when comparing code
and statechart drivers. For OrdSet, code drivers with low coverage rates show better fault
detection rates than statechart drivers. This is due to the fact that the few statechart
drivers having low code coverage have covered only a small subset of RTPs in their
drivers, or they did not implement the test strategy as instructed, i.e. did not implement
state invariant assertions in oracles. This suggests that when only a small subset of RTPs
is implemented in the driver, it somehow contains RTPs that are less likely to detect
faults than the "equivalent" code driver. Further investigation showed the first RTPs
implemented were the simplest ones, and therefore the least likely to detect faults. But,
for high coverage rates similar coverage yielded similar mutation scores.

The similarity in node and edge curves suggests a linear dependency between the
two variables. This is confirmed in Figure 8 where the linear fit line of the two variables
is shown. The proportion of the variation that can be attributed to terms in the model
rather than to random error (R2 = 0.9). Therefore, 90% of the variability in edge coverage
can be attributed to node coverage. Based on this result, we limit any subsequent analysis
to node coverage.

Carleton University, TR SCE-06-15 September 2006

24

0

20

40

60

80

100

M
ut

at
io

n
S

co
re

 M
ea

n

45 50 60 65 70 75 80 85 90 95 100
Node Coverage

b) OrdSet

0

20

40

60

80

100

M
ut

at
io

n
Sc

or
e

M
ea

n

35 40 50 55 60 65 70 75 80 85 90 95 100
Edge Coverage

a) Cruise Control

codestatechart

0

10

20

30

40

50

60

M
ut

at
io

n
Sc

or
e

M
ea

n

60 65 70 75 80 85 90 95
Edge Coverage

0

10

20

30

40

50

60

M
ut

at
io

n
Sc

or
e

M
ea

n

80 85 90 95 100
Node Coverage

Figure 7: Mean mutation scores of code and statechart drivers as a function of node

and edge coverage

30

40

50

60

70

80

90

100

E
dg

e
C

ov
er

ag
e

40 50 60 70 80 90 100
Node coverage

Figure 8: Node - Edge coverage linear dependency
A multiple regression analysis was performed to assess the impact of node

coverage and its interaction effect with test technique on mutation scores. The results
presented in Table 8 show a significant main effect of node coverage (or in general code
coverage) on mutation scores (p < .0001), but also a significant interaction effect of node
coverage and test technique. Figure 9 shows interaction plots for Node coverage and Test

Carleton University, TR SCE-06-15 September 2006

25

technique for both clusters. For Cruise Control, when code coverage increases, code
drivers tend to have higher mutation scores than statechart drivers. This can be explained
by the fact subjects working with statecharts had no access to documentation on the real-
time behavior, and therefore did not explicitly target real-time faults and certain parts of
the code. However, for low code coverage, statechart drivers show higher mutation
scores. This is likely due to the use of state invariants assertions in oracles.

As for OrdSet, the trend is reversed and statechart drivers show higher mutation
scores for high code coverage rates. With precise and detailed guard conditions, the
OrdSet statechart provides enough information for its users to cover the code to a large
extent. This is different from the Cruise Control statechart where, even when fully
covering the transition tree, one is unlikely to cover large parts of the code without
precisely understanding the real-time properties.

Cluster RSquare Factor Sum of
Squares

Parameter
estimate F Ratio Prob > F

Node Coverage 930.49 1.213 40.31 <.0001

Test technique 20.92 -1.648 0.90 0.3489 Cruise
Control 0.61

Node Cov * Test technique 140.65 -0.927 6.09 0.0197

Node Coverage 4985.58 0.901 59.74 <.0001

Test technique 1395.79 15.684 16.72 0.0003 OrdSet 0.78

Node Cov * Test technique 722.83 0.821 8.66 0.0061

Table 8: ANOVA - Impact of node coverage and its interaction with test technique
on mutation scores

10

30

50

70

90

M
ut

at
io

n
Sc

or
e

code

statechart

40 50 60 70 80 90
Node Coverage

100

a) OrdSet

10

20

30

40

50

M
ut

at
io

n
Sc

or
e

code

statechart

75 80 85 90 95 100
Node Coverage

b) Cruise Control

Figure 9 : (Node Coverage x Test technique) interaction plots

b. Lab Order impact
In this subsection we study the main and interaction effects of lab order (learning

effects) on mutation scores to account for learning effects. It is assumed that subjects
would tend to perform better on the second lab than in the first lab, regardless of other
factors. An analysis of variance (ANOVA) was performed and the results are presented in
Table 9. Results showed no significant impact of lab order, either direct or through
interactions, on mutation scores. A plausible reason is that subjects were well trained for
the tasks from the start and learning effects were therefore limited.

Carleton University, TR SCE-06-15 September 2006

26

Cluster RSquare Factor Sum of
Squares

Parameter
estimate F Ratio Prob > F

Lab Order 33.95 -1.456 0.60 0.4444

Test technique 101.67 -3.565 1.80 0.1903 Cruise
Control 0.08

Lab Order * Test technique 27.26 1.846 0.48 0.4927

Lab Order 510.38 -5.488 1.54 0.2239

Test technique 509.90 -7.758 1.54 0.2241 OrdSet 0.099

Lab Order * Test technique 79.18 3.057 0.23 0.6283

Table 9 : ANOVA - Impact of lab order and its interaction with Test technique on
mutation scores

c. Subject ability impact
Subject ability was measured based on grades in software design courses. When

subject’s ability increases, mutation score would a priori be expected to increase as well.
But Figure 10⎯which shows means, min and max values as well as 95% and 5%
percentiles for mutations cores⎯provides a partially different picture. Although for
Blocks 1 to 4 (decreasing order of ability) the mutation score decreases as expected,
subjects in block 5 (supposedly the least skilled) developed drivers with high mutation
scores. On average, their drivers had mutation scores close to those written by the most
skilled subjects. To explain what might have happened, recall that blocks were based on
the ability of students in software design (i.e., final marks in software design courses).
The results in block 5 suggest that the method used for evaluating subject ability may not
be optimal for this experiment as skills in programming and testing may not be entirely
correlated to those of software design. The trend may also be due to the fact that our
groups are small and may therefore be strongly and randomly affected by outliers.
Checking more closely at the distribution of scores in group 5 we indeed see such
outliers, though we have no explanations for them, except perhaps that our ability
measurement may not be fully adequate.

Though we used five blocks for the purpose of random subject assignment (Section
3.2.4), in order to have large enough samples at each ability level (thus alleviating the
outlier problem) and to ensure a balanced design to enable the use of ANOVA, we only
use two ability levels to analyze the effects of ability on mutation score. We assign all
subjects to either a HighAbility or LowAbility group, depending on whether the grade on
which the blocks are defined was below or above the median grade1.

The results of a two-way ANOVA with subject ability (2 levels) and its interaction
with test technique on mutation scores are reported in Table 10. Results show that subject
ability has significant main effect and a marginally significant interaction effect (slightly
above 0.05) with the test technique for Cruise Control. Furthermore, as opposed to
univariate results in Table 7, the impact of Test technique is also significant and similar
in the variance it explains to that of Ability: code-based testing yields significantly higher

1 It is equivalent to merging blocks 1&2 and 3 to 5, respectively.

Carleton University, TR SCE-06-15 September 2006

27

scores. This is not the case for OrdSet where subject ability or test technique have no
effect on mutation scores. One plausible explanation is that despite the complexity of its
statechart, the functionality of OrdSet is rather intuitive for engineering students and then
the ability to understand the statechart and code were not as crucial as for CruiseControl.
For Test technique, the need to understand code properties is not as crucial for OrdSet as
the statechart is an accurate description of its behavior.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

Block (1-Highest to 5-Lowest)

M
ut

at
io

n
sc

or
e

mean min max 95 5

a) OrdSet

0

10

20

30

40

50

60

1 2 3 4 5

Block (1-Highest to 5-Lowest)

M
ut

at
io

n
sc

or
e

mean min max 95 5
b) Cruise Control

Figure 10: Relationship between subject skill and mutation score

Cluster Factor Sum of Squares Parameter
Estimate F Ratio Prob > F

Subject ability 281.08 -5.93 6.76 0.0147
Test technique 268.71 4.10 6.46 0.01687 Cruise Control

Subject ability * Test technique 171.59 -4.63 4.13 0.05177
Subject ability 358.02 -6.50 1.05 0.31257
Test technique 292.83 4.16 0.86 0.3603 OrdSet

Subject ability * Test technique 1.06 -0.35 0.003 0.9558

Table 10 : ANOVA - Impact of subject ability and its interaction with test technique
on mutation scores

Recall we have looked at the effect of Ability by grouping Blocks 1 & 2. If we now
look at Block 1 (20% best subjects) in isolation (HighAbility = Block 1) and run
ANOVA gain, we obtain the results shown in Table 11. Because the number of
observations is not balanced anymore across Ability/Test Technique categories, the order
in which variables are introduced in the ANOVA model matters. We have to perform
sequential testing and select an order that makes sense: we estimate the contribution of
each variable in order, where we compute the sum of squares explained by Ability and
then in turn allocate the remaining sum of squares to Test technique. Once we have
accounted for main effects we then estimate the impact of interaction effects between
Ability and Test technique by computing the remaining sum of squares it accounts for.
For OrdSet, the results do not change. But for CruiseControl, Ability still has a
significant main effect but it has a much stronger interaction effect.

Figure 11 shows an interaction plot of subject ability and test technique for Cruise
Control when HighAbility = Block 1. It clearly shows that when following a code
coverage test strategy, subject ability has an important effect on mutation scores:

Carleton University, TR SCE-06-15 September 2006

28

mutation scores increase when subject ability increases. However, for statechart drivers,
mutation scores were hardly affected by subject ability. This suggests that having a clear
test model like statecharts and a precise test strategy like RTP alleviates the impact of the
tester’s ability on test results. Test effectiveness is more predictable with statechart but
the higher skilled subjects, when having access to code, would identify test cases that
cannot be easily identified with statechart RTP testing and therefore perform better. An
example of such test cases would be inserting waiting times in test drivers to allow for
boundary testing (e.g., maximum speed).

10
20
30

40
50

M
ut

at
io

n
S

co
re

code

statechart

HighAbility LowAbility
Figure 11: (Subject Ability x Test technique) Interaction plot - Cruise Control
Cluster Factor Seq SS F Ratio Prob > F

Subject ability 256.23 7.018 0.0131
Test technique 152.63 4.181 0.0504 Cruise

Control
Subject ability * Test technique 286.82 7.856 0.0091

Subject ability 896.66 2.789 0.1053
Test technique 270.24 0.841 0.3665 OrdSet

Subject ability * Test technique 215.31 0.669 0.4196

Table 11: ANOVA - Sequential test results (High ability = Block 1)

d. Class cluster characteristics impact
The last factor to study in this section is class cluster characteristics. As we have

seen the two clusters are different in terms of the complexity of their statechart and their
code characteristics (e.g., real-time behavior). We performed a two-way ANOVA and the
results are presented in Table 12. They show a significant impact of cluster characteristics
on mutation scores but no interaction effect with test technique. This can be explained as
follows: (1) Cruise Control has multithreaded code with real-time behavior and (2) the
OrdSet statechart, even though more complex, describes the cluster better than the Cruise
Control statechart. As already discussed, the latter provides an incomplete model of the
cluster’s run-time behavior.

Model
RSquare Factor Sum of

Squares
Parameter
estimate F Ratio Prob > F

Cluster Characteristics 6675.04 -14.22 34.05 <.0001
Test technique 511.79 -5.57 2.61 0.1112 0.499

Cluster characteristics * Test technique 66.39 2.01 0.33 0.5627

Table 12: ANOVA - Impact of cluster characteristics and its interaction with test
technique on mutation scores

Carleton University, TR SCE-06-15 September 2006

29

4.2 Combining test techniques to improve fault detection
effectiveness

In this section we address four research questions: 3, 4, 5 and 6. Section 4.2.1
analyzes how complementary are the test cases generated based on statecharts (Ts) and
those generated based on code (Tc). In Section 4.2.2, we evaluate the impact of
combining Ts to Tc on the mutation score. Next, in Section 4.2.3, we investigate the
possible interaction effect between the cluster under test and the test technique on the
gain in mutation score when combining Ts and Tc. Last, we study in more details the
effect of combining Ts and Tc per mutation operator (Section 4.2.4).

When combining test cases, all pairs of drivers (statechart drivers x code drivers)
must be taken into consideration to capture the variability among drivers written by
different subjects. Having m statechart drivers and n code drivers implies that m x n
combinations would be considered. However, drivers with low coverage do not represent
realistic non-experimental situations with competent developers and a reasonably
disciplined process. Those drivers had low coverage due to the combination of three
reasons: poor development skills of their authors, lack of compliance to instructions to
implement a specific testing strategy, and limited time in the labs. Therefore, we decided
to compare only a subset of the drivers by eliminating drivers with low coverage to
obtain more realistic analysis results.

To understand how we selected a subset of drivers, one must look at the line charts
in Figure 18 (Appendix A), which show the different plots for node, edge, and RTP
coverage as well as the corresponding drivers’ mutation scores per cluster and per test
technique. Drivers are sorted by node coverage for the code test technique and RTP
coverage for the statechart test technique. As node coverage in code drivers (respectively
RTP coverage in statechart drivers) increases, mutation score increases as well. Based on
node coverage for code drivers and RTP coverage for statechart drivers, we identified the
following criteria to select drivers for the remainder of this analysis:

 Code drivers with node coverage greater than or equal to 85%.

 Statechart drivers with RTP coverage of 100% for Cruise Control drivers and
greater than or equal to 60% for OrdSet drivers.

These thresholds are a compromise between the level of completeness of the test
driver and the resulting number of selected drivers that must be large enough to allow
analysis. Though it is common practice to seek high statement coverage rates during
testing in industrial test environments [45], this rate does not usually reach 100% due to
budget and time restrictions, as well as the presence of unreachable code. Thus we chose
85% as a reasonable threshold for the selection of code drivers. As for RTP the decision
is more complex as there is no much practice of statechart testing. We chose a 100%
threshold for Cruise Control as only two subjects did not cover all RTPs in their drivers.
But for OrdSet, very few subjects were able to cover all RTPs (see Table 6). In any case,
we suspect that in a typical industrial environment, for a complex statechart with a large
number of RTPs, only a subset of them is likely to be selected to fit within available time
and effort. Thus we selected a 60% RTP coverage threshold for OrdSet so as to obtain a
reasonably large subset of at least half-complete drivers. Table 13 lists the number of

Carleton University, TR SCE-06-15 September 2006

30

selected and discarded drivers and the resulting total number of driver pairs to consider
for the analysis of this section.

 OrdSet Cruise Control
Selected code drivers 8 10
Selected statechart drivers 7 15
Discarded code drivers 9 6
Discarded statechart drivers 11 3
Total number of pairs to combine 56 150

Table 13: Drivers selection data for combining test techniques analysis

4.2.1 How complementary are test techniques?
To address question 2, we can first look at the set of faults detected by one type of

driver and not the other. Such an analysis needs to be done for all possible pairs of
statechart-code drivers and we therefore obtain distributions of joint mutation scores.
Figure 12 shows the mutation score distributions and Box plots2 of all pairs for Ts, Tc,
and the differences between their detected fault sets normalized by the total number of
faults (F) and expressed in percentages. Appendix B includes all related descriptive
statistics|.

Fs–Fc|/|F|% represents the gain in mutation score of code drivers when augmented
with test cases from statechart driver. One can note that the number of faults detected
only by statechart drivers represent on average a relatively small percentage of all seeded
faults in the cluster: 7% for Cruise Control and 12% for OrdSet (see Table 27 in
Appendix B). However, this number can sometimes reach considerably larger values
(39% in OrdSet) and is probably of practical significance whether to combine techniques.

How much code testing is complementary to statechart testing is captured by |Fc–
Fs|%. This is probably a more realistic scenario than the one above as in practice one
would probably first generate black-box test cases (e.g., based on a statechart), measure
code coverage, and complement the test suite to achieve a certain level of coverage. The
main reason is that generating large test suites from code coverage analysis only is a
highly tedious, time consuming task [33]. The average of |Fc–Fs|/|F|% is 14% for Cruise
Control and 11% for OrdSet. The maximum increase in mutation scores provided by code
drivers was in Cruise Control (33%). This is due to the real-time behavior of this cluster
which has kept statechart drivers from reaching high mutation scores.

2 Box plots show selected quantiles of continuous distributions and extreme values. The ends of the

box are the 25th and 75th percentiles, also called the quartiles. The line across the middle of the box
identifies the median sample value and the means diamond indicates the sample mean and 95% confidence
interval. The dashed lines, sometimes called whiskers, extend from both ends to the outer-most data point
that falls within the distances computed. The bracket along the edge of the box identifies the shortest half,
which is the densest 50% of the observations.

Carleton University, TR SCE-06-15 September 2006

31

20

25

30

35

40

45

50

23.8

24.0

24.2

24.4

24.6

24.8

25.0

25.2

25.4

1

3

5

7

9

11

13

15

5

10

15

20

25

30

35

a) |Fs|/|F| % b) |Fc|/|F| % c) |Fs-Fc|/|F| % d) |Fc-Fs|/|F| %

A- Cruise Control

a) |Fs|/|F| %
40

45

50

55

60

65

70

75

80

40

50

60

70

80

90

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

45

40

45

50

55

60

65

70

75

80

40

50

60

70

80

90

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

45

b) |Fc|/|F| % c) |Fs-Fc|/|F| % d) |Fc-Fs|/|F| %

B- OrdSet

Figure 12: Distributions of mutation scores for detected fault sets
To further investigate the extent to which the two test techniques are

complementary, we analyze the normalized intersection between the sets of detected
faults by statechart and code drivers |Fs ∩ Fc| / |F|% and the mutation score proportion
this intersection represents for each driver (|Fs ∩ Fc| / |Fs| and |Fs ∩ Fc| / |Fc|). Such
proportions determine the importance of the contribution of each type of driver to the
overall mutation score resulting from combining testing techniques. Distributions of the
intersection and its ratios are presented in Figure 13. Related descriptive statistics are
presented in Appendix B.

Carleton University, TR SCE-06-15 September 2006

32

8

10

12

14

16

18

20

22

0.4

0.5

0.6

0.7

0.8

0.9

0.4

0.5

0.6

0.7

0.8

a) |Fsn Fc|/|F|% b) |Fsn Fc|/|Fs| c) |Fsn Fc|/|Fc|
A- Cruise Control

20

30

40

50

60

70

80

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

a) |Fsn Fc|/|F|% b) |Fsn Fc|/|Fs| c) |Fsn Fc|/|Fc|

B- OrdSet

Figure 13: Distribution of intersections
Results show that a practically significant proportion of faults were detected only

by one type of drivers. For instance, the average of |Fs ∩ Fc| / |Fs| for Cruise Control is
0.69. This means that on average roughly 30% of the faults detected by statechart drivers
are not detected by code drivers. Similarly, on average more than 50% of faults detected
by code drivers are not detected by statechart drivers. This further confirms that the two
techniques are complementary in terms of fault detection and, as far as statechart testing
is concerned, this leads to two questions:

1. Why did the statechart test cases not detect faults detected by code test
cases?

2. And can the statechart testing strategy be improved to detect those faults
detected only by code drivers?

An attempt to answer these questions is presented in Sections 4.4 and 4.5.

4.2.2 Impact of combining test techniques on fault detection effectiveness
To address research question 4, we need to analyze the significance of the gain in

mutation scores when combining statechart and code test cases. We need to test the
following null hypothesis: “The fault detection rate when combining statechart testing
and code testing is equivalent to that obtained with code testing alone and to that obtained

Carleton University, TR SCE-06-15 September 2006

33

with statechart testing alone”. Two one-tailed t-tests for paired samples were performed
to compare: (1) the means of mutation scores when including only code test cases and
after adding statechart test cases to them, and (2) the means of mutation scores when
including only statechart test cases and after adding code test cases to them. Recall each
observation corresponds to one pair of code and statechart drivers.

Results of the one tailed t-tests are shown in Table 14 and show that the gain in
mutation scores, from either code testing or statechart testing alone, is statistically
significant when combining test cases from the two testing techniques.

In terms of practical significance, the improvements in mutation scores average
between approximately 7% and 10% of all seeded faults across the two clusters when
compared to code testing alone. And when compared to statechart testing, the
improvement is on average around 13% of all seeded faults.

Cluster Type of combination DF Mean of difference in
mutation score t value Pr > |t|

Statechart vs. combination 149 12.69 20.76 <.0001 Cruise
Control Code vs. combination 149 7.28 25.00 <.0001

Statechart vs. combination 55 13.41 11.75 <.0001
OrdSet

Code vs. combination 55 9.67 7.64 <.0001

Table 14: Combining test techniques - Paired t-tests results
Figure 14 shows the distributions for the following variables (Table 29 in Appendix

B includes the corresponding descriptive statistics):

• |Fs U Fc|/|F|%: represents the mutation score in percentage when combining
statechart and code drivers.

• |F – (Fs U Fc)|/|F|%: represents the percentage of faults that remain
undetected after combining test cases from statechart and code drivers.

• |Fs U Fc| / |Fs|: represents a ratio measure of the gain in mutation score
when combining drivers compared to statechart drivers alone.

• |Fs U Fc| / |Fc|: represents a ratio measure of the gain in mutation score
when combining drivers compared to code drivers alone.

It is interesting to note the combined techniques’ mutation scores were significantly
improved compared to those obtained with each technique individually. For instance, for
Cruise Control and OrdSet, the combined techniques’ mutation scores represent an
average increase of 26% and 17%, respectively, when compared to code testing alone
(refer to |Fs U Fc| / |Fc| column in Table 29 - Appendix B). And when comparing with
statechart testing alone, the increase reaches an average of 57% and 29% for Cruise
Control and OrdSet, respectively. Also, an important result to point is the high mutation
scores of the combination achieved for OrdSet (an average of 84%). A more modest
result is achieved for Cruise control (an average of 39%) but this can be attributed to the
already discussed real-time behavior of this cluster.

Carleton University, TR SCE-06-15 September 2006

34

30

35

40

45

50

55

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1.0

1.1

1.2

1.3

1.4

1.5

1.6

45

50

55

60

65

70

a) |FsUFc|/|F| % b) |F-(FsUFc)|/|F| % c) |FsUFc|/|Fs| d) |FsUFc|/|Fc|

A- Cruise Control

55

60

65

70

75

80

85

90

1.0

1.2

1.4

1.6

1.8

2.0

1.0

1.2

1.4

1.6

1.8

2.0

1.0

1.2

1.0
10

15

20

25

30

35

40

45

a) |FsUFc|/|F| % b) |F-(FsUFc)|/|F| % c) |FsUFc|/|Fs| d) |FsUFc|/|Fc|

B- OrdSet

Figure 14: Distribution of mutation scores after combining statechart and code test
cases

Another interesting result is the wide range of variability of |Fs U Fc| / |Fc|: [min,
max] = [5%, 59%] for Cruise Control and [0%, 92%] for OrdSet. For Cruise control, this
variability can be attributed to the variability in code driver mutation scores and their
detected faults sets. Subjects working with code only, in both clusters, used a wide
variety of test suites and applied different levels of precision in their oracles causing an
important variability in code driver mutations scores. This is to be expected when one is
only driven by coverage but that wasn’t the case for subjects working with statecharts as
they were instructed to use the RTP test technique with a specified transition tree. This
resulted into little variability is the implementation of the technique and therefore
statechart drivers for Cruise Control had very close mutation scores and detected almost
the same faults. For OrdSet, the variation in mutation score gain can also be attributed to
the variability in the number of RTPs covered by the drivers.

4.2.3 Impact of cluster characteristics on combining test cases from both test
techniques

We performed two-sample t-tests to study the impact of cluster characteristics on
the mutation score gain of combining test techniques (1) when compared with test cases
from statechart drivers, (2) when compared with test cases from code drivers, and (3) on
the percentage of faults remaining undetected. Results are presented in Table 15 and
show a statistically significant impact of cluster characteristics on the gain in mutation

Carleton University, TR SCE-06-15 September 2006

35

scores and the number of faults undetected when combining code and statechart drivers.
Results for OrdSet are much more promising than those for Cruise Control due to the
already discussed code and statechart properties of the respective clusters.

 DF Mean
OrdSet

Mean
Cruise t value Pr > |t|

Gain from code mutation score 57.24 9.63 4.51 -4.004 0.0002
Gain from statechart mutation score 65.39 16.16 8.85 -5.087 <.0001

Undetected faults 79.97 18.64 76.02 57.93 0.0000

Table 15: Impact of cluster characteristics and its interaction with test technique on
mutation scores

4.2.4 Impact of combining test techniques on fault detection effectiveness per
mutation operator

Results discussed in the previous sections show that statechart testing and code
testing are complementary overall. Both contribute significantly to fault detection rates.
In this section we further investigate their impact on fault detection effectiveness at the
mutation operator level.

Table 16 lists the total number of mutants created per mutation operator (|F|), the
number of mutants killed only by statechart drivers (|Fs-Fc|), those only killed by code
drivers (|Fc-Fs|) and the total number of mutants killed when combining test cases from
both drivers (|FsUFc|). Recall that the number of mutants for a mutation operator changes
with the cluster under test as this number is related to the characteristics of the code.
Related descriptive statistics are presented in Appendix C.

Note that for better readability, only a minimal subset of variables was listed in
Table 16. Other variables can be derived as follows:

 Number of mutants killed by statechart drivers: |Fs| = |Fs U Fc| - |Fc – Fs|,

 Number of mutants killed by code drivers: |Fc| = |Fs U Fc| - |Fs – Fc|

 Number of mutants killed by both types of drivers: |Fs ∩ Fc| = |Fs U Fc| - (|Fc –
Fc| + |Fs – Fc|)

 Number of live mutants: |F| - |Fs U Fc|

When combining the two test techniques, most faults seeded in OrdSet (mutants)
were detected. Most undetected faults do not affect the results of the faulty method and
therefore correspond to equivalent mutants. For example, a seeded right-shortcut on a
parameter D (D++) in an assignment statement is computed after evaluating the
statement. When D is not used afterwards in the faulty method, the error does not
propagate and does not affect the output of the method. For JSD mutants, the faults
cannot be detected as there is no code in OrdSet that changes the value of static attributes.
For Cruise Control, JSI and JSD mutants (inserting and deleting static keyword) were not
killed as drivers created only one instance of the car. JID mutants were not killed either
(attribute initialization deleted) as attributes were set to default values, e.g., 0 for integer
attributes. However, high numbers of other types of mutants were killed and the

Carleton University, TR SCE-06-15 September 2006

36

remaining live mutants were mostly due to the difficulty of devising precise oracles with
exact values for class attributes.

OrdSet Cruise Control Mutation
operator |F| |Fc-Fs| |Fs-Fc| |FsUFc| |F| |Fc-Fs| |Fs-Fc| |FsUFc|

JSI 5 1 (20%) 0 4 (80%) 11 0 0 0

JSD 3 0 0 0 11 0 0 0

JID 9 0 0 0

JDC 1 0 0 1 (100%)

EAM 4 0 0 4 (100%) 5 3 (60%) 0 4 (80%)

AORB 90 6 (6.7%) 4 (4.4%) 90 (100%) 32 28 (87.5%) 0 28 (87.5%)

AORS 8 0 1 (12.5%) 8 (100%)

AOIU 48 0 5 (10.4%) 48 (100%) 32 15 (47%) 0 26 (81%)

AOIS 297 16 (5.4%) 2 (0.7%) 236(79.5%) 144 55 (38%) 1(0.7%) 94 (65%)

AODU 4 0 0 4 (100%)

ROR 47 3 (6.4%) 0 40 (85%) 79 25 (32%) 0 48 (60.8%)

COR 6 0 1 (16.7%) 6 (100%)

COD 1 0 0 1 (100%)

COI 4 0 0 4 (100%) 1 0 0 1 (100%)

LOI 107 3 (2.8%) 3 (2.8%) 106 (99%) 51 10 (19.6%) 0 37 (72.5%)

ASRS 0 0 0 0 12 12 (100%) 0 12 (100%)

Table 16: Count of detected and live mutants per mutation operator
Results in Table 16 also help identify mutation operators for which a test technique

is a better detector than the other (research question 6). A first trend to notice is that the
cluster under test seems to be an important factor that impacts mutation operators for
which statechart drivers are good detectors. For instance, out of the 90 AORB mutants
created for OrdSet, 84 of them have been killed by statechart drivers. However, none of
the 32 AORB mutants created for Cruise control has been killed by statechart drivers
(|Fs- Fc| = |Fs U Fc|. The AORB mutation operator replaces a binary operator such as the
addition operator with another binary operator. In Cruise Control, such faults are seeded
in the algorithm computing class attributes when the car is running (car speed, throttle
…). In order to detect such fault, a precise oracle is needed. However, it is extremely hard
to know at some point in time what would be the value of car speed for example. Such
value depends on many factors: execution time, processor speed, and number of running
processes on CPU. Therefore, oracles for Cruise Control cannot be very precise; an
attribute value can be only checked against an interval. However, for OrdSet, the
characteristics of the class allow for precise oracles. At any point in time, one can check
class attribute values against exact expected values. Also for AOIU mutants, the trend is
inconsistent in the two tested clusters. For Cruise Control, more faults were detected by
code drivers, as opposed to OrdSet where more faults were detected exclusively by
statechart drivers. This result can be also attributed to the precision of oracles used in the
two clusters.

Carleton University, TR SCE-06-15 September 2006

37

For Cruise Control, no mutant of type ASRS was killed by statechart drivers, such
a fault would alter the value of a numerical attribute. This again can be attributed to the
fact that statechart drivers use state invariants as oracles and state invariants for Cruise
Control are not very precise as described in the discussion above. It may not be possible
to define an exact value for some class attributes, even in a method postcondition. Certain
properties are just inherently hard to express with contracts. This is particularly true for
contracts of computationally intensive methods for example. Writing such an oracle
would consist in simply rewriting all the code statements in a language such as OCL and
might end up to be more complex than the code it is supposed to describe. We expect that
covering an activity diagram, such as the one presented in Figure 6 describing the
algorithm that manages the Cruise Control class attributes, would help identify more
precise oracles by narrowing down ranges of values to check and therefore would help to
detect AORB and ASRS faults.

For the other mutation operators, coherent trends are seen for both clusters. Only
notice that OrdSet drivers had higher mutation scores than Cruise Control drivers. This is
related to the different code and statechart properties of the two clusters that have been
already discussed above.

From the above discussion, we cannot conclude that statechart drivers are better
fault detectors than code drivers for any of mutation operators. However, code drivers
can be better fault detectors than statechart drivers depending on cluster characteristics. It
is therefore important to investigate the possibility of improving statechart testing to
address its main weaknesses. Section 4.4 will investigate in a thorough and systematic
manner the main causes for statechart drivers to fail detecting faults.

4.3 Comparing the cost-effectiveness of test techniques
In this section we attempt to answer research questions 7 and 8 by studying the

difference in terms of cost and cost-effectiveness between statechart testing and code
testing.

4.3.1 Cost Analysis
Recall from section 3.3.2 that we assume the cost of a driver (a test set) to be

proportional to the number of method calls to the classes under test. Figure 15 shows the
distribution of drivers’ cost per cluster and per test technique. Related descriptive
statistics are reported in Table 17. We can see that in both clusters, statechart drivers tend
to have a higher average cost. Two-sample t-tests were performed to obtain statistical
evidence about the impact of test technique on the cost of drivers (research question 7).
Results reported in Table 18 show that the difference between the two test techniques is
not significant. However, a non-parametric Wilcoxon test shows a significant difference
in cost between test technique for Cruise Control (Prob > |Z| was evaluated to 0.0211).
Since a t-test tends to be conservative when the observations’ distribution is not normal,
we will tend to rather trust the Wilcoxon test results, thus concluding that statechart
testing is significantly more expensive than code testing for Cruise Control.

Carleton University, TR SCE-06-15 September 2006

38

N
um

be
r o

f m
et

ho
d

ca
lls

0

500

1000

1500

2000

2500

3000

code statechart

Treatment

a) OrdSet

N
um

be
r o

f m
et

ho
d

ca
lls

0

200

400

600

800

1000

1200

code statechart

Treatment

b) Cruise Control

Figure 15: Cost comparison of statechart and code drivers

Cluster Treatment Min Max Mean StdDev Range
Statechart 73 2732 875.55 781.48 2659

OrdSet
Code 84 1350 600.64 409.26 1266

Statechart 230 683 502.17 114.60 453 Cruise
Control Code 39 1155 382.43 310.08 1116

Table 17: Cost descriptive statistics

Cluster DF Mean Code Mean Statechart t value Pr > |t|
Cruise Control 18.81 382.43 502.17 -1.453 0.1624

OrdSet 25.98 600.64 875.55 -1.313 0.2004

Table 18: t-test results for cost analysis

4.3.2 Cost-effectiveness analysis
We measure the cost-effectiveness of a driver as the ratio of its mutation score to its

cost. We performed one-tailed t-tests to assess the impact of the test technique on the cost
effectiveness of test drivers (research question 8). Results are reported in Table 19.

Code testing is found to be significantly more cost-effective than statechart testing.
However, from the previous section we have seen that code and statechart testing tend to
be complementary. Also, we have seen that statechart testing tends to be less affected by
the skills and ability of testers as it is better defined and more systematic. Last, statechart
testing can be planned early on before any code is available. Therefore, despite a different
in cost-effectiveness, these results do not suggest in any way that code testing should be
the preferred choice over statechart testing.

Cluster DF Mean Code Mean Statechart t value Pr > t
Cruise Control 15.40 0.12 0.05 2.918 0.0052

OrdSet 22.82 0.15 0.09 -1.935 0.0307

Table 19: t-test results for cost effectiveneness

Carleton University, TR SCE-06-15 September 2006

39

4.3.3 Investigating the variation is cost-effectiveness

Figure 16 shows scatter plots for each cluster and test technique: mutation score as
function of driver cost. We expect a positive, monotonic relationship between the two
variables and we would expect low dispersion if the cost-effectiveness were similar
across drivers. However, we can clearly see a great deal of dispersion on the plots for
code testing, thus suggesting a lot of the variation in mutation score is not explained by
the size of the driver.

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000
Number of method calls

20

30

40

50

60

70

80

90

0 250 500 750 1000 1250 1500
Number of method calls

10

15

20

25

30

35

40

45

50

M
ut

at
io

n
S

co
re

0 250 500 750 1000 1250
Number of method calls

18

19

20

21

22

23

24

25

26

M
ut

at
io

n
S

co
re

200 300 400 500 600 700
Number of method calls

a) Cruise Control - code b) Cruise Control - statechart

c) OrdSet - code d) OrdSet - statechart

10

20

30

40

50

60

70

80

M
ut

at
io

n
S

co
re

0 500 1000 1500 2000 2500 3000
Number of method calls

20

30

40

50

60

70

80

90

M
ut

at
io

n
S

co
re

0 250 500 750 1000 1250 1500
Number of method calls

10

15

20

25

30

35

40

45

50

0 250 500 750 1000 1250
Number of method calls

18

19

20

21

22

23

24

25

26

200 300 400 500 600 700
Number of method calls

- -

- -

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000
Number of method calls

20

30

40

50

60

70

80

90

0 250 500 750 1000 1250 1500
Number of method calls

10

15

20

25

30

35

40

45

50

0 250 500 750 1000 1250
Number of method calls

18

19

20

21

22

23

24

25

26

200 300 400 500 600 700

- -

- -

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000
Number of method calls

20

30

40

50

60

70

80

90

M
ut

at
io

n
S

co
re

0 250 500 750 1000 1250 1500

10

15

20

25

30

35

40

45

50

0 250 500 750 1000 1250
18

19

20

21

22

23

24

25

26

200 300 400 500 600 700

- -

- -

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000
20

30

40

50

60

70

80

90

0 250 500 750 1000 1250 1500

10

15

20

25

30

35

40

45

50

0 250 500 750 1000 1250
18

19

20

21

22

23

24

25

26

200 300 400 500 600 700

-

-

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000
20

30

40

50

60

70

80

90

0 250 500 750 1000 1250 1500

10

15

20

25

30

35

40

45

50

0 250 500 750 1000 1250
18

19

20

21

22

23

24

25

26

200 300 400 500 600 700

-

-

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000
20

30

40

50

60

70

80

90

0 250 500 750 1000 1250 1500

10

15

20

25

30

35

40

45

50

0 250 500 750 1000 1250
18

19

20

21

22

23

24

25

26

200 300 400 500 600 700

-

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000
20

30

40

50

60

70

80

90

0 250 500 750 1000 1250 1500

10

15

20

25

30

35

40

45

50

0 250 500 750 1000 1250
18

19

20

21

22

23

24

25

26

200 300 400 500 600 700

-

Figure 16: Mutation Score - Cost scatter plots

We performed a qualitative cost analysis of drivers to investigate the reasons for
such variability. The results of this analysis are summarized in Table 20. The main cause
for cost-effectiveness variability in code drivers is a frequent redundancy in test cases,
writing multiple test cases that partially cover the same nodes/edges. Redundancy is
however controlled in the case of statechart testing as the test cases are precisely
specified by a test strategy (RTP) and therefore this leads to less code coverage
redundancy. Another source for variability in cost effectiveness is the ineffective use of
available public methods to implement certain functionalities. For example, in OrdSet, a
set can be created with two constructors, one creates an empty set and another creates a
set with content from an array of integers. Some subjects did not use the second type of
constructors to create a non-empty set. Instead, they created an empty set and iteratively
added elements to it with the “add one element” method. This increased the number of

Carleton University, TR SCE-06-15 September 2006

40

called methods in their drivers considerably. Similarly, in Cruise Control, the inefficient
use of command calls to accelerate or to brake to reach a certain speed unnecessarily lead
to considerable increase in driver cost. For instance, calling the accelerate command
twice in a sequence produces the same behavior as calling it any number of times.
Cruise control – code drivers

- High numbers of test cases, which are not necessarily good detectors of faults, i.e.
redundancy in terms of node/edge coverage.

- High precision in oracles, i.e. verifying values of all or most class attributes leading to high
numbers of method calls.

- Long paths of commands, for example 20 consecutive times of “accelerating” or 50 times
“braking”, this is not necessarily helpful in detecting faults as the maximum speed or
maximum brake value can be reached in less commands. Also when accelerating without
waiting for speed to increase only two accelerating commands are equivalent to any number
of accelerating commands above two.

Cruise control – statechart drivers

- Verifying oracles only after the last transition in a round-trip path (causing high variation)
- Wrong implementation of round trip paths, i.e. implementing 16 RTPs instead of 12.

OrdSet – code drivers

- Creating of a set with content as an empty set and adding contents one by one afterwards by
calling the method “add”; note that the creation of this kind of set can be created with a single
method call, i.e. the constructor that accepts an array of integers as a parameter.

- High number of test cases with less precise oracles. Note that even when the number of test
cases increases, the mutation score may not increase as additional code coverage may not be
proportional to the number of test cases.

- High precision in oracles (every oracle checks for all attributes values).
- No apparent use of a systematic testing strategy leading to high number of test cases.

OrdSet – statechart drivers

- Testing unnecessarily the values of test cases settings; for example, if a test case require an
empty set as a parameter, the test case would include a test for the emptiness of the provided
set.

- Verifying oracles only after the last transition in a round-trip path (causing high variation).
- Wrong implementation of state invariant assertions causing lower driver sizes; for example

the state “Empty” is tested with the “isEmpty” method instead of testing the invariant of state
Empty which includes the verification of additional attributes.

- Creating of a set as an empty set and iteratively adding content by calling the method “add”;
note this can be created with only one method call, i.e. the constructor that accepts an array of
integers as a parameter.

- Number of test cases (not all students were able to implement all RTPs in the transition tree).

Table 20: Causes for variation in driver cost effectiveness

4.4 Qualitative analysis of live mutants

We discussed in Section 4.1 the fault detection effectiveness of statechart drivers
and we have seen that large numbers of mutants in Cruise control were not detected and
fewer numbers of mutants were not detected in OrdSet. To better understand why certain

Carleton University, TR SCE-06-15 September 2006

41

faults are difficult to detect by statechart drivers, we performed a qualitative analysis to
identify what execution conditions would be required to detect faults and whether these
conditions were likely to be fulfilled by statechart testing. This also helps us identify how
to improve statechart testing in order to increase its fault detection effectiveness. This
analysis was systematic and included the following three steps:

1. Running perl scripts to identify the following disjunctive sets of faults: (1) F-
(Fs U Fc) = set of faults not detected by any driver, (2) Fc-Fs = set of faults
detected only by code drivers, (3) Fs-Fc = set of faults detected only by
statechart drivers, and (4) FsUFc = set of faults detected by both types of
drivers.

2. Identifying the reasons for not detecting faults with a focus on F-(Fs U Fc) and
Fc-Fs. This was done by executing the corresponding mutants and generating
traces of execution. If the fault does not affect the output, the trace can then
help us identify the reason. And if the fault does indeed affect the output, the
trace then helps us understand why the oracle did not detect any failure. An
example of such faults is one created by seeding a fault in the method
“resizeArray” of the OrdSet class as shown below:

private void resizeArray() {

 int new_size = _set_size + min_set_size;
if (new_size <=max_set_size &&
_resized_times<max_accepted_resizes) {

 int[] _new_set = new int[new_size];
 for (int k = 0; k < _last + 1; k++) {
 _new_set[k] = _set[k];
 }
 _set_size = new_size;
 _set = _new_set;
 _resized_times++;
 } else {
 _overflow = true;
 }
 }

Recall that the method resizeArray is called whenever an element is to be added
to a full set. To cause a resize, the element to be added should not be already in
the set. A resize can occur if two conditions are true: (1) the resized set size
does not exceed the maximum set size (a constant), and (2) the number of
resizes done on the set does not exceed the maximum resizes allowed (a
constant). The error was seeded by replacing the index k highlighted above in
the code by k++. The fault gets executed if a new element is to be added to a
full set in which the conditions for a resize are fulfilled. When the fault is
executed, the set is resized as expected, but with wrong content (some elements
would be replaced by zero). In order to detect the fault, a verification of the set
content is needed. This can be done by verifying the class invariant or the
resizeArray postcondition in the oracle. An example of a test case that causes
a failure if this fault is executed is to create an ordered set with content {1, 2, 3,
6} then to add the element “4” to the set. The result one gets is {0, 2, 0, 4, 6}
instead of {1, 2, 3, 4, 6}.

Carleton University, TR SCE-06-15 September 2006

42

3. Classifying undetected faults according to the categories listed in Table 21
below.

Cruise Control Total

1
Mutants corresponding to inserting or deleting “static” keyword were not detected by any
driver as only one instance of the cruise system (Controller and Carsimulator) was running at
a time in all drivers.

20

2 Deleting initial values of attributes were not detected as default values are equal to the initial
values deleted. Example: an integer attribute that is supposed to be initialized to 0. 9

3

Faults that affect the algorithm that manages the speed and throttle. For example: (1) a fault
that causes air resistance to become positive instead of negative, (2) a fault that causes the
throttle to increase instead of decay with time when the accelerator is not pressed. These faults
cause wrong values of class attributes such as speed. Such fault requires a very precise oracle
in order to be detected.

158

4 Fault seeded in dead code cannot be detected. 1

5
Faults that do not cause a behavioral change in methods. They are just artifacts of the way we
seeded faults using mutation. It is common to see so-called “equivalent” mutants when using
mutation operators to seed faults [4, 39, 43].

24

6

Faults that can be detected only with a specific test case, mainly requiring repeating a call of
the same command in a test case (path) and/or causing the system to sleep to allow values of
speed, throttle, or distance to change over time. Such faults may be detected by code drivers if
a specific path is implemented, and they cannot be detected with statechart drivers because the
testing technique used does not allow the repeating of commands more than once in a round
trip path.

10

8

Faults that can be detected with test cases for some paths that are not covered in the statechart,
i.e. unspecified self-transitions or sneak paths (example, in state inactive, the event “on” is not
represented with a self-transition). Subjects using statecharts implemented only paths in the
transition tree in their driver and therefore do not account for sneak paths. Subjects working
with code did not think of covering sneak paths as well probably because they correspond to
omitted “else” statements in “if” statements.

14

9 Drivers did not execute the cluster during a long enough period of time with appropriate
conditions to trigger specific code/behavior. 41

OrdSet

1 Faults that delete or add a static keyword. Static attributes are used in the cluster as constants.
There is no code that affects static attributes values. Thus these faults cannot be detected. 4

2 Faults that cause no behavioral change. These again, are equivalent mutants and are artifact
of our fault seeding procedure. 58

3 Faults that cause an infinite loop. No oracle checks whether execution takes too long. 49
4 Faults that cause wrong set content and/or actual set size. These faults can be detected with

methods’ post conditions and class invariant assertions in oracles. 41

5 Faults that can only be detected with some specific parameters values in test cases, i.e. a
specific set size or a specific content. 8

Table 21: Classification of causes for not detecting faults
By looking at Table 21 we notice that the identified categories of undetected faults

are related to the characteristics of each cluster. Once again, how well a technique is

Carleton University, TR SCE-06-15 September 2006

43

going to detect faults depends to a great extent on the characteristics of the software
under test.

For Cruise Control, most undetected faults are from the third category (158 faults).
As previously discussed, the large number in this category can be attributed to the fact
that the algorithm that determines the values of class attributes is not described by the
statechart. These faults result in wrong values assigned to class attributes. In order to
detect these faults, not only precise oracles should be implemented but also test driver
execution time should be increased (add wait time) to allow for substantial changes in
class attributes values. Another important category of undetected faults is the one
associated with the real-time behavior of the software under test (category 9). These
faults may be detected if more time is allowed for drivers’ execution, i.e. using the
“sleep” method from the Thread class.

For OrdSet, most undetected faults are from the second category. These “faults”
correspond to equivalent mutants and cause no behavioral change in system: they should
therefore be ignored in our analysis. Another important category of undetected faults is
the third category: these faults cause infinite loops. They can only be detected if drivers
are designed to detect abnormal execution times. Faults in category 4, which are frequent,
can be addressed by implementing contract assertions in oracles.

From the results above we note that equivalent mutants correspond only to 9% and
36% of undetected faults and 6% and 9% of total seeded faults for Cruise Control and
OrdSet, respectively. Therefore it confirms that a heuristic, sometimes used in testing
empirical studies [1, 4, 15, 19, 39, 43], that consider all faults undetected by any driver as
equivalent mutants and eliminate them from the total set of mutants cannot be applied in
our case. However, we can adjust based on our qualitative analysis the mutation scores of
all the test drivers of our experiment.

Let Mb and Ma be the mutation score of a driver before and after removing
equivalent mutants respectively, Ne the number of equivalent mutants and F the total
number of mutants. Then Ma can be computed as follows:

Ma = (Mb*F/100 – Ne)*100/F

We computed Ma for all drivers and both clusters. Results are presented in Table
22. All the mutation scores dropped but after re-running the various analyses we
performed, these changes turned out not to make any difference in terms of the
conclusions we have drawn in the previous sections.

 Mean of drivers mutation scores

 statechart
drivers code drivers statechart + code

drivers
With equivalent mutants 24.47 27.69 35.86 Cruise

Control Without equivalent mutants 16.73 20.28 31.61
With equivalent mutants 50.27 56.15 71.41

OrdSet
Without equivalent mutants 45.17 51.65 68.48

Table 22: Equivalent mutants’ impact on mutation scores

Carleton University, TR SCE-06-15 September 2006

44

4.5 Proposition of improvements to statechart testing

The qualitative analysis of live mutants (Section 4.4) helped us address research
question 9 and identify additions to our statechart testing strategy in order to improve the
fault detection ratio of statechart drivers. The proposed improvements as listed below are
based on the two tested clusters but they can be easily generalized to many control and
complex data structure classes:

1. Use activity diagrams to model algorithms with high control flow
complexity. They will help ensure minimal edge coverage for the most
complex methods and would also help describing the impact of the “time”
factor on the different class attributes in a real-time system. The coverage
criterion would be to cover all paths in the activity diagram. If a loop exists,
then typical loop coverage heuristics should be applied [8].

2. Include contract assertions (class invariant and methods post conditions) in
oracles in addition to state invariants.

3. Complement the round-trip path technique with sneak path testing. This has
been recommended by Binder [8] and our data clearly confirm this is
required. Including explicit self-transitions in statecharts to account for
sneak paths within RTPs would not be a convenient alternative as statechart
would become unnecessarily complex.

An example of an activity diagram for a running car in Cruise control is provided in
Figure 17. Such an activity diagram helps identifying test cases that cannot be otherwise
identified based on the statechart and using the Round-trip path technique. For instance,
to perform boundary testing in the case of Cruise Control, we need to test the case where
a car is running at maximum speed. However, to reach the maximum speed, the car
should accelerate for some time as speed is a function of time (changes every 200 ms).
This corresponds to executing the highlighted path in Figure 17 a number of times.

Therefore, test driver execution time should be extended to allow speed to increase.
Recall that the time factor does not show in the statechart. Also, one can note from the
activity diagram that the speed is a function of the car throttle. The throttle value is
increased by a fixed amount for every accelerate command (refer to method “accelerate”
postcondition in Appendix E.1.3) and it decays with time as can be seen in the shadowed
part in Figure 17. Therefore, in order to continue to bring speed to its maximum value,
the command “accelerate” should be repeated a number of times. Implementing such a
test case means that the same transition would be executed a number of times. This
cannot be implemented with the RTP test technique where a transition cannot be
executed in a path more than once. Covering all paths in the activity diagram implies that
some paths would be traversed a number of times in order to be able to cover other paths.
For example, to cover the path in the activity diagram where a speed is greater than
maximum speed, the car speed should first reach maximum speed. In the discussion
above we explained that in order to reach the maximum speed the highlighted path in
Figure 17 should be executed a number of times.

Carleton University, TR SCE-06-15 September 2006

45

 Reset car speed and distance

Increment car speed with the value: (throttle - car speed/air resistance - 2*brakepedal)

[car speed > maximum speed]

Set car speed to maximum speed

[car speed <= maximum speed]

Set car speed to 0

[car speed < 0]

[car speed >= 0]

Increment distance by (car speed / (36 * ticks per second))

[throttle > 0]

Decrement throttle by (0.5 / ticks per second)Set throttle to 0

[throttle <= 0]

wait for 200 ms

[Car is running]

[Car is not running]

Figure 17: Running car activity diagram with highlighted path

Applying the second improvement to OrdSet would likely help to detect faults such
as the AOIS faults. AOIS faults are seeded by inserting arithmetic shortcuts (++, --).
They cause wrong content or order of elements in the set. Such faults can be detected if
contracts are implemented in oracles to verify the content of a set and the order of its
elements.

For Cruise Control, applying the third improvement by including explicit self-
transitions with no actions to the statechart would increase the total number of RTPs in
transition tree from 12 to 25. But any faults, such as AOIS faults that insert arithmetic
shortcuts to state attributes causing a wrong output state, would be detected if sneak paths
were tested.

We implemented the above proposed improvements to the model to verify their
impact on fault detection effectiveness for statechart drivers. We decided to implement
the test drivers and not use the ones implemented by students. The main motivation was
to accurately assess the impact of refining our test strategy by implementing fully correct
and complete statechart drivers.

For each cluster, we first implemented one base drivers with test cases
corresponding to RTPs in the transition trees provided to subjects during the experiment

Carleton University, TR SCE-06-15 September 2006

46

and using state invariants as oracles. We then augmented them with the suggested
improvements.

Only the second proposed improvement applies to OrdSet. A second test driver is
created for OrdSet by augmenting test cases in the base driver with contract assertions in
oracles. A comparison of the mutation scores, code coverage, and size (cost) of the two
drivers is presented in Table 23. Results show an important increase in the number of
killed mutants from 494 to 536 mutants (79% to 86%). As a comparison, the highest
mutation score in code drivers is 541 mutants or 87% which is very close to the mutation
score of the new statechart driver after implementing contract assertions. Node and edge
coverage did not change much as no new test cases were added to the driver: changes
were only made to oracles that called additional getter methods. Regarding driver cost,
the increase is attributed to method calls in contracts where getters are called to verify
attribute values. Even with an increase in cost of 15%, the increase in mutation score
(8%) is of practical interest.
 Mutation

score
Node

Coverage
Edge

Coverage
Cost

(# of method calls)

RTPs + state invariants 79.17 76.09 72.61 2136
+ contract assertions in oracles 85.89 (+8%) 76.81 73.88 2490 (+15%)

Table 23: Improvements to the model impact on OrdSet drivers
Table 24 reports on the changes in the numbers of killed mutants per mutation

operator after adding contract assertions to the OrdSet test driver. The mutation operators
not showing in the table had no change in number of killed mutants. Note the important
improvement in AOIS detection rate (from 209 to 235 killed mutants). This confirms our
expectations earlier in this section that AOIS faults (insertion of shortcuts), which cause
wrong content and element orders, would be better detected when contract assertions are
added to oracles.
 AORB AORS AOIU AOIS ROR LOI
RTPs + state invariants 82 7 44 209 37 95

+ contract assertions in oracles 87
(+5.5%)

8
(+12.5%)

45
(+2%)

235
(+9%)

40
(+6%)

101
(+6%)

Table 24: Comparison of number of killed mutants per mutation operator - OrdSet
All three proposed improvements apply to Cruise control. Therefore drivers have

been created to implement the three additions to base statechart driver. We first
considered each improvement separately to study its isolated effect on fault detection.
Next, we proceeded to combine test cases from the different proposed improvements to
determine their combined effect.

Mutation score, code coverage, and driver cost data are presented in Table 25. The
first proposed improvement aim to cover all paths in the activity diagram and resulted in
considerable mutation score improvement (from 25% to 42%). In fact, covering the
activity diagram (one test case that covered all paths in the activity diagram) showed the
most important impact on the mutation score.

Carleton University, TR SCE-06-15 September 2006

47

 Mutation
score

Node
Coverage

Edge
Coverage

Cost
 (# of method calls)

RTPs + state invariants 25.39 78.16 62.05 515
+ activity diagram coverage 42.23

(+17%)
86.18 76.60 543

+ sneak paths coverage 31.61
(+6%)

85.37 76.78 903

+ contract assertions in oracles 31.87
(+6.5%)

79.83 64.53 565

+ contract assertions & sneak paths coverage 39.38
(+14%)

82.58 74.96 1539

+ contract assertions & activity diagram coverage 50.78
(+25%)

82.45 73.62 620

+ sneak paths & activity diagram coverage 47.15
(+22%)

88.07 82.24 941

+ all three proposed improvements coverage 58.29
(+33%)

88.07 82.24 2297

Table 25: Improvements to the model’s impact on cruise control drivers mutation
scores

Performing all three improvements in the statechart driver caused an increase in the
mutation score from 25% to 58% (Table 25). As a comparison, the highest mutation score
of code drivers was 48%. Another interesting point to mention is that covering sneak
paths had the highest impact on edge coverage. As for cost, sneak path coverage was the
most expensive in terms of increase in number of method calls. This can be attributed to
the large number of additional RTPs in the new transition tree. The least expensive
proposed improvement was the coverage of the activity diagram. This was the most cost
effective among the three proposed improvements and this can be easily explained as
most undetected faults are real-time dependent (refer to Section 4.4).

Table 26 reports on the changes in the numbers of killed mutants per mutation
operator after adding the improvements to the Cruise control base driver. The mutation
operators not showing in the table showed no change in number of killed mutants. As
expected from our discussion in Section 4.2.4, the detection rates of AORB and ASRS
were improved when covering the activity diagram. Also there was an important
improvement to the AOIS detection rate especially when covering all the paths in the
activity diagram.

Carleton University, TR SCE-06-15 September 2006

48

 AORB AOIU AOIS ROR LOI ASRS
RTPs + state invariants 0 9 32 23 27 0

+ contract assertions in oracles 0 9 54
(+15%)

26
(+4%)

27 8
(+67%)

+ sneak paths coverage 0 9 48
(+11%)

29
(+8%)

29
(+4%)

0

+ activity diagram coverage 5
(+16%)

14
(+16%)

66
(+24%)

31
(+10%)

32
(+10%)

8
(+67%)

+ contract assertions & sneak paths coverage 0 11
(+6%)

59
(+19%)

29
(+8%)

29
(+4%)

8
(+67%)

+ contract assertions & activity diagram
coverage

5
(+16%)

15
(+19%)

72
(+28%)

35
(+15%)

32
(+10%)

12
(+100%)

+ sneak paths & activity diagram coverage 5
(+16%)

14
(+16%)

78
(+32%)

35
(+15%)

34
(+14%)

8
(+67%)

+ all three proposed improvements coverage 5
(+16%)

15
(+19%)

82
(+35%)

36
(+16%)

34
(+14%)

12
(+100%)

Table 26: Comparison of number of killed mutants per mutation operator - Cruise
Control

4.6 Discussion of Results

Despite being proposed as an efficient strategy for testing state-dependent class
clusters [9, 10, 38], the statechart-based testing of source code does not appear more
effective at detecting faults than simple structural testing. This is at least the case in the
context of our experiment where the time allocated is limited and the same for both test
strategies. However, our results also show clearly that statechart and structural testing are
complementary in terms of the faults they detect and they should somehow be used
together. Since statechart testing can be planned and prepared early before code is ready,
and because structural testing is a difficult and tedious task requiring control flow
analysis, it is probably better to recommend that statechart testing be used first and then
complemented through coverage analysis to reach acceptable levels of code coverage.
This is also consistent with the more general recommendation by Marick [33] on black-
box and white-box testing.

Our results also show that the fault detection effectiveness of statechart-based
testing varies to a large extent depending on how precisely the statechart describes the
behavior of the software under test. In our experiment, for a Cruise Control class cluster
which behavior is strongly driven by time-related properties, the statechart was only a
rough model to base testing on. Only when complemented with test cases covering an
activity diagram describing the computation of time dependent class attributes we were
able to detect most seeded faults. Another source of variation in fault detection
effectiveness is related to the level of precision of the statecharts and its related model
elements (contracts, class diagram, and state invariants) which inherently depends on the
nature of the software being modeled. For example, many real-time properties and
complex computations are typically not represented in statecharts. Furthermore, certain
operations cannot be precisely modeled with contracts: this is the case of complex
computations. Considering that we are only scratching the surface of the problem here, it
is very probable that to be practical and reliable, statechart testing must be complemented

Carleton University, TR SCE-06-15 September 2006

49

with other testing strategies and that we need to provide precise guidelines regarding its
usage and integration with other testing techniques. However, much more experimental
research needs to be done to devise a complete strategy.

Statechart driven testing can however be made much more effective by ensuring
that illegal (often implicit) events be tested in every state and by implementing precise
oracles based on class invariants and contract assertions, in addition to the standard state
invariants. As previously discussed in another context [10], we see here that the test
strategy is only part of the picture when investigating fault detection effectiveness. The
strategy followed to implement oracles is at least as important.

Code testing shows much more variation in effectiveness since it relies much more
on the testers’ ability and skills as it offers much less guidance than statechart testing.
Our results show that, despite being similarly effective overall at detecting faults as code
testing, statechart testing is more effective for less skilled testers. In other words, it may
be recommended if testers have little experience and weak programming skills and if a
choice between the two test strategies has to be made. From a more general standpoint,
these results suggest that human factors play an important role in the results of empirical
test research. This is probably something that should be more often accounted for in
testing research.

5 CONCLUSIONS

This paper investigates the cost-effectiveness of statechart testing of class clusters
with state-driven behavior. This is of practical importance as state-driven testing has been
often recommended for complex class clusters in literature [9, 10, 14, 16, 17, 38, 42]. As
a baseline of comparison we compare statechart-driven testing with the common practice
of using coverage analysis of code to drive the development of test suites. Furthermore
we investigate whether the two strategies are complementary in detecting faults. We then
investigate the factors that may affect how effective these strategies are in practice.

To address these issues, this paper presents the results of a controlled experiment
performed in a university environment with senior, carefully trained students. Results
show, in a context where time is limited, that a well-known strategy for statechart testing
(referred to as the W-method [18] or round-trip path testing [8]) is not more effective at
detecting faults than testing driven by code coverage analysis. Furthermore, whether
statechart testing is preferable to coverage driven testing seems also to depend on the
programming and testing skills of the tester. However, the two test strategies also seem to
be complementary in terms of the faults they detect and this suggests that they should
probably be used together, as opposed to being alternatives. Because statecharts are
available before code is available and because testing based on code coverage analysis is
notoriously tedious and time consuming, it is probably wise to first test class clusters
based on statecharts and then complement test suites based on coverage analysis.

The results also suggest that the effectiveness of statechart testing strongly depends
on the nature of the software under test, the statechart model itself, but also the way test
oracles are implemented. As a result, it seems clear that much more research is needed in
order to provide clear and precise guidelines to testers as to when to use statechart testing

Carleton University, TR SCE-06-15 September 2006

50

and how to integrate it with other test strategies. For example, this paper shows cases
where it is advisable to complement the statechart with activity diagrams describing the
control flow of certain operations (e.g., modeling the way time-dependent class attributes
are updated) and then trying to cover the paths in such activity diagrams to complement
statechart testing. Our results also show the large extent of the impact of using precise
oracles based on contract assertions and class invariants, as well as the necessity to test
for illegal and often implicit events in statechart.

Though our two class clusters involved in our experiment are small, they are
representative of two typical types of clusters: complex data structures and control classes
in a control system. Though our experiment subjects are students, there are fourth-year
engineering students who are extensively trained as Java programmers and who have
been formally taught black-box and white-box test techniques. Therefore, though
replications of this experiment are needed, we believe that the results we provide in this
paper and the conclusions we draw provide useful insights to practitioners and
researchers alike.

6 ACKNOWLEDGMENTS

Lionel Briand’s work was partly supported by a Canada Research Chair (CRC)
grant. Lionel Briand and Yvan Labiche were further supported by NSERC Discovery
grants. Samar Mouchawrab was supported by an Ontario Graduate Studies (OGS)
graduate scholarship.

Carleton University, TR SCE-06-15 September 2006

51

7 REFERENCES

[1] J. H. Andrews, L. C. Briand and Y. Labiche, “Is mutation an appropriate tool for
testing experiments?,” Proc. Proceedings of the 27th international conference on
Software engineering, St. Louis, MO, USA, pp. 402-411, 2005.

[2] J. H. Andrews, L. C. Briand, Y. Labiche and A. S. Namin, “Using Mutation
Analysis for Assessing and Comparing Testing Coverage Criteria,” Forthcoming in
IEEE Transactions on Software Engineering, 2006.

[3] E. Arisholm, L. C. Briand, S. E. Hove and Y. Labiche, “The Impact of UML
Documentation on Software Maintenance: An Experimental Evaluation,”
Forthcoming in IEEE Transactions on Software Engineering, 2006.

[4] D. Baldwin and F. Sayward, “Heuristics for determining equivalence of program
mutations,” Yale University, Department of Computer Science 276, 1979.

[5] T. Ball, D. Hoffman, F. Ruskey, R. Webber and L. White, “State generation and
automated class testing,” Software Testing, Verification and Reliability, vol. 10 (3),
pp. 149-170, 2000.

[6] V. R. Basili, F. Shull and F. Lanubile, “Building Knowledge through Families of
Experiments,” IEEE Transactions on Software Engineering, vol. 25 (4), pp. 456-
473, 1999.

[7] J. M. Bieman and J. L. Schultz, “An Empirical Evaluation (and specification) of the
all-du-paths testing criterion,” ACM Software Engineering Journal, vol. 7 (1), pp.
43-51, 1992.

[8] R. V. Binder, Testing Object-Oriented Systems - Models, Patterns, and Tools,
Addison-Wesley, 1999.

[9] K. Bogdanov and M. Holcombe, “Statechart Testing Method for Aircraft Control
Systems,” Software Testing, Verification and Reliability, vol. 11 (1), pp. 39-54,
2001.

[10] L. C. Briand, M. Di Penta and Y. Labiche, “Assessing and improving state-based
class testing: a series of experiments,” Software Engineering, IEEE Transactions
on, vol. 30 (11), pp. 770-783, 2004.

[11] L. C. Briand and Y. Labiche, “A UML-Based Approach to System Testing,”
Software and Systems Modeling (Springer), vol. 1 (1), pp. 10-42, 2002.

[12] L. C. Briand, Y. Labiche and H. Sun, “Investigating the Use of Analysis Contracts
to Improve the Testability of Object-Oriented Code,” Software - Practice and
Experience, vol. 33 (7), pp. 637-672, 2003.

[13] L. C. Briand, Y. Labiche and Y. Wang, “Using Simulation to Empirically
Investigate state Coverage Criteria based on Statecharts.”

[14] L. C. Briand, Y. Labiche and Y. Wang, “Using Simulation to Empirically
Investigate state Coverage Criteria based on Statecharts,” Proc. Proceedings of
ACM International Conference on Software Engineering, Edinburgh, Scotland, UK,
pp. 86-95, May 2004, 2004.

[15] T. A. Budd and D. Angluin, “Two Notions of Correctness and their Relation to
Testing,” Acta Informatica, vol. 18 (1), pp. 31-45, 1982.

Carleton University, TR SCE-06-15 September 2006

52

[16] P. Chevalley and P. Thevenod-Fosse, “Automated generation of statistical test cases
from UML state diagrams,” Proc. Computer Software and Applications
Conference, 2001. COMPSAC 2001. 25th Annual International, pp. 205-214, 2001.

[17] P. Chevalley and P. Thevenod-Fosse, “An empirical evaluation of statistical testing
designed from UML state diagrams: the flight guidance system case study,” Proc.
Software Reliability Engineering, 2001. ISSRE 2001. Proceedings. 12th
International Symposium on, pp. 254-263, 2001.

[18] T. S. Chow, “Testing Software Design Modeled by Finite-State Machines,” IEEE
Transactions on Software Engineering, vol. SE-4 (3), pp. 178-187, 1978.

[19] R. A. DeMillo, R. J. Lipton and F. G. Sayward, “Hints on Test Data Selection: Help
for the Practicing Programmer,” Computer, vol. 11 (4), pp. 34-41, 1978.

[20] J. L. Devore and N. Farnum, Applied Statistics for Engineers and Scientists,
Duxbury, 1999.

[21] P. G. Frankl and S. N. Weiss, “An experimental comparison of the effectiveness of
the all-uses and all-edges adequacy criteria,” Proc. Proceedings of the Fourth
Symposium on Software Testing, Analysis and Verification, Victoria, British
Columbia, Canada, pp. 154-164, October 1991, 1991.

[22] P. G. Frankl and S. N. Weiss, “An experimental comparison of the effectiveness of
branch testing and data flow testing,” Software Engineering, IEEE Transactions on,
vol. 19 (8), pp. 774-787, 1993.

[23] P. G. Frankl, S. N. Weiss and C. Hu, “All-Uses versus Mutation Testing: An
Experimental Comparison of Effectiveness,” Systems and Software, vol. 38 (3), pp.
235-253, 1997.

[24] E. Gamma, R. Helm, R. Johnson and J. M. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Computing Series, Addison-Wesley
Professional, 1995.

[25] H. S. Hong, Y. G. Kim, S. D. Cha, D. H. Bae and H. Ural, “A Test Sequence
Selection Method for Statecharts,” Software Testing, Verification and Reliability,
vol. 10 (4), pp. 203-227, 2000.

[26] M. Hutchins, H. Foster, T. Goradia and T. Ostrand, “Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria,” Proc.
Proceedings of the 16th international conference on Software engineering,
Sorrento, Italy, pp. 191-200, 1994.

[27] IEEE Press, “IEEE Standard Glossary of Software Engineering Technology,”
ANSI/IEEE Standard 610.12-1990, 1990.

[28] E. Kamsties and C. M. Lott, “An Empirical Evaluation of Three Defect-Detection
Techniques,” Proc. Proceedings of the 5th European Software Engineering
Conference, pp. 362-383, 1995.

[29] P. S. Levy and S. Lemeshow, Sampling of Populations: Methods and Applications,
Wiley, 3rd Edition, 1999.

[30] Y.-S. Ma, Y.-R. Kwon and J. Offutt, “Inter-Class Mutation Operators for Java,”
Proc. The Thirteenth International Symposium on Software Reliability Engineering,
Annapolis, MD, November 2002, 2002.

[31] Y.-S. Ma and J. Offutt, Description of Method-level Mutation Operators for Java,
http://www.isse.gmu.edu/faculty/ofut/mujava/mutopsMethod.pdf, (Last accessed

http://www.isse.gmu.edu/faculty/ofut/mujava/mutopsMethod.pdf

Carleton University, TR SCE-06-15 September 2006

53

[32] Y.-S. Ma, J. Offutt and Y. R. Kwon, “ MuJava : An Automated Class Mutation
System,” Software Testing, Verification and Reliability, vol. 15 (2), pp. 97-133,
2005.

[33] B. Marick, Craft of Software Testing: Subsystems Testing Including Object-Based
and Object-Oriented Testing, Prentice-Hall, 1985.

[34] J. D. McGregor and D. A. Sykes, A practical guide to testing object-oriented
software, Object technology series, 2001.

[35] B. Meyer, “Applying Design By Contract,” Computer, vol. 25, pp. 40-51, 1992.
[36] C. Nebut, F. Fleurey, Y. Le Traon and J.-M. Jezequel, “Requirements by contracts

allow automated system testing,” Proc. 14th International Symposium on Software
Reliability Engineering, ISSRE 2003, pp. 85- 96, 17-20 Nov. 2003, 2003.

[37] C. Nebut, F. Fleurey, Y. Le Traon and J.-M. Jezequel, “Automatic test generation: a
use case driven approach,” IEEE Transactions on Software Engineering, vol. 32
(3), pp. 140- 155, 2006.

[38] A. J. Offutt and A. Abdurazik, “Generating Tests from UML specifications,” Proc.
Proc. 2nd International Conference on the Unified Modeling Language, pp. 416-
429, 1999.

[39] A. J. Offutt and W. M. Craft, “Using compiler optimization techniques to detect
equivalent mutants,” The Journal of Software Testing, Verification and Reliability,
vol. 4 (3), pp. 131-154, 1994.

[40] A. J. Offutt, Y. Xiong and S. Liu, “Criteria for Generating Specification-Based
Tests,” Proc. Proc. 5th International Conference on Engineering of Complex
Computer Systems, pp. 119-129, 1999.

[41] J. Offutt and A. Abdurazik, “Using UML Collaboration Diagrams for Static
Checking and Test Generation,” Proc. The Third International Conference on the
Unified Modeling Language (UML '00), York, UK, pp. 383-395, October, 2000,
2000.

[42] J. Offutt, S. Liu, A. Abdurazik and P. Ammann, “Generating Test Data From State-
based Specifications,” The Journal of Software Testing, Verification and Reliability,
vol. 13 (1), pp. 25-53, 2003.

[43] J. Offutt and J. Pan, “ Automatically Detecting Equivalent Mutants and Infeasible
Paths,” Software Testing, Verification and Reliability, vol. 7 (3), pp. 165-192, 1997.

[44] T. J. Ostrand and M. J. Balcer, “The category-partition method for specifying and
generating fuctional tests,” Communications of the ACM, vol. 31 (6), pp. 676-686,
1988.

[45] P. Piwowarski, M. Ohba and J. Caruso, “Coverage Measurement Experience
During Function Test,” Proc. 15th International Conference on Software
Engineering, IEEE CS, 1998.

[46] E. Weyuker, “The Cost of Data Flow Testing: An Empirical Study,” IEEE
Transactions of Software Engineering, vol. 16 (2), pp. 121-128, 1990.

[47] E. Weyuker, T. Goradia and A. Singh, “Automatically generating test data from a
Boolean specification,” Software Engineering, IEEE Transactions on, vol. 20 (5),
pp. 353-363, 1994.

[48] E. J. Weyuker, “The cost of data flow testing: an empirical study,” Software
Engineering, IEEE Transactions on, vol. 16 (2), pp. 121-128, 1990.

Carleton University, TR SCE-06-15 September 2006

54

[49] C. Wohlin, P.Runeson, M. Host, M. C. Ohlsson, B. Regnell and A. Wesslen,
Experimentation in Software Engineering - An Introduction, 2000.

[50] M. Wood, M. Roper, A. Brooks and J. Miller, “Comparing and combining software
defect detection techniques: a replicated empirical study,” Proc. Proceedings of the
6th European conference held jointly with the 5th ACM SIGSOFT international
symposium on Foundations of software engineering, Zurich, Switzerland, Springer-
Verlag New York, Inc., pp. 262-277, 1997.

Carleton University, TR SCE-06-15 September 2006

55

Appendix A Plot of Mutation score, Node, Edge and RTP
coverage

a) Cruise Control – Statechart drivers

c) Cruise Control – code drivers

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Driver (in increasing node coverage order)

Mutation score Node Coverage Edge coverage

Threshold for driver selection for combining
statechart and code based drivers analysis

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Driver (in increasing RTP coverage order)

Mutation score RTP coverage

Threshold for driver selection
for combining statechart and
code based drivers analysis

Carleton University, TR SCE-06-15 September 2006

56

b) OrdSet – Statechart drivers

d) OrdSet – Code drivers

Figure 18: Node, Edge and RTP coverage distributions

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Driver (in increasing node coverage order)

Mutation score Node Coverage Edge coverage

Threshold for driver selection
for combining statechart and
code based drivers’ analysis

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Driver (in increasing RTP coverage order)

Mutation score RTP coverage

Threshold for driver selection for
combining statechart and code
based drivers analysis

Carleton University, TR SCE-06-15 September 2006

57

Appendix B Descriptive statistics tables

 Cruise Control OrdSet

 |Fs| | Fc| |Fs-Fc|
/|F|%

|Fc-Fs|
/|F|% |Fs| | Fc| |Fs-Fc|

/|F|%
|Fc-Fs|
/|F|%

Median 96 108 6.48 10.49 449 452 10.10 10.90
Mean 95 122 7.28 14.31 407 447 11.97 10.95
Min 92 80 1.55 4.40 275 264 0.16 2.08
Max 98 186 15.28 32.64 494 541 38.94 21.31
95% 98 174 15.28 32.38 483 534 34.85 19.90
90% 98 163 11.74 23.24 472 526 30.82 15.48
75% 97 146 8.81 21.50 456 499 14.46 14.42
25% 94 101 4.92 8.55 359 430 6.05 7.61
10% 93 95 3.32 7.05 292 380 0.96 4.65
5% 93 88 2.19 4.66 283 322 0.47 4.11

Table 27: Mutation scores and difference fault sets scores

 Cruise Control OrdSet
 |Fs∩Fc|

/|F|%
|Fs∩Fc| / |Fs| |Fs∩Fc| / |Fc| |Fs∩Fc|

/|F|%
|Fs∩Fc| / |Fs| |Fs∩Fc| / |Fc|

Median 18.13 0.73 0.61 62.18 0.89 0.83
Mean 17.17 0.69 0.57 60.79 0.86 0.78
Min 8.81 0.35 0.32 35.90 0.51 0.51
Max 22.28 0.92 0.82 78.21 1.00 0.95
95% 22.28 0.90 0.81 72.83 1.00 0.93
90% 20.83 0.85 0.72 71.67 0.99 0.90
75% 19.62 0.79 0.69 66.75 0.95 0.88
25% 15.61 0.63 0.45 58.61 0.82 0.66
10% 12.88 0.52 0.34 40.13 0.66 0.58
5% 9.33 0.38 0.33 38.08 0.54 0.55

Table 28: Intersection score and ratios

Carleton University, TR SCE-06-15 September 2006

58

 Cruise Control OrdSet
 |FsUFc|

/|F|%
|F –

(FsUFc)|
/|F|%

|FsUFc| /
|Fs|

|FsUFc| /
|Fc|

|FsUFc|
/|F|%

|F –
(FsUFc)|

/|F|%

|FsUFc| /
|Fs|

|FsUFc| /
|Fc|

Median 35.10 64.90 1.42 1.19 84.86 16.67 1.19 1.10
Mean 38.76 61.24 1.57 1.26 83.70 18.64 1.29 1.17
Min 28.50 43.01 1.15 1.05 72.92 11.70 1.03 1.00
Max 56.99 71.50 2.38 1.59 88.30 41.83 1.97 1.92
95% 56.74 70.98 2.29 1.59 87.84 28.13 1.80 1.78
90% 47.38 69.04 1.97 1.55 87.66 27.00 1.69 1.37
75% 46.11 67.10 1.85 1.31 86.90 21.83 1.36 1.19
25% 32.90 53.89 1.33 1.15 81.17 13.42 1.12 1.04
10% 30.96 52.62 1.26 1.10 78.38 12.42 1.08 1.01
5% 29.02 43.26 1.17 1.07 76.67 12.30 1.06 1.00

Table 29: Union and not detected faults scores and ratios

Carleton University, TR SCE-06-15 September 2006

59

Appendix C Mutation scores per mutation operator

 Mutation scores descriptive statistics in:

 JDC (1) EAM (5) AORB (32) AOIU (32) AOIS (144) ROR (79) COI (1) LOI (51) ASRS (12)

 Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc
Median 100 0 0 0 0 0 28.13 3.13 23.61 11.11 29.11 3.8 100 0 52.94 6.86 0 0
Mean 100 0 9.33 5.6 0 0 28.34 6.56 23.57 10.94 29.11 4.81 100 10 52.94 11.93 0 0
95% 100 0 20 20 0 0 28.13 0 21.53 4.17 29.11 0 100 0 52.94 0 0 0
90% 100 0 20 20 0 0 31.25 18.75 25.70 18.06 29.11 13.92 100 100 52.94 31.37 0 0
75% 100 0 20 20 0 0 29.07 18.75 25.21 18.06 29.11 13.92 100 100 52.94 31.37 0 0
25% 100 0 0 0 0 0 28.13 18.75 24.72 14.79 29.11 10.51 100 10 52.94 25.88 0 0
10% 100 0 0 0 0 0 28.13 15.63 24.31 13.02 29.11 6.33 100 0 52.94 17.65 0 0
5% 100 0 0 0 0 0 28.13 0 22.92 8.33 29.11 1.27 100 0 52.94 3.92 0 0
Min 100 0 0 0 0 0 28.13 0 22.22 6.94 29.11 0 100 0 52.94 3.53 0 0
Max 100 0 20 20 0 0 28.13 0 22.01 5.56 29.11 0 100 0 52.94 0 0 0

Table 30: Mutation scores per mutation operator statistics for Cruise Control
Only mutation operators for which a driver (code or statechart) had detected one or more faults had been included in results’

tables; for example, no column has been reported for the JSI mutation operator for Cruise Control as no driver had detected any of JSI
faults. For each mutation operator in the results’ table, we present: (1) the number of created mutants per cluster (in brackets), (2) the
percentage of detected mutants by statechart drivers of that particular mutation operator (the column named Fs), and (3) the
percentage of detected mutants by statechart drivers, not detected by code drivers, of that particular mutation operator (the column
named Fs-Fc). Drivers used to generate these results are those selected based on the criteria defined in Section 4.2.

Carleton University, TR SCE-06-15 September 2006

60

 Mutation scores descriptive statistics in:
 JSI (5) EAM (4) AORB (90) AORS (8) AOIU (48) AOIS (297) AODU (4) ROR (47) COR (6) COD (1) COI (4)
 Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-Fc Fs Fs-F

Median 40 0 75 0 75.56 11.11 75 0 85.42 9.38 58.59 6.73 75 0 65.96 6.38 100 0 100 0 100 12.5
Mean 42.86 1.79 75 9.38 69.21 13.87 75 8.71 75.89 9.97 55.96 9.39 82.14 0.89 62.61 6.08 97.62 9.52 100 0 100 18.7
95% 40 0 75 0 38.89 0 50 0 50 0 38.72 0 75 0 42.55 0 83.33 0 100 0 100 0
90% 60 20 75 75 91.11 57.78 87.5 37.5 91.67 41.67 65.32 36.7 100 25 78.72 21.28 100 33.33 100 0 100 50
75% 54 20 75 75 88.78 48.06 87.5 37.5 90.42 37.5 65.12 31.4 100 0 76.81 14.89 100 33.33 100 0 100 50
25% 48 0 75 75 86.44 25.56 87.5 25 89.17 14.58 64.92 17.51 100 0 74.89 13.83 100 33.33 100 0 100 50
10% 40 0 75 0 81.67 18.89 87.5 12.5 86.46 12.5 63.64 13.22 87.5 0 71.28 10.64 100 16.67 100 0 100 31.2
5% 40 0 75 0 57.78 3.33 68.75 0 65.63 2.08 50.92 1.68 75 0 54.26 0 100 0 100 0 100 0
Min 40 0 75 0 39.56 0 57.5 0 51.25 0 41.95 0.34 75 0 46.38 0 93.33 0 100 0 100 0
Max 40 0 75 0 39.22 0 53.75 0 50.62 0 40.34 0 75 0 44.47 0 88.33 0 100 0 100 0

Table 31: Mutation scores per mutation operator statistics for OrdSet

Carleton University, TR SCE-06-15 September 2006

61

Appendix D OrdSet statechart guard conditions

A: ((v->size()).mod(min_set_size) = 0 and

v->asSet()->size() < v->size())
 or ((v->size()).mod(min_set_size)<> 0)
 or (v->size() > max_set_size and

v->asSet()->size() < max_set_size)

B: (s1.getSetElements()->size() +

s2.getSetElements()->size()).mod(min_set_size) = 0 and
s1.getSetElements()->
intersection(s2.getSetElements())->size() <> 0)

 or (s1.getSetElements()->size() +
s2.getSetElements()>size()).mod(min_set_size) <> 0)

or (s1.getSetElements()t->size() +
s2.getSetElements()->size() > max_set_size and
s1.getSetElements()->
union(s2.getSetElements())->size() < max_set_size)

C: ((v->size()).mod(min_set_size) = 0 and

v->asSet()->size() = v->size())
or (v->size() > max_set_size and v->asSet()->size() =
max_set_size)

D: (s1.getSetElements()->size() +

s2.getSetElements()->size()).mod(min_set_size) = 0 and
s1.getSetElements()->
intersection(s2.getSetElements())->size() = 0)

 or (s1.getSetElements()->
union(s2.getSetElements())->size() = max_set_size)

E: s1.getSetElements()->

union(s2.getSetElements())->size() > max_set_size

Carleton University, TR SCE-06-15 September 2006

62

Appendix E Contracts
E.1 Cruise Control’s Contracts
E.1.1 CruiseControl class

context CruiseControl::handleCommand(command: String): Boolean
pre: -- none
post: result = Sequence{“engineOff”, “engineOn”, “accelerator”,

“brake”, “on”, “off”,“resume”}->includes(command)

E.1.2 SpeedControl class
context SpeedControl:: SpeedControl(cs: CarSpeed)
pre: not cs.ignition
post: setSpeed = 0 and state = #DISABLED

context SpeedControl::clearSpeed()
pre: -- none
post: self.speed = 0

context SpeedControl::enableControl()
pre: -- none
post: self.state = #ENABLED

context SpeedControl::disableControl()
pre: -- none
post: self.state = #DISABLED

context SpeedControl::run()
pre: -- none
post: state = #DISABLED

context SpeedControl::getState(): Integer
pre: -- none
post: result = self.state

E.1.3 CarSimulator class
context CarSimulator
inv: throttle >=0 and throttle <=maxThrottle
 and speed >= 0 and speed <= maxSpeed
 and brakepedal >= 0 and brakepedal <= maxBrake
 and ((ignition = false) implies (speed = 0 and distance = 0 and

throttle = 0 and brakepedal = 0))

context CarSimulator::engineOn()
pre: --
post: self.ignition

Carleton University, TR SCE-06-15 September 2006

63

context CarSimulator::engineOff()
pre: --
post: not self.ignition

context CarSimulator::accelerate()
pre: --
post: brakepedal=0 and (throttle=throttle@pre+5 or

throttle=maxThrottle)

context CarSimulator::brake()
pre: --
post: throttle=0 and (brakepedal=brakepedal@pre+1 or

brakepedal=maxBrake)

context CarSimulator::run()
pre: --
post: ignition = false

context CarSimulator::setThrottle(val: Integer)
pre: --
post: brakepedal=0 and

((val>=0 and val <= maxThrottle) implies (throttle=val))
and (val<0 implies throttle =0)
and (val >maxThrottle implies throttle=maxThrottle)

context CarSimulator::getSpeed(): Integer
pre: --
post: result=self.speed

context CarSimulator::getDistance(): Integer
pre: --
post: result=self.distance

context CarSimulator::getBrakepedal(): Integer
pre: --
post: result=self.brakepedal

context CarSimulator::getIgnition(): Boolean
pre: --
post: result=self.ignition

context CarSimulator::getThrottle(): Double
pre: --
post: result=self.throttle

Carleton University, TR SCE-06-15 September 2006

64

E.1.4 Controller class
context Controller
inv: (self.controlState = INACTIVE) implies
 (self.sc.state=DISABLED and self.sc.setSpeed >= 0
 and not self.sc.cs.ignition)
 and (self.controlState = ACTIVE) implies
 (self.sc.state=DISABLED and self.sc.setSpeed = 0
 and self.sc.cs.ignition)
 and (self.controlState = CRUISING) implies
 (self.sc.state=ENABLED and self.sc.setSpeed > 0
 and self.sc.cs.ignition)
 and (self.controlState = STANDBY) implies
 (self.sc.state=DISABLED and self.sc.setSpeed > 0
 and self.sc.cs.ignition)

context Controller:: Controller(cs: CarSpeed)
pre: not cs.ignition
post: result.controlState = INACTIVE

context Controller:: brake()
pre: --
post: (controlState@pre=CRUISING) implies

(sc.state=DISABLED and controlState=STANDBY)

context Controller:: accelerator()
pre: --
post: (controlState@pre=CRUISING) implies

(sc.state=DISABLED and controlState=STANDBY)

context Controller:: engineOff()
pre: --
post: (controlState@pre<>INACTIVE) implies

(sc.state=DISABLED and controlState=INACTIVE)

context Controller:: engineOn()
pre: --
post: (controlState@pre=INACTIVE) implies

(sc.setSpeed=0 and controlState=ACTIVE)

context Controller:: on()
pre: --
post: (controlState@pre<>INACTIVE) implies
(sc.setSpeed = sc.cs.speed and sc.state=ENABLED and
controlState=CRUISING)

Carleton University, TR SCE-06-15 September 2006

65

context Controller:: off()
pre: --
post: (controlState@pre=CRUISING) implies

(sc.state=DISABLED and controlState=STANDBY)

context Controller:: resume()
pre: --
post: (controlState@pre=STANDBY) implies

(sc.state=ENABLED and controlState=CRUISING)

E.2 OrdSet’s Contracts
context OrdSet
inv: _set_size >= min_set_size
 and _set_size <= max_set_size
 and _set_size.mod(min_set_size) = 0
 and _resize_times <= max_accepted_resizes
 and _last < _set_size
 and Sequence{1 .. _last+1}->

forAll(i,j| (i<j) implies (_set->at(i) < _set->at(j))
 and _last + 1 = self.getActualSize()
 and _last + 1 = self.getSetElements() ->size()

context OrdSet::defSetSize(n: int): int
pre: n >= 0
post: (n < min_set_size) implies (result = min_set_size)
 and (n >= max_set_size) implies (result = max_set_size)
 and ((n > min_set_size and n < max_set_size) implies

 (result.mod(min_set_size) = 0 and result <
 n+min_set_size))

context OrdSet::initSetArray (v: int[])
pre: none
post: self._set_size = self.defSetSize(v->size())
 and self._last < v->size()
 and Sequence{1.._last+1}->forAll(i |
 v->includes(_set->at(i))

context OrdSet::resizeArray()
pre: _last = _set_size - 1
post: (_resized_times@pre < max_accepted_resizes and
 _set_size@pre + min_set_size <= max_set_size) implies

(_set_size = _set_size@pre + min_set_size and
 _resized_times = _resized_times@pre + 1)
and
(_resized_times@pre == max_accepted_resizes or

Carleton University, TR SCE-06-15 September 2006

66

 _set_size@pre + min_set_size > max_set_size) implies
 (_overflow = true)

context OrdSet::OrdSet (size: int)
pre: none
post: self._set_size = self.defSetSize(size)
 and self._resized_times = 0
 and _overflow = false
 and self._last = -1
 and self.getSetElements()->isEmpty

context OrdSet::OrdSet(v: int[])
pre: none
post: self._set_size = self.defSetSize(v->size())
 and self._last < v->size()
 and Sequence{1.._last+1}->forAll(i | v->includes(_set

->at(i))

context OrdSet::getResizedTimes(): int
pre: none
post: result = _resized_times

context OrdSet::getSetSize(): int
pre: none
post: result = _set_size

context OrdSet::getActualSize(): int
pre: none
post: result = _last + 1

context OrdSet::getSetLast(): int
pre: none
post: result = _last

context OrdSet::getSetArray(): int[]
pre: none
post: result = _set

context OrdSet::getSetElements(): int[]
pre: none
post: Sequence{0.._last}->forAll(i|result->at[i] =

_set->at[i])

context OrdSet::isEmpty(): boolean
pre: none

Carleton University, TR SCE-06-15 September 2006

67

post: result = _set->isEmpty()

context OrdSet::isOverflow(): boolean
pre: none
post: result = _overflow

context OrdSet::equals(x: OrdSet): int
pre: none
post: result = Sequence{0 .. last}

->forAll(i|self.elementAt(i) = x.elementAt(i)

context OrdSet::contains(n: int) : boolean
pre: none
post: result = self.getSetElements()->includes(n)

context OrdSet::contains (x: OrdSet): boolean
pre: x->notEmpty()
post: result = self.getSetElements()

->includesAll(x.getSetElements())

context OrdSet::remove (val: int): boolean
pre: none
post: not _overflow implies
(result = self.getSetElements()@pre->includes(val)

 and
 not self.getSetElements()->includes(val))

context OrdSet::add(n: int)
pre: none
post: not _overflow implies
(_set->includes(n) and (
(!_set@pre->includes(n) and _last=_last@pre + 1) or
 (_set@pre->includes(n) and _last=_last@pre)))

context OrdSet::elementAt(where: int): int
pre: none
post: (where < 0 or where > self._last) implies (result = -1)
 and

(where >= 0 and where <= self._last) implies (result =
 _set->at(where + 1))

context OrdSet::make_a_free_slot(n: int): int
pre: none
post: result >= 0
 and result <= _last@pre+1)

Carleton University, TR SCE-06-15 September 2006

68

 and Sequence{0..result-1}->forAll(i|self.elementAt(i) =
 self@pre.elementAt(i)
 and Sequence{result+1.._last}->forAll(i|self.elementAt(i) =
 self@pre.elementAt(i-1)

context OrdSet::union(s2: OrdSet): OrdSet
pre: none
post: result._set_size = defSetSize(self._last + s2._last + 2)
 and not result._overflow implies result.getSetElements()->

 forAll(item | self.getSetElements()->includes(item) or
 s2.getSetElements()->includes(item))

context OrdSet::binSearch(a: int[],nElts: int, x: int): int
pre: nElts >= 0
post: (result = -1) implies (Sequence{1..nElts}->forAll(i|

a->at(i) <> x)
xor a->at(result + 1) = x

context OrdSet::toString(): String
pre: none
post: none

	1 INTRODUCTION
	2 RELATED WORK
	3 EXPERIMENT DESCRIPTION
	3.1 Experiment definition and context
	3.2 Experiment planning
	3.2.1 Context Selection
	3.2.2 Research questions
	3.2.3 Variable Selection
	3.2.4 Experiment design
	3.2.5 Mutation operators
	3.2.6 Overview of Statistical Analysis

	3.3 Experiment operation
	3.3.1 Preparation
	3.3.2 Execution

	3.4 Threats to validity
	3.4.1 Conclusion validity
	3.4.2 Internal Validity
	3.4.3 Construct validity
	3.4.4 External Validity

	4 EXPERIMENT RESULTS
	4.1 Impact of test techniques on fault detection effectiveness
	4.1.1 Univariate analysis
	4.1.2 Interaction effects
	a. Code coverage impact
	b. Lab Order impact
	c. Subject ability impact
	d. Class cluster characteristics impact

	4.2 Combining test techniques to improve fault detection effectiveness
	4.2.1 How complementary are test techniques?
	4.2.2 Impact of combining test techniques on fault detection effectiveness
	4.2.3 Impact of cluster characteristics on combining test cases from both test techniques
	4.2.4 Impact of combining test techniques on fault detection effectiveness per mutation operator

	4.3 Comparing the cost-effectiveness of test techniques
	4.3.1 Cost Analysis
	4.3.2 Cost-effectiveness analysis
	4.3.3 Investigating the variation is cost-effectiveness

	4.4 Qualitative analysis of live mutants
	4.5 Proposition of improvements to statechart testing
	4.6 Discussion of Results

	5 CONCLUSIONS
	6 ACKNOWLEDGMENTS
	7 REFERENCES

