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Abstract 
 
Background: Like any research discipline, software engineering research must be of a 

certain quality to be valuable. High quality research in software engineering ensures that 

knowledge is accumulated and helpful advice is given to the industry. One way of 

assessing research quality is to conduct systematic reviews of the published research 

literature.  

 
Objective: The purpose of this work was to assess the quality of published experiments in 

software engineering with respect to the validity of inference and the quality of reporting. 

More specifically, the aim was to investigate the level of statistical power, the analysis of 

effect size, the handling of selection bias in quasi-experiments, and the completeness and 

consistency of the reporting of information regarding subjects, experimental settings, 

design, analysis, and validity. Furthermore, the work aimed at providing suggestions for 

improvements, using the potential deficiencies detected as a basis.  

 
Method: The quality was assessed by conducting a systematic review of the 113 

experiments published in nine major software engineering journals and three conference 

proceedings in the decade 1993-2002.  

 
Results: The review revealed that software engineering experiments were generally 

designed with unacceptably low power and that inadequate attention was paid to issues of 

statistical power. Effect sizes were sparsely reported and not interpreted with respect to 

their practical importance for the particular context. There seemed to be little awareness of 

the importance of controlling for selection bias in quasi-experiments. Moreover, the review 

revealed a need for more complete and standardized reporting of information, which is 

crucial for understanding software engineering experiments and judging their results. 

 
Implications: The consequence of low power is that the actual effects of software 

engineering technologies will not be detected to an acceptable extent. The lack of reporting 

of effect sizes and the improper interpretation of effect sizes result in ignorance of the 

practical importance, and thereby the relevance to industry, of experimental results. The 

lack of control for selection bias in quasi-experiments may make these experiments less 

credible than randomized experiments. This is an unsatisfactory situation, because quasi-

experiments serve an important role in investigating cause-effect relationships in software 



 

  

engineering, for example, in industrial settings. Finally, the incomplete and unstandardized 

reporting makes it difficult for the reader to understand an experiment and judge its results. 

 
Conclusions: Insufficient quality was revealed in the reviewed experiments. This has 

implications for inferences drawn from the experiments and might in turn lead to the 

accumulation of erroneous information and the offering of misleading advice to the 

industry. Ways to improve this situation are suggested.   
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Summary  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 Introduction 
An indication of the maturity of a research discipline is the quality of the methods used.  

One broad category of research methods is the experiment, which is the classical scientific 

way of identifying cause-effect relationships. This thesis investigates the quality of 

published software engineering experiments. In this respect, the thesis work differs from 

traditional PhD work within software engineering, which usually investigates software 

engineering topics. This introductory chapter further motivates this research perspective.  

1.1 Empirical research in software engineering 

Software engineering deals with the systematic development, evaluation, and maintenance 

of software. It is multidisciplinary, in that it embraces technology, human behaviour, and 

issues of economics (in terms of cost and effectiveness), and language (in terms of syntax 

and semantics). Given this complexity, it is far from trivial to determine what works and 

what does not. For example, which software engineering methods, techniques, languages, 

or tools are most effective for whom in which situation? Or, which software engineering 

skills are most helpful for performing different types of software engineering tasks?  

If such questions are phrased as research questions and evaluated in a research study or 

in a family of research studies, they can be answered scientifically. If research does not  

investigate such problems, decisions might be based on who, among the software 

engineering methods’ proponents, shouts the loudest. 
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People tend to interpret the term research differently. Hence, many activities that claim to 

be research are, in fact, not. For example, building a system is development, not research, 

if no research questions are investigated in the process. In 1992, Basili [6] presented four 

research paradigms that help to distinguish research activities from development activities. 

The paradigm applied in this thesis is that of empirical methods, according to which 

research questions are those that can be answered by “objective observations” [11] and that 

are investigated by such methods as experiments, surveys, case-studies, and action research 

[113]. Central to the use of empirical methods is the importance of experience for the 

formation of concepts and the acquisition of knowledge [115].  

It is important to apply empirical methods in software engineering research for two 

main reasons: (1) software engineering deals with human performance, and (2) software 

engineering is an applied discipline. Regarding the human aspect, empirical methods have 

traditionally been used in social science and psychology, where the concern is human 

behaviour. Also, it is argued by Wohlin et al. [126] that software engineering is very much 

governed by human behaviour in that people develop, evaluate and maintain software and 

it is conjectured by Endres and Rombach [38] p. 269 that “Human-based methods can only 

be studied empirically.” Regarding the applied aspect, if they are to investigate the 

practical challenges that the IT industry faces, research methods should be based on 

observations and not on mathematical or theoretical proofs. Hence, software engineering 

work is best studied by empirical methods. 

It is not just single empirical studies that are valuable. In turn, published empirical 

research can be used in secondary analyses for the purpose of research synthesis, which 

summarizes or combines the findings of different studies on a topic or a research question 

[34]. Such research synthesis is one important element in evidence-based research, which 

aims at making scientifically gathered empirical evidence available to practitioners. 

Evidence-based software engineering is presented by Dybå, Jørgensen, and Kitchenham, in 

[37, 59, 64]. 

The extent of published empirical studies in software engineering has been assessed by 

Tichy et al. [121],  Zelkowitz and Wallace [128], and Glass et al. [43]. Even though these 

assessments had different perspectives and collected different types of data, their 

conclusions were fairly similar: in sum, there is very little use of empirical methods to 

assess the validity of claims. Whereas Tichy et al., and Zelkowitch and Wallace, claim that 

the practice should be improved, Glass et al. did not criticise current practice, but wonder 

whether the research community might not benefit from a greater extent of empirical work. 
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However, the worth of empirical methods in software engineering is emphasized by 

many researchers [6-8, 39, 73, 113, 120] and empirical software engineering (ESE) has 

become a working concept. In addition, as noted by Sjøberg et al. [113], the focus on ESE 

is reflected in such forums as the Journal of Empirical Software Engineering (EMSE, from 

1996), the IEEE International Symposium on Software Metrics (METRICS, from 1993), 

Empirical Assessment & Evaluation in Software Engineering (EASE, from 1997), and the 

IEEE International Symposium on Empirical Software Engineering (ISESE, from 2002). 

From 2007, ISESE and METRICS will be merged into one conference called the 

International Symposium on Empirical Software Engineering and Measurement (ESEM). 

Furthermore, in 2000, Perry et al. [88] published a roadmap for empirical studies, in 2002, 

Kitchenham et al. [66] provided guidelines for empirical research, in 2003, Endres and 

Rombach summarized empirical evidence [38], and the future of empirical methods in 

software engineering research is discussed in a recent article by Sjøberg et al. [113]. 

Furthermore, contributions from the workshop on critical assessments and future directions 

for ESE issues in 2006 are edited by Basili et al.[5] and published and a book on advanced 

empirical software engineering issues, edited by Shull et. al [109] is forthcoming. 

1.2 The role of the software engineering experiment 

The role of the experiment in software engineering research is to compare different 

software engineering technologies, methods, etc. with respect to, for example, 

effectiveness, usefulness, or costs by letting software engineers conduct one or more 

software engineering tasks. Whereas other empirical methods aim at observing and 

explaining, the experiment tests hypotheses and can be used as a decision tool. Hence, it 

plays an important role in answering key questions for practitioners in the IT industry, for 

example, what works best for a specific development task, method A or Method B? 

However, the experiment must not be viewed in isolation. As Endres and Romback write: 

“Learning is best accelerated by a combination of controlled experiments and case-

studies”, [38] p. 270. 

The first experiment in software engineering was reported by Grant in 1967 [44] and 

up to 1993, only 17 experiments in software engineering were published according to 

Zendler [129]. The review described in this thesis found 114 published software 

engineering experiments from 1993-2002. Hence, there was a formidable increase in 

experimentation in the period 1993-2002 compared with the first two and a half decades in 
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the history of software engineering experimentation. Furthermore, an assessment by Segal 

et al. [103] of publications in the Journal of Empirical Software Engineering from 1997-

2003 revealed a dominance of experiments over other empirical methods. In addition, in 

recent years, guidelines and text books on experimentation suited for software engineering 

have been published by Kitchenham et al. [66],  Juristo and Moreno [57], and Wohlin et al. 

[126], as well as additional literature on methods listed in Section 2. Thus, the experiment 

is receiving increasing attention in software engineering research.  

1.3 Assessment of experimental quality  

The analysis of experimental results consists of making interpretations of, and drawing 

conclusions from, quantitative data, often by using statistical methods. Experimental 

quality can be formally expressed in terms of the validity of such inferences. In this thesis, 

quality is measured in terms of three factors: the validity of inference, and the 

completeness and consistency of the reporting of experimental information.  

Four main types of validity are described by Shadish et al. [106]: Statistical conclusion 

validity, internal validity, construct validity and external validity; see Table 1.  

 
Table 1.  Validity types 

 
Statistical conclusion 

validity 

The validity of inferences about the correlation (covariation) between treatment 

and outcome. 

 

Internal validity The validity of inferences about whether an observed covariation between A (the 

presumed treatment) and B (the presumed outcome) indicates a causal relationship 

from A to B as those variables were manipulated or measured.  

 

Construct validity The degree to which inferences are warranted from the observed persons, settings, 

and cause and effect operations included in a study to the constructs that these 

instances might represent. 

 

External validity The validity of inference about whether the cause-effect relationship holds over 

variation in persons, settings, treatment variables, and measurement variables. 

 
These types of validity seek to cover decisions that the researcher must face when 

making inferences from the data: 
 

• Is there a relationship between the variables? (statistical conclusion validity)  

• Does the relationship indicate a causal relationship? (internal validity)  



  1  Introduction 

 5 

• How good is the relationship between the abstract constructs and the sampling 

particulars? (construct validity)  

• How can we generalize from the results? (external validity) 

 

Validity cannot be measured directly, but the experiment can be checked against 

possible threats to validity [106]. In order to enable valid inferences, and thereby 

conclusions that can be relied upon, the experiment must therefore be designed and 

analyzed to avoid or control such threats to validity. Only then can the experiments help to 

provide a foundation for theory building in software engineering and provide practical 

guidance to the industry, which is the ultimate goal of all research in software engineering. 

The importance of quality of reporting is emphasized by Endres and Rombach [38], p. 

272: “Empirical results are transferable only if abstracted and packaged with context”. It is 

important to report (1) information that enables the experiment to be replicated, and (2) 

information that enables the reader to understand and judge the experiment and inferences 

made.  

Conducting experiments is a complex task, which might explain why reports from 

other research areas show a lack of validity in experimentation and sparse reporting of 

important experimental information, for example, information systems [4, 95], medicine 

[3, 20, 32, 47], and social science [22, 25, 60, 61, 84, 102, 106, 118]. Because ESE is a 

younger research discipline than these other research areas, it probably suffers from similar 

problems regarding quality. However, we cannot assume that the same problems are 

present in ESE without verifying their existence. Moreover, the feature of quality 

challenges might be domain-specific and discussions of directions for improvements must 

be suited to the specific research problems present within the area in question. Hence, there 

is a need to assess the quality of experimentation in ESE, to understand the cause of 

possible insufficiencies, and to provide guidelines to improve the quality of experiments. 

This is the rationale for the research work described in this thesis, which is a systematic 

review of software engineering experiments published in the decade 1993-2002. 
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1.4 Thesis structure 

The thesis is organized as follows: 

 

Summary. This part introduces the thesis papers. Section 2 describes the background to 

the research problem and gives an overview of related literature. Section 3 presents the 

research questions. Section 4 describes the research method applied. Section 5 summarizes 

the result of the research. Section 6 summarizes the answers to the research questions, 

discusses implications of the results, provides recommendations for improvements, 

presents limitations of the thesis work, and offers directions for future research. Section 7 

concludes. Appendix A presents the underlying data-material for this review. Appendix B 

presents a preliminary review of experiments published in 2007. Then, references for the 

summary are listed.  

 

Papers. This part includes the four papers of this thesis. The papers assess distinct aspects 

of the quality of the reviewed controlled experiments and provide recommendations for 

improvements.  

 

Paper 1: A survey of controlled experiments in software engineering 

Dag I.K. Sjøberg, Jo E. Hannay, Ove Hansen, Vigdis By Kampenes, Amela 

Karahasanovic, Nils-Kristian Liborg, and Anette C. Rekdal  

IEEE Transactions on Software Engineering, Vol. 31, No. 9, pp. 733-753, 2005. 

 

Paper 1 summarizes the characteristics of the experiments surveyed, such as topics 

investigated, tasks performed, the nature of the participants, the type of application 

systems used, and the experimental environment. Dag Sjoberg provided the idea for 

this work and initiated it. My contribution was to participate in defining inclusion and 

exclusion criteria for the selection of articles, hereunder the definition of controlled 

experiments in software engineering, and to participate in reading and judging articles 

in the later selection phase. I also participated in the collection of the entire dataset and 

was responsible for collecting the data on tasks, and internal and external validity. Dag 

Sjøberg took the lead in the analysis and the writing of the overall article, but I was 

responsible for several parts of the work. 
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Abstract: The classical method for identifying cause-effect relationships is to conduct 

controlled experiments. This paper reports on how controlled experiments in software 

engineering are conducted at present and the extent to which relevant information is 

reported. Among the 5,453 scientific articles published in 12 leading software 

engineering journals and conferences in the decade from 1993 to 2002, 103 articles 

(1.9 percent) reported controlled experiments in which individuals or teams performed 

one or more software engineering tasks. This survey characterizes quantitatively the 

topics of the experiments and their subjects (number of subjects, students versus 

professionals, recruitment, and rewards for participation), tasks (type of task, duration, 

and type and size of application), and environments (location, development tools). 

Furthermore, the survey reports on how internal and external validity is addressed and 

the extent to which experiments are replicated. The gathered data reflects the relevance 

of software engineering experiments to industrial practice and the scientific maturity of 

software engineering research. 

 

Paper 2: A systematic review of statistical power in software engineering experiments  

Tore Dybå, Vigdis By Kampenes, and Dag I.K. Sjøberg  

Information and Software Technology, Vol. 48, No. 8, pp. 745-755, 2006.  

 

Paper 2 assesses the statistical power level in the experiments and gives 

recommendations for improvements. Tore Dybå provided the idea for this work and 

initiated it. All three authors participated in planning the review. I performed an 

independent review of all the articles identifying primary tests for each experiment. 

Tore Dybå did the same work and all three authors met to discuss the differences in our 

findings and agreed on a final set of primary tests. Tore Dybå took the lead in the 

analysis and writing of the article, with the two authors contributing.  

 

Abstract. Statistical power is an inherent part of empirical studies that employ 

significance testing and is essential for the planning of studies, for the interpretation of 

study results, and for the validity of study conclusions. This paper reports a quantitative 

assessment of the statistical power of empirical software engineering research, using as 

a basis the 103 papers on controlled experiments (of a total of 5453 papers) published 

in nine major software engineering journals and three conference proceedings in the 
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decade 1993-2002. The results show that the statistical power of software engineering 

experiments falls substantially below accepted norms as well as the levels found in the 

related discipline of information systems research. Given this study’s findings, 

additional attention must be directed to the adequacy of sample sizes and research 

designs to ensure acceptable levels of statistical power. Furthermore, the current 

reporting of significance tests should be improved by reporting effect sizes and 

confidence intervals. 

 

Paper 3: A systematic review of effect size in software engineering experiments 

Vigdis By Kampenes, Tore Dybå, Jo E. Hannay and Dag I.K. Sjøberg 

To appear in Information and Software Technology, 2007. 

 

Paper 3 describes the extent to which effect sizes are reported, how effect sizes have 

been interpreted, and the values detected in the experiments. I provided the idea for this 

work and initiated it. I also did the review of the experiments regarding the information 

about effect sizes and performed the computation of effect sizes, when these were not 

reported. I took the lead in the analysis and writing of the article, with the three authors 

contributing. 

 

Abstract. An effect size quantifies the effects of an experimental treatment. 

Conclusions drawn from the results of tests of hypotheses might be erroneous if effect 

sizes are not judged in addition to statistical significance. This paper reports a 

systematic review of 92 controlled experiments published in 12 major software 

engineering journals and conference proceedings in the decade 1993-2002. The review 

investigates the practice of effect size reporting, summarizes standardized effect sizes 

detected in the experiments, discusses the results, and provides recommendations for 

improvements. Standardized and/or unstandardized effect sizes were reported in 29% 

of the experiments. Interpretations of the effect sizes in terms of practical importance 

were not discussed beyond references to standard conventions. The standardized effect 

sizes computed from the reviewed experiments were equal to observations in 

psychology studies and slightly larger than standard conventions in behavioural 

science. 
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Paper 4: A systematic review of quasi-experiments in software engineering 

Vigdis By Kampenes, Tore Dybå, Jo E. Hannay and Dag I.K. Sjøberg  

Submitted to Information and Software Technology, 2007. 

 

Paper 4 reports on the types of quasi-experiment performed, the extent to which they 

are performed, and the extent to which they are designed and analysed to handle threats 

to selection bias. I provided the idea for the work and initiated it. I also did the review 

of the experiments. In addition, Jo Hannay reviewed parts of the material. I took the 

lead in the analysis and writing of the article, with the three authors contributing. 

 

Abstract. Experiments in which study units are assigned to experimental groups 

nonrandomly are called quasi-experiments. They allow investigations of cause-effect 

relations in settings in which randomization is inappropriate, impractical, or too costly. 

The procedure by which the nonrandom assignments are made might result in selection 

bias, that is, pre-experimental differences between the groups that could influence the 

results. By detecting the cause of the selection bias, and designing and analyzing the 

experiments accordingly, the effect of the bias may be reduced or eliminated. To 

investigate how quasi-experiments are performed in software engineering (SE), we 

conducted a systematic review of the experiments published in nine major SE journals 

and three conference proceedings in the decade 1993-2002. Among the 114 

experiments detected, 35% were quasi-experiments. In addition to field experiments, 

we found several applications for quasi-experiments in SE. However, there seems to be 

little awareness of the precise nature of quasi-experiments and the potential for 

selection bias in them. The term “quasi-experiment” was used in only 10% of the 

articles reporting quasi-experiments; only half of the quasi-experiments measured a 

pretest score to control for selection bias, and only 8% reported a threat of selection 

bias. On average, larger effect sizes were seen in randomized than in quasi-

experiments, which might be due to selection bias in the quasi-experiments. We 

conclude that quasi-experimentation is useful in many settings in SE, but their design 

and analysis must be improved (in ways described in this paper), to ensure that 

inferences made from this kind of experiment are valid.   
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2 Background 
This chapter categorizes the literature on the methodology for experimentation in ESE and 

places the thesis in context. Then, the topics for the assessment of the quality of 

experiments are described and the challenges that motivated this work are highlighted. 

2.1 Types of existing guidelines on experimentation in ESE 

Currently, there are 34 scientific articles and three books dedicated to experimental 

methodology in ESE; see Table 2. The literature includes textbooks, guidelines, 

assessments, and position papers, all of which have the common feature of offering 

guidance regarding experimentation, either explicitly or in terms of recommendations 

based on assessments or experiences. Excluded from this overview is literature that focuses 

on methods of investigating specific software engineering topics, such as estimation, 

programming, or defect detection. 

In Table 2, this literature is categorized according to (1) whether the guidance is based 

on a review of the literature or uses empirical data to provide examples only and (2) 

whether the text focuses on experiments or concerns empirical research in general.  

For the majority of the literature, the text is not based on a systematic review. These are 

guidelines, text books, and position papers that either discuss future directions of 

experimentation and/or empirical research methods, or address experimental methodology, 

for example, replications, meta-analysis, or the assessment of statistical power. Twenty-

two percent of the texts categorized are literature reviews of published experiments. The 

majority of these reviews assess the extent to which various empirical research methods 

are used. Only two articles describe an assessment of experiments: Hannay et al. [46], 

which assesses the use of theory in experiments and Zendler [129], which builds a theory 

for software engineering practice on the basis of published experiments.  

So, the table reveals that few assessments of experiments are performed, even if there 

are many experimental method issues addressed in the literature. In this respect, this thesis 

work fills a gap in the ESE literature on the methodology of experimentation.  

Note that argumentation can be based on reviews made by others. The overview shown 

in Table 2 has not taken this aspect into consideration, because it was difficult to categorize 

the literature accordingly. There were several ways in which studies based their arguments 

on evidence drawn from reviews made by others: either directly through references to 
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software engineering reviews or reviews in other research fields, or indirectly through 

references to related guidelines that in turn referred to reviews. In addition, there were 

various degrees to which studies based their arguments on results from other reviews. 

Nevertheless, Table 2 illustrates that there is a need for more quantitative assessments on 

which the literature can be based, either directly or indirectly.   

2.2 Quality of design and analysis of experiments  

The basics of the design and analysis of experiments are well established and documented; 

see, for example, [23, 85]. The general fundamentals of statistics are described in text 

books, such as [10] and separate books are often dedicated to specific statistical methods; 

see, for example, [24]. However, the appropriate use of the theoretical basis for 

experimentation is limited by constraints that often occur in practice and that create threats 

to validity.    

The reviewed experiments are investigated according to the following threats to 

validity, which are due to deficiencies in the design and analysis of the experiment: 

insufficient statistical power, lack of analysis of effect size, and potential systematic bias in 

quasi-experiments.  

2.2.1 Statistical power 
Statistical power is defined as the probability that a statistical test will correctly reject the 

null hypothesis [29]. A test without sufficient statistical power will not be able to provide 

the researcher with enough information to draw conclusions regarding the acceptance or 

rejection of the null hypothesis. Hence, a lack of statistical power is a threat to the validity 

of conclusions drawn from statistical data.  

Knowledge of statistical power can influence each of the planning, execution, and 

results of empirical research. If the power of statistical tests is weak, the probability of 

finding significant effects is small, and it is then likely that the outcomes of the study will 

be insignificant. Furthermore, if the study fails to provide information about the statistical 

power of its tests, it is not possible to determine whether the insignificant results were due 

to insufficient power or the phenomenon under investigation actually did not exist. This 

will inevitably lead to misinterpretation of the outcomes of the study.  

Thus, failure to provide an adequate level of statistical power has implications for both 

the execution and outcome of research: “If resources are limited and preclude attaining a  

 



  

12

  
T

ab
le

 2
  

R
es

ea
rc

h 
m

et
ho

d 
lit

er
at

ur
e 

in
 E

SE
 o

n 
ex

pe
ri

m
en

ta
tio

n 
* 

 

Ex
te

nt
 o

f u
se

 o
f 

em
pi

ric
al

 st
ud

ie
s 

 
Ex

pe
rim

en
ta

l m
et

ho
do

lo
gy

 
(D

et
ai

ls
 o

n 
sp

ec
ifi

c 
ex

pe
rim

en
ta

l i
ss

ue
s)

 
 

 
Em

pi
ric

al
 re

se
ar

ch
 in

cl
ud

in
g 

ex
pe

rim
en

ts
 

(H
ig

h-
le

ve
l o

ve
rv

ie
w

s a
nd

 d
is

cu
ss

io
ns

) 
 

Li
te

ra
tu

re
 

re
vi

ew
s/

su
rv

ey
s 

H
an

na
y 

et
 a

l.2
00

6 
[4

6]
 –

 S
of

tw
ar

e 
en

gi
ne

er
in

g 
th

eo
ry

 u
se

 in
 

ex
pe

rim
en

ta
tio

n 
Ze

nd
le

r 2
00

1 
 [1

29
] –

 T
he

or
y 

bu
ild

in
g 

fr
om

 e
xp

er
im

en
ts

 

Za
nn

ie
r e

t a
l. 

20
06

 [1
27

] –
 Q

ua
nt

ity
 a

nd
 q

ua
lit

y 
of

 e
m

pi
ric

al
 e

va
lu

at
io

ns
 

Se
ga

l e
t a

l. 
20

05
 [1

03
] –

 N
at

ur
e 

of
 e

vi
de

nc
e 

fr
om

 e
m

pi
ric

al
 re

se
ar

ch
 

Sh
aw

 2
00

3 
[1

08
] –

 R
ep

or
tin

g 
ad

vi
ce

 fo
r s

of
tw

ar
e 

en
gi

ne
er

in
g 

re
se

ar
ch

 
G

la
ss

 2
00

2 
et

 a
l. 

 [4
3]

 –
 S

ev
er

al
 is

su
es

 in
 so

ftw
ar

e 
en

gi
ne

er
in

g 
re

se
ar

ch
 

Ze
lk

ow
itz

 &
 W

al
la

ce
 1

99
7 

[1
28

] -
 E

xt
en

t o
f e

xp
er

im
en

ta
l v

al
id

at
io

n 
Ti

ch
y 

et
 a

l. 
19

95
  [

12
1]

 - 
Ex

te
nt

 o
f e

xp
. e

va
lu

at
io

n 
in

 c
om

pu
te

r s
ci

en
ce

  

Em
pi

ric
al

 st
ud

ie
s u

se
d 

as
  

ex
am

pl
es

/il
lu

st
ra

tio
ns

 
 

M
ill

er
 2

00
5 

[7
9]

 –
 R

ep
lic

at
io

ns
 

Je
dl

its
ch

ka
 e

t a
l. 

20
05

  [
55

] –
 R

ep
or

tin
g 

gu
id

el
in

es
 

K
itc

he
nh

am
 e

t a
l. 

20
04

 [6
5]

 –
 H

um
an

 fa
ct

or
s 

M
ill

er
 2

00
4 

[7
8]

 –
 S

ta
tis

tic
al

 si
gn

ifi
ca

nc
e 

te
st

in
g 

Sh
ul

l e
t a

l. 
 2

00
4 

[1
11

] –
 K

no
w

le
dg

e 
sh

ar
in

g 
Jø

rg
en

se
n 

&
 S

jø
be

rg
 2

00
4 

[5
8]

 –
 G

en
er

al
iz

at
io

n 
an

d 
th

eo
ry

 b
ui

ld
in

g 
La

ite
nb

er
ge

r &
 R

om
ba

ch
 2

00
3 

[6
9]

 –
 Q

ua
si

-e
xp

er
im

en
ts

 
H

ou
de

k 
20

03
 [5

4]
 –

 E
xt

er
na

l e
xp

er
im

en
ts

 
Ju

ris
to

 a
nd

 M
or

en
o 

20
03

 [5
7]

 –
 T

ex
t b

oo
k 

on
 e

xp
er

im
en

ta
tio

n 
Sh

ul
l e

t a
l. 

20
02

  [
11

0]
 –

 R
ep

lic
at

io
ns

 
Sj

øb
er

g 
et

 a
l. 

20
02

 [1
14

] –
  R

ea
lis

m
 

M
ill

er
 2

00
0 

[7
7]

 –
 M

et
a-

an
al

ys
is

 
B

as
ili

 e
t a

l. 
19

99
 [9

] –
 F

am
ili

es
 o

f e
xp

er
im

en
ts

 
W

oh
lin

 1
99

9 
[1

26
] –

  T
ex

t b
oo

k 
on

 e
xp

er
im

en
ta

tio
n 

Si
ng

er
 1

99
9 

[1
12

] –
 R

ep
or

tin
g 

ex
pe

rim
en

ta
l r

es
ul

ts
 

M
ill

er
 e

t a
l. 

19
97

 [8
0]

 –
 S

ta
tis

tic
al

 p
ow

er
 

Pf
le

eg
er

 1
99

4/
95

 [8
9-

93
] -

  D
es

ig
n 

an
d 

an
al

ys
is

 
Fe

nt
on

 &
 P

fle
eg

er
 1

99
4 

[4
0]

 –
 D

es
ig

n 
an

d 
an

al
ys

is
 

B
as

ili
 e

t a
l. 

19
86

 [8
] –

 A
 fr

am
ew

or
k 

fo
r e

xp
er

im
en

ta
tio

n 
M

oh
er

 &
 S

ch
ne

id
er

 1
98

2 
[8

3]
 –

 M
et

ho
do

lo
gy

 a
nd

 e
xp

.  
re

se
ar

ch
 

M
oh

er
 &

 S
ch

ne
id

er
 1

98
1 

[8
2]

 –
  H

um
an

 fa
ct

or
s 

C
ur

tis
 1

98
0 

[3
6]

 –
 M

ea
su

re
m

en
t a

nd
 e

xp
er

im
en

ta
tio

n 

B
as

ili
 e

t a
l.(

Ed
s.)

 2
00

7 
[5

]–
 E

SE
 is

su
es

† 
Sh

ul
l e

t a
l. 

(E
ds

.) 
20

08
 [1

09
]–

 A
dv

an
ce

d 
to

pi
cs

 in
 E

SE
 

 Sj
øb

er
g 

et
 a

l. 
20

07
 [1

13
] –

 T
he

 fu
tu

re
 o

f e
m

pi
ric

al
 m

et
ho

ds
 

En
dr

es
 &

 R
om

ba
ch

 2
00

3 
[3

8]
 –

 T
ex

t b
oo

k 
ch

ap
te

r o
n 

em
pi

ric
al

 re
se

ar
ch

 
K

itc
he

nh
am

 e
t a

l. 
20

02
 [6

6]
 –

 G
ui

de
lin

es
 fo

r e
m

pi
ric

al
 re

se
ar

ch
 

Ti
ch

y 
19

98
 [1

20
] –

 E
xt

en
t o

f e
xp

er
im

en
ta

tio
n 

B
as

ili
 1

99
6 

[7
] –

 T
he

 ro
le

 o
f e

xp
er

im
en

ta
tio

n 
Po

tts
 1

99
3 

[9
4]

 –
 R

ea
lis

m
 in

 so
ftw

ar
e 

en
gi

ne
er

in
g 

re
se

ar
ch

 
B

as
ili

 1
99

3 
[6

] –
 E

xp
er

im
en

ta
l p

ar
ad

ig
m

 
 

* 
A

ut
ho

rs
, y

ea
r o

f p
ub

lic
at

io
n,

 re
fe

re
nc

e,
 a

nd
 k

ey
w

or
d 

fo
r t

he
 c

on
te

nt
s o

f t
he

 li
te

ra
tu

re
.  

 
† 

Tw
o 

of
 th

e 
co

nt
rib

ut
io

ns
 w

er
e 

lit
er

at
ur

e 
re

vi
ew

s o
f e

m
pi

ric
al

 re
se

ar
ch

. 



  2  Background 

 13 

satisfactory level of statistical power, the research is probably not worth the time, 

effort, and cost of inferential statistics.” [4] (p. 96).  

The fundamental approach to statistical power analysis was established by Jacob 

Cohen, who first addressed the issue in 1962 in a description of  a review of a volume of 

the Journal of Abnormal and Social Psychology [27]. The result from the review 

demonstrated the neglect of power issues and motivated Cohen to write his book on 

statistical power in 1969 [28]. He writes:  

 

What behavioral scientist would view with equanimity the question of the probability 

that his investigation would lead to statistically significant result, i.e., its power? And it 

was clear to me that most behavioral scientists not only could not answer this and 

related questions, but were even unaware that such questions were answerable. 

        Cohen 1969 [28] (preface) 

 

His book has become a standard reference on statistical power, in large part because of his 

definitions of small, medium, and large effect sizes, which make power calculations 

possible when little or no knowledge about the effect size is available. His book was later 

supplemented by other books [68, 71] and guidelines [3, 124] on statistical power.  

Cohen’s work has prompted researchers in other disciplines to assess the statistical 

power of their literature. This is seen in social and abnormal psychology [25, 102], applied 

psychology [22, 84], education [15], communication [21], behavioural accounting [12], 

marketing [100], management [19, 41, 74, 84], international business [16], and information 

systems [4, 95]. All these assessments reported overall insufficient power in the 

experiments, even if some of the assessments found sufficient power for the detection of 

large effect sizes.  

In ESE, in 1981, Moher et al. [82] were the first to describe how to perform power 

analysis. Moher et al. [83] also mention power indirectly through discussions about sample 

size in 1982. Then power does not seem to be addressed until Miller et al. [80] published 

an article in 1997 about the little used and misunderstood concepts of statistical power. 

Following this publication, power has been addressed frequently. In their textbook on 

experimentation published in 1999, Wohlin et al. [126] describe the concept of power and 

list lack of power as a threat to statistical conclusion validity. In 2000, Miller [77] 

emphasised the importance of reporting the power of the experiment when including non-

significant results in meta-analysis. Kitchenham et al. [66] published guidelines in 2002 
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that recommend calculating the minimum sample size required to achieved the expected 

power. In 2003, Juristo and Moreno [57] described the concept of power and how to 

determine sample size in their text book on experimentation. Miller mentions power 

analysis in relation to statistical significance testing in 2004 [78] as well as in relation to 

the replication of experiments in 2005 [79]. Increased statistical power is part of the vision 

for future empirical research presented by Sjøberg et al. in 2007 [113]. 

The only assessment of statistical power analysis in software engineering experiments 

was made by Miller et al. [80]. The message was that there is inadequate reporting of, and 

attention paid to, statistical power in the ESE literature, which leads to potentially flawed 

research designs and questionable validity of results: 

 

Any researcher not undertaking a power analysis of their experiment has no idea of the 

role that luck or fate is playing with their work and consequently neither does the 

Software Engineering community. 

         Miller [80] p. 286. 

 

Although Miller et al. [80] made an important contribution in directing attention to the 

concept of statistical power in ESE research and how it can be incorporated within the 

experimental design process, they based their arguments on an informal review of the 

literature. In order to verify whether this result was representative for software engineering 

experiments in general, it would be necessary to conduct more formal investigations, 

similar to that of other disciplines, of the state-of-the-practice in ESE research with respect 

to statistical power. This was the rationale for the thesis work on the assessment of 

statistical power in software engineering experiments as described in Paper 2. 

2.2.2 Effect size   
An effect size tells us the degree to which the phenomenon under investigation is present 

in the population. It is the magnitude of the relationship between treatment variables and 

outcome variables. There are several types of effect size measures, for example, 

correlations, odds ratios, and differences between means.  

If effect size is not judged as part of the experimental results, incorrect or imprecise 

conclusions might be drawn. Whereas p-values reveal whether a finding is statistically 

significant, effect size indicates practical significance, importance, or meaningfulness. 
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Interpreting effect sizes is thus critical, because it is possible for a finding to be statistically 

significant but not meaningful, and vice versa [31, 71].  

Shadish et al. [106] describe the inaccurate estimation of effect size as a threat to 

statistical conclusion validity. They also recommend reporting effect size as part of the 

results from statistical tests; hence, a lack of reporting of effect size can also be regarded as 

a threat to statistical conclusion validity. 

In addition to being meaningful for the analysis and reporting of experimental results, 

previously published effect sizes can be used in meta-analyses [50], in statistical power 

analyses [29, 71], and for purposes of comparison. Such use requires the reporting of either 

effect sizes, or sufficient data to enable effect sizes to be estimated.   

The first approach to determining the magnitude of the effect was published seven 

decades ago for a study of agricultural treatments [26], but effect size as a concept was first 

introduced by Cohen in 1969 [28] in his work on power analysis. His definitions of effect 

size values have become standard, not only for power analysis, but also as reference values 

when reporting effect sizes as part of experimental results. In 1976, Glass [42] introduced 

the concept of meta-analysis, as a method of combining the results of studies that used 

different scales of measurement by applying effect size measures. He proposed two types 

of measure, which have become de facto standards: the standardized mean difference 

effect size and the product-moment correlation coefficient.  

So, initially, there were two main applications for effect size measures: power analysis 

and meta-analysis. Then authors started recommending effect size analysis to substitute or 

supplement the null hypothesis testing procedure [30, 35, 53, 61, 119]. Now, there exist 

text books on effect size estimation for reporting experimental results [45, 67, 96] and a 

number of papers that suggest new or adjusted measures of effect size [13, 86, 87, 97, 98].  

In psychology research, assessments have revealed an unacceptable low reporting of 

effect size in published articles [60, 118]. Several journals in social science now require 

that effect sizes be reported [122], and recommendations for the reporting of effect sizes 

are included in publishing guidelines for research in medicine [3] and psychology [124], 

from which the following quotation is found:  

We must stress again that reporting and interpreting effect sizes in the context of 

previously reported effects is essential to good research. It enables readers to evaluate 

the stability of results across samples, designs, and analyses. Reporting effect sizes 

also informs power analyses and meta-analyses needed in future research. 

  Wilkinson and the task Force on Statistical Inference [124], p.599. 
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There is one major limitation of the effect size measure: there is no unambiguous 

mapping from an effect size to a value of practical importance. Even small effects might 

have practical importance. For example, the optimization of a method for detecting defects 

that yields only a 1% increase in error detection would be of little practical importance for 

most types of software, but might be of great practical importance for safety-critical 

software, particularly if the added 1% belongs to the most critical type of errors. Hence, 

observed effect sizes must be judged in context [13, 35, 53, 61, 99, 101, 117, 122, 124]. 

This means that a contextual judgment of observed effect sizes must be made and a 

standardized interpretation avoided. Therefore, in addition to the reporting of effect sizes, a 

nuanced interpretation and discussion of them is important. Sechrest and Yeaton [101] 

offer approaches to deciding whether a given difference between groups is large/small, 

important/unimportant: 

• A judgmental approach that combines intuitive judgments with the judgment of experts 

in the field.  

• A normative approach, where the size of effect is compared with empirically based 

norms.  

• A cost-benefit analysis that seeks to establish that the benefits outweigh the costs. Even 

a small effect may be worthwhile if the costs of producing it are relatively trivial. In 

software engineering, effort tends to be the major cost drivers, hence a cost-benefit 

analysis equals a cost-effectiveness analysis, where effect sizes are weighted by the 

efforts required to produce them.  

 

As an alternative to assessing the standardized effect size for practical importance, 

Wilkilson et al. [124] suggest that the unstandardized effect size should be reported when 

the unit of measurements are meaningful on a practical level, for example, the mean 

difference instead of the standardized mean difference. Unstandardized measures of effect 

size are not given much attention in the literature, but are included in the overview of 

effect size measures in [72].  

In ESE, the magnitude of effect is first mention in relation to power considerations by 

Moher et al. in 1981 [82]. Then it is not addressed until 1995 by Pfleeger [90]. In the 

planning of the experiment, she recommends asking such questions as “How large a 

difference will be considered important?” Then, in 1997, Miller et al. [80] described the 

concept of measure of effect size and its role in power analyses. The earliest 
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recommendation that effect size be reported was made by Miller in the context of meta-

analyses in 2000:  

 

Although the significance test is obviously an important result from the experimental 

procedure, it is by no means the full story. The effect size is equally important, without 

it other researchers are in a poor position to estimate the importance of the results, 

even if they are significant. Unfortunately few, if any, software engineering 

experiments report effect size estimates, their incorporation into the results of 

empirical studies would greatly aid other researchers.    

         Miller [77], p.37 

 

The reporting of effect size is also recommended by Kitchenham et al. in 2002 [66]. 

The authors also recommend distinguishing between statistical significance and practical 

importance: 

 

...first see whether the result is real (statistical significant); then see whether it matters 

(practical significance). For example, with a large enough dataset, it is possible to 

confirm that a correlation as low as 0.1 is significantly different from 0. However, such 

a low correlation is unlikely to be of any practical importance. In some cases, even if 

the results are not statistical significant, they may have some practical importance. 

        Kitchenham et al. [66], p. 731 

 

The reporting of effect size is also recommended by Miller in 2004 [78] as a 

supplement to significance testing and in 2005 [79] to compare studies and replications. 

The most recent article that recommends the reporting of effect sizes is the article on the 

future of empirical methods by Sjøberg et al. [113] in 2007. 

So, the importance of effect size reporting and the role that effect size has in power 

analyses and meta-analyses have been addressed earlier in ESE. However, there has been 

no formal assessment of the extent to which effect sizes are used and, if reported, how they 

are interpreted. Furthermore, unstandardized effect sizes are not mentioned in the ESE 

literature and there exists no overview in our field of the standardized effect size values 

observed. Further discussions of the use of effect size in software engineering experiments 

will gain from knowledge of the state of practice. Hence, the aim of the systematic review 
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of effect size, as described in Paper 3, was to provide empirical evidence about the use of 

effect sizes and, on the basis of the findings, to suggest directions for improvement.     

2.2.3 Quasi-experimentation 
Randomization is the procedure of randomly assigning participants to experimental groups. 

Experiments in which study units are assigned to experimental groups nonrandomly are 

called quasi-experiments [33]. They allow the investigation of cause-effect relations in 

settings in which randomization is inappropriate, impractical, or too costly. For example, in 

software engineering, the costs of teaching the experimental subjects all the technologies 

(the different treatment conditions) so that they can apply them in a meaningful way may 

be prohibitive. Moreover, when the levels of participants’ skill constitute treatment 

conditions, or if different departments of companies constitute experimental groups, 

randomization cannot be used. 

The nonrandom assignment procedure might result in selection bias, that is, a 

systematic difference between the experimental groups that could influence the results. For 

example, when projects are compared within a company, there is a chance that participants 

within projects are more alike than between projects, e.g., in terms of some types of skill 

that influence the performance in the experiment. Moreover, if the participants select 

experimental groups themselves, people with similar backgrounds might select the same 

group. Such differences between experimental groups might generate other differences of 

importance for the experimental outcome as well. Hence, selection bias is a threat to 

internal validity. By detecting the cause of the selection bias, and designing and analyzing 

the experiments accordingly, the effect of the bias may be reduced or eliminated.  

 The concept of randomization was introduced by Fisher in 1925 [18]. Its use is 

widespread, because it is the cornerstone that underlies the use of statistical methods. 

Statistical methods require that the observations are realizations of independently 

distributed random variables and randomization usually makes this assumption valid [85]. 

Randomization also prevents any systematic differences between the experimental groups 

before the experimental tasks are performed. Simple randomization does not guarantee 

equal experimental groups in a single experiment, but because differences are created only 

by chance, the various participant characteristics will be divided equally among the 

treatment conditions in the long run, over several experiments.  

 However, experimental practices revealed that it is not always possible to achieve ideal 

methodological circumstances. Moreover, there are experimental settings for which 



  2  Background 

 19 

randomization is possible, but not optimal for the purpose of the study. The need for valid 

inferences from such experiments motivated the work on the theory of quasi-

experimentation. This work was first presented by Campbell [17] in 1957 and by Campbell 

and Stanley [18] in 1963 and later developed by Cook and Campbell [33] and Shadish et 

al. [106]. The theory provides the following: (1) alternative experimental designs for 

studying outcomes when a randomized experiment is not possible, (2) practical advice for 

implementing quasi-experimental designs, and (3) a conceptual framework for evaluating 

such research through validity assessments [104]. The theory claims that when properly 

designed and analysed, quasi-experiments can be good approximations to randomized 

experiments. Central to the theory is the use of various design elements to control for the 

potential selection bias that might be present due to the non-random assignment procedure.  

 Researchers have attempted to assess how elements from the quasi-experimental theory 

work in practice. This is not trivial because selection bias cannot be measured directly 

from experimental results. Findings in psychology suggest that by avoiding the self-

selection of experimental groups as the assignment method and/or adjusting for pre-

experimental differences by using pretest scores, selection bias can be eliminated 

completely [2], or at least to some extent [51, 52, 75, 105].  

 However, the quasi-experimental theory seems not to be implemented in practice to 

any large extent. Shadish et al. [106] claim that the most frequently used quasi-

experimental designs typically lead to causal conclusions that are ambiguous. Further, 

empirical results from research in medical science, psychology, and criminology show that 

randomized experiments and quasi-experiments have provided different results [20, 32, 51, 

81, 105, 107, 116, 123, 125].    

 To improve the performance of nonrandomized experiments, publication guidelines in 

psychology recommend that researchers determine sources of bias in quasi-experiments, 

adjust for their effects, and describe how this has been done [124]. Moreover, the 

importance of conducting quasi-experiments properly has been recognized in fields of 

research other than psychology, such as environmental science [70], economics [76], and, 

recently, medical science [47-49].  

 In ESE, the handling of non-randomized experiments is first mentioned by Pfleeger in 

1994 [90]; she recommends documenting the areas where lack of randomization may affect 

the validity of results in cases where complete randomization is not possible. The term 

quasi-experiment was first used in the ESE literature by Wohlin et al. in 1999 [126]. In the 

context of meta-analyses, Miller [77] recommends using randomization because of the 
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published observed differences in effect sizes reported in epidemiological trials. In their 

guidelines in 2002, Kitchenham et al. [66] recommend identifying and controlling for bias 

in non-randomized experiments. They also recommend using well-documented 

experimental designs and consulting a statistician if it is not possible to implement such 

designs. Then, in 2003, Laitenberger and Rombach [69] described the concept and conduct 

of quasi-experiments and  claimed that quasi-experiments represent a promising approach 

to increasing the amount of empirical studies in the software engineering industry. In 2007, 

Sjøberg et al. [113] recognised that quasi-experiments will play an important role in future 

experimental research in ESE, because they offer opportunities to improve the rigour of 

large-scale industrial studies. 

So, the quasi-experiment is recognized as an important part of cause-effect 

investigations by several researchers in different areas, including ESE. Assessments in 

other areas of research show that quasi-experiments are poorly performed and that 

randomized experiments and quasi-experiments sometimes provide different results. Such 

assessments have not yet been conducted in ESE. In order to determine how the situation 

can be improved, it is necessary to provide and overview of the state of practice. 

Furthermore, a discussion of how to handle selection bias in software engineering quasi-

experiments requires an overview of the types of quasi-experiments being conducted. The 

lack of any such overview inspired the work on quasi-experimentation that is described in 

Paper 4.  

2.3 Quality of reporting of experiments  

When reporting experiments, it is important to prioritize what information to include. 

Many reviews have documented deficiencies in reports of clinical trials in medical 

research, which have resulted in detailed guidelines on what to report [3]. Research in 

psychology has experienced similar problems and publication guidelines have been 

developed [1, 124].  

In ESE, the method literature presented in Table 2 gives implicit guidelines on what to 

report through recommendations regarding what issues are important in experimentation. 

Explicit guidelines on reporting are provided by the following works. In 1987, Basili et al. 

[8] suggested a framework for experimentation that provides a structure for presenting 

experiments. In 1999, Singer [112] provided an introduction to the American 

Psychological Association (APA) style guidelines. In 1999, Wohlin et al. [126] described 
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the presentation and packaging of experiments and in 2002, Kitchenham provided 

guidelines for reporting [66]. In 2003, Juristo and Moreno [57] provided a guide to 

documenting experimentation. Simultaneously, Shaw [108] published advice on how to 

write good software engineering research papers. With respect to the replication of 

experiments, knowledge sharing through packages with raw data and text documentations 

was addressed by Shull and co-authors in two articles from 2002 and 2004  [110, 111]. 

These articles describe a solution to the problem of space when reporting experiments in 

journal articles. In 2005 Jedlitschka and Pfahl [55] reported a survey of the most prominent 

published proposals for reporting guidelines and suggest a unified standard for reporting of 

controlled experiments. These guidelines have been subject to an evaluation study [63] and 

an improved version will be provided [56]. 

Existing guidelines tend to be based on empirical data from other research areas or only 

on anecdotal evidence. In order to determine more specifically what kinds of guideline are 

need the most, a systematic assessment of the reporting practices in ESE was required. 

Such an assessment is provided in this thesis for some experimental issues.  
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3 Research Questions 
The quality of experiments in ESE has not been previously assessed systematically. Hence, 

a systematic review of published experiments in software engineering and 

recommendations for improvements based on the findings may be a helpful contribution 

to, the ideally, continuous process of increasing quality of ESE experiments. More 

specifically, this research had two main aims: 

 

1. To provide a quality assessment. To that end, the extent to which software 

engineering experiments are designed, analysed, and reported to help enable valid 

inference from the results must be determined. 

2. To provide recommendations for improvements. Appropriate ways to address the 

potential deficiencies found in the quality assessment must be determined. 

 

The assessment of quality is limited to the following issues of design and analysis: 

statistical power level, effect size analysis, and quasi-experimentation. Statistical power 

analysis is performed in the design phase, but affects the analysis because the results must 

be viewed in relation to the planned power. Low power is a threat to statistical conclusion 

validity. Effect size analysis is performed in the analysis of results. However, it must be 

considered in the design phase in order to include the magnitude of effect in research 

questions or the formulation of hypotheses and procedures for gathering data. If effect 

sizes are not reported, statistical conclusion validity is threatened. Quasi-experimentation 

requires extra effort in the design and analysis phase in order to eliminate or reduce 

potential selection bias. Selection bias is a threat to internal validity. 

Thus, the experiments are assessed according to aspects of statistical conclusion 

validity and internal validity. Concept validity and external validity are assessed only in 

terms of how they are reported in the articles.  

The quality of reporting influences the reader’s ability to understand the experiment 

and validate the results.  
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The aim of assessing quality is refined into subgoals, captured by the following 

research questions:  

 

RQ1 What is the statistical power level for the detection of small, medium, and 

large effect size values? 

RQ2a) To what extent is effect size reported as part of the experimental results?  

RQ2b) If effect size is reported, how is it interpreted? 

RQ3a) To what extent is randomization used in the assignment procedure?  

RQ3b) To what extent are quasi-experiments designed and analysed to control for 

selection bias?  

RQ4  To what extent is information regarding the following attributes reported: 

subjects, experimental setting, experimental design, analysis, and validity? 

 

RQ1 is answered in Paper 2, RQs 2a-b are answered in Paper 3, and RQs 3a-b are 

answered in Paper 4. RQ4 is addressed in all four papers, but especially emphasized in 

Paper 1.  
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4  Research Method  
This section describes the execution of the systematic review. A systematic review is a 

rigorous and auditable method for evaluating and interpreting all available research 

relevant to a particular research question, topic area, or phenomenon of interest [62]. Using 

existing guidelines for medical researchers as a basis, Kitchenham [62] described the 

following procedures for performing systematic reviews: 

1. Identification of the need for a review 

2. Development of a review protocol 

3. Identification of research 

4. Selection of primary studies 

5. Study quality assessment 

6. Data extraction & monitoring 

7. Data synthesis 

8. Reporting the review 

 

This review work started two years before these guidelines were available. Hence, 

these procedures have not been followed strictly, but have been used as guidance in the 

later phases of the work. Still, the research method of the thesis can be described in terms 

of the main steps described in the guidelines, as shown below.  

4.1 Identification of the need for a review  

The aim of this investigation was to make an empirical assessment of software engineering 

experiments and, on the basis of the findings, provide recommendations for improvements. 

The necessity of making valid inferences from the results provides the motivation for this 

work.  

The chosen research method was a systematic review of published experiments over a 

decade, because published articles are the main source of information about experiments 

conducted world wide. By making the assessment a quantitative review of the literature, 

the state of practice of software engineering experimentation would be revealed. In 

addition, a thorough empirical foundation would be established, upon which further 

qualitative investigations of experimentation could be based, for example, elaborations of 

the reasons for the quantitative findings.   



  4  Research Method 

 25 

An investigation of related work on assessments of experimentation in software 

engineering revealed that the major difference between those assessments and this review 

work is that they describe the extent and characteristics of various types of empirical study, 

while this review provide an in-depth study of controlled experiments only; see Paper 1 for 

details. 

4.2 Development of a review protocol 

The first part of this review involved several people and was organised as a research 

project. This part comprised the selection of experiments, as well as the data gathering, 

analysis, and reporting of the experimental issues described in Paper 1. For this part, 

decisions regarding the planning and conducting the review were made in weekly meetings 

and substantiated in a document that took the form of a comprehensive version of the 

upcoming journal article. In addition, decisions were documented in meeting reports and 

separate database documentation. Elements in the planning process were  

• research questions, 

• procedures for selection of studies, 

• operational definition of a controlled experiment,  

• inclusion and exclusion criteria, 

• data to be extracted, 

• reporting strategies, and 

• time schedule and distribution of tasks. 

  

The second part of the systematic review comprised the investigation of statistical 

power, effect size, and quasi-experimentation, which are described in Papers 2-4. As the 

database of articles was already established, this part only comprised data extraction, 

analysis, and reporting, as well as the planning of these activities. No formal protocol 

documents were made for this part, because few people were involved. The researcher 

responsible documented definitions and organised the data collection.  

4.3 Identification of research 

This review included 113 experiments in software engineering that were found in 103 

articles published in nine major journals and three conference proceedings in the decade 

from 1993 to 2002; see Table 3. We consider these included journals to be leaders in 
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software engineering research. Furthermore, ICSE is the principal conference in software 

engineering, and ISESE, Metrics, and EASE are major venues in empirical software 

engineering that report a relatively high proportion of controlled software engineering 

experiments. The conference Empirical Assessment & Evaluation in Software Engineering 

(EASE) is partially included, in that 10 selected articles from EASE appear in special 

issues of JSS, EMSE, and IST. 

 
Table 3. Distribution of ESE studies employing controlled experiments: Jan. 1993 – Dec. 2002. 

Journal/Conference Proceeding Number Percent 

Journal of Systems and Software (JSS)  24 23.3 

Empirical Software Engineering (EMSE)  22 21.4 

IEEE Transactions on Software Engineering (TSE)  17 16.5 

International Conference on Software Engineering (ICSE)  12 11.7 

IEEE International Symposium on Software Metrics (METRICS)  10 9.7 

Information and Software Technology (IST)  8 7.8 

IEEE Software  4 3.9 

IEEE International Symposium on Empirical Software Engineering (ISESE)  3 2.9 

Software Maintenance and Evolution (SME)  2 1.9 

ACM Transactions on Software Engineering Methodology (TOSEM)  1 1.0 

Software: Practice and Experience (SP&E)  – – 

IEEE Computer  – – 

TOTAL:  103 100% 

 

4.4 Selection of primary studies 

In order to identify and extract article that described controlled experiments, one researcher 

systematically read the titles and abstracts of the 5,453 scientific articles published in the 

selected journals and conference proceedings for the period 1993-2002. Excluded from the 

search were editorials, prefaces, article summaries, interviews, news, reviews, 

correspondence, discussions, comments, reader’s letters, and summaries of tutorials, 

workshops, panels, and poster sessions. If it was unclear from the title or abstract whether a 

controlled experiment was described, the entire article was read by both the same 

researcher and another person in the project team. Note that identifying the relevant articles 

is not straightforward because the terminology in this area is confusing. For example, 

several authors claim that they describe experiments even though no treatment is applied in 
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the study. The following operational definition of a software engineering experiment was 

used in the review: 

 

Software engineering experiment: A randomized experiment or a quasi-experiment in 

which individuals or teams (the experimental units) conduct one or more software 

engineering tasks for the sake of comparing different populations, processes, methods, 

techniques, languages, or tools (the treatments).  

 

Inclusion criteria were as follows: the use of at least two treatment conditions, subjects, 

or teams as experimental units, and the performance of a software engineering task. In 

addition, the study had to be a cause-effect investigation, i.e., the use of a treatment had to 

precede the measure of an outcome.  

Excluded from the review were several types of study that share certain characteristics 

with experiments, but do not apply the deliberate intervention essential to experiments. So, 

correlation studies, studies that are based solely on calculations using existing data (e.g., 

from data mining), and evaluations of simulated teams based on data for individuals were 

excluded. The last category falls outside the operational definition because the units are 

constructed after the run of the experiment. Studies that use projects or companies as 

treatment groups, in which data is collected at several levels (treatment defined, but no 

experimental unit defined) were also excluded. These were considered to be multiple case 

studies (even though the authors might refer to them as experiments). Also excluded were 

articles that, at the outset, would not provide sufficient data for our analyses (e.g., 

summaries of research programs). Moreover, usability experiments were not included 

because those are part of another discipline (human computer interaction). The list of 

included articles is provided in Appendix A. 

4.5 Study quality assessment 

Because the review aimed at assessing the quality of experiments, no experiment was 

excluded from the dataset on the grounds of a lack of quality. However, for investigations 

of statistical power and effect size, which were done on the level of statistical tests, seven 

experiments were excluded because we were unable to track which tests answered which 

hypothesis or research question.  
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4.6 Data extraction & monitoring 

For the first part of the review (Paper 1), six researchers gathered data so that each aspect 

was covered by at least two persons. After the initial analysis, the results were compared 

and possible conflicts resolved by reviewing the articles collectively a third time or 

handing the article over to a third person.  

For the investigation of statistical power (Paper 2), two researchers identified the 

primary statistical tests independently. A third researcher was then involved in reaching a 

consensus on which experiments and tests to include, using these two datasets as a basis.  

Data for the effect size investigation (Paper3) was extracted by one researcher, whereas 

a dual review was done for parts of the data extraction in the investigation of quasi-

experimentation (Paper 4).  

The data from the first part of the review was stored in a relational database (MS SQL 

Server 2000). Data extracted for the investigation of power, effect size, and assignment 

methods were stored in separate excel sheets.  

The total data model is shown in Figure 1. Some data was specific to an article, some 

was specific to an experiment, and some information concerned the combination of article 

and experiment. For example, an article might describe several experiments and a single 

experiment might be described in several articles, typically with a different focus in each 

article. Moreover, some data was specific to a statistical test or a task and some 

experiments were not analysed by statistical testing. Four experiments were reported in 

more than one article. In these cases, for some parts of the review, the data from the most 

recently published article was used for reporting, as recommended in [62]. Which articles 

that are included in each part of the review is described in Appendix A, as well as article-

categorizations for some assessments.  

4.7 Data synthesis and reporting the review 

The data synthesis was a descriptive, quantitative analysis. All results relevant to the 

investigation were tabulated and figures were used when appropriate. The reviews were 

reported in the four journal articles, which constitute the main part of this thesis.  
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Figure 1. The data model for the review 
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5 Results   
This section describes the results of the review: the assessments of statistical power, effect 

size analyses, quasi-experimentation, and quality of reporting. 

5.1 Assessment of statistical power 

The assessment of statistical power answered research question 1: 

 

RQ 1: What is the statistical power level for the detection of small, medium and 

large effect size values? 

 

The investigation of statistical power is described in detail in Paper 2. This part of the 

review included the 92 experiments for which statistical testing was performed and the 

tests clearly described. For each primary statistical test in the experiment, the power was 

calculated on the basis of the type of statistical test and sample size. A significance level of 

0.05 was used for all the tests and the power was calculated for small, medium, and large 

effect sizes as defined by Cohen [29]. By using this information, which is available in the 

planning phase of the experiment, the power calculated represents the pre-experimental 

power and hence shows how the experiment was designed with regard to power.  

The result revealed an average power for detecting medium effect sizes in the software 

engineering experiments of 0.36, i.e., there was, on average, a probability of 0.36 that a 

null hypothesis would be rejected correctly; see Table 4. This power is far below the 

commonly accepted level of 0.8, which is also assumed to be the target level by most IS 

researchers [95].  

Power increases with increasing effect size, provided that all other factors are kept 

constant. However, the average power for detecting large effect sizes, according to 

Cohen’s definition, was 0.63, which is also below the commonly acceptable level.  

 The power level of the tests would still have been acceptable if the effect sizes in ESE 

overall had been large. Unfortunately, this does not seem to be the case, judging from the 

results of the effect size computation (Paper 3). The median effect size value estimated 

from the experimental tests was 0.60 and even though 29% of the effect sizes were very 

large (above 1.10), 53% were of small or medium size (Table 4).  
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Table 4.   Statistical power and observed effect sizes 
 

 Small effect size Medium effect size Large effect size 

Average power 

Based on 459 tests  (Paper 2) 
0.11 0.36 0.63 

Proportion of effect sizes * 

Based on 284 tests for which effect size 

was possible to estimate (Paper 3)  

30% 23% 47% 

* Standardized mean difference effect size was estimated for all tests. In this table, values in (0-0.35) are 
categorized as “small”, (0.26-0.65) as “medium” and (0.66, ->) as “large”. 

 
 
An additional indication that little attention is paid to considerations of power is that 

only 15% of the articles referred to the power of their significance test, and for only one 

experiment was it reported that an a priori power analysis had been performed.  

The consequence of this low level of statistical power is that it is likely that many 

software engineering experiments fail to detect the actual effects of the technology being 

investigated. This review revealed that significance at the 0.05 level was achieved for half 

the tests (Table 5). Hence, combining this result with the low power observed suggests that 

increased power in software engineering experiments will lead to more tests being 

significant.  
Table 5.   Extent of statistical significance 

 
Tests  

Results Number Percentage 

p-value < 0.05 119 51.3  

p-value > 0.05 113 48.7  

Total 232 100.0 

 

5.2 Assessment of effect size analysis 

The review of effect size reporting used all 113 experiments and answered research 

questions 2a) and 2b): 

 

RQ 2a: To what extent is effect size reported as part of the experimental results?  

RQ 2b: If effect size is reported, how is it interpreted? 

 

The assessment of the 92 experiments that performed significance testing and described the 

tests clearly is presented in detail in Paper 3. 
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Overall, only 27 of the 113 descriptions of experiments (24%) reported at least one 

effect size (Table 6). All these experiments reported effect size as a supplement to 

information about statistical significance, whereas none of the experiments that did not use 

statistical testing reported any effect size. Only two of the experiments reported both 

standardized and unstandardized effect sizes.  

 
Table 6.   Extent of effect size reporting 

 
Experiments reporting effect size  

Analysis method 

 

Number of 

experiments 

Number Percentage 

Significance testing 99 27 27% 

Descriptive statistics only 14 0 0 

Total 113 27 24% 

*In Paper 3, only 92 experiments were included in the investigation of effect size. Included here are 
(1) the additional seven experiments that used significance testing, but for which it was difficult to 
identify primary tests or main aims and (2) the 14 experiments for which statistical testing was not 
performed. 

 

 The reporting of unstandardized effect size was done more frequently for significant, 

than for non-significant, results. Another factor that seemed to influence the extent of 

effect size reporting is the number of treatment conditions tested in the experiment. None 

of the 51 primary tests that compared more than two treatment conditions reported the 

standardized effect size for the pairwise comparisons of treatments. Only four of these 51 

tests reported the unstandardized effect size. 

An important aspect of effect size reporting is the interpretation of its value. Even if the 

unstandardized effect size lends itself better to discussions of practical importance than 

does the standardized one, the only references to practical importance were made with 

respect to standardized effect sizes. In these cases, reference was made to Cohen’s 

definitions of small, medium, and large values. Hence, the practical importance of the 

values was not discussed directly in relation to contextual factors, which is the 

recommended (but difficult) practice. This result is not unexpected, because few guidelines 

exist on how to discuss the practical importance of the results on the basis of effect size 

measures in general, and no guidelines directed to software engineering experiments in 

particular. Still, the result revealed insufficiencies that need to be addressed and discussed 

in the ESE community.   
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The unstandardized effect sizes appeared to be very suitable for discussions of the 

practical importance, for example, “Procedural roles reduced the loss of only singular 

defects by about 30%.” However, no such discussion was added to these measures.  

5.3 Assessment of quasi-experimentation 

This part of the review was based on all the 113 experiments and answered research 

questions 3a and 3b.  

 

RQ 3a: To what extent is randomization used in the assignment procedure?  

RQ 3b: To what extent are quasi-experiments designed and analysed to control for 

selection bias?  

 

The results are described in detail in Paper 4. Among the 113 experiments, 66 were 

randomized experiments (58%) and 40 were quasi-experiments (35%), while the 

assignment procedure could not be obtained for 7 experiments (6%).  

There seemed to be little knowledge about quasi-experimentation, because only four 

reports used the term quasi-experiment, only three of the quasi-experiments addressed 

threats to validity regarding selection bias, and relatively few used design elements to 

control for selection bias in the analysis. Regarding design elements, fewer than half of the 

experiments applied a pretest score to control for a potential selection bias and, apart from 

crossover design seen in eight quasi-experiments, no other ways of controlling for 

selection bias was observed.  

The results suggest a need for better control regarding selection bias in software 

engineering experiments, in order to ensure valid inferences. Moreover, increased 

reporting of possible threats to selection bias that might influence the result is required, so 

that readers will understand the challenges in the experiments and can judge the results on 

this basis.  

A comparison of the results from quasi-experiments with randomized experiments 

revealed lower average effect sizes in the quasi-experiments than in the randomized ones. 

There were few data points in this comparison of effect sizes; hence, this result should be 

investigated further in follow-up studies. Still, we should take note of the results, because 

the hypothesis that selection bias might influence the results from quasi-experiments has a 

theoretical foundation [106] and has empirical support in other research fields. 
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In order to discuss the use of quasi-experiments in software engineering, we must know 

the types of non-random assignment procedures that are used. This review detected four 

types; see Table 7.  

(1) The non-equivalent experimental group design is the typical quasi-experimental 

design, which is described thoroughly in the literature [33, 106]. It was used in 38% of the 

quasi-experiments. Examples are field experiments in which professionals were included 

into the experimental groups on the basis of their availability and student experiments in 

which two sections of a class constituted the experimental groups on the basis of 

convenience. A third example is the investigation of how software engineering skills 

influenced performance for different technologies. For such comparisons, the most 

appropriate inclusion of participants to skill groups is to select subjects who already have 

skills, which is a non-random assignment procedure.  

(2) Haphazard assignment is a non-random assignment procedure with no known bias, 

for example, when participants are assigned to experimental groups on an alternating basis 

from a sorted list. Haphazard assignment was used in 30% of the quasi-experiments. 

  
Table 7.  Types of quasi-experiments in software engineering 

 
Type of quasi-experimental design Number Percent 

Non-equivalent experimental group design 15 37.5 

Haphazard assignment 12 30.0 

Some randomization 7 17.5 

Intra-subject experiments in which all participants 

applied the treatment conditions in the same order 

6 15.0 

Total 40 100.0 

 
 
(3) Seven of the experiments were a combination of quasi-experiments and randomized 

experiments; hence, some of the comparisons in the experiments were exposed to a non-

random assignment procedure.  

(4) For six of the experiments, all the participants applied all treatments in the same 

order, only once. The reasons for choosing such designs are an expected larger learning 

effect from one of the technologies (which prevents a crossover design) combined with 

few available participants (which prevent an inter-subject design). However, this is a weak 

quasi-experimental design because it does not allow proper control of how learning effects 

may influence the second technology. 
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Only 45% of the quasi-experiments measured a pretest score of the participants’s 

performance ability and none of the experiments attempted to measure such a score for 

teams of participants beyond averaging individual skills. Hence, how to measure software 

engineering skill appear to be a challenge for the ESE community.  

5.4 Assessment of quality of reporting 

The assessment of the quality of reporting answered research question 4: 

 

RQ 4: To what extent is information regarding the following attributes reported: 

subjects, experimental setting, experimental design, analysis, and validity? 

 

The quality of reporting was assessed in all parts of this review and is described in all the 

four papers included in this thesis, but is particularly emphasised in Paper 1. The major 

findings are now summarized. 

Large variations in the quality of reporting are seen both across types of information 

assessed and across experiments. Insufficiencies include incomplete reporting, information 

reported at different places in the articles, and lack of consistent terminology. An example 

is the reporting of validity considerations that were made for ¾ of the experiments, at 

different places in the articles, and under different headings. For 54 experiments (48%), 

there was a special section entitled “Threats to (internal/external) validity” or other 

combinations that included the terms “threats” or “validity.” Nine other experiments 

(eight%) had special sections on threats to validity but with other names (e.g., “Limitations 

to the results”). The reporting of threats to validity in yet another eight experiments were 

found in other sections. 

An overview of the extent of the reporting of information regarding subjects, 

experimental setting, experimental design and analysis, and validity assessments is 

presented in Table 8. 

Information regarding subjects was reported by most of the experiments in terms of 

sample size, types of subjects, and background information. However, only 21% reported 

the amount of drop-outs. Moreover, the type of background information and level of detail 

varied substantially. An example of detailed information on programming experience is: 

“On average, subjects’ previous programming experience was 7.5 years, using 4.6 different 

programming languages with a largest program of 3510 LOC. Before the course, 69 
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percent of the subjects had some previous experience with object-oriented programming, 

58 percent with programming GUIs.” An example of a high-level description without 

figures is: “Some of the students had industrial programming experience.” How the 

participants were recruited was described for only 36% of the experiments.  

A description of the task performed was provided for all the experiments, but the 

duration of the performance was reported for only 61%. In addition, descriptions of the 

size of the materials and the use of tools were reported for slightly more than half the 

experiments.  

Regarding experimental design and analysis, some experiments applied standard design 

names and referred to textbooks, while others just described the design in their own words. 

Moreover, whether a between-subject or a within-subject design was used for the particular 

tests was not always stated explicitly and was sometimes difficult to identify. Overall, 

issues of design and analysis were sparsely addressed. Only one experiment defined the 

population of subjects to which the results could be generalized. Moreover, as described in 

the previous sections, the assessments of power, effect size, and assignment procedures 

revealed incomplete reporting of these issues.  

Even if internal and external validity were discussed in 2/3 of the experiments, most of 

these discussions took the form of a defence for the design and conducting of the 

experiment. Hence, threats to validity seemed underreported. Reports of only 5% and 11% 

of the experiments contained a discussion of statistical conclusion validity and construct 

validity, respectively.   
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Table 8.  Extent of reporting for various experimental variables 
 

Extent of reporting. 

Number of experiments 

Information 

attributes 

Variables 

N Total % 

Sample size 113 113 100 

Mortality rate 24 113 21.2 

Type  (student/professionals) 112 113 99.1 

Recruitment (Voluntarily/mandatory)  41 113 36.3 

Some kind of background information 99 113 87.6 

    - Programming experience 37 113 32.7 

    - Work experience 24 113 21.2 

    - Task related experience 80 113 70.8 

Subjects  

    - Grades 6 113 5.3 

Task 113 113 100.0 

Duration 69 113 61.1 

Application system 101 113 89.4 

Size of materials 67 113 59.3 

Location  40 113 35.4 

Experimental setting 

The use of tools 62 113 54.9 

Well-defined population 1 113 0.9 

Statistical power 1 92 1.1 

Effect size * 27 92 29.3 

Information available for estimation of at least 

one effect size  

 

64 

 

92 

 

69.6 

Assignment procedure (randomized or quasi) 86 113 76.1 

Design and analysis 

Randomization method 3 66 4.5 

Discussion of internal validity 71 113 62.8 

Threats to internal validity 26 113 23.0 

Discussion of external validity 78 113 69.0 

Discussing of statistical conclusion validity† 5 99 5.1 

Validity/limitations 

Discussion of construct validity† 12 113 10.6 

Note: Which experiments and articles that are included in these assessments is described in Appendix A.  
* Extent of reporting refers to the number of experiments with at least one effect size reported. 
† The number of experiments that discuss statistical conclusion validity and/or construct validity is based on 
the explicit use of these terms. The reporting of these types of validity needs to be investigated more 
thoroughly in future work.  
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6 Discussion 
This section summarizes the answers to the research questions, discusses implications of  

the results, provides recommendations for improvements, presents limitations of the thesis 

work, and offers directions for future research. 

6.1 Answers to the research questions 

Below are the answers to each research question.  

• RQ1: What is the statistical power level for the detection of small, medium and large 

effect size values? 

The average statistical power levels for detection of small, medium, and large effect 

size values were, 0.11, 0.36, and 0.63, respectively, which is below acceptable norms 

as well as below the levels found in the related discipline of IS research. In addition, 

and perhaps as an explanation for the low power level, the review revealed that 

inadequate attention was paid to power issues in the articles, with respect to the 

discussion, use, and reporting of statistical power analysis. This indicates that 

considerations of statistical power are underemphasized in experimental software 

engineering research.  

•  RQ2a:  To what extent is effect size reported as part of the experimental results?  

Effect size was reported for only 24% of the experiments. Only two of the experiments 

reported both standardized and unstandardized effect sizes. Unstandardized effect sizes 

were reported more frequently for significant results than for non-significant result. 

None of the 51 primary tests that compared more than two treatment conditions 

reported the standardized effect size for the pairwise comparisons of treatments. Only 

four of these 51 tests reported the unstandardized effect size. 

• RQ2b:  If effect size is reported, how is it interpreted? 

Interpretations of the standardized effect sizes were made mostly in terms of references 

to Cohen’s definitions of values for small, medium, and large effect sizes. The practical 

implications of the results were not discussed in relation to contextual factors. 

Unstandardized effect sizes appeared to be very useful as a basis for discussions 

regarding the practical importance of the results. However, no interpretations or 

thorough discussions of these values were made.  
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• RQ3a:  To what extent is randomization used in the assignment procedure?  

Randomization was performed in the majority of the experiments (58%), which 

suggests that many researchers in software engineering are aware that randomization is 

the most effective way of handling threats to internal validity. However, randomization 

is not always desirable or possible in SE, to which the percentage of quasi-experiments 

(35%) bears witness.  

• RQ3b:  To what extent are quasi-experiments designed and analysed to control for 

selection bias? 

Approximately half of the quasi-experiments applied design elements to control for 

selection bias; only three reported a threat to selection bias, and only four called the 

experiment a quasi-experiment. Hence, the impression is that there is little awareness 

of quasi-experimentation among researchers in software engineering.  

• RQ4: To what extent is information regarding the following attributes reported: 

subjects, experimental setting, experimental design, analysis, and validity? 

Large variations in reporting quality are seen both across types of information assessed 

and across experiments. Insufficiencies include incomplete reporting, information 

reported at different places in the articles, and a lack of consistent terminology. 

Information about subjects and experimental settings varied substantially. For example, 

sample size and a description of tasks were reported for all the experiments, whereas 

information regarding recruitment and location were reported for less than 40 %. 

Furthermore, the subject’s background information and the level of detail of this 

information varied to a large extent across experiments. For the most part, information 

regarding design, analysis, and validity was reported sparsely.  

6.2 Implications 

Low statistical power, sparse reporting of effect size, and insufficient handling of selection 

bias in quasi-experiments present threats to valid inference. In turn, this might lead to 

deficiencies in the accumulation of knowledge and the presentation of advice to industry. 

More specifically, the implication of low statistical power is that the actual effects of 

new technologies or other types of treatment that are tested in the experiments will not be 

detected to an acceptable extent. Only half of the primary tests were significant at the 0.05 

level, which supports this claim. In turn, low powered experiments might not be replicated, 

due to non-significant findings. Moreover, in addition to influencing single studies, low 
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power may also result in invalid inferences being made from meta-analyses that include 

low-powered studies. In sum, low-powered experiments will tend to produce an 

inconsistent body of literature, thus hindering the advancement of knowledge. 

Sparse reporting of effect sizes means that the inference from the hypothesis testing 

result is based on the p-values for most experiments. Because p-values provide no 

information about the practical importance of the results, the inferences made might be 

erroneous, or at least too little nuanced. More specifically, if an experiment includes a 

sufficient number of subjects, it is always possible to identify statistically significant 

differences, while if the experiment includes too few subjects (i.e. if it has insufficient 

power), p-values may be misleading. 

A consequence of not interpreting the practical importance of effect size in relation to 

contextual factors is that the practical importance of the results will not be judged, because 

there is no unambiguous mapping from effect size measures to a measure of practical 

importance. For example, a medium effect size might be important for detecting an 

inspection technique in one domain, whereas a large effect size is required for a specific 

testing technique to be cost-effective. This means that applying Cohen’s conventions 

mechanically has the same unwanted consequences as using the p-value mechanically.  

When applying a non-random assignment procedure, the researcher must control for 

potential selection bias. The consequence of not controlling for potential selection bias in 

quasi-experiments, by using appropriate design elements, is that selection bias might 

influence the results. Hence, the observed effect might be caused by factors other than the 

treatment.  

Incomplete and unstandardized reporting of experimental information and results 

means that readers will have difficulty in understanding the experiment and judging the 

result. Furthermore, little and arbitrary reporting on context variables, such as the 

experimental setting and the participants’s skills hinders the accumulation of knowledge 

regarding which context factors influence which kinds of performance.  
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6.3 Recommendations for improvements  

One main impression from the quality assessment is that the design and analysis of 

experiments needs to be better suited to the experimental situation at hand. A tendency 

seems to be to analyse all experiments as if they were randomized experiments with 

sufficient power even if this is not the case, with the aim of making a yes/no decision about 

the hypotheses tested on the basis of the results. Hence, the overall recommendation that 

issues from the assessment of experimental quality is a more deliberate use of design 

elements and an analysis that better adheres to the limitations of the experiment. Moreover, 

there is a need for more complete and standardized reporting of information that is crucial 

for understanding the experiment and judging the result. 

Based on the findings, the following three major recommendations regarding software 

engineering experimentation are given: include effect size considerations and power 

considerations in the planning of the experiment; be aware of the extra effort required for 

quasi-experimentation; and improve completeness and the standardization of reporting. 

These recommendations are elaborated below.  

6.3.1 Include effect size considerations and power considerations in the planning of 
the experiment  

The low statistical power and the sparse reporting of both considerations of power and 

effect sizes suggest that a major challenge in software engineering experimentation is to 

specify which size of effect to detect in the experiment and to report and interpret effect 

size values.  

There are three reasons for including considerations of effect size in the planning 

stages of the experiment. (1) Statements about which effect sizes are interesting to detect 

enable hypotheses to be formulated concretely and informatively, in comparison to the 

standard: “null difference” versus “not null difference”. (2) Considering effect size early 

forces the researcher to evaluate the outcome measure with regard to its usefulness in the 

inference process. If the measure is difficult to transform into effect size measures, other 

measures should be considered. (3) Considering effect size allows power to be considered, 

i.e., the sample size required to obtain a certain power is computed for a given effect size, 

test, and significance level. If this computation shows that an unrealistically large sample 

size is required, the researcher must change elements of the design and repeat the sample 

size computation in order to achieve acceptable power for the main test. Alternatively, if it 
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is impossible to achieve acceptable power, the experiment will still have value as an 

exploratory study as long as this is made explicit.  

 For determining the effect size to be detected in the experiment, the researcher can 

both assess similar empirical research in the area and use the effect sizes found in these 

studies as a guide, and look at their own studies and pilot studies for guidance. Due to the 

limited number of empirical studies in software engineering, this approach may be difficult 

to apply at present [80]. However, increased reporting of effect size and discussions of 

their values will improve the current availability of effect size values. As a guide for the 

probability of achieving certain standardized effect sizes in software engineering 

experiments, the range of the two types of standardized effect size values detected in 

software engineering experiments can be used (Paper 3). Moreover, Cohen’s definitions of 

small, medium, and large standardized effect size values available for several statistical 

tests are a useful aid when no other information is available. In addition to considerations 

regarding standardized effect sizes, the corresponding unstandardized effect sizes should 

be assessed. This is because the researcher needs to reflcet upon the practical importance 

of the various possible effect size values when the experiment is being planned and 

because the unstandardized effect size is better suited for such judgements than are the 

standardized ones. 

6.3.2 Be aware of the extra effort required for quasi-experimentation.  
This investigation revealed a need for improved design and analysis of quasi-experiments 

in ESE. More specifically, in order to control for selection bias, design elements such as 

pretest scores, crossover design, and several comparison groups should be used to a greater 

extent than is the case at present. If selection bias cannot be controlled for, quasi-

experimental designs should be avoided, because it will be difficult to determine whether 

the result is due to the treatment or other factors. 

Thirty percent of the quasi-experiments used haphazard assignment. In all of these 

experiments, the groups were formed so as to be balanced regarding one type of participant 

skill. This shows that, for many researchers, a non-random assignment procedure is viewed 

as being more appropriate than randomization for balancing the experimental groups. 

However, even if haphazard assignment might be a good approximation to randomization, 

little is known about its consequences, whereas the statistical consequences of 

randomization procedures have been well researched [106]. Therefore, whenever feasible, 
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the researcher should use randomization, for example, blocked randomization based on one 

type of skill, in order to utilize the advantages of randomization. 

Some experiments use randomization for some primary tests and a non-random 

assignment procedure for other primary tests. The author must make it explicit in the text 

that they are using such a mix and control threats to selection bias in the quasi-

experimental part of the experiment.   

Since there has been an increased focus on quasi-experiments in the method literature 

in recent years and since the importance of such experiments has been emphasized [69, 

113], we might see an increase in experiments that use a quasi-experimental design. Such 

an increase will make it even more important to consider how to improve the conducting of 

quasi-experiments in software engineering. 

6.3.3 Improve completeness and the standardization of reporting. 
Authors of scientific articles have limited space available and must prioritize what 

information to report. The impression from the review is that the reporting of many tests is 

prioritized in the service of the complete reporting of a few tests. This is not a 

recommended practice. The quality of reporting will benefit from complete and thorough 

reporting of the major results only. 

The findings from the assessment of the quality of reporting revealed that some 

information that is crucial for understanding and judging the experiment was reported for 

less than half the experiments. There is great room for improvement in the reporting of 

such information, as listed below. 

• Recruitment. Recruiting subjects to experiments is not a trivial task, from either a 

methodological or a practical point of view. For example, volunteers may bias the 

results because they are often more motivated, skilled, etc., than are subjects who take 

part because it is mandatory in some way.  

• Location. There is a trade-off between realism and control regarding the location of an 

experiment. Running an experiment in the usual office environment of subjects that are 

professionals allows a certain amount of realism, yet increases the threat to internal 

validity due to breaks, phone calls, and other interruptions. Controlling and monitoring 

the experiment is easier in a laboratory set up, but in such a setting, realism suffers.    

• Well-defined population. If one tests hypotheses using statistics, it is necessary to have 

a well-defined population from which the sample is drawn [66].  
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• Mortality rate. All the experiments reported the sample size, which means that there is 

general agreement on the importance of this variable. However, there are two types of 

sample size: the number of subjects initially included in the experiment and the number 

of subjects included in the data analysis. Both these numbers must be reported, as well 

as the reasons for drop-outs or exclusions.  

• Statistical power. Information from significance testing is incomplete if the statistical 

power is not included. In particular, if no significance is found, the result should be 

judged against the level of statistical power. The reporting of power compensates to 

some degree for the lack of validity due to low power or extremely high power, 

because the reader will be informed about how the power influences the result and can 

draw inferences accordingly.  

• Effect size. The recommendation is to always report both a standardized and an 

unstandardized effect size measure, because they serve different, supplementary 

purposes. The standardized effect size aids other researchers in using the results. 

Moreover, it embraces both the location and spread of all the observations. The 

unstandardized effect size is easier to interpret than the standardized one and is 

therefore better suited as a basis for discussions of the practical importance of the 

results.  

• Randomization method. If the method of randomization is not reported, the reader will 

be in no position to judge whether the procedure is in accordance with 

recommendations for randomization procedures. 

• Threats to validity. Validity assessments should be reported for all experiments. It is 

difficult to report threats objectively, but the attempt must be made. All the potential 

types of threats to validity described by Shadish et al.  [106] must be assessed, but not 

necessarily discussed due to space limitations in the article. The focus should be on 

reporting actual threats only. Threats that are handled or that are not a problem in the 

particular experiment can be omitted, because a thorough description of experimental 

design will include such information.  

 

In the current section, special emphasis is given to the variables that are reported most 

infrequently. Nevertheless, all the variables listed in Table 5 should be reported. Hence, 

Table 5 can be used as a checklist to help to improve the completeness of the reporting of 

software engineering experiments. However, this is not a complete list, and researchers in 
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software engineering should consult additional guidelines, such as those offered by 

Kitchenham et al. [66] and Jedlitschka et al. [55, 56]. 

The second issue in reporting quality is the location within the paper of the reporting of 

various issues. Experimental issues were described in various places in the articles, which 

often made information difficult to find. The experience with the review work suggested 

the following recommendation for reporting elements:  

• structure abstracts appropriately,  

• place all information about experimental design and conduct in one section,  

• describe the methods of analysis used in one section,  

• present the results in a single section,  

• present threats to validity in one section, and  

• conclude the paper in one section.  

6.4 Limitations to this investigation 

The main limitations to this research are publication selection bias and inaccuracy in data 

extraction, which are described in the individual papers. These limitations are summarized 

below. 

• The review included published articles in what are regarded as the major journals and 

conference proceedings in software engineering in general and empirical software 

engineering in particular. Still, some experiments may have been overlooked, some of 

which might have provided useful insight to this review finding.  

• An additional threat regarding the set of selected articles is that there is a risk that the 

findings are obsolete; the articles selected are from 5-14 years old. Therefore, a 

preliminary systematic review of experiments published in 2007 has been performed, 

see Appendix B. The results indicate that the recommendations given in this thesis are 

still relevant today. 

• There exist no keyword standards for extracting controlled experiments from journals 

in a consistent manner. The operational definition of a controlled experiment with 

corresponding inclusion and exclusion criteria were used for the inclusion of articles. 

Still, the process was difficult and some experiments might have been overlooked. 

• The lack of completeness and consistency in reporting made it difficult to gather the 

data. For example, it was not always clear from the reporting of the studies which 

hypothesis were actually tested, which significance tests corresponded to which 
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hypothesis, or how many observations were included for each test; hence, the 

extraction process may have resulted in inaccuracy in the data. 

• Not all the variables were gathered by several researchers. Even if these variables were 

double checked by the same researcher, this represents a limitation of the process by 

which data was gathered.  

 

Moreover, the review process did not follow all the steps for a systematic review that 

are suggested in [62]. In particular, for the investigation of effect size and quasi-

experimentation, the research questions were changed during the review, which turned into 

an iterative process. Moreover, the process by which data was gathered became iterative 

because the gathered data triggered the collection of additional data. Pre-review mapping 

and piloting the review protocol, as suggested in [14], might have helped to reduce the 

number of iterations. In addition, the authors of the selected papers were not contacted for 

validity of the classification of their respective paper, although the procedure was partly 

applied in Paper 4. If the authors were contacted, issues might have been cleared.  

6.5 Future work 

Among the areas for future work identified through this research are the following: 

 

• Reasons for lack of quality. The quantitative assessments performed in this thesis 

described current practice, but did not reveal the reasons for the practices. Hence, it 

would be interesting to follow up the findings by conducting a qualitative investigation, 

for example, a survey or interviews aimed at extracting reasons for the lack of 

reporting of power and effect size.  

 

• Similar reviews of other experimental topics. This review shows that quantitative 

assessments of methodological aspects of software engineering research are valuable. 

The findings reveal insufficiencies and act as a basis for discussions of future practices. 

Hence, similar assessments of other experimental topics will contribute to the 

improvements of experimental quality in ESE. Examples of such topics are: a more 

detailed analysis of how experimental design is described in the articles; an 

investigation of what types of design are performed; whether or not the methods 

analysis used are appropriate for the design of the experiment; the extent to which the 
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hypotheses and research questions are supported by similar research; the extent to 

which the results are discussed in the context of related research; An investigation of 

what types of measures (constructs) are used; and whether or not, and if so to what 

extent, do researchers tend to adapt to already used measures or develop their own 

measures suited for their experiment.  

 Systematic reviews of methodological topics are not constrained to experiments. 

Future work includes similar reviews of, for example, case studies and surveys. 

 

• The impact of context variables. This review revealed a relatively low and arbitrary 

reporting of context variables, which might influence the results. Future work should 

investigate the extent to which the variation in the performance of subjects can be 

explained by their background, such as education and work experience, and to increase 

our knowledge of the impact of using students versus professionals as subjects in 

software engineering experiments. 

 

• Effect size of practical importance. The investigation of effect size reveals that effect 

size is seldom reported and that practical importance is seldom discussed on the basis 

of the effect sizes. The recommendations provided in this thesis assume that the 

reporting of effect sizes influences the quality of inferences made from the results and 

that the lack of reporting of effect sizes is due to a lack of knowledge about its 

importance. However, an alternative explanation is that the interpretation of effect sizes 

is too difficult for effect sizes to have any value for the making of inferences. Future 

work should include further discussions and research on how to report and interpret 

effect size in software engineering experiments. 

 

• Selection bias in quasi-experiments. This review found different results from quasi-

experiments and randomized experiments. This finding should be investigated further, 

to reveal the effect of bias from different types of non-random assignment procedures 

in software engineering experiments. It is also of major interest to explore the extent to 

which the different types of design element eliminate or reduce the effect of bias. This 

can be investigated in experiments and in simulation studies.  
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• Statistical conclusion and construct validity. Only 5% of the experiments explicitly 

mentioned statistical conclusion validity and only 11% explicitly mentioned construct 

validity. However, these types of validity may have been addressed under different 

names and this possibility should be investigated further. Moreover, interesting future 

work would include assessments of which types of threat are reported. 

 

• Replication of this review. This review revealed a need for increased statistical power, 

effect size reporting, control for selection bias in quasi-experiments, and completeness 

of reporting. It is hoped that this review and the corresponding recommendations for 

improvements, as well as other recently published guidelines, will inspire researchers 

in software engineering to improve current practice. In order to evaluate whether this 

has been the case, a replication of this review should be performed by assessing 

software engineering experiments published in the decade 2003-2012.  

 

• Further development and evaluation of the guidelines. This thesis work consists of 

review results and guidelines. In combination, these two elements are ment to informe 

and inspire researchers to improve their experimental quality. How successful this 

approach is should be evaluated by (1) inspections as suggested by Kitchenham et al. 

[63] and (2) an investigation of the amount of papers making citation to the guidelines 

and assess whether the papers apply the recommendations.  In addition, the guidelines 

must be consider to be further developed, for example, by providing a more detailed 

guidance on how to report effect size for different types of tests.  
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7 Conclusion  
Software engineering research must be of a certain quality to be valuable. The quality of 

research can be investigated by conducting systematic reviews of the published literature, 

as was the case in this thesis.  

Insufficient experimental quality was revealed with respect to the validity of inference 

and the completeness and consistency of the reporting of the experiments and their results. 

More specifically, this review revealed a need for an increased level of statistical power, 

increased use of effect size analysis, increased control for selection bias in quasi-

experiments, and more complete and standardized reporting of these issues and the 

information regarding experimental subjects and settings. However, implementing these 

improvements face certain difficulties. Challenges and suggested approaches for meeting 

them are: 

 

• Estimation and interpretation of effect size values. The challenge of estimating or 

guessing an effect size during the planning of the experiment is probably a major 

reason why statistical power is not considered. In addition, the interpretation of 

observed effect sizes is not straightforward and might explain why effect sizes are not 

reported well enough.  

 Increased attention should be paid to effect sizes in the reporting of experiments. 

Researchers should report both standardized and unstandardized effect sizes and 

discuss these measures and the obtained values.    

 

• Difficulty in including a sufficient number of subjects to achieve acceptable power. 

Particularly for experiments with professionals, it may be difficult to obtain large 

sample sizes in software engineering experiments. Even if attempts must be made to 

increase power, low-power experiments can still be valuable. However, such 

experiments are more exploratory than a well-designed experiment and this must be 

stated explicitly in the report. Statistical power must be reported and discussed as part 

of the results if significance testing is performed. An alternative is to omit significance 

testing and analyse the results by effect sizes and confidence intervals only. 
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• Little knowledge of which skill factors that influence different types of performance for 

different types of technologies. In order to allow pretest-based control with selection 

bias in quasi-experiments, we need more knowledge about the effect that different 

types of subject skill have on the performance of software engineering tasks. If 

researchers increase their reporting of how subjects’ skills are distributed in their 

experimental groups, meta-studies can investigate how different types of skill influence 

performance in various experimental settings. 
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Appendix A.  The underlying data-material for this review 
 

This Appendix lists the reviewed articles, describes which articles that are used in each 

part of the review and provides information about article-categorization in parts of the 

analysis. 

 

A.1  Experiments and articles used in each part of the review  

There are 103 articles included in this systematic review [1, 103], which reports 113 

unique controlled experiments. A total of 12 articles reports more than one experiment [2, 

20, 39, 42, 43, 48, 56, 66, 75, 95, 96, 103]. Four of the experiments are reported in more 

than one article:  

• one experiment was reported in [37, 38, 66] 

• one experiment was reported in [69, 70] 

• one experiment was reported in [8, 9, 11, 28]  

• one experiment was reported in [72, 73] 

 

Those articles that report the same experiments describe different research focus and 

different analyses of the data from the particular experiment. Hence, these articles are not 

“duplicates”. There were 120 article-experiments in the study database.  For the parts of 

this review that assessed analysis issues, only one article per experiment (the most recently 

published one) is included, because we wanted the unit of assessment to be unique 

experiments.  

 

A.1.1. Experiments and articles included in the review of statistical power (Paper 2)  

In the review of statistical power, 92 experiments are included. The exclusion of articles is 

described below: 

• For fourteen experiments, no statistical testing was performed. These experiments are 

excluded from the review. The following articles each report one of these experiments: 

[14, 18, 22-24, 30, 45, 47, 51, 61, 100]. In addition, two experiments without statistical 

testing is reported in [96]. These twelve articles are excluded from the review of 

statistical power. One of the three experiments described in [95] did not perform 

statistical testing. Hence the experiment, but not the article, is excluded from the 

review. 
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• For seven experiments, we were not able to track which tests answered which 

hypothesis or research question. These are reported in the following eight articles, 

which are excluded from the review of statistical power [10, 41, 69, 70, 76, 85, 94, 97].  

• Only one article per experiment is included in the review of statistical power. Hence, 

the following five articles are excluded [8, 9, 11, 37, 72]. One description of one 

experiment is excluded from [66], but the article also reports another experiment and is 

therefore not excluded.   

 

There are 78 articles (103-12-8-5) included in the review of statistical power. 

 

A.1.2. Experiments and articles included in the review of effect size (Paper 3) 

The same 92 experiments and 78 articles included in the review of statistical power are 

included in the review of effect size, as described in Paper 3. In addition, a review of the 

reporting of effect size was performed for the 21 remaining experiments (reported in 20 

articles) that were originally excluded from the statistical power and effect size 

investigation, i.e., the experiments for which no statistical testing was performed and for 

which we were not able to track which tests answered which hypothesis or research 

question [10, 14, 18, 22-24, 30, 41, 45, 47, 51, 61, 70, 76, 85, 94-97, 100]. The result from 

this additional review was presented in the summary of the thesis. 

 

A.1.3. Experiments and articles included in the review of quasi-experiments (Paper 4) 

All the 113 experiments were included in the review of quasi-experiments. Only one article 

per experiment was included and, hence, the following six articles were excluded: [8, 9, 

11, 37, 69, 72]. These articles were used as additional source for information, but the data 

gathering was based on the most recently published article of the particular experiment.  

 

A.1.4. Experiments and articles included in the assessment of reporting quality (all 

papers) 

All the 103 articles describing the 113 experiments are included in the review that is 

described in Paper 1. Those articles that describe the same experiment were assessed in 

combination, in order to provide as complete information as possible about the particular 

experiment regarding topic, subjects, tasks and experimental setting.  
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 A summary of the assessment of reporting quality is provided in Table 8 in the 

summary of the thesis. Information regarding design and analysis and validity/limitations 

were gathered from one of the following sets of experiments/articles: 

• unique experiments reported in the most recently published article (113 experiments, 

97 articles), six articles were excluded: [8, 9, 11, 37, 69, 72]. 

o randomized experiments (66 experiments). 

• unique experiments with statistical tests performed (99 experiments, 91 articles), see 

the description above of included experiments/articles in the review of statistical 

power. 

• unique experiments with clearly described tests-hypotheses connection (92 

experiments, 78 articles), see descriptions above. 

 

A.2. Information about article-categorization in parts of the analysis 

Reporting of power. Of the 78 papers in the review of statistical power, 12 articles discuss 

statistical power associated with the testing of null hypotheses [12, 13, 20, 25, 48, 49, 55, 

58, 62, 64, 101, 103],  while only one of the papers performed an a priori power analysis 

and used it to guide the choice of sample size [101].  

 

Reporting of effect size. The following articles report at least one effect size for at least one 

of the reported experiments: 

• Both standardized and unstandardized effect size are reported in two articles and two 

experiments [4, 49] 

• Standardized effect size only is reported in five articles and eight experiments [12, 13, 

39, 48, 64] 

• Unstandardized effect size only is reported in 15 articles and 17 experiments [3, 17, 20, 

27, 32, 33, 50, 54, 56, 75, 80, 82, 86, 92, 93] 

 

Assignment procedure. In the mail-correspondence with the authors of unknown 

assignment procedures, I stated that the articles would be kept anonymous. Therefore, lists 

of articles categorized as quasi-experiments and randomized experiments are not provided. 
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Appendix B.  A preliminary systematic review of experiments published 

in 2007 
 
B.1. Purpose. In order to assess whether the findings from the systematic review of 

experiments published in 1993-2002 are representative for contemporary practise, I 

performed a review of the experiments published in 2007. 

 

B.2. Method. The review assessed the experiments published in 2007 in Empirical 

Software Engineering (EMSE), The Journal of Systems and Software (JSS), IEEE 

Transactions on Software Engineering (TSE), and Information and software Technology 

(IST). The results from this review are to be regarded as preliminary and a more thorough 

investigation will be performed later. A more thorough investigation will include 

independent review by several researchers both regarding extraction of articles and data 

gathering. In addition, all the variables reported in this thesis will be investigated, whereas 

this preliminary investigation only assessed a few. 

In this preliminary investigation, the articles were selected by automatic search on the 

word “experiment” in the title, abstract and keywords in the journals’ overviews of the 

articles. Then these articles were manually investigated to reveal whether they described an 

experiment according to the definition used in this thesis work, see section 4.4 in the 

summary.  

 

B.3. Results. A total of 258 articles were published in the four journals (Table B.1). 

Among these, I found eight articles (3.1%) reporting 10 experiments [1-6, 8, 9]. Two 

articles [4, 6] reported two experiments. Another article described two experiments, which 

were analysed as one [8]. Hence, the article is regarded as reporting one experiment.  

The extent of experiments found in these four journals in 2007 is quite similar to the 

average extent found for the same four journals in 1993-2002 (2.9%). 

 
The findings from the review comprised the following: 

• Hypothesis testing was performed for seven experiments; hence three experiments 

reported the results descriptively, only.  

• Two experiments included professionals [2, 5]; seven included students. 
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Table B.1.  Articles that report controlled experiments 
 

 Review of articles in1993-2002 Review of articles  in 2007 
Articles reporting 

experiments 
Articles reporting 

experiments 
Journal 

Total no. of 
articles 

investigated 
N Row  % 

Total no. of 
articles 

investigated 
N Row  % 

EMSE 124    22 17.7 24 2 8.3 
JSS 886 24 2.7 108 5 4.6 
TSE 687 17 2.5 48 0 0 
IST 745 8 1.1 78 1 1.3 
All 2442 71 2.9 258 8 3.1 

 
 
 

• The average number of participants was 32.4, the minimum number was nine and 

the maximum number was 128. 

• Statistical power was reported for one of the seven experiments that performed 

hypothesis testing (14.3%) [9].  

• Standardized effect size was not reported in any of the articles as part of 

experimental results. However, one experiment reported the observed standardized 

effect size in the discussion of statistical power [9]. 

• Unstandardized effect size was reported for three experiments (30.0%) [1, 4]. 

• Seven experiments described a randomization procedure (70.0%), one experiment 

used a self-selection assignment procedure (quasi-experiment) (10.0%) [3] and two 

experiments (20.0%) did not clearly describe whether a randomization procedure 

was performed or not. One of these [8] was apparently randomized, as described in 

another article [7]. The other experiment is probably a quasi-experiment, because a 

pretest score was used to divide the subjects into groups with as similar 

characteristics as possible [4]. 

• The quasi-experiment compared the experimental groups with respect to a pretest 

score in order to control for selection bias. 

• None of the randomized experiment described the randomization procedure. 

• The participants’ background information was reported for seven experiments 

(70.0%): 

o Age, task related knowledge (course about software development and 

management) [1] 

o Task related experience (UML knowledge), work experience [2] 
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o Age, sex, task related experience (programming experience in years and 

lines of code, course credits) [3] 

o Task related knowledge (knowledge and opinions) [4] 

o Gender [4] 

o Age, work experience, task related experience (project management) [5] 

o Task related experience (java experience in years and number of courses, 

experience in static analysis tools) [9] 

In addition, the participants’ background information for one experiment [8] 

was reported in another paper: 

o Years of education, task related experience (java programming experience 

in loc and years) [7] 

• Eight experiments reported threats to validity/limitations (80.0%). The two 

experiments that did not report any limitations did not perform hypothesis testing. 

 

B.4. Conclusion:  

• The reporting of statistical power and effect size is still unacceptably low. 

• There are still needs for improvements regarding reporting of assignment 

procedures. 

• The one quasi-experiment that was evaluated in this review controlled the 

experimental groups for a potential selection bias in the analysis. However, this is 

insufficient evidence to conclude that the SE community has improved regarding 

quasi-experimental design and analysis compared to research conducted in previous 

years.    

• Background information is still reported in an unstandardized manner. 

 

These preliminary findings indicates that there are little improvements regarding the 

quality of experimentation in SE, today, compared to the findings from the review of the 

experiments published in 1993-2002. Hence, the guidelines provided in this thesis are still 

relevant for current experimentation in software engineering.  
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Abstract 
The classical method for identifying cause-effect relationships is to conduct controlled 

experiments. This paper reports on how controlled experiments in software engineering are 

conducted at present and the extent to which relevant information is reported. Among the 

5,453 scientific articles published in 12 leading software engineering journals and 

conferences in the decade from 1993 to 2002, 103 articles (1.9 percent) reported controlled 

experiments in which individuals or teams performed one or more software engineering 

tasks. This survey characterizes quantitatively the topics of the experiments and their 

subjects (number of subjects, students versus professionals, recruitment, and rewards for 

participation), tasks (type of task, duration, and type and size of application), and 

environments (location, development tools). Furthermore, the survey reports on how 

internal and external validity is addressed and the extent to which experiments are 

replicated. The gathered data reflects the relevance of software engineering experiments to 

industrial practice and the scientific maturity of software engineering research. 
 

Keywords: Controlled experiments, survey, research methodology, empirical software engineering. 
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1 Introduction 
There is an increasing understanding in the software engineering community that empirical 

studies are needed to develop or improve processes, methods and tools for software 

development and maintenance [6, 4, 35, 16, 43, 5, 32, 41, 50, 15]. An important category 

of empirical study is that of the controlled experiment, the conducting of which is the 

classical scientific method for identifying cause-effect relationships. 

This paper reports on a survey that quantitatively characterises the controlled 

experiments in software engineering published in nine journals and three conference 

proceedings in the decade from 1993 to 2002. The journals are ACM Transaction on 

Software Engineering Methodology (TOSEM), Empirical Software Engineering (EMSE), 

IEEE Computer, IEEE Software, IEEE Transactions on Software Engineering (TSE), 

Information and Software Technology (IST), Journal of Systems and Software (JSS), 

Software Maintenance and Evolution (SME), Software: Practice and Experience (SP&E). 

The conferences are the International Conference on Software Engineering (ICSE), IEEE 

International Symposium on Empirical Software Engineering (ISESE), and IEEE 

International Symposium on Software Metrics (METRICS). The conference Empirical 

Assessment & Evaluation in Software Engineering (EASE) is partially included in that ten 

selected articles from EASE appear in special issues of JSS, ESE, and IST. We consider 

the above journals to be leaders in software engineering. ICSE is the principal conference 

in software engineering, and ISESE, Metrics, and EASE are major venues in empirical 

software engineering that report a relatively high proportion of controlled software 

engineering experiments.  

Research in empirical software engineering should aim to acquire general knowledge 

about which technology (process, method, technique, language or tool) is useful for whom 

to conduct which (software engineering) tasks in which environments. Hence, this survey 

focuses on the kind of technology being studied in the experiments investigated (which 

reflects the topics of the experiments), the subjects that took part, the tasks they performed, 

the type of application systems on which these tasks were performed, and the environments 

in which the experiments were conducted. This survey also includes data on experiment 

replication and the extent to which internal and external validity is discussed.  

The paper is organised as follows. Section 2 describes related work. Section 3 defines 

the research method for the survey. Section 4 reports the extent of controlled experiments, 
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and Sections 5–10 report our main findings. Section 11 discusses threats to validity of this 

survey. Section 12 summarises. 

2 Related Work 
Table 1 summarises the purpose, scope and extent of four major surveys in addition to this 

survey. Tichy et al. [43] compare the amount of experimental work published in a few 

computer science journals and conference proceedings with the amount of experimental 

work published in a journal on artificial neural network and a journal on optical 

engineering. In total, 403 articles were surveyed and classified into five categories: formal 

theory, design and modeling, empirical work, hypothesis testing and other. Zelkowitz and 

Wallace [49] propose a taxonomy of empirical studies in software engineering and report a 

survey in which 612 articles were classified within this taxonomy. Glass et al. [20] 

investigate 369 articles with respect to topic, research approach, research method, 

reference discipline and level of analysis.  

The above surveys give a comprehensive picture of research methods used in software 

engineering. They differ in purpose, selection criteria and taxonomies. Nevertheless, their 

results suggest the same conclusions: the majority of published articles in computer science 

and software engineering provide little or no empirical validation, and the proportion of 

controlled experiments is particularly low. The surveys propose means to increase the 

amount of empirical studies and their quality.  

The major difference between those surveys and ours is that they describe the extent 

and characteristics of various types of empirical study, while we provide an in-depth study 

of controlled experiments only. A comparison of those surveys and ours regarding the 

extent of controlled experiments is provided in Section 4.  

In addition to the general surveys described above, there are several surveys within 

subdisciplines of software engineering, for example, object-oriented technology [14], 

testing techniques [28] and software effort estimation [25]. Furthermore, Shaw [38] 

categorises the research reported in articles submitted and accepted for ICSE 2002, and 

Zendler [51] reports a survey of 31 experiments with the aim of developing a preliminary 

theory about software engineering.  
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Table 1.  Surveys of empirical studies in software engineering 

 (Tichy et al. 
1995) 

(Zelkowitz et 
al. 1997) 

(Glass et al. 
2002) 

(Zendler 2001) Our survey 

Purpose Compares the 
extent of  
empirical studies 
in computer 
science with 
other fields 

Classifies 
empirical 
studies in SE 
and validates 
the taxonomy 
of empirical 
studies 
proposed by 
the authors 

Surveys topics, 
research 
approaches, 
research 
methods, 
reference 
disciplines and 
level of 
analysis. 

Develops a 
preliminary SE 
theory from 
the results of 
various SE 
experiments 

Surveys topics, 
subjects, tasks, 
environments, and 
internal and 
external validity 
of controlled 
experiments in SE 

Scope Comp. Sci., incl. 
SE 

SE SE SE SE 

Journals ACM (random 
publications), 
TSE, PLDI 
Proc., TOCS, 
TOPLAS 
 

ICSE Proc., 
IEEE 
Software, TSE 

IEEE Software, 
IST, JSS, 
SP&E, 
TOSEM, TSE 

Various 
journals and 
conference 
proceedings 

EASE, EMSE, 
ICSE, IEEE 
Computer, IEEE 
Software, ISESE, 
IST, JSME, JSS, 
METRICS, SP&E, 
TOSEM, TSE  

Sampling of 
papers 

1991-1994, one 
to four volumes 
per journal, 
random selection 
of work 
published by 
ACM in 1993 

All papers in 
1985, 1990 
and 1995 

Every fifth 
paper in the 
period 1995-
1999 

Not reported All papers in the 
period 1993-2002 

Number of 
investigated 
papers 

403 612 369 49 papers 
assessed, 31 
papers 
analysed in 
depth 

5453 papers 
scanned, 103 
papers analysed in 
depth 

3 Research Method 
This section describes the kind of experiments that are considered in this survey, and the 

procedure for identifying and analysing the relevant articles.  

3.1 Controlled experiments in software engineering  

Shadish et al. [37] provide the following definitions: 

• Experiment: A study in which an intervention is deliberately introduced to observe its 

effects.  

• Randomised experiment: An experiment in which units are assigned to receive the 

treatment or an alternative condition by a random process such as the toss of a coin or a 

table of random numbers.  

• Quasi-Experiment: An experiment in which units are not assigned to conditions 

randomly. 
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• Correlation study: Usually synonymous with non-experimental or observational study; 

a study that simply observes the size and direction of a relationship among variables. 

 

To identify the effects of the deliberate intervention in an experiment, factors that may 

influence the outcome, in addition to the treatment, should also be controlled1. This is the 

challenge of internal validity (see Section 10.1). Note that control is not an all or nothing 

condition; the degree of control varies on a continuous scale. Based on the definitions 

given above, we present an operational definition used for this survey. Since the term 

‘experiment’ is inconsistently used in the software engineering community (often used 

synonymously with empirical study), we use the term ‘controlled experiment’: 

 

Controlled experiment in software engineering (operational definition):  

A randomised experiment or a quasi-experiment in which individuals or teams (the 

experimental units) conduct one or more software engineering tasks for the sake of 

comparing different populations, processes, methods, techniques, languages or tools 

(the treatments).  

 

We do not distinguish between randomised experiments and quasi-experiments in this 

survey, because both experimental designs are relevant to empirical software engineering 

experimentation. Random assignment of experimental units to treatments may not always 

be feasible, e.g., for logistic reasons. For example, one of the surveyed experiments used 

units formed from existing training groups in a company – random assignment would, in 

this case, have disturbed the training process.  

We exclude several types of study that share certain characteristics with controlled 

experiments, because while these may be highly relevant for the field, they do not apply 

the deliberate intervention essential to controlled experiments. Thus, we exclude 

correlation studies, studies that are solely based on calculations on existing data (e.g., from 

data mining), and evaluations of simulated teams based on data for individuals. The last 

category falls outside our operational definition, because the units are constructed after the 

run of the experiment.  

                                                 
1 Some definitions are very explicit on the aspect of control, for example, Zimney [52] defines a 
psychological experiment as “objective observation of phenomena which are made to occur in a strictly 
controlled situation in which one or more factors are varied and the others are kept constant”, see discussion 
of this definition in [10]. 
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Studies that use projects or companies as treatment groups, in which data is collected at 

several levels (treatment defined, but no experimental unit defined) are also excluded 

because we consider these to be multiple case studies [47] (even though the authors might 

refer to them as experiments). Our survey focuses on articles that provide the main 

reporting of experiments. This excludes articles that at the outset would not provide 

sufficient data for our analyses (e.g., summaries of research programs). Moreover, usability 

experiments are not included since we regard those as part of another discipline (human 

computer interaction). 

3.2 Identification of articles that report controlled experiments 

In order to identify and extract controlled experiments, one researcher systematically read 

the titles and abstracts of 5453 scientific articles published in the selected journals and 

conference proceedings for the period 1993–2002. Excluded from the search were 

editorials, prefaces, article, summaries, interviews, news, reviews, correspondence, 

discussions, comments, reader’s letters and summaries of tutorials, workshops, panels and 

poster sessions.  

If it was unclear from the title or abstract whether a controlled experiment was 

described, the entire article was read by both the same researcher and another person in the 

project team. In the end, 103 articles were selected. Note that identifying the relevant 

articles is not straightforward, because the terminology in this area is confusing. For 

example, several authors claim that they describe experiments even though no treatment is 

applied in the study. 

3.3 Analysis of the articles 

The survey data is stored in a relational database (MS SQL Server 2000)2. Some data is 

specific to an article, some is specific to an experiment and some information concerns the 

combination of article and experiment. Moreover, an article might describe several 

experiments and an experiment might be described in several articles, typically with a 

different focus in each article. Consequently, we defined a data model with the entities 

article, experiment and article-experiment with a set of attributes relevant to our survey. In 

addition to the survey database, a catalogue of all the articles in searchable pdf-format was 

generated. (About 3/4 of the articles were provided in searchable pdf-format by the journal 

                                                 
2 MS SQL Server 2000 is a registered trademark of Microsoft Corp. 
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publishers; the remaining 1/4 were OCR-scanned.)3 The articles were analysed according 

to the six aspects listed in Table 2. Each aspect encompasses a set of attributes for data 

extraction.  

Six researchers analysed the articles, so that each aspect above was covered by at least 

two persons. After the initial analysis, the results were compared and possible conflicts 

resolved by reviewing the articles collectively a third time or handing over the article to a 

third person. The main analysis tool was SAS4. 

 
Table 2.  Aspects and their attributes for data extractions 

Aspect Attributes 

Extent Authors, Affiliation, Country, Year, Journal/Conference. 
 

Topic Treatment, Title, Keywords. 
 

Subjects Number of subjects categorised into (subcategories of) students and professionals, Subject 
selection mode, Subject background and Subject recruitment information (voluntary, part 
of course, paid, etc.). 
 

Task and 
Environment 

Location of experiment, Development tool, Work mode (individual or team), Duration, 
Application type (commercial or constructed), Application/Task size. 
 

Replication Replication indicator, Subjects, Topic, Extent. 
 

Internal validity 
 

Category of threat to internal validity, Explicitness. 

External 
validity 

Category of threat to external validity, Explicitness. 

4 Extent 
Controlled experiments, as defined in Section 3.1, are reported in 103 (1.9%) of the 5453 

articles scanned for this survey, see Table 3. The 103 articles report a total of 113 

controlled experiments. Twelve articles report more than one experiment and four 

experiments are reported in several articles.  

EMSE, ISESE and METRICS, which focus specifically on empirical software 

engineering, report a higher proportion of controlled experiments than the other journals 

and the ICSE conference. The mean proportion of controlled experiments across years 

varies between 0.6 and 3.5, but we see no marked trend over years. An overview of the 

trend for the individual journals/conferences is presented in the appendix.  
                                                 
3 The survey database and catalogue of articles may be provided upon request to the corresponding author 
and under the conditions of a signed agreement towards the use of the data. 
4 SAS is a registered trademark of SAS Institute Inc. 
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Table 3. Articles reporting controlled experiments 

  Articles reporting controlled experiments 
Journal/Conference Total no. of articles investigated N Row % 
EMSE 124    22 17.7 
ISESE 20 3 15.0 
METRICS 177 10 5.6 
JSS 886 24 2.7 
TSE 687 17 2.5 
ICSE 520 12 2.3 
IST 745 8 1.1 
SME 186 2 1.1 
IEEE SW 532 4 0.8 
TOSEM 125 1 0.8 
IEEE Comp 780 0 0 
SP&E 671 0 0 
All 5453      103 1.9 
 

The surveys summarised in Table 1 also report extent. Tichy et al. have the study type 

definition with the broadest scope and report that 14% of the articles published in the 

specific software engineering journals TSE and TOPLAS (Transactions on Programming 

Languages and Systems) describe empirical work. In Glass et al., the authors classify 3% 

of the articles as laboratory experiments using human subjects and <1% as field 

experiments. According to the survey by Zelkowitz and Wallace, experiments defined as 

controlled methods are reported in 2.9% of the articles. Our survey finds the lowest 

percentage of articles (1.9%) that report controlled experiments. This might be because our 

study type definition is narrower than those of the other studies or because our 

investigation spans more sources and years.  

We rank institutions and scholars according to the number of experiments published 

(not the quality), but relative to their fractional representation on the article(s) that reports 

the experiment. Glass and Chen [18] also ranked institutions and scholars but according to 

publication in systems and software engineering, and they used a more complex ranking 

scheme for scholars.  

In total, 207 scholars are involved in the experiments of our survey. Table 4 presents 

the top 20 ranked scholars. Due to the fractional distribution, the number of experiments in 

which a scholar has actually been involved, is typically higher than the scores in Table 4. 

For instance, the top ranked scholar, Giuseppe Visaggio, was involved in six experiments 

described in four papers authored by one to three scholars, resulting in a fractional score of 

4.2 experiments. Among the 20 top ranked scholars, three (Laitenberger, Roper, Wood) 

were involved in eight experiments, one was involved in seven, four in six, two in five, 

nine in four, and one was involved in three experiments. 



  4  Extent 

 85 

There are 109 institutions from 19 countries involved in the experiments of our survey. 

The scores for institutions are accumulated from the scores of affiliated authors. Table 5 

presents the top 10 ranked institutions.  

The institution that has used most professionals as subjects throughout the surveyed 

time period is Fraunhofer Institute, Kaiserslautern. In total, they used 100 professionals in 

six experiments, ranging from 11 to 20 in a single experiment. The institution that 

conducted the experiment involving the largest number (68) of professionals as subjects 

was Andersen Consulting (now Accenture), Norway. 
 

Table 4. Top 20 scholars conducting controlled experiments in software engineering 1993-2002 

Rank Experiments Scholar Affiliation 
1 4.2 Visaggio G Dipartimento di Informatica, University of Bari 

2 2.7 
Prechelt L abaXX Technology AG;  Fakultät für Informatik, Universität 

Karlsruhe 

3 2.6 
Laitenberger O Fraunhofer Institute for Experimental Software Engineering, 

Kaiserslautern 
3 2.6 Porter A A Department of Computer Science, University of Maryland 

5 2.4 
Wohlin C Dept. of SE and Comp. Sci., Blekinge Inst. of Technology;  

Dept. of Com. Systems, Lund University 
6 2.3 Roper M Department of Computer Science, University of Strathclyde 

6 2.3 
Wood M Department of Computer and Information Sciences, 

University of Strathclyde 

8 2.0 
Votta L G Software Production Research Department, AT&T Bell 

Laboratories/Lucent Technologies 

8 2.0 
Koskinen J Department of Computer Science and Information Systems, 

University of Jyväskylä 
10 1.8 Miller J Department of Computer Science, University of Strathclyde 

10 1.8 
Jørgensen M Department of Informatics, University of Oslo;  Simula 

Research Laboratory, Oslo 

10 1.8 
Sjøberg D  Department of Informatics, University of Oslo;  Simula 

Research Laboratory, Oslo 

13 1.3 
El Emam K Canadian National Research Council, Institute for Information 

Technology 
13 1.3 Regnell B Department of Communication Systems, Lund University 
13 1.3 Höst M Department of Communication Systems, Lund University 
16 

1.2 
Daly J W Agilent Technologies, Fraunhofer Institute for Experimental 

Software Engineering, Kaiserslautern 
16 1.2 Tichy W F Fakultät für Informatik, Universität Karlsruhe 

16 1.2 
Unger B sd&m GmbH and Co.;  Fakultät für Informatik, Universität 

Karlsruhe 
19 1.1 Basili V R Department of Computer Science, University of Maryland 
19 1.1 Lanubile F Dipartimento di Informatica, University of Bari 
… … … … 

Total 113       Total number of scholars   207 
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Table 5. Top 10 institutions conducting controlled experiments in software engineering 1993-2002 

Rank Experiments  Institution Country 
1 8.7 Department of Computer and Information Sciences, University of 

Strathclyde 
Scotland 

2 7.6 Fraunhofer Institute for Experimental Software Engineering, 
Kaiserslautern 

Germany 

3 6.3 Department of Communication Systems, Lund University Sweden 
4 6.2 Department of Computer Science, University of Maryland USA 
5 5.2 Dipartimento di Informatica, University of Bari Italy 
6 4.1 Fakultät für Informatik, Universität Karlsruhe Germany 
7 4.0 Department of Informatics, University of Oslo Norway 
8 2.3 Department of Computer and Information Science, The Ohio State 

University 
USA 

9 2.1 Software Production Research Dept., AT&T Bell Labs/Lucent 
Technologies 

USA 

10 2.0 Cleveland State University USA 
… … … … 
Total 113 Total number of institutions   109       Total number of countries 19 

 

5 Topics 
This section describes two classifications of the 103 analysed articles according to their 

main topic. The first classification illustrates the experiments’ discipline coverage relative 

to software engineering as a whole, while the second classification has a more technical 

focus on software engineering method and methodology. The analysis is with respect to 

article, rather than experiment, this is adequate since no two experiments on different 

topics are reported in the same article. Both classifications emphasise the treatment of an 

experiment, since treatment, being the intervention of interest (Section 3) indicates the de 

facto topic under investigation. 

5.1 Classification scheme: Glass et al. 

There are a number of classification schemes for computing science and software 

engineering, e.g., SWEBOK [1] and Glass et al. [20]. The classification scheme of Glass et 

al. is aimed at positioning software engineering research relative to a backdrop of overall 

computing disciplines, i.e., computer science, software engineering, and information 

systems, and their classification categories are meant to give uniformity across all three 

fields [19]. The scheme is, therefore, somewhat general. On the other hand, this scheme 

has actually been used in classifying work undertaken in software engineering, and can 

therefore be used for illustrating the relative topic coverage of controlled experiments in 

software engineering.  
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Fig. 1 shows the distribution to topic categories of controlled experiments in software 

engineering relative to software engineering research in general. Controlled experiments 

seem to cover at least the categories that are well represented by general SE research, but 

remember that the overall number of controlled experiments performed is low (Section 2). 

Recall that experiments on topics purely within human computer interaction are not 

included in this survey, as is the case for topics purely within information systems. Our 

focus on experiments with human subjects also excludes a range of software engineering 

topics.  

The two most prominent categories are Software life-cycle/engineering (49%) and 

Methods/Techniques (32%) due to respectively, the relatively large number of experiments 

on inspection techniques and object-oriented design techniques.  
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Fig. 1. Comparative distribution to topic of software engineering research and software engineering 

experiments using the scheme of Glass et al. Only nonvoid categories are shown. 
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5.2 Classification scheme: IEEE Keyword Taxonomy 

The IEEE Keyword Taxonomy [24] provides a more technical perspective than the scheme 

of Glass et al. [20]. This taxonomy is recommended for authors of IEEE articles, and is an 

extended version of the ACM Computing Classification [2].  

We use the IEEE keywords to denote topic categories. The classification according to 

the IEEE Keyword Taxonomy is given in Table 6. The two prominent technical areas are 

Code inspections and walkthroughs (35%) and Object-oriented design methods (8%). The 

numbers of experiments are limited for other areas. 

6 Subjects 
This section describes the kind of subjects that take part in the experiments, the kind of 

information that is reported about them, and how they are recruited.  

6.1 Number and Categories of Subjects in the Experiments  

In total, 5,88 subjects took part in the 113 experiments investigated in this survey. Eighty-
seven percent were students and nine percent were professionals. The reported subject 
types are divided into the categories given in Table 7.  

The number of participants per experiment ranges from four to 266, with a mean value 

of 48.6 (Table 8). Students participated in 91 (81%) of the experiments, either alone or 

together with professionals and/or scientists, and professionals took part in 27 experiments 

(24%). The use of professionals as subjects has been relatively stable over time. 

Undergraduates are used much more often than graduate students. For one experiment, no 

information about subject type was provided; for eight experiments, no details about type 

of students were given; and for five experiments with mixed types of subject, no 

information about the number in each category was provided.  

The issue of differences between students and professionals has been discussed in the 

literature [13, 12, 48, 36]. Interestingly, while seven articles describe experiments using 

both students and professionals, only three of them measure the difference in performance 

between the two groups. In the first experiment, categorised as Software psychology, three 

programming tasks were performed. For two of the tasks, there was no difference between 

the groups, whereas for the third task, the professionals were significantly better. In the 

second experiment, also in Software psychology, there was no difference. In the third 

experiment, categorised as Maintenance process, the professionals were significantly 

better.  
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The performance in an experiment may differ between subcategories of subjects, that 

is, there may be an interaction effect between treatment and subcategory [3]. However, 

none of the surveyed experiments distinguished between subcategories of professionals or 

students. 

The experiment with the highest number of professionals (68) was classified as Cost 

estimation in the IEEE-taxonomy (Table 6). Then there were five experiments with 29-35 

professionals, of which one also employed 20 students. These five were categorised in 

descending order (regarding number of subjects) as Modules and Interfaces, Code 

Inspections and walkthroughs, Maintenance process, Software Psychology (understanding 

code), and Patterns.  

The total number of participants was reported in all the articles, either explicitly or 

implicitly; in the latter case we could roughly calculate the number (for instance, from the 

information that 10 teams averaging four subjects participated). Subject mortality (drop-

outs) was reported in 24 experiments (2% mortality on average). Even in experiments with 

as many as 266 subjects (as well as many other experiments with a relatively high number 

of subjects), no mortality was reported. One article states that “Non-random drop-out of 

subjects has been avoided by the experimental design, i.e. assignment of groups only on 

the second day of the experiment, i.e. directly before the treatment, and not before the pre-  

test already on the first day of the experiment.” However, most articles say nothing about 

how mortality was managed.  

There are good reasons for conducting experiments with students as subjects, for 

example, for testing experimental design and initial hypotheses, or for educational 

purposes [42]. Depending on the actual experiment, students may also be representative of 

junior/inexperienced professionals. However, the low proportion of professionals used in 

software engineering experiments reduces experimental realism, which in turn may inhibit 

the understanding of industrial software processes and consequently technology transfer 

from the research community to industry. Hence, to break the trend of few professionals as 

subjects, new strategies are needed to overcome these challenges, see e.g., discussions in 

[39, 40]. 
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Table 6. Classification of articles according to IEEE taxonomy 

 Articles 
IEEE Taxonomy N (group)         N % (group)              % 

General 3 2.9 
Software psychology 3 2.9 

Requirements/Specifications 4 3.9  
Languages 1 1.0 
Methodologies 2 1.9 
Validation 1 1.0 

Design Tools and Techniques 1 1.0 
Modules and interfaces 1 1.0 

Coding Tools and Techniques 2 1.9 
Object-oriented programming 1 1.0 
Structured programming 1 1.0 

Software/Program Verification 3 2.9  
Formal methods 3 2.9 

Testing and Debugging 40       35.4 
Code inspections and walkthroughs 37 35.9 
Debugging aids 1 1.0 
Testing strategies 1 1.0 
Testing tools 1 1.0 

Programming Environments/Construction Tools 2 1.9  
Graphical environments 2 1.9 

Distribution, Maintenance, and Enhancement 3 2.9 
Documentation 1 1.0 
Maintenance process 2 1.9 

Metrics/Measurement 1 1.0 
Complexity measures 1 1.0 

Management 8 7.1 
Cost estimation 1 1.0 
Productivity 1 1.0 
Programming teams 1 1.0 
Project control & modeling 1 1.0 
Risk management 1 1.0 
Time estimation 3 2.9 

Design 15 13.3 
Design notations and documentation 2 1.9 
Representation 2 1.9 
Methodologies 3 2.9 
Object-oriented design methods 8 7.8 

Software Architectures 7 6.2  
Domain-specific architectures 3 2.9 
Languages 2 1.9 
Patterns 2 1.9 

Reusable Software 4 3.9  
Reuse models 4 3.9 

Software and System Safety 1 1.0  
Software and System Safety 1 1.0 

Software Construction 4 3.9  
Error processing 1 1.0 
Programming paradigms 3 2.9 

Software Engineering Process 5 4.9 
Software process models 5 4.9 

Total 103 100 
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Table 7.  Subject categories 

Subject Category Reported Subject Types N % 
Undergraduates Undergraduates, Bachelors, Third and fourth-year students,  

Last-year students, Honors and Majors. 
2969 54.1 

Graduates Graduate students, Students following graduate courses or Master’s 
programs,  MSc and PhD students. 

594 10.8 

Students, type 
unknown 

Students in computer science, Students. 1203 21.9 

Professionals Developers, Practitioners, Software engineers, Analysts,  
Domain experts, Business managers,    Facilitators, Professionals. 

517 9.4 

Scientists 
 

Professors, Post-doctorates, Staff members of educational institutions. 74 1.3 

Unknown  131 2.3 
Total  5488 100 

 

 
Table 8.  Participants in experiments 

 Experiments Subjects 
Category of subjects N % Mean Std Min Median Max Sum
Students only Undergraduates only 43 38.1 63.2 61.1 10 43 266 2719
 Graduates only 15 13.3 25.1 11.1 9 24 48 377

 
Undergraduates and 
graduates 16 14.2 60.6 57.8 6 42 208 970

 Students, type unknown 8 7.1 65.5 70.3 13 43 231 524
  82 72.6 56.0 56.8 6 36 266 4590
Professionals only  21 18.6 20.0 14.0 4 20 68 420
Mixed group of  
subjects   9 8.0 49.3 37.2 12 42 120 444
Unknown  1 0.9 34.0 - 34 34 34 34
Total  113 100 48.6 51.6 4 30 266 5488
Number and size of experiments in terms of subjects. The mixed group of subjects include students with 
scientists and/or professionals. 

 

6.2 Information about subjects  

In order to generalise from an experiment with a given group of subjects (sample 

population), one needs information about various characteristics and their variation both in 

the sample and in the group to which the results will be generalised (target population) [7]. 

For professionals, depending on what we wish to study, it would be relevant to know the 

variations regarding competence, productivity, education, experience (including domains), 

age, culture, etc. However, there is no generally accepted set of background variables for 

guiding data collection in a given type of study, simply because the software engineering 

community does not know which variables are the important ones. We have chosen to 
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focus on the variables that are reported in the analysed articles, that is, gender, age, 

education, experience and task-related training.  

The analysed articles vary to a large extent on how they report such information. For 

14 of the 113 experiments, no information about the subjects was reported. Moreover, the 

level of detail reported varies substantially. An example of detailed information on 

programming experience is: “On average, subjects’ previous programming experience was 

7.5 years, using 4.6 different programming languages with a largest program of 3510 

LOC. Before the course, 69% of the subjects had some previous experience with object-

oriented programming, 58% with programming GUIs.” An example of a high level 

description without figures is: “Some of the students had industrial programming 

experience.”  

For the 91 experiments with students, the following information was reported: gender 

(seven experiments), age (six experiments), grades (six experiments), programming 

experience (general description: 17 experiments, number of years/languages: 11 

experiments), work experience in industry (general description: nine experiments, number 

of years: nine experiments), task-related experience (64 experiments) and task-related 

training (27 experiments). The training was either tailored specifically for the experiment 

or was part of a course, or the experiment could be conducted as part of a training session.  

For the 27 experiments with professionals, more details on the subjects’ background 

were given. Categories of professional such as reviewers, analysts, programmers and 

managers were given for seven experiments. Subjects’ degrees were described for three 

experiments. Gender and age were given for, respectively, two and three experiments. 

Language and nationality were given for oneexperiment (subjects from two countries 

participated). A general description of programming experience was given for two 

experiments. Programming experience in years/languages was given for seven 

experiments. Self-assessment of programming experience was reported for two 

experiments. Work experience in years was given for five experiments. A general 

description of task-related experience was reported in one experiment. Task-related 

experience was measured in years for 13 experiments. Task-related training was reported 

for 12 experiments.  

The relatively low and arbitrary reporting on context variables is a hindrance for meta-

studies, which are needed to identify which context factors influence which kinds of 

performance. The impact of the various context factors will, of course, depend on the 

treatments and actual tasks to be performed in the experiments. Future work should 
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investigate the extent to which the variation in performance of subjects can be explained by 

their background, such as education and work experience, and to increase our knowledge 

of the impact of using students versus professionals as subjects in software engineering 

experiments.  

6.3 Recruitment of subjects 

Recruiting subjects to experiments is not a trivial task; either from a methodological or a 

practical point of view. For example, volunteers may bias the results because they are often 

more motivated, skilled, etc. than subjects who take part because it is mandatory in some 

way [8]. Information about whether participation was mandatory is reported for 41 (36%) 

of the experiments. For 12 of them (all student experiments), participation was mandatory. 

Information about subject compensation for taking part in experiments is reported for 39 

(35%) of the experiments. The grades of students were affected by the participation in 10 

cases, and they received extra credits in nine cases (Table 9). In three cases, students were 

paid to take part, and in one case, students were sponsored for a trip to an exhibition. No 

compensation to professionals is reported. Typically, the experiments with professionals 

were organised as part of normal projects or training programmes, and payment was thus 

implicitly provided by the employer. Hence, it seems that none of the researchers or 

research teams paid companies or professionals for taking part in experiments. 

If one applies statistical hypothesis testing, a requirement is to have a well-defined 

population from which the sample is drawn: “If you cannot define the population from 

 
Table 9.  Subject reward data 

 Experiment Participant 

Reward N % N % 

Grade 10 8.8 732 13.3 

Extra credits 9 8.0 660 12.0 

Payment 3 2.7 121 2.2 

Other rewards 1 0.9 24 0.4 

No reward 16 14.4 458 8.3 

Unknown 74 65.5 3493 64.6 

Total 113 100 5488 100 
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which your subjects/objects are drawn, it is not possible to draw any inference from the 

results of your experiment” [30].5 Nevertheless, none of the experiments in this survey that 

apply statistical hypothesis testing actually reported sampling from a well-defined target 

population.  

For only a couple of experiments, random sampling of subjects was claimed. How the 

random sampling was carried out, was not described. The dominant approach was 

convenience sampling: “Subjects are selected because of their convenient accessibility to 

the researcher. These subjects are chosen simply because they are the easiest to obtain for 

the study. This technique is easy, fast and usually the least expensive and troublesome. ... 

The criticism of this technique is that bias is introduced into the sample.” [34]. This does 

not mean that convenience sampling is generally inappropriate. For example, Ferber [17] 

refers to the exploratory, the illustrative, and the clinical situations in which convenience 

sampling may be appropriate. In software engineering, the most convenient way of 

recruiting subjects is to use the students that are taught by the researcher. (Note that 

convenience sampling is also common in other disciplines such as clinical medicine [34] 

and social sciences [33].)  

To increase the potential for sampling subjects from a well-defined population and to 

alleviate the problem of having few professionals as subjects (Section 6.1), the 

experimental software engineering community should apply new incentives, for example, 

paying companies directly for the hours spent on an experiment [3] or offer the companies 

tailored, internal courses where the course exercises can be used in experiments [27]. 

Payment would require that researchers include expenses for this kind of experiment in 

their applications to funding bodies, see further discussion in [39]. 

7 Tasks 
The tasks that subjects are asked to carry out are an important characteristic of a software 

engineering experiment. Tasks may include building a software application from scratch or 

performing various operations on an existing application. This section reports on the 

surveyed experiments according to a high-level categorisation of their tasks and the 

duration of those tasks. Moreover, we describe the total magnitude of the experiments by 

                                                 
5 This claim should, as we understand it, not be interpreted outside the context of statistical hypothesis 
testing. Obviously, even a study without a well-defined population (but with a well-defined sample) may 
enable the researcher to infer about similar projects, e.g., based on argumentation by analogy or by theory, 
see further discussion in [26]. 
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reporting the product of the number of subjects and the duration of the tasks. Finally, we 

describe the kinds and size of application and materials used in the experiments.  

7.1 Task categorisation 

We categorise tasks given to subjects according to the main tasks in a software process. 

We have defined four general categories, Plan, Create, Modify and Analyse that reflect 

major tasks on software artefacts. Table 10 shows subcategories within these major 

categories that have been identified in the surveyed experiments.  

Task categorisation is somewhat different from topic categorisation. Tasks of a certain 

category can be used to test hypotheses within various topics. For example, a maintenance 

task can be used to test a certain design, or an experiment assigned to the Patterns category 

in the IEEE taxonomy might have design, coding or maintenance tasks.  

Table 10 shows the number of experiments deploying each kind of task. Note that tasks 

of several categories might be involved in a single experiment. A task is represented by its 

fraction of all tasks in an experiment, for example, an experiment with one Design task and 

one Coding task gives a contribution of 0.5 to each of the two task categories. (Note also 

that we do not distinguish between tasks and sub-tasks because there is no commonly 

agreed definition of the unit of task. Hence, in the relatively few cases in which the 

experimenters have divided their tasks into subtasks, we have considered them as one task 

as long as they fall within the same category.) Due to experiment design, a task may be 

performed several times by the same subjects but with different treatments. In such cases, 

however, the task is only counted once.  

The proportion of planning, creation, modification and analysis tasks is, respectively, 

10%, 20%, 16% and 54%. Inspection tasks occur in 37 (33%) of the experiments, and are 

by far the most prominent. This is in accordance with the topic classification of articles 

reported in Section 5. Thirty-six of these experiments involve individual inspections, 29 

involve team inspections. Twenty-eight experiments involve both individual and team 

inspections. Inspection tasks are typically conducted using pen and paper, although some 

use support tools.  

Document comprehension tasks form the basis of various software engineering tasks, 

and typically involve answering questions about system structure and functionality. 

Twenty-three experiments involve document comprehension tasks, 12 of these pertain to 
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code documents, nine are design comprehension, one concerns a requirements document 

and one concerns process components.  

Maintenance tasks pertain to all document types. The surveyed experiments, however, 

only deal with design and code maintenance tasks; 19 experiments give code maintenance 

tasks, and three give change tasks on design documents (including impact analyses). None 

give both. In 10 of the code maintenance tasks, new functionality was added. One of the 

code maintenance tasks is a pen-and-paper maintenance task performed jointly with a 

comprehension task.  

 
Table 10. Task categorization, duration, and material size 

   Duration Materials§

 Experiments Subject level Slot level  
Task category N* % Occ.† N* Occ.† median (h)‡ N* Occ.† median (h)‡ Occ.†

Plan 11.0 9.7 11  
Project planning 4.5 4.0 5 1.5 2 0.5 3
Requirements analysis 1.0 0.9 1 1.0 1 0.7 
Estimation 5.5 4.9 6 0.5 1 0.5 3
Create 22.8 20.2 25  
Design 7.4 6.6 11 2.8 4 0.91 3.8 5 1.0 6
Coding 15.4 13.6 19 4.8 6 3.53 1.3 2 0.9 1
Modify 18.6 16.5 22  
Maintenance - (18.6) (16.5) (22)  (15)
Change design 1.3 1.2 3 0.5 1 0.50 0.5 1 1.0 3
Change code 17.3 15.3 19 12.3 13 0.92 1.5 2 1.7 12
Analyse 60.7  53.7 98  
Inspection - (35.1) (31.1) (37)  (28)
Individual  21.4 19.0 36 6.3 8 2.29 8.0 14 2.0 27
Team 13.7 12.1 29 1.3 3 1.00 6.0 12 2.0 24
Testing 6.6 5.9 10 4.0 6 0.99 1.0 1 0.3 7
Document compreh. - (19.0) (16.8) (23)  (17)
Process doc. 1.0 0.9 1  
Req. Doc. 1.0 0.9 1 1.0 1 1.01  1
Design doc. 6.8 6.0 9 3.5 4 0.37 1.0 2 1.5 7
Code doc. 10.2 9.0 12 4.3 5 0.06 1.8 3 2.1 9
All experiments 113 100 - 41 - 1.03* 28 - 2.0* -

* The fraction of experiments. 
† Occurrences of experiments. One experiment might be represented in several task categories. 
‡ Median duration of tasks by category. The last row shows the median total duration for all the tasks of an 
experiment. 
§ The occurrences of experiments in each task category that report size of materials. The total number of 
experiments that report size of materials is 67. 

 

Coding and Design are tasks in which new artefacts are produced. Modifying existing 

code or design documents is classified as maintenance.  

Most of the Testing tasks involve the generation of test harnesses and test cases. 

Testing here also includes debugging using debugging tools, but excludes inspections.  
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Three experiments investigate the effects of preplanning estimates on detailed 

estimates (anchoring). In one of these, the Estimation task is part of a Project planning 

exercise. One experiment involves estimation in a larger project, although project planning 

as such is not a task in the experiment in question. Two experiments issue estimation tasks 

in order to compare various estimation techniques.  

Four of the five experiments with Project planning tasks are all-student experiments in 

which the subjects were asked to role-play in project planning or to simulate projects. The 

fifth one involves both professionals and students assessing how 10 different factors affect 

the lead-time of software development projects.  

In the experiment involving Requirements analysis, the subjects were asked to 

negotiate a software requirements meeting with a customer.  

Forty experiments deploy tasks in several categories. Among these experiments, five 

involve three tasks, two involve four tasks: one has comprehension, maintenance and 

inspection (individual and team) tasks, and one has design, coding, team inspection and 

testing.  

7.2 Task duration 

An important task characteristic is duration. Accurate duration data per subject (typically 

in dependent variables) is reported in 41 (36%) of the experiments and at slot level in 28 

(25 %) of the experiments. (Time slots are coarse-grained indications, typically upper 

bounds, of how much time the subjects took to perform a task. For example, we chose a 

slot of two hours from the information that “We gave each subject up to three hours to 

review each document (i.e., one document in the morning, and one in the afternoon). Only 

one subject took more than two hours”.) Duration data that is not considered sufficient for 

analysis is contained in phrases like “Six days, no time limit”, “From 1 to 11 days 

depending on the subjects’ skills”, and “Non-programming subjects had 30 min. to finish 

their task. Programming subjects had one week”.  

Fig. 2 shows the frequency by time interval of the 41 experiments with detailed 

subject-level time information. It appears that about 2/3 of the experiments last less than 

two hours.  

The two leftmost ‘Subject level’ columns of Table 10 show, for each task category 

respectively, the fraction of and the number of experiments with subject-level duration data 

that include tasks of this category. The third ‘Subject level’ column shows the median  
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Fig. 2.  Distribution of experiments with subject-level duration data to time intervals. 

 

duration in hours for these tasks. For example, three experiments have duration data for 

design tasks. The fraction of the time spent on design activities in these three experiments, 

relative to the total time for all experiments (with subject-level time data), is 2.3. The 

median time used on design tasks in these experiments is 0.85 hours. The median duration 

of all experiments with subject-level data is 1.0 hours and 2.0 hours for the experiments 

with slot-level data.  

Fig. 3 shows the actual task duration for the subject-level occurrences of Table 10. In 

the interests of saving space, four data points at, respectively, 25 (Change code), 18.5 

(Coding), 18.5 (Design) and 55 hours (Coding) are omitted from the figure. It appears that 

there is large variance in duration, and that it seems independent of the type of task being 

performed.  

Little is mentioned in the articles about control over context variables in experiments 

with multiple sessions, idle periods, or that span several days or weeks. Although the issue 

in principle concerns all experiments, it would be particularly interesting to know how 

experimenters have ensured control in experiments that involve long tasks. 

The data described above reflects the duration of explicitly measured software 

engineering-specific tasks as described in Section 7.1. Often however, subjects perform 

additional tasks (training, preparation, post-mortem questionnaires, etc.) whose durations 

are not captured in dependent variables or are otherwise measured explicitly. If one wants 

to reflect the total time spent by subjects (perhaps in the interest of logistics), information 

at a different level must be gathered. Although most experiments (close to 80%) provide 
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some sort of information about total experiment duration, the data is, in general, measured 

and reported arbitrarily, and is consequently difficult to summarise here.  

The median duration of the tasks of 1.0/2.0 hours is, of course, a very small fraction of 

the time of a typical industrial development project. The extent to which short tasks are a 

threat to external validity, is difficult to judge in general. The actual tasks in the 

experiments may be representative of typical industrial (sub)tasks. However, the lack of 

studies that describe “typical” tasks within certain categories and contexts makes such a 

judgement difficult. More studies are needed to investigate the relevance of the tasks being 

conducted in software engineering experiments. 

 

 
Fig. 3.  Task categories and subject-level duration data. 

7.3 Magnitude of experiments – combination of number of subjects and 

duration 

Many aspects of the complexity of software engineering only manifest themselves in 

controlled experiments if the experiments involve a sufficiently large number of subjects 

and tasks, for example, differences among subgroups of subjects [3]. Hence, we can 

characterise the experiments in terms of the scale of the combination of subjects and tasks 
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(here, measured in terms of duration of the task). The magnitude of an experiment can be 

described in terms of the total number of person-hours or person-days; that is, the number 

of subjects multiplied with the length of the tasks.  

In this survey, the experiment with the largest number of professionals lasts less than 

one hour. However, in general, there seems to be no significant relationship between 

duration and the number of subjects.  

We here categorise the 69 experiments with duration data (41 with subject-level data 

and 28 slot-level data), according to subject numbers and task duration into, respectively, S 

(small), M (medium), and L (large), such that each category contains roughly 1/3 of the 

experiments. In practice, this gives the following categories. For subject numbers, S: ≤ 23, 

M: 23–47, and L: > 47. For duration, S: ≤ 0.96 hours, M: 0.96–2.9, and L: > 2.9 hours. 

(The subject groups cannot be made completely even because there are six experiments 

with 24 subjects.) The person-hours categorisation is obtained by crossing these two 

categorisations in configurations (subject category, duration category) as follows, S 

(small): (S,S), (S,M), (M,S); M (medium): (S,L), (M,M), (L,S); L (large): (M,L), (L,L), 

(L,M). Table 11 shows that experiments with professionals use a smaller number of 

subjects than do experiments with students. Both experiments with students and 

experiments with professionals have a uniform distribution for the three levels of duration. 

Regarding magnitude, most student experiments are in the middle category and a fair 

number are large, while most experiments with professionals are small and only one 

experiment is large.  

 

 
Table 11.  Distribution of experiments to subject number, duration, and subject-duration categories 

Measure Subjects (N) Duration (h) Person-Hours 

Level S M L S M L S M L 

Students (only) 15 18 21 18 19 17 14 24 16 

Professionals (only) 5 3 0 3 2 3 4 3 1 

Combination/Other 1 3 3 2 2 3 2 2 3 

Total 21 24 24 23 23 23 20 29 20 

Sum 69 69 69 
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7.4 Application and materials 

Applications may be of various types, such as commercial, open source, the result of a 

student project, or custom-built for the purpose of the experiment. Table 12 shows that 

75% of the surveyed experiments involved applications that were either constructed for the 

purpose of the experiment or were parts of student projects. Commercial applications were 

used in 16 experiments, of which 10 included inspection tasks (eight of these had team 

inspections in addition to individual inspections), two included design tasks, one had 

coding and maintenance (change code), one had coding only, one had (design) 

comprehension and maintenance (change design), and one had estimation. For 12 

experiments, the reporting is  

 
Table 12. Distribution of experiments to application type 

Application type N % 

Constructed 80 70.8 

Commercial 16 14.2 

Student project 5 4.4 

Open source 0 0.0 

Unclear 12 10.6 

Total 113 100 

 

unclear in this respect, but 11 of these appear to have used custom-built applications. There 

are no open source applications registered in this survey. The small fraction of commercial 

or industrial applications used in current software engineering experiments puts in question 

the possibility of generalizing the experimental results to an industrial setting.  

The size of the materials presented to subjects gives some indications of the 

comprehensiveness of the experiments. Size in the form of pages, lines of code (LOC) or 

other quantities is reported in 67 (59%) of the experiments. The diversity of the surveyed 

experiments and how they report information about materials makes it difficult to give a 

systematic overview of the size of the experiment materials. Nevertheless, below we 

describe in brief the size of materials per task category, cf. the rightmost column of Table 

10.  

Three experiments with Project planning tasks report materials size: a one-page case 

scenario, a scenario in terms of 500 adjusted function points, and a four-page program 

representation, respectively. The three Estimation experiments are based on a 1,000 
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person-hour project, a four-page program representation, and on the creation of 10 

programs (no sizes on these), respectively.  

Five of the six experiments with size indications for Design tasks are on requirements 

documents (1-2 pages, six modules). The sixth experiment gives a one-page task 

description. Materials size is reported in one instance for a coding task (specification given 

in three tables).  

Two experiments with Change design tasks have a 30 page design document as 

material (one experiment is an internal replication of the other; the materials of the former 

are improved, but their sizes are more or less the same), and one has a 1,500 LOC system 

as input. In the experiments with Change code tasks, the applications to be maintained 

range from 54 to 2,700 LOC. The largest application also involves 100 pages of 

documentation. Three experiments report the number of classes (6-10).  

Twenty-eight experiments give materials size for Inspection tasks (individual or team). 

Fourteen give LOC (ranging from 135-3,955 LOC). In one instance, the materials size is 

given as 300 LOC, but the size of the entire system is 65,000 LOC. Page counts (ranging 

from 16-47 pages) are given in 14 instances (all different from the 14 with LOC). Materials 

size for Testing tasks (25-2,000 LOC) is reported in seven experiments (one also reports 10 

classes). Reported materials sizes for Document comprehension tasks are varied (five 

diagrams, seven screens, 16 screenshots, etc.), but five experiments give LOC (92–2,700 

LOC) for Code comprehension tasks, and five experiments give page counts (2–30 pages) 

for Design comprehension tasks.  

In addition, some experiments (with tasks in the Create category) report the size of 

produced task solutions. Five experiments with Coding give LOC (in the range 86-2,000 

LOC) for produced code, and in one experiment the size for a Design task is provided 

implicitly, in that the solution design document written by the experimenters is two pages. 

Also, the amount of added code is given for two maintenance tasks: 50–150 LOC and 35–

79 LOC, respectively.  

8 Environments 
The strength of controlled experiments lies in that they may be used to isolate causal 

relationships. However, controlled experiments in the field of software engineering are 

often conducted in artificially designed environments that make it difficult to generalise the 

results to industrial contexts. In short, “Internal and external validity can be negatively 
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related” [37]. This section describes the surveyed experiments according to their location 

and tools used.  

8.1 Location 

There is a trade-off between realism and control regarding the location of an experiment. 

Running an experiment in the usual office environment of subjects that are professionals 

allows a certain amount of realism, yet increases the threat to internal validity due to 

breaks, phone calls and other interruptions. Controlling and monitoring the experiment is 

easier in a laboratory set up, but in such a setting realism suffers.  

For the 27 experiments with professionals or with professionals and students, 17 report 

no explicit information about the experimental setting. Only one experiment is reported to 

have been run in a usual office environment. The pilot of another experiment was run in an 

office environment, but the main experiment was run in a classroom setting in order to 

increase the internal validity. Three other experiments were run in a classroom setting, two 

of which were run as part of a training course. Seven experiments are explicitly reported to 

have been run in a laboratory environment.  

Of the 85 experiments with students or with students and scientists, 56 report no 

explicit information about the experimental setting. For, respectively, 13 and seven of 

those experiments, it was explicitly stated they were conducted in a laboratory and 

classroom. For another group of nine experiments, some sort of university setting was 

stated, for example, “academic settings”, “conducted under exam conditions” and 

“supervised setting”. However, one may assume that all the experiments with students 

were carried out in a laboratory or classroom. Moreover, we believe that the distinction 

between a classroom and laboratory setting for students may be blurred and may depend on 

cultural differences, apart from the fact that a laboratory usually would include the use of 

PCs or workstations (2/3 of the experiments that report the use of a laboratory also report 

the use of PC or workstation, see the next section).  

Approximately half of all the experiments with students report the name of the actual 

university/college. For the 27 experiments that include professionals, the name of the 

company is reported in 12 cases. For four experiments, the company is not named, but the 

type of company is specified. Note that, depending on the actual experiment, certain 

companies have a policy such that they must remain anonymous in the reporting of the 
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experiment. In five cases, the professionals are described as coming from “several” 

companies or organisations. The exact number of companies is not given.6 

8.2 Tools 

It is a challenge to configure the experimental environment with an infrastructure with 

supporting tools that resembles an industrial development environment. Among the 

surveyed experiments, 55% report on tools to support the tasks of the experiments (Table 

13). This includes both explicit descriptions, e.g., “Sun-4, GNU C compiler ”, and implicit, 

but clear indications, e.g., “Developed programs were run against a set of test data”.  
 

Table 13.  Distribution of experiments to specific tool 

Tool N % 

PC or workstation  (only) 32 28.3 

Pen and paper  (only) 25 22.1 

Combination 5 4.4 

Unknown 51 45.1 

Total 113 100 

 

Table 13 shows that the use of computer tools is slightly higher than the use of pen and 

paper. However, it is likely that a larger proportion of those experiments that do not report 

on tools are actually pen and paper experiments, because the added effort and 

administrative overhead of using computer tools might inspire researchers to report the use 

of tools more than the use of pen and paper.  

The task types that give the largest and smallest contribution to the PC or workstation 

category are, respectively, Coding and Inspection. Other than that, there is little correlation 

between task type and tool for the experiments that actually report on this issue. Moreover, 

there was no difference between experiments with professionals and experiments with 

students regarding the use of tools.  

Three of the five experiments with Combination in Table 13 explicitly test the effects 

of computerised tool use versus pen and paper.  
                                                 
6 Before we decided to rely exclusively on the information reported in the articles, we approached the 
corresponding authors of these five experiments to acquire more information about the extent of companies 
involved in the experiments. It turned out that in two experiments, the subjects attended a course aimed at 
people from industry (the number of companies of the participants was unknown). One author replied that it 
was a mistake in the article; all participants actually came from the same company. One replied that he did 
not know, but our impression was that it was only two companies. The last one did not respond to our 
request. 
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The relatively meagre proportion of experiments that report on the use of tools to 

support assigned tasks may be due to an unawareness of, or a lack of interest in, the 

relevance of this issue. For example, most of the experiments in the Unknown category are 

inspection experiments, for which it may be normal to use pen and paper. However, for 

most design, coding, testing and maintenance tasks, computer tools would have been used 

in an industrial setting, although the line is not clear-cut. For example, designers may 

sketch preliminary versions by hand, but the final design would be made using a tool.  

In general, increasing the realism of software engineering experiments entails an 

increased use of industrial supporting tools. The community should thus recognise the 

effort and resources needed to set up PC or workstation environments with the right 

licences, installations, access rights, etc., and to familiarise the subjects with the tools. 

Moreover, the tools must be checked to demonstrate acceptable performance and stability 

when many subjects are working simultaneously.  

In the experiments of this survey, there is almost no discussion of the relationships 

among the three dimensions subject, task and environment. For the community to progress, 

this issue needs to be investigated. For example, a professional development tool will 

probably become more useful the larger and more complex the tasks and application 

systems become, assuming that the subjects are sufficiently proficient with the tool. 

9 Replication 
In this survey, 20 of the experiments are described by the authors themselves as 

replications. These experiments constitute 14 series of replications. Table 14 summarises 

the series including both the original experiments and the replications, and reports 

differences between them. Most replications (35%) are conducted in the area of Inspection 

(seven replications in series 1, 2 and 3) and Maintenance (five replications in series 4, 5 

and 6). Among the 20 replications, five can be considered as close replications in the 

terminology of Lindsay and Ehrenberg [31], i.e., one attempts to retain, as much as is 

possible, most of the known conditions of the original experiment. The other replications 

are considered to be differentiated replications, i.e., they involve variations in essential 

aspects of the experimental conditions. One prominent variation involves conducting the 

experiment with other kinds of subject; three replications use professionals instead of 

students, three use undergraduates instead of graduates, and one uses students instead of 
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professionals. Other variations include conducting the experiment on different application 

systems (four), and with different tasks (three).  

 
Table 14.  Replicated experiments 

Seri
e
s Topic 

Exp. Stud. Prof. Con. Rej. Authors Repl. Type Other differences 

1 Perspective-Based Reading  0 X  - - - -  
 (requirements inspection) 1  X X  same differentiated  
  2 X   X others differentiated undergrads, (originally graduates)
  3 X   X others differentiated undergrads, more, time extended 
  4 X   X others differentiated undergraduate 
2 Perspective-Based Reading 0  X - - -   
  1 X   X others differentiated  
3 Perspective-Based reading 0  X - - -   
  1  X X  same differentiated Diff. applications  
  2  X X  same close  
4 Maintenance Process 0 X  - - -   
  1 X  X  same differentiated More tasks than in Exp. 0 
  2  X X  same differentiated Same as Exp. 1 
5 Maintainability of OO systems 0 X  - - -   
 (inheritance depth)  1 X  X  same close  
6 Maintainability of OO systems 0 X  - - -   

 (inheritance depth)  1 X   X others differentiated diff. appl. and tasks, added 
hypotheses 

  2  X   X others differentiated Diff. appl. 
7 Quality guidelines  0 X  -  -   
 (maintainability of OO systems) 1 X  X  same differentiated more subjects, diff. Tasks 
8 DB referential integrity metrics 0* X  - - -   
  1  X X X same differentiated  
9 Layering and encapsulation 0 X  - - -   
  1 X  X  same close  

10 Comprehension of OO models 0 X  - - -   
  1 X  X  same differentiated Diff. applications 

11 Visual depiction of decision stmt. 0*  X - - -   
  1   X X  others close  

12 Defect detection 0* X  - - -   
  1 X  X  others close  

13 Use Case guidelines 0* X  - - -   
  1 X  X X others differentiated Diff. eval. criteria 

14 Design Patterns  0 X    -   
  1 X  X  same differentiated diff. prog. lang. and rating scale. 

Column Exp. presents the number in the replication series. The original experiments are denoted by ‘0’. 
Columns Stud. and Prof. indicate whether the subjects were students or professionals. Columns Con. and Rej. 
Indicate whether the replications confirm or reject the findings of the original experiment. ‘*’ indicate that 
the original experiment was published in a journal or conference proceedings not included in the survey. 
 
 

In all the five close replications, the results of the original experiment were confirmed 

(three were conducted by the same authors, two by others). Among the 15 differentiated 

replications, seven were conducted by other authors. Six of these reported results differing 

from the original experiment, and one partly confirmed the results of the original 

experiment. Among the differentiated replications conducted by the original authors, we 

found the opposite pattern; seven replications confirmed the results of the original 

experiment, and only one reported partly different results.  

“Methodological authorities generally regard replication, or what is also referred to as 

‘repeating a study’, to be a crucial aspect of the scientific method” [31]. However, only 
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18% of the surveyed experiments were replications. A discussion of the form and extent 

ofreplication that would be benefit software engineering is beyond the scope of this paper, 

but should be an issue of discussion for the research community. 

10 Threats to internal and external validity 
Two important aspects of the quality of an experiment are their internal and external 

validity. This section discusses how, and the extent to which, threats to internal and 

external validity are reported for the surveyed experiments. Descriptions of such threats are 

made in various ways and under different headings. For 54 experiments (48% of all 

experiments), there is a special section entitled “Threats to (internal/external) validity” or 

other combinations that include the terms “threats” or “validity”. Nine other experiments 

(8%) have special sections on threats to validity but with other names (e.g., “Limitations to 

the results”). The reporting of threats to validity in yet another eight experiments were 

found in other sections. 

10.1 Internal validity 

Internal validity of an experiment is “the validity of inferences about whether observed co-

variation between A (the presumed treatment) and B (the presumed outcome) reflects a 

causal relationship from A to B as those variables were manipulated or measured” [37]. 

Changes in B may have causes other than, or alternative to, the manipulation of A. Such an 

alternative cause for the outcome is called a confound or confounding factor. For further 

discussions (including formal definitions) of concepts of confounding, see [21].  

Threats to internal validity are addressed explicitly for 71 experiments (63%). (We did 

not include threats that are addressed implicitly as part of the experimental design.) We 

classified the reporting of threats to internal validity according to the scheme of Shadish et 

al. [37] shown in Table 15. That table also shows examples of threats in the various 

categories reported for the surveyed experiments. A version of this scheme, with other 

examples from software engineering, is presented in [46].  

Table 16 shows the distribution of the experiments according to the scheme of Table 

15. Almost half of all experiments report on selection threats (46%) and/or instrumentation 

threats (40%). The distribution of number of threat categories reported is as follows: 22 

experiments report one threat, 11 experiments report two threats, 23 report three, 10 report 

four, four report five, and one experiment reports seven threats.  
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Table 16 also shows whether the authors consider the threats to be present but not 

handled by the authors, or reduced or eliminated due to actions taken by the authors or due 

to other circumstances. Only 18% of the threats (reported in 23% of the experiments) are 

not handled, but it may be the case that threats that are not reduced or eliminated are under-

reported.  

Classifying internal validity is not always straightforward. For example, “learning 

effects” are often classified as “maturation” in the experiments, while this should be 

“testing” according to the categories given in Shadish et al. [37]. Maturation threats refer 

to ”natural changes that would occur even in the absence of treatment, such as growing 

older, hungrier, wiser, stronger, or more experienced”, while testing threats refer to effects 

of practice and familiarity within the experiment that could be mistaken for treatment 

effects [37]. Moreover, threats that by this scheme pertain to statistical conclusion validity 

or construct validity were, for a few experiments, reported as internal validity threats. In 

part, this may be due to non-trivial subtleties in threat classification, illustrated by the fact 

that the line of development starting with Campbell et al. [9], via Cook et al. [11] to the 

present classification scheme in [37], shows considerable variation. For example, the 

notions of statistical conclusion validity and construct validity appeared for the first time in 

1979 [11].7 

                                                 
7 In addition, there are threats that scholars put in different main categories. For example, what Trochim [44] 
and Wohlin [46] refer to as “social threats” are categorised as threats to internal validity by them, but as 
threats to construct validity by Shadish et al. [37]. Four experiments address “social threats” in our survey, 
but since we follow the scheme of Shadish et al., such threats are not included in our survey. 
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Table 15. Threats to internal validity: reasons why inferences that the relationship between two 
variables is causal may be incorrect 

 
 Description given by Shadish et al. Examples from the survey 

1. Ambiguous Temporal Precedence: 
Lack of clarity about which variable 
occurred first may yield confusion 
about which variable is the cause and 
which is the effect.  

None 

2. Selection: Systematic differences 
over conditions in respondent 
characteristics that could also cause 
the observed effect.  

Random assignment and blocking, in combination with 
randomisation or alone, and within-subject design were 
often mentioned as reducing factors. 

3. 
History: Events occurring 
concurrently with treatment could 
cause the observed effect.  

Most cases concerned individuals or teams communicating 
during the experiments. Attempts to reduce this effect 
include: “The subjects were instructed not to discuss the 
experiment or otherwise do anything between the tests that 
could cause an unwanted effect on the results.” 

4. 

Maturation: Naturally occurring 
changes over time could be confused 
with a treatment effect. 

Most cases concerned boredom, fatigue, demotivation and 
loss of enthusiasm, for example: “The boredom effect might 
have affected the second run of the experiment, because 
subjects had to perform a second complete inspection using 
the same review technique”, “Demotivation may also play a 
part as subjects become bored with three weeks of testing”* 

5. Regression: When units are selected 
for their extreme scores, they will 
often have less extreme scores on 
other variables, an occurrence that 
can be confused with a treatment 
effect.  

“The absence of pretest scores to assign subjects to groups, 
the use of simple tasks, and the presence of multiple groups 
control for statistical regression” 

6. Attrition: Loss of respondents to 
treatment or to measurement can 
produce artifactual effects if that loss 
is systematically correlated with 
conditions.  

“A threat to the internal validity that was considered in the 
analysis is that the subjects did not have enough time to 
apply all the use cases”, “Of the twenty subjects who 
expressed an interest in the study only thirteen of them 
actually turned up to participate” 

7. Testing: Exposure to a test can affect 
scores on subsequent exposures to 
that test, an occurrence that can be 
confused with a treatment effect. 

“We cannot exclude that learning was still in progress 
during the experiment. We tried to minimize the learning 
effect by teaching requirements specification and review and 
having a training session before the experiment itself.” 

8. Instrumentation: The nature of a 
measure may change over time or 
conditions in a way that could be 
confused with a treatment effect.  

“Instrumentation effects may result from differences in the 
specification documents. Such variation is impossible to 
avoid, but we controlled for it by having each team inspect 
both documents.” 

9. Additive and Interactive Effects of 
Threats to Internal Validity: The 
impact of a threat can be added to 
that of another threat or may depend 
on the level of another threat.  

None 

Further discussions of the impact of motivation of subjects in software engineering experiments may be 
found in [23]. 
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Table 16. Threats to internal validity 

 No of experiments 

Category 

Threat not 
handled 

Threat  
reduced  

Threat 
eliminated  

Total 

% of 
all 

exp. 
Selection 10 35 7 52 46.0 
Instrumentation 9 30 6 45 39.8 
Maturation 3 14 6 23 20.4 
Testing 2 22 4 28 24.8 
History 3 9 6 18 15.9 
Attrition 5 3 4 12 10.6 
Regression 0 1 1 2 1.8 
Ambiguous Temporal 

Precedence 
0 0 0 0 0.0 

Additive and Interactive Effects 
of Threats to Internal Validity 

0 0 0 0 0.0 

No of threats* 32 (17.8% ) 114 (63.3%) 34 (18.9%) 180 (100%)  
No of Experiments 26 (23.0%) 55 (48.7%) 19 (16.8%) 71† (62.8%)  

* We do not distinguish between one or more threats within a category for a given experiment; that is, only 
one threat per category is counted per experiment. 
† Note that the total number of experiments is not the sum of the previous three columns because one 
experiment may be represented in more than one category.  
 

10.2 External validity 

External validity concerns inferences about the extent to which a causal relationship holds 

over variations in persons, settings, treatments and outcomes [37]. This section summarises 

how the authors report threats to external validity regarding these issues.  

Threats to external validity are reported for 78 experiments (69%). Table 17 shows a 

categorisation of the threats based on Shadish et al. [37]. Threats regarding subjects are 

discussed in a total of 67 experiments (rows one, four, five, six and seven), regarding task 

in 60, environment in 23 and treatment in six.  

Most threats regarding subjects deal with difficulties of generalising from students to 

professionals (45 experiments). Another category of experiments (14) also uses students, 

but the experimenters argue that this may not be a threat to validity because the students 

for this kind of task would (probably) have the same ability as professionals (seven), 

because the students were close to finalising their education and start working in industry 

(four), or because one other study showed no difference between students and 

professionals (three). few experiments (three) that use professionals claim that threats to 

external validity were not critical because the experiment was conducted with 

professionals (they did not discuss the representativeness of their actual sample of 

professionals). A few experiments (three) considered that running an experiment within a 
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single organization was a threat to the generalisation to other organizations. Very few 

experiments (two) explicitly described the lack of random sampling as a threat to validity.  

 
Table 17. Threats to external validity 

Factors addressed as threats to external validity  Experiments % 

Subject  (only) 14   12.4 

Task  (only) 10 8.8 

Environment  (only) 1 0.9 

Subject and environment  2 1.8 

Subject and task 31 27.4 

Subject, environment and task 14 12.4 

Treatment and subject, task or environment 6 5.3 

Threats to external validity not addressed 35 31.0 

Total 113 100 

 

Most of the task-related threats concern size and complexity of the tasks (16 

experiments) and experimental material (34), such as program code, inspection documents 

and database systems. For experiments on inspection, one threat discussed was that the 

inspection process applied was not considered representative for industrial practice (nine). 

The (short) duration of the experiment was also regarded as a threat (three). One 

experiment stated that “all our results were obtained from one project, in one application 

domain, using one language and environment, within one software organisation. 

Therefore, we cannot claim that our conclusions have general applicability, until our work 

has been replicated.” Another experiment stated that the subjects might not have used the 

technique intended to be studied in the experiment.  

Threats regarding environment were either stated as a problem of generalising from the 

experimental setting with no specific reasons (five experiments) or stated with concrete 

reasons for the difficulties: use of laboratory or classroom (nine), individual work (five), 

and use of pen and paper (six).  

A major finding is that the reporting is vague and unsystematic. The community needs 

guidelines that provide significant support for how to draw conclusions from the 

experimental results and on how to address threats to internal and external validity and 

their consequences.  
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11 Threats to Validity of this Survey 
The main threats to validity for this study are publication selection bias, inaccuracy in data 

extraction and misclassification.  

11.1 Selection of journals and conferences 

We consider the 12 surveyed journals and conferences to be leaders in software 

engineering in general and empirical software engineering in particular. (Our selection of 

journals is a superset of those selected by others, as shown in Table 1.) Nevertheless, a 

systematic survey that included, in addition, grey literature (theses, technical reports, 

working papers, etc.) describing controlled experiments in software engineering would, in 

principle, provide more data and allow more general conclusions to be drawn [29]. 

11.2 Selection of articles 

To help ensure an unbiased selection process, we defined research questions in advance, 

organised  the selection of articles as a multistage process, involved several researchers in 

this process, and documented the reasons for inclusion/exclusion as suggested in [29].  

The initial investigation of the titles and abstracts of 5,453 articles resulted in 140 

survey articles. Based on recorded comments, 80 of these were reanalysed by one or two 

other researchers and discussed in the project group. Seventeen further articles were then 

excluded because they described studies without a treatment. Moreover, three articles were 

found to be exploratory, observational or constituting a pre-study. Eight were found to fall 

outside the field of software engineering five were excluded on the grounds that they were 

summary articles, while four articles described multiple case studies. We used Inspec and 

various search engines to check the completeness of our inclusion, and cross-checked for 

inclusion with other surveys [51, 22, 25]. Still, the process was difficult and we may not 

have managed to detect all articles that we would have liked to include.  

Another challenge was that there is no keyword standard that we are aware of that 

distinguishes between methods in empirical software engineering and that could be used to 

extract controlled experiments in a consistent manner. For example, none of the selected 

articles matched the IEEE keyword taxonomy; indeed, this taxonomy has no appropriate 

keywords for the methods of empirical software engineering. (MIS Quarterly has ceased to 

use their keyword classification scheme due to the presence of full-text search engines and 

the difficulty of keeping keyword classification schemes up to date [45].)  
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Moreover, article and experiment duplication is a potential threat to frequency counts 

and the statistics in this survey. Among the 113 experiments covered in the 103 articles, 

109 are reported in one article, two are reported in two articles, one is reported in three 

articles, and one is reported in four. Among the 103 surveyed articles, 91 report a single 

experiment, seven report two experiments, and five report three experiments. We detected 

one case of near article duplicates in different journals. The structure of the database is 

designed to handle duplication, but a threat would be that duplication goes undetected. 

However, at least three people have read through all relevant articles without detecting 

further duplicates.  

11.3 Data extraction 

The data was extracted from the articles independently by two researchers. The inter-rater 

agreement varied from 73% to 100%. Disagreements were resolved by discussion and, 

when necessary, by involving other project members. Data extraction from prose is 

difficult at the outset and the lack of standard terminology and standards for reporting 

experiments in software engineering may have resulted in some inaccuracy in the data. 

11.4 Classification to topics 

The classification of articles to topics was done in two steps. First, the articles were 

classified automatically on the basis of title, list of keywords, and registered treatment. 

Then, this classification was double-checked by two researchers. The inter-rater agreement 

between the algorithm and the two researchers was 75% for the comparative classification 

using Glass et al.’s scheme, and 66% for the IEEE-classification. The topic classification 

was difficult, due to the lack of a well-defined method of classifying according to the 

schemes used. 

12 Summary 
This paper reported a survey that characterized quantitatively the controlled experiments in 

software engineering published in nine journals and three conference proceedings in the 

decade from 1993 to 2002. Included were randomised experiments or quasi-experiments in 

which individuals or teams (the experimental units) applied a process, method, technique, 

language or tool (the treatments) to conduct one or more software engineering tasks. Out of 

5,453 articles scanned, we identified 103 articles that reported 113 controlled experiments. 
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Although as many as 108 institutions from 19 countries were involved in conducting 

the experiments, a relatively low proportion of software engineering articles (1.9%) report 

controlled experiments, given that controlled experiments is the classical scientific method 

for identifying cause-effect relationships. One reason may be the large effort and resources 

needed to run well-designed experiments.  

An important issue that pertains to all software engineering research is its relevance to 

the industry. For experiments, both the topics under investigation and how representative 

of an industrial setting an experiment is will influence industrial relevance. The two major 

areas investigated in the experiments were inspection techniques and object-oriented 

design techniques. This survey also gave some indications as to how realistic the 

experiments were relative to the subjects that took part, the tasks they performed, the types 

of applications on which these tasks were done, and the environment in which the subjects 

worked.  

In total, 5,488 subjects participated in the experiments. The number of participants 

ranged from 4 to 266, with a mean value of 49. In total, 87% of the subjects were students, 

whereas only 9% were professionals. This indicates that one may question how 

representative the experimental results are for an industrial setting.  

The same applies to the kind of application used in the experiments. In 75%, the 

applications were constructed for the purpose of the experiment or constituted student 

projects. Commercial applications were used in 14% of the experiments.  

Threats to internal and external validity were addressed in respectively, 63% and 69% 

of the experiments. Among the threats to internal validity, about 1/5 were not handled, 3/5 

were reduced and 1/5 were eliminated. This could either mean that the experiments all over 

had a high degree of internal validity or that the internal threats that were not reduced or 

eliminated were underreported. Threats to external validity regarding subject and task were 

discussed in more than half of the experiments, regarding environment in about 1/4 of the 

experiments and regarding treatment in only a few. Threats to internal validity regarding 

selection and instrumentation were most frequently reported.  

A major finding of this survey is that the reporting is often vague and unsystematic, 

and there is often a lack of consistent terminology. The community needs guidelines that 

provide significant support on how to deal with the methodological and practical 

complexity of conducting and reporting high-quality, preferably realistic, software 

engineering experiments. We recommend that researchers should accurately report the 

following: the type and number of subjects, including the mortality rate; context variables 
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such as general software engineering experience and experience specific to the tasks of the 

experiments; how the subjects were recruited; the application areas and type of tasks; the 

duration of the tasks; and internal and external validity of the experiments, including being 

specific about the sample and target population of the experiment. A more uniform way of 

reporting experiments will help to improve the review of articles, replication of 

experiments, meta-analysis and theory building.  

 

Appendix 
See table 18 and Table 19. 

 

Table 18. Total number of articles investigated 

Year 
Journal 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Total 
EMSE - - - 10 24 14 17 19 24 16 124 
ISESE - - -- - - - - - - 20 20 
METRICS 15 11 - 17 18 32 31 - 30 23 177 
JSS 87 78 76 74 82 91 95 112 101 90 886 
TSE 85 74 77 65 52 83 55 68 62 76 687 
ICSE 48 31 32 59 51 64 56 64 58 57 520 
IST 67 69 62 69 76 80 87 83 78 74 745 
SME 12 16 22 21 18 18 20 19 19 21 186 
IEEE SW 50 56 45 51 52 48 59 60 55 56 532 
TOSEM 13 12 10 13 12 13 13 14 11 14 125 
IEEE Comp 70 76 74 83 91 79 78 73 81 75 780 
SP&E 69 59 68 68 71 72 68 65 65 66 671 
Total 516 482 466 530 547 584 579 577 584 588 5453 
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Table 19. Number of articles that report controlled experiments 

                                                                            Year 
Journal 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Total 
EMSE - - - 2 6 5 1 5 1 2 22 (17.7% 

of 124) 
ISESE - - - - - - - - - 3  3 (15.0% 

of   20) 
METRICS 0 0 - 2 0 4 0 - 3 1 10 (5.6%  

of 177) 
JSS 1 1 1 4 0 4 5 6 1 1 24 (2.7% 

of 886) 
TSE 2 1 2 0 2 1 1 3 3 2 17 (2.5% 

of 678) 
ICSE 0 1 0 1 1 1 1 3 3 1 12 (2.3% 

of 520) 
IST 0 0 0 1 2 2 0 0 3 0 8  (1.1%  

of 745) 
SME 0 0 0 0 0 0 0 0 1 1 2  (1.1%   

of 186) 
IEEE SW 0 0 0 0 0 0 0 3 1 0 4  (0.8%  

of 532) 
TOSEM 0 0 0 0 0 1 0 0 0 0 1  (0.8%  

of 125) 
IEEE comp 0 0 0 0 0 0 0 0 0 0 0  (0%    

of 780) 
SP&E 0 0 0 0 0 0 0 0 0 0  0  (0%   

of 671) 
Total 3  

0.6%  
Of 516 

3  
0.6%  
of 482 

3 
0.6% 
Of 466 

10 
1.9% 
of 530

11 
2.0% 
of 547

18  
3.1% 
of  584

8  
1.4% 
of 579

20 
3.5% 
of 577

16  
2.7% 
of 584

11 
1.9% 
of 588 

103  
(1.9%  
of 5453) 
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Abstract 
Statistical power is an inherent part of empirical studies that employ significance testing 

and is essential for the planning of studies, for the interpretation of study results, and for 

the validity of study conclusions. This paper reports a quantitative assessment of the 

statistical power of empirical software engineering research based on the 103 papers on 

controlled experiments (of a total of 5453 papers) published in nine major software 

engineering journals and three conference proceedings in the decade 1993-2002. The 

results show that the statistical power of software engineering experiments falls 

substantially below accepted norms as well as the levels found in the related discipline of 

information systems research. Given this study’s findings, additional attention must be 

directed to the adequacy of sample sizes and research designs to ensure acceptable levels 

of statistical power. Furthermore, the current reporting of significance tests should be 

enhanced by also reporting effect sizes and confidence intervals. 

 

Keywords: Empirical software engineering, controlled experiment, systematic review, 

statistical power, effect size. 
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1 Introduction 
An important use of statistical significance testing in empirical software engineering (ESE) 

research is to test hypotheses in controlled experiments. An important component of such 

testing is the notion of statistical power, which is defined as the probability that a statistical 

test will correctly reject the null hypothesis [12]. A test without sufficient statistical power 

will not be able to provide the researcher with enough information to draw conclusions 

regarding the acceptance or rejection of the null hypothesis. 

Knowledge of statistical power can influence both the planning, execution and results 

of empirical research. If the power of statistical tests is weak, the probability of finding 

significant effects is small, and the outcomes of the study will likely be insignificant. 

Furthermore, if the study fails to provide information about the statistical power of its tests, 

we cannot determine whether the insignificant results were due to insufficient power or if 

the phenomenon actually did not exist. This will inevitably lead to misinterpretation of the 

outcomes of the study.  

Thus, failure to provide an adequate level of statistical power has implications for both 

the execution and outcome of research: “If resources are limited and preclude attaining a 

satisfactory level of statistical power, the research is probably not worth the time, effort, 

and cost of inferential statistics.” ([1], p. 96). 

These considerations have prompted researchers in disciplines such as social and 

abnormal psychology [8,10,38], applied psychology [6,30], communication [7], behavioral 

accounting [2], marketing [37], management [5,16,25,30], international business [4], and 

information systems research [1,36] to determine the post hoc statistical power of their 

respective literature.  

Within software engineering (SE), Miller et al. [29] discussed the role of statistical 

power analysis in ESE research, suggesting that there is inadequate reporting and attention 

afforded to statistical power in the ESE literature, which leads to potentially flawed 

research designs and questionable validity of results: 

 

Any researcher not undertaking a power analysis of their experiment has no idea of 

the role that luck or fate is playing with their work and consequently neither does the 

Software Engineering community (p.286).   
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Although Miller et al. [29] made an important contribution in directing attention to the 

concept of statistical power in ESE research and how it can be incorporated within the 

experimental design process, they based their arguments on an informal review of the 

literature. There is, therefore, a need to conduct more formal investigations, similar to that 

of other disciplines, of the state-of-the-practice in ESE research with respect to statistical 

power. 

The purpose of this paper is thus (1) to perform a systematic review and quantitative 

assessment of the statistical power of ESE research in a sample of published controlled 

experiments, (2) to discuss the implications of these findings, and (3) to discuss techniques 

that ESE researchers can use to increase the statistical power of their studies in order to 

improve the quality and validity of ESE research. 

In section 2, we present a brief background on statistical power and its determinants. In 

Section 3, we provide an overview of the research method employed to review and 

determine the statistical power in controlled software engineering experiments. Section 4 

reports the results of the review, while Section 5 provides a discussion of the results, their 

implications, and some recommendations that should improve the quality and validity of 

future ESE research. Section 6 provides some concluding comments. 

2 Background: statistical power 

2.1 Power and errors in statistical inference 

According to Neyman and Pearson’s [31,32] method of statistical inference, testing 

hypotheses requires that we specify an acceptable level of statistical error, or the risk we 

are willing to take regarding the correctness of our decisions. Regardless of which decision 

rule we select, there are generally two ways of being correct and two ways of making an 

error in the choice between the null (H0) and the alternate (HA) hypotheses (see Table 1). 

A Type I error is the error made when H0 (the tested hypothesis) is wrongly rejected. In 

other words, a Type I error is committed whenever the sample results fall into the rejection 

region, even though H0 is true. Conventionally, the probability of committing a Type I 

error is represented by the level of statistical significance, denoted by the lowercase Greek 

letter alpha (α). Conversely, the probability of being correct, given that H0 is true is equal 

to 1–α. 
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Table 1.  Ways of being correct or making an error when choosing between two competing hypotheses. 

  Unknown true state of nature 

  H0: No Difference HA: Difference 

Accept H0 1–α:  Correct β: Type II error Statistical 

conclusion 
Reject H0 α: Type I error 1–β: Correct (power) 

 

The probability of making an error of Type II, also known as beta (β), is the probability 

of failing to reject the null hypothesis when it is actually false. Thus, when a sample result 

does not fall into the rejection region, even though some HA is true, we are led to make a 

Type II error. Consequently, the probability of correctly rejecting the null hypothesis, i.e., 

the probability of making a correct decision given that HA is true, is 1–β; the power of the 

statistical test. It is literally the probability of finding out that H0 is wrong, given the 

decision rule and the true HA. 

As can be seen from Table 1, statistical power is particularly important when there is a 

true difference in the population. In this situation, when the phenomenon actually exists, 

the statistical test must be powerful enough to detect it. If the test reveals a non-significant 

result in this case, the conclusion of “no effect” would be misleading and we would thus be 

committing a Type II error. 

Traditionally, α is set to .05 to guard against Type I error, while β is set to .20 to guard 

against Type II error. Accepting these conventions also means that we are guarded four 

times more against Type I errors than we are against Type II errors. However, the 

distribution of risk between Type I and Type II errors need to be appropriate to the 

situation at hand. An illustrative case is made by Mazen et al. [25] regarding the ill-fated 

Challenger space shuttle, in which NASA officials faced a choice between two types of 

assumptions, each with a distinctive cost: 

 

The first [assumption] was that the shuttle was unsafe to fly because the performance 

of the O-ring used in the rocket-booster was different from that used on previous 

missions. The second was that the shuttle was safe to fly because there would be no 

difference between the performance of the O-rings in this and previous missions. If the 

mission had been aborted and the O-ring had indeed been functional, Type I error 

would have been committed. Obviously the cost of the Type II error, launching with a 
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defective O-ring, was much greater than the cost that would have been incurred with 

Type I error (ibid., p. 370). 

2.2 Determinants of statistical power 

The fundamental approach to statistical power analysis was established by Cohen [12], 

who described the relationships among the four variables involved in statistical inference: 

significance criterion (α), sample size (N), population effect size (ES), and statistical power 

(1–β). For any statistical model, these relationships are such that each is a function of the 

other three. Thus, we can determine the power for any statistical test, given α, N, and ES 

(Table 2). 

The appropriate sections of Cohen [12] or Kraemer and Thiemann [21] should be 

consulted for details on how to perform statistical power analysis. Specifically, Chapter 12 

in Cohen’s book provides the computational procedures that are used to determine the 

power and sample size values of the commonly used power tables and power charts. 

As mentioned, the significance criterion (α) is the probability of incorrectly rejecting 

the null hypothesis. Power increases with larger α. A small α will, thus, result in relatively 

small power. The directionality of the significance criterion also affects the power of a 

statistical test. A non-directional two-tailed test will have lower power than a directional 

one-tailed test at the same α, provided that the sample result is in the predicted direction. 

Note that a directional test has no power to detect effects in the direction opposite to the 

one predicted (see Figure 1). 

β α

1 - β

Reject H0Accept H0

 
Figure 1: Statistical power and the probability of Type I and Type II error in testing a directional 

hypothesis. 
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The second determinant of power is sample size (N). At any given α level, increased 

sample size reduces the standard deviations of the sampling distributions for H0 and HA. 

This reduction results in less overlap of the distributions, increased precision, and thus 

increased power (see Figure 1). 

The final determinant of power is the effect size (ES), which refers to the true size of 

the difference between H0 and HA (the null hypothesis is that the effect size is 0), i.e., the 

degree to which the phenomenon is present in the population. The larger the effect size, the 

greater the probability that the effect will be detected and the null hypothesis rejected.  

The nature of the effect size will vary from one statistical procedure to the next (e.g., a 

standardized mean difference or a correlation coefficient), but its function in power 

analysis is the same in all procedures. Thus, each statistical test has its own scale-free and 

continuous effect size index, ranging upward from zero (see Table 3). So, whereas p values 

reveal whether a finding is statistically significant, effect size indices are measures of 

practical significance or meaningfulness. Interpreting effect sizes is thus critical, because it 

is possible for a finding to be statistically significant but not meaningful, and vice versa 

[13,23].  

Effect size is probably the most difficult aspect of power analysis to specify or 

estimate. It can sometimes be determined by a critical assessment of prior empirical 

research in the area. However, due to a lack of empirical studies and cumulative findings in 

software engineering, the best option for a reasonable estimation of effect size is expert 

judgment [29]. 

Cohen [12] has facilitated such estimation of effect size. Based on a review of prior 

behavioral research, he developed operational definitions of three levels of effect sizes 

(small, medium, and large) with different quantitative levels for the different types of 

statistical test. In information systems (IS) research and in the behavioral sciences, the 

operationalized definitions of the effect size for each of these categories have become a 

research standard for the most commonly used statistical tests [1,36].  

 
Table 2. Determinants of statistical power. 

Significance criterion (α) The chosen risk of committing a Type I error (e.g. α = 0.05). 

Sample size (N) The total number of subjects included in the analysis of data. 

Effect size (ES) The magnitude of the effect under the alternate hypothesis (e.g. d = 0.5). 
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Table 3.  Effect-size indexes and their values for small, medium, and large effects for the most common 
statistical tests ([13], p. 157). 

 
  Effect Size 

Statistical Test Effect-Size Index Small Medium Large 

1. The t-test for the difference between 

two independent means σ
BA mmd −

=  .20 .50 .80 

2. The t-test for the significance of  

a product-moment correlation 

coefficient, r 

R .10 .30 .50 

3. The test for the difference between 

two independent rs BA zzq −=  .10 .30 .50 

4. The normal curve test for the 

difference between two independent 

proportions 
BAh φφ −=  .20 .50 .80 

5. The chi-square test for goodness of 

fit (one-way) or association in two-

way contingency tables 

( )∑
=

−
=

k

i i

ii

P
PP

w
1 0

2
01  .10 .30 .50 

6. One-way analysis of variance 
σ

σ mf =  .10 .25 .40 

7. Multiple and multiple partial 

correlation 2

2
2

1 R
Rf
−

=  .02 .15 .35 

 

Cohen established these conventions in 1977 [11], and they have been fixed ever since. 

His intent was that “medium [effect size] represents an effect likely to be visible to the 

naked eye of a careful observer ... small [effect size] to be noticeably smaller than medium 

but not so small as to be trivial, and ... large [effect size] to be the same distance above 

medium as small was below it.” ([13],p.156). Table 3 gives the definition of the ES indices 

and the corresponding ES values for the most common statistical tests. These ES values 

enable the comparison of power levels across studies in this survey, as well as across 

surveys conducted in other disciplines. As an example, the ES index for the t-test of the 

difference between independent means, d, is the difference expressed in units of the 

within-population standard deviation. For this test, the small, medium, and large ESs are, 
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respectively, d = .20, .50, and .80. Thus, an operationally defined medium difference 

between means is half a standard deviation.  

3 Research Method 
We assessed all the 103 papers on controlled experiments (of a total of 5453 papers), 

identified by Sjøberg et al. [40], published in nine major software engineering journals and 

three conference proceedings during the decade 1993-2002 (Table 4). These journals and 

conference proceedings were chosen because they were considered to be representative of 

ESE research. Furthermore, since controlled experiments are empirical studies that employ 

inferential statistics, they were considered a relevant sample in this study. 

Since the term “experiment” is used inconsistently in the software engineering 

community (often being used synonymously with empirical study), we use the term 

“controlled experiment”. A study was defined as a controlled experiment if individuals or 

teams (the experimental units) conducted one or more software engineering tasks for the 

sake of comparing different populations, processes, methods, techniques, languages, or 

tools (the treatments). We did not distinguish between randomized experiments and quasi-

experiments in this study, because both designs are relevant to ESE experimentation.  

All articles 
1993 - 2002 

n = 5453 

Not controlled 
experiments 

n = 5350 

Controlled 
experiments 

n = 103 

Excluded* 
n = 25 

Analyzed 
n = 78 

 

Figure 2: Results of the literature review. *25 articles were excluded due to duplicate reporting, no 
statistical analysis or unspecified statistical tests. 

 

We excluded several types of study that share certain characteristics with experiments. 

While these might be highly relevant for the field, they are not controlled experiments as 

defined above. Thus, we excluded correlation studies, studies that are based solely on 

calculations on existing data, and simulated team evaluations that use data for individuals. 
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Studies that used projects or companies as treatment groups, in which data was collected at 

several levels (treatment defined, but no experimental unit defined) were also excluded 

because we consider these to be multiple case studies [43].  

In order to identify and extract controlled experiments, one researcher systematically 

read the titles and abstracts of the 5453 scientific articles. Excluded from the search were 

editorials, prefaces, article summaries, interviews, news, reviews, correspondence, 

discussions, comments, reader’s letters and summaries of tutorials, workshops, panels and 

poster sessions. If it was unclear from the title or abstract whether a controlled experiment 

was described, the complete article was read by two researchers.  

These criteria were met by 103 articles, which reported 113 experiments, (Table 4). All 

of them involved a number of significance tests. However, not all of these were equally 

relevant to the hypotheses of the studies. In fact, it was not always clear from the reporting 

of the studies which hypotheses were actually tested or which significance tests 

corresponded to which hypotheses.  

Table 4. Distribution of ESE studies employing controlled experiments: Jan. 1993 – Dec. 2002. 

Journal/Conference Proceeding Number Percent 

Journal of Systems and Software (JSS)  24 23.3 

Empirical Software Engineering (EMSE)  22 21.4 

IEEE Transactions on Software Engineering (TSE)  17 16.5 

International Conference on Software Engineering (ICSE)  12 11.7 

IEEE International Symposium on Software Metrics (METRICS)  10 9.7 

Information and Software Technology (IST)  8 7.8 

IEEE Software  4 3.9 

IEEE International Symposium on Empirical Software Engineering (ISESE)  3 2.9 

Software Maintenance and Evolution (SME)  2 1.9 

ACM Transactions on Software Engineering (TOSEM)  1 1.0 

Software: Practice and Experience (SP&E)  – – 

IEEE Computer  – – 

TOTAL:  103 100% 
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The first two authors read all 103 articles in detail and made separate extractions of the 

power data. Based on these two data sets, all three authors reviewed all tests in all 

experiments to reach a consensus on which experiments and tests to include. For 14 

experiments, no statistical analysis was performed and for seven experiments, we did not 

manage to track which tests answered which hypothesis or research question. Five 

experiments were reported in more than one article. In these cases, we included the one 

most recently published. This assessment resulted in 78 articles (Figure 2). Of these 

articles, we identified 459 statistical tests corresponding to the main hypotheses or research 

questions of 92 experiments.  

Similar to the methodology used by Baroudi and Orlikowski for MIS research [1], both 

parametric and nonparametric tests of the major hypotheses were included in this study. 

Table 5 shows the distribution of the 459 statistical tests in the final sample for which 

statistical power could be determined post hoc. The main parametric tests were Analysis of 

Variance (ANOVA) and t-tests. The main nonparametric tests were Wilcoxon, Mann-

Whitney, Fisher’s exact test, Chi-square, and Kruskall-Wallis. Other tests include Tukey’s 

pairwise comparison (18), nonparametric rank-sum test (6), Poisson (3), regression (3), 

Mood’s median test (2), proportion (2), and Spearman rank correlation (2). 

The power of the nonparametric tests was determined by using analogous parametric 

tests where appropriate [9,10,18,21]. For example, the t-test for means approximates to the 

Mann-Whitney U test and the Wilcoxon rank test, the parametric F test to the Kruskal-

Wallis H test, and Pearson’s r to the Spearman Rank Correlation. Chi-square 

approximations were not needed since Cohen provided separate tables to determine its 

power. 

Following the post hoc method, the power of each test was determined by using the 

stated sample size, setting the α level to the conventional level of .05, and choosing the 

nondirectional critical region for all power computations. Furthermore, power was 

calculated in relation to Cohen’s definitions of small, medium, and large effect sizes [12]. 

This is similar to that of past surveys of statistical power in other disciplines, such as IS 

research [1,36]. All power calculations were made using SamplePower 2.0 from SPSS8. 

 

                                                 
8 See www.spss.com/samplepower/ 
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Table 5. Distribution of statistical tests employed in 92 controlled SE experiments. 

Statistical test Number Percent 

ANOVA 179 39.0 

t-test 117 25.5 

Wilcoxon 41 8.9 

Mann-Whitney 39 8.5 

Fisher’s exact test 15 3.3 

Chi-square 14 3.1 

Kruskall-Wallis 8 1.7 

Other tests 46 10.0 

TOTAL: 459 100% 

 

4 Results 
The 78 articles selected for this study with available data for calculating power yielded 459 

statistical tests of the major hypotheses being investigated in the 92 reported controlled 

experiments. Table 6 shows the distribution of sample size for the experiments by type of 

statistical test. On average, the statistical tests covered 55 observations. However, the high 

standard deviation for several of the tests reveals a large amount of variation in sample 

sizes. For example, among the ANOVA subsample the average sample size was 79, yet 

165 of the 179 tests examined had an average sample size of 50, while the remaining 14 

tests had an average of 450. Similarly, for the Chi-square subsample the average sample 

size was 126. However, two of the tests had a sample size of 531 observations, while the 

average sample size of the remaining 12 tests was 58 observations. Also, in the group of 

other tests, with an average sample size of 39 observations, the three regression tests had a 

sample size of 242 observations, while the average sample size for the remaining 43 tests 

was 25 observations. 
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Table 6. Distribution of sample sizes (observations) occurring in 92 controlled SE experiments. 

Statistical test Mean Std. Min Median Max 

ANOVA 79 118 6 65 800 

t-test 34 29 5 30 136 

Wilcoxon 40 23 10 34 78 

Mann-Whitney 34 13 6 32 66 

Fisher’s exact test 40 27 16 20 74 

Chi-square 119 180 10 30 531 

Kruskall-Wallis 26 19 15 15 69 

Other 38 57 10 16 242 

TOTAL: 55 87 5 34 800 

 

 

Several of the experiments surveyed in this study used within-subject designs so that 

each subject contributed several observations to the sample size of a statistical test. The 

most extreme cases were as follows: one study that used 800 observations from 100 

subjects for an ANOVA test; another study that used 564 observations from 94 subjects for 

an ANOVA test; and yet another study that used 531 observations from 266 subjects in a 

Chi-square test. The latter study was also the one with the highest number of subjects in 

our sample. 

So, while the average sample size of all 459 statistical tests in this study was 55 

observations, with a standard deviation of 87, the median sample size was as low as 34 

observations. Correspondingly, the average number of subjects in the surveyed 

experiments was 48, with a standard deviation of 51 and a median of 30. As a comparison, 

the average sample size of all tests in Rademacher’s power study in IS research was 179 

subjects (with a standard deviation of 196) [36]. 

Table 7 presents the power distribution of the 459 statistical tests in the 92 experiments 

using Cohen’s conventional values for small, medium, and large effect sizes (see Table 3). 

Small effect size: The average statistical power of the tests when we assumed small 

effect sizes was as low as .11. This means that if the phenomena being investigated exhibit 

a small effect size, then, on average, the SE studies examined have only a one in ten 

chance of detecting them. Table 7 shows that only one test is above the .80 conventional 
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power level and that 97% have a less than 50 percent chance of detecting significant 

findings. 

Medium effect size: When we assume medium effect sizes, the average statistical power 

of the tests increases to .36. Although this is an improvement over the .11 power level 

achieved by tests of small effect sizes, the studies only have, on average, just about a one-

third chance of detecting phenomena exhibiting a medium effect size. Table 7 indicates 

that only 6% of the tests examined achieve the conventional .80 power level or better, and 

that 78% of the tests have a less than 50 percent chance of detecting significant results. 

Large effect size: Assuming large effect sizes, the average statistical power of the tests 

increases further, to .63. This means that, on average, the studies still have slightly less 

than a two-thirds chance of detecting their phenomena. As can be seen from Table 7, 31% 

of the tests attain or exceed the .80 power level, and 70% obtain a greater than 50 percent 

chance of correctly rejecting their null hypotheses. Thus, even when we assume that the 

effect being studied is so large as to make statistical testing unnecessary, as much as 69% 

of the tests fall below the .80 level. 

Table 8 presents the power of the studies by type of statistical test employed. None of 

the tests reaches the conventional .80 power level; not even when we assume large effect 

sizes. ANOVA and t-tests account for almost two-thirds of all statistical analyses in 

controlled SE experiments, yet their mean power level for detecting large effect sizes is 

only .67 and .61 respectively, while the corresponding power levels assuming medium 

effect sizes are as low as .40 and .33.  

In summary, this quantitative assessment revealed that controlled SE experiments, on 

average, only have a two-thirds chance of detecting phenomena with large effect sizes. The 

corresponding chance of detecting phenomena with medium effect sizes is around one in 

three, while there is only a one in ten chance of detecting small effect sizes. 

Finally, a qualitative assessment of the treatment of power within the sampled studies 

revealed an interesting pattern. Of the 78 papers in our sample, 12 discussed the statistical 

power associated with the testing of null hypotheses. Of these studies, nine elaborated on 

the specific procedures for determining the statistical power of tests. Three of the nine 

performed a priori power analysis, while six performed the analysis a posteriori. Only one 

of the papers that performed an a priori power analysis used it to guide the choice of 

sample size. In this case, the authors explicitly stated that they were only interested in large 

effect sizes and that they regarded a power level of 0.5 as sufficient. Still, they included 
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Table 7. Frequency and cumulative percentage distribution of power in 92 controlled SE experiments. 

 Small effect size Medium effect size Large effect size 

Power level Frequency Cum. % Frequency Cum. % Frequency Cum. % 

.91 - .99 – – 18 100 69 100 

.81 - .90 1 100 11 96 75 85 

.71 - .80 – 100 14 94 49 69 

.61 - .70 2 100 13 91 70 58 

.51 - .60 9 99 44 88 58 43 

.41 - .50 2 97 50 78 21 30 

.31 - .40 – 97 76 67 43 25 

.21 - .30 13 97 107 51 43 16 

.11 - .20 120 94 94 27 31 7 

.00 - .10 312 68 32 7 – – 

TOTAL: 459 – 459 – 459 – 

Average power: 0.11 0.36 0.63 

Table 8. Power analysis by type of statistical test in 92 controlled SE experiments. 

 Small effect size Medium effect size Large effect size 

Statistical test Means Std. Dev. Means Std. Dev. Means Std. Dev. 

ANOVA .12 .11 .40 .24 .67 .28 

t-test .10 .03 .33 .17 .61 .23 

Wilcoxon .12 .05 .46 .24 .74 .24 

Mann-Whitney .09 .02 .29 .10 .59 .19 

Fisher’s exact test  .06 .05 .25 .22 .49 .34 

Chi-square .18 .20 .43 .33 .64 .28 

Kruskall-Wallis .09 .02 .31 .15 .59 .28 

Other .10 .11 .26 .25 .44 .24 
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so few subjects in the experiment that the average power to detect a large effect size of 

their statistical tests was as low as 0.28. Of the six papers that performed a posteriori 

power analysis, two gave recommendations for the necessary sample sizes in future 

replication studies. Thus, overall, 84.6% of the sampled experimental studies did not 

reference the statistical power of their significance tests. 

5 Discussion 
In this section, we discuss the implications of the findings in this study for the 

interpretation of experimental SE research. We suggest several ways to increase statistical 

power, and we provide recommendations for future research. First, however, we compare 

the main findings in the current study with the related discipline of IS research. 

5.1 Comparison with IS research 

We compared the results of the current study with two corresponding reviews of the 

statistical power levels in IS research [1,36]. In the former study, 63 statistically-based 

studies were identified from the issues of Communications of the ACM, Decision Sciences, 

Management Science, and MIS Quarterly over the five-year period from January 1980 to 

July 1985. The final sample included 149 statistical tests from 57 studies. In the latter 

study, 65 statistically-based studies that employed 167 statistical tests were selected from 

MIS Quarterly over the seven-year period from January 1990 to September 1997. In 

comparison, the current study included 92 controlled experiments that comprised 459 

statistical tests published in nine major software engineering journals and three conference 

proceedings during the decade 1993-2002 (see Tables 4 and 5). 

Statistical power in the two IS research studies and the current SE research study for 

small, medium, and large effect sizes are compared in Table 9. The results of the two IS 

studies indicate that the power levels for all effect sizes have improved substantially in the 

decade between the two studies. Furthermore, the results show that IS research now meets 

the desired power level of .80 specified by Cohen [12] for medium effect sizes, which is 

assumed as the target level by most IS researchers [36]. 
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Table 9: Comparison of current survey with statistical power values in prior IS research. 

  Means for different effect-size assumptions 

Related IS study No. of Articles Small Medium Large 

Baroudi and Orlikowski  [1] 57 .19 .60 .83 

Rademacher [36] 65 .34 .81 .96 

Current study 78 .11 .36 .63 

 

The results of the current study show that the power of experimental SE research falls 

markedly below the levels attained by IS research. One reason for this difference might be 

that the IS field has benefited from the early power review of Baroudi and Orlikowski  [1], 

and thus explicit attention has been paid to statistical power, which has paid off with 

contemporary research displaying improved power levels, as demonstrated by Rademacher  

[36]. What is particularly worrying for SE research is that the power level displayed by the 

current study not only falls markedly below the level of 1999 study by Rademacher, but 

that it also falls markedly below the level of the 1989 study by Baroudi and Orlikowski. 

While medium effect sizes are considered the target level in IS research [36], and the 

average power to detect these effect sizes are .81 in IS research, Table 7 indicates that only 

6% of the tests examined in the current research achieve this level, and that as much as 

78% of the tests in the current research have a less than 50 percent chance of detecting 

significant results for medium effects. Unless it can be demonstrated that medium (and 

large) effect sizes are irrelevant to SE research, this should be a cause for concern for SE 

researchers and practitioners. Consequently, we should explore in more depth what 

constitutes meaningful effect sizes within SE research, in order to establish specific SE 

conventions. 

A comparison of power data for the two most popular types of statistical test in 

experimental SE research, with the corresponding tests in IS research, is provided in Table 

10. As can be seen from Table 5, these tests (ANOVA and t-test) constitute about two-

thirds of the statistical tests in our sample. The results show that, on average, IS research 

employ sample sizes that are twice as large as those found in SE research for these tests. In 

fact, the situation is a little worse than that, since observations are used as the sample size 

in the current study, while the IS studies refer to subjects. Moreover, the power levels of 
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the current study to detect medium effect sizes are only about half of the corresponding 

power levels of IS research. 

Table 10: Comparison of the two most popular types of tests in the current survey with corresponding 
power data for IS research. 

 

Statistical test 

Baroudi and 

Orlikowski [1] Rademacher [36] Current study 

ANOVA (medium effect size):    

 Sample size1 64 136 79 

 Power (mean value) .56 .82 .40 

 Power (std. deviation) .30 .19 .24 

t-test (medium effect size):    

 Sample size1 45 70 34 

 Power (mean value) .53 .74 .33 

 Power (std. deviation) .27 .18 .17 

1Note that sample size in the two IS studies refers to subjects, while in the current study it refers to 
observations. 

5.2 Implications for interpreting experimental SE research 

An important finding of this study is that explicit consideration of power issues, e.g., in 

terms of discussion, use, and reporting of statistical power analysis, in experimental SE 

research is very limited. As mentioned above, 15.4% of the papers discussed statistical 

power in relation to their testing of the null hypothesis, but in only one paper did the 

authors perform an a priori power analysis. In addition, and perhaps as a consequence, the 

post hoc power analyses showed that, overall, the studies examined had low statistical 

power. Even for large effect sizes, as much as 69% of the tests fell below the .80 level. 

This implies that considerations of statistical power are underemphasized in experimental 

SE research.  

Two major issues that are particularly important for experimental SE research arise 

from this underemphasis of statistical power: (1) the interpretation of results from 

individual studies and (2) the interpretation of results from the combination or replication 

of empirical studies [22,24,27,29,35]. As mentioned above, a test without sufficient 

statistical power will not provide the researcher with enough information to draw 
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conclusions regarding the acceptance or rejection of the null hypothesis. If no effects are 

detected in this situation, researchers should not conclude that the phenomenon does not 

exist. Rather, they should report that no significant findings were demonstrated in their 

study, and that this may be due to the low statistical power associated with their tests. 

Another issue regarding the interpretation of results from individual studies with low 

power is the use of multiple tests. In this case, which included 91.3% of the experiments, 

the probability of obtaining at least one statistically significant effect might be large, even 

if the probability that any specific effect is statistically significant is small (see [28]). As an 

example, recall from Table 7 that the probability that a medium effect size is statistically 

significant is only .36. At the same time, the 84 experiments in this study with more than 

one test had an average of 5.4 tests per experiment. Thus, with this number of tests, we 

would expect about two statistically significant results for medium effect sizes in each of 

the experiments in this study. So, although power is sufficient for attaining statistical 

significance somewhere, it is not sufficient for any specific test. Again, this inadequate 

power for testing specific effects makes it difficult to interpret properly the results of any 

single study. It would be helpful, therefore, if researchers reporting results from statistical 

hypothesis testing were to distinguish between the tests of primary and secondary 

hypotheses. 

Low statistical power also has a substantial impact on the ability to replicate 

experimental studies based on null hypothesis testing. Ottenbacher nicely demonstrates an 

apparent paradox that results from the replication of such low powered studies [34], 

showing that: 

 

… the more often we are well guided by theory and prior observation, but conduct 

a low power study, the more we decrease the probability of replication! Thus a 

literature with low statistical power is not only committing a passive error, but can 

actually contribute to diverting attention and resources in unproductive directions 

(ibid., 273). 

 

Consequently, the tendency to underpower SE studies makes replication and meta-

analysis troublesome, and will tend to produce an inconsistent body of literature, thus 

hindering the advancement of knowledge. 

The results of our review also raise another important issue: the interpretation of 

studies with very high levels of power. Some of the studies in this review employed large 
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sample sizes, ranging from 400 to 800 observations. This poses a problem for 

interpretation, because virtually any study can be made to show significant results if the 

sample size is large enough, regardless of how small the true effect size may be [18]. 

Hence, it is of particular importance that researchers who report statistically significant 

results from studies with very large sample sizes, or with very large power levels, also 

report the corresponding effect sizes. This will put the reader in a better position to 

interpret the results and judge whether the statistically significant findings have practical 

importance. 

5.3 Ways to increase statistical power 

Increase the size of the sample: The most obvious way to increase the statistical power 

of a study is to increase the size of the sample. However, there is invariably some cost in 

terms of time, effort, and money per subject that must be considered. With this in mind, 

most researchers try to use the smallest number of subjects necessary to have a reasonable 

chance of obtaining significant results with a meaningful effect size [9]. However, while 

using only a few subjects may result in meaningful effects not being detected, trivial 

effects may show up as significant results when the sample size is very large. 

Consequently, if the researcher wants significance to reflect a sizable effect and also wants 

to avoid being led into a blind alley by a significant result, attention should be paid to both 

aspects of sample size. As a general rule, the sample size should be large enough to give 

confidence that meaningful effects will be detected. At the same time, the reporting of 

effect sizes will ensure that trivial associations will be detected even though they might be 

statistically significant. 

Relax the significance criterion: Power can also be increased by relaxing the 

significance criterion. This approach is not common, however, because of widespread 

concern about keeping Type I errors to a fixed, low level of, e.g., .01 or .05. Still, as the 

example of the Challenger space shuttle showed, the significance criterion and the power 

level should be determined by the relative seriousness of Type I and Type II errors. Thus, 

researchers should be aware of the costs of both types of errors when setting the alpha and 

power levels, and must make sure that they explain the consequences of the raised 

probability of Type I errors if they relax the significance criterion. When possible, 

researchers should analyze the relative consequences of Type I and Type II errors for the 

specific treatment situation under investigation. 
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Choose powerful statistical tests: In general, parametric tests are more powerful than 

their analogous nonparametric test [21]. Thus, the power of a study can most often be 

increased by choosing an appropriate parametric test. It is important to note, however, that 

these tests make a number of assumptions about the properties (parameters) of the 

populations, such as the mean and standard deviation, from which samples are drawn. On 

the other hand, given the empirical evidence for the robustness and enhanced power 

provided by parametric tests, “researchers are encouraged to use the parametric test most 

appropriate for their study and resort to non-parametric procedures only in the rare case of 

extreme assumption violations” ([1], p. 98). 

The power of a test can also be increased by retaining as much information as possible 

about the dependent variable. In general, tests comparing data categorized into groups are 

less powerful than tests using data measured along a continuum. As Baroudi and 

Orlikowski recommend [1], “statistics that permit continuous data to be analyzed in 

continuous form, such as regression, should be used over those that require data to be 

divided in groups, such as the analysis of variance” (p. 99). 

Furthermore, as we have already noted, the direction of the significance criterion also 

affects the power of a statistical test. A directional, one-tailed test will yield higher power 

than a non-directional two-tailed test at the same alpha level, provided that the sample 

results are in the predicted direction. Note, however, that a directional test has no power to 

detect effects in the direction opposite to that predicted. Thus, the primary guide for the 

researcher deciding whether a hypothesis should be tested with a directional or non-

directional test must be the comparative term of the original research question. 

Reduce measurement error and subject heterogeneity: The larger the variance on the 

scores within the treatment and control groups, the smaller the effect size and the power 

will be. One source of such variance is measurement error, i.e. variability in scores that is 

unrelated to the characteristic being measured. Another source is the heterogeneity of 

subjects on the measure [23]. Thus, anything that makes the population standard deviation 

small will increase power, other things being equal.  

In general, subject heterogeneity can be reduced by selecting or developing measures 

that do not discriminate strongly among subjects. If the measure, nevertheless, does 

respond substantially to subject differences, these could be reduced statistically during data 

analysis. To reduce such variance, and thus increase statistical power, the researcher can 

utilize a repeated measures or paired subjects design, or a factorial design that employs 

blocking, stratification, or matching criteria [39]. Researchers can also reduce subject 
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heterogeneity by employing a research design that covaries a pretest measure with the 

dependent variable [14]. 

Measurement error can be reduced by exercising careful control over experimental 

subjects and conditions. In addition, the researcher can use some form of aggregation, or 

averaging, of multiple measures that contain errors individually, to reduce the influence of 

error on the composite scores [33,41]. So, whenever applicable, the researcher should use 

reliable, multi-item measures to increase power [15]. 

Balance groups: The statistical power of a study is based less on the total number of 

subjects involved than on the number in each group or cell within the design. In addition, 

because the power of a test with unequal group sizes is estimated using the harmonic mean 

[12], the “effective” group size is skewed toward the size of the group with the fewest 

subjects. Thus, with a fixed number of subjects, maximal statistical power is attained when 

they are divided equally into treatment and control groups [23]. Researchers should, 

therefore, try to obtain equal, or in the case of factorial designs, proportional, group sizes 

rather than getting a large sample size that results in there being unequal or disproportional 

groups [1]. 

Investigate only relevant variables: One of the best strategies for increasing statistical 

power is to use theory and prior research to identify those variables that are most likely to 

have an effect [23]. Careful selection of which independent variables to include and which 

variables to exclude is, thus, crucial to raising the power of a study and the legitimacy of 

its potential findings. Kraemer and Thiemann suggested that only factors that are 

absolutely necessary to the research question, or that have a documented and strong 

relationship to the response, should be included in a study [21]. Accordingly, they 

recommended “Choose a few predictor variables and choose them carefully.” (p. 65), or as 

McClelland put it [26]: “Doubling one’s thinking is likely to be much more productive 

than doubling one’s sample size.” (p. 964). 

In summary, when criterion significance and power levels are set, and a threshold for 

the minimum effect size to be detected has been decided, the two primary factors for 

consideration in a power analysis are the operative effect size and the sample size. Since 

much of what determines effect size has to do with the selection of measures, statistical 

analysis, treatment implementation, and other issues that are intrinsic parts of the research 

design, effect size enhancements are, generally, more cost-effective to engineer than are 

sample size increases [23]. However, determining how best to enhance the effect size 

requires some analysis and diagnosis of these factors for the particular research situation at 
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hand. A tactic that is almost always effective, though, is procedural and statistical variance 

control. Procedural variance control means tight standardization of treatment and control 

conditions, sampling, and measurement, while statistical variance control uses such 

techniques as covariates or blocking factors to separate variance judged irrelevant to the 

assessment of treatment effects from the error term for significance testing (see above). As 

shown by Lipsey [23], such techniques can sometimes increase the operative effect size 

two or threefold or even more.  

Thus, when designing SE experiments, the goal should be to obtain the largest possible 

effect size with the smallest investment in the number of subjects studied. This 

presupposes that the researcher understands the factors that influence statistical power and 

skilfully applies that knowledge in the planning and implementation of each study 

undertaken. For a more in-depth treatment of these issues, see Lipsey’s excellent work on 

design sensitivity to the statistical power of experimental research [23]. 

5.4 Limitations 

The main limitations of this study are publication selection bias and inaccuracy in data 

extraction. As the basis for our investigation was the recent survey of controlled SE 

experiments performed by [40], the current study has the same publication selection basis 

as the main study. However, we consider the 12 surveyed journals and conferences to be 

leaders in software engineering in general and empirical software engineering in particular. 

Besides, Sjøberg et al.’s selection of journals is a superset of those selected by others (e.g., 

[17,44]. Nevertheless, if the main study also had included the grey literature (theses, 

technical reports, working papers, etc.) on controlled SE experiments, the current study 

could, in principle, provide more data and possibly allow more general conclusions to be 

drawn [19]. Regarding the selection of articles, the main study utilized a multistage process 

involving several researchers who documented the reasons for inclusion/exclusion as 

suggested in [19] (see [40]). 

As described in Section 3, the first two authors read all 103 articles included in the 

main study in detail and made separate extractions of the power data. Based on these two 

data sets, all three authors reviewed all tests in all experiments to reach a consensus on 

which experiments and tests to include. However, because it was not always clear from the 

reporting of the studies which hypotheses were actually tested, which significance tests 
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corresponded to which hypotheses, or how many observations that were included for each 

test, the extraction process may have resulted in some inaccuracy in the data. 

5.5 Recommendations for future research 

Based on the problems that we have identified that are associated with statistical power in 

experimental SE research, we offer some recommendations to SE researchers who perform 

null hypothesis testing.  

First, before embarking on studies involving statistical inference, we recommend that 

SE researchers plan for acceptable power on the basis of attention to the effect size, either 

by assessing previous empirical research in the area and using the effect sizes found in 

these studies as a guide, or by looking at their own studies and pilot studies for guidance. 

However, due to the limited number of empirical studies in SE this approach may be 

difficult to apply [29]. Alternatively, researchers can use a judgmental approach to decide 

what effect size they are interested in detecting. However, until there is a better basis for 

establishing conventions specific to SE, we recommend the same general target level of 

medium effect sizes as used in IS research, determined according to Cohen’s definitions 

[12]. 

Second, we recommend that SE researchers analyze the implications of the relative 

seriousness of Type I and Type II errors for the specific treatment situation under 

investigation. Unless there are specific circumstances, we do not recommend that 

researchers relax the commonly accepted norm of setting alpha to .05. Similarly, we 

recommend that SE researchers plan for a power level of at least .80 and perform power 

analyses accordingly. Thus, rather than relaxing alpha, we generally recommend increasing 

power to better balance the probabilities of committing Type I and Type II errors. 

Third, in agreement with Kitchenham et al. [20] and Wilkinson et al. [42], we 

recommend that significance tests of experimental studies be accompanied by effect size 

measures and confidence intervals to better inform readers. In addition, studies should 

report the data for calculating such items as sample sizes, alpha level, means, standard 

deviations, statistical tests, the tails of the tests, and the value of the statistics. 

Finally, we recommend that journal editors and reviewers pay closer attention to the 

issue of statistical power. This way, readers will be in a better position to make informed 

decisions about the validity of the results and meta-analysts will be in a better position to 

perform secondary analyses. 
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6 Conclusion 
The purpose of this research was to perform a quantitative assessment of the statistical 

power of current experimental SE research. Since this is the first study of its kind in SE 

research, it was not possible to compare the statistical power data of the current study with 

prior experimental SE research. Therefore, we found it useful to draw on the related 

discipline of IS research, because this provided convenient baseline data for measuring and 

validating the results of the statistical power analysis of this research. 

The results showed that there is inadequate attention to power issues in general, and 

that the level of statistical power in SE research falls substantially below accepted norms as 

well as below the levels found in the related discipline of IS research. For example, only 

six percent of the studies in this analysis had power of .80 or more to detect a medium 

effect size, which figure is assumed as the target level by most IS researchers. 

In conclusion, attention must be directed to the adequacy of sample sizes and research 

designs in experimental SE research to ensure acceptable levels of power (i.e., 1–β ≥ .80), 

assuming that Type I errors are to be controlled at α = .05. At a minimum, the current 

reporting of significance tests should be enhanced by reporting the effect sizes and 

confidence intervals to permit secondary analysis and to allow the reader a richer 

understanding of, and an increased trust in, a study’s results and implications. 
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Appendix A: A numeric guide to sample size for the t-test 

We assume that a researcher plans to test a non-directional hypothesis that two means do 

not differ by conducting a controlled experiment with one experimental and one control 

group. Such a study can be analyzed suitably with an unpaired t-test with two-tailed 

rejection regions. 

 

The effect size index (d) under these circumstances can be calculated by 

 

σ
CE MM

d
−

=  

 

where ME is the mean score of the experimental group; 

 MC is the mean score of the control group; and 

 σ is the standard deviation based on either group or both. 

 

A small effect size would be d = .2, a medium effect size would be d = .5, while a large 

effect size would be d = .8. 

The sample size9 (N) required for each group as a function of effect size, alpha, and 

power is shown in Table A.110. As an example, if the researcher wants to be able to detect a 

medium difference (d = .5) between the two independent means at α = .05, a sample size of 

N = 64 is required in each group. Similarly, at the same alpha level, if the researcher has 60 

subjects available for the experiment, a power level of .85 will be attained for detecting a 

large effect size. Alternatively, by relaxing the alpha level to .10, 30 subjects in each group 

would yield a power of .60 to detect a medium effect size. 

                                                 
9 In fact, the samples size in the table represents the harmonic mean of the sample sizes in the treatment and 
control groups. 
10 Calculation of the sample sizes in Table A.1 was made with SamplePower 2.0 from SPSS. 
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Table A.1: A numeric guide to sample size for small, medium, and large effects sizes for different 
values of α and power for a two-tailed t-test. 

 α = .01 α = .05 α = .10 

Power d = .2 d = .5 d = .8 d = .2 d = .5 d = .8 d = .2 d = .5 d = .8 

.95 893 145 58 651 105 42 542 88 35 

.90 746 121 49 527 86 34 429 70 28 

.85 655 107 43 450 73 30 361 59 24 

.80 586 96 39 394 64 26 310 51 21 

.75 530 87 35 348 57 23 270 44 18 

.70 483 79 32 310 51 21 236 39 16 

.65 441 72 30 276 45 19 207 34 14 

.60 402 66 27 246 41 17 181 30 12 

.55 367 61 25 219 36 15 158 26 11 

.50 334 55 23 194 32 14 136 23 10 
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Abstract 
An effect size quantifies the effects of an experimental treatment. Conclusions drawn from 

hypothesis testing results might be erroneous if effect sizes are not judged in addition to 

statistical significance. This paper reports a systematic review of 92 controlled experiments 

published in twelve major software engineering journals and conference proceedings in the 

decade 1993-2002. The review investigates the practice of effect size reporting, summarizes 

standardized effect sizes detected in the experiments, discusses the results and gives advice 

for improvements. Standardized and/or unstandardized effect sizes were reported in 29% of 

the experiments. Interpretations of the effect sizes in terms of practical importance were not 

discussed beyond references to standard conventions. The standardized effect sizes computed 

from the reviewed experiments were equal to observations in psychology studies and slightly 

larger than standard conventions in behavioural science. 

  

Keywords: Empirical software engineering; Controlled experiments; Effect size; Statistical 

significance; Practical importance. 
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1 Introduction 
Software engineering experiments investigate the cause-effect relationships between 

treatments applied (process, method, technique, language, tool, etc.) and outcome variables 

measured (time, effectiveness, quality, efficiency, etc). An effect size is the magnitude of the 

relationship between treatment variables and outcome variables, and is computed on the basis 

of the sample data to make inferences about a population (analogously to the concept of 

hypothesis testing). An effect size tells us the degree to which the phenomenon under 

investigation is present in the population. There are several types of effect size measures11, for 

example, correlations, odds ratios and differences between means. 

 Wrong or imprecise conclusions might be drawn from hypothesis testing results if effect 

sizes are not judged in addition to statistical significance. In particular, p-values are 

insufficient for decision-making; if an experiment includes a sufficient number of subjects, it 

is always possible to identify statistically significant differences, or if the experiment includes 

too few subjects (insufficient power), p-values may also be misleading. So, whereas p-values 

reveal whether a finding is statistically significant, effect size indicates practical significance, 

importance or meaningfulness. Interpreting effect sizes is thus critical, because it is possible 

for a finding to be statistically significant but not meaningful, and vice versa [7, 27]. Hence, 

as also recommended by others [12, 23, 29], effect sizes should be part of experimental results 

in software engineering.  

 There is no unambiguous mapping from an effect size to a value of practical importance. 

Hence, observed effect sizes must be judged in context [2, 9, 18, 21, 35, 36, 41, 42, 45]. Even 

small effects might be of practical importance. For example, the optimization of a defect-

detection method that yields only a one percent increase in error detection would be of little 

practical importance for most types of software, but might be of high practical importance for 

safety-critical software, particularly if the added one percent belongs to the most critical type 

of errors. This means that a contextual, subjective judgment of observed effect sizes must be 

made and a ritualized interpretation avoided. Hence, not only is the reporting of effect sizes 

important, but also a nuanced interpretation and discussion of those values.  

 Effect size estimation is not a new method. An approach to determining the magnitude of 

the effect of agricultural treatments was published seven decades ago [3], and reporting effect 

sizes in addition to statistical significance has been recommended for a long time in 

                                                 
11  We will refer to specific values as effect sizes, and ways (formulae) to compute effect sizes as effect size 
measures. 



  1  Introduction 

 153 

behavioural science [4, 45]. Reporting effect sizes is also urged in medical science. A group 

of scientists and editors have developed the CONSORT statement to improve the quality of 

reporting of randomized clinical trials. One recommendation is that one should report “for 

each primary and secondary outcome, a summary of results for each group and the estimated 

effect size and its precision (e.g., 95% confidence interval)” [1]: p.682]. 

 In addition to being meaningful in the analysis and reporting of experimental results, 

previously published effect sizes can be used in meta-analyses [17] and in statistical power 

analyses [5, 27], and for comparison purpose. Such use requires the reporting of either effect 

sizes, or sufficient data for effect size estimation. 

 This article reports on a systematic review of the literature on effect size issues in 

controlled experiments published in empirical software engineering. A total of 113  controlled 

experiments were reported in the decade from 1993-2002 in 12 leading journals and 

conference proceedings in software engineering [39]. Of these 113 experiments,  this review 

investigates the 92 for which statistical hypothesis testing was performed and primary tests 

were identifiable. The aim of this review is to investigate the following: 

 

• The extent of effect size reporting and the interpretation of the effect sizes given by the 

authors of the reviewed experiments, i.e., the extent to which effect sizes are used to 

describe the experimental result as a supplement to statistical significance, and when 

effect sizes are reported, how they are described and interpreted. This investigation is 

motivated by the belief that the use of effect sizes affects conclusions made from 

experiments.  

• The extent to which experimental results are reported in such a way that standardized 

effect sizes can be estimated. This is an assessment of the completeness of the reporting of 

descriptive statistics. A complete reporting of descriptive statistics will allow the reader to 

verify the reporting of test results and effect size estimates, and to estimate effect sizes 

other than those reported.   

• The standardized effect sizes detected in software engineering experiments. The rationale 

for this investigation is to provide an overview of effect sizes detected in software 

engineering experiments so that researchers can make relative comparisons of observed 

effect size estimates. 

 

 The remainder of this paper is organized as follows. Section 2 summarizes relevant 

concepts and measures of effect size. Section 3 describes the research method applied in this 
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review. Section 4 reports the results. Section 5 discusses the findings, the implications for 

power analysis, the limitations of the study, and presents guidelines for reporting effect sizes. 

Section 6 concludes.  

2 Background: effect size 
The effect that one inspection method has on the number of defects detected compared with 

another inspection method is an example of an effect in software engineering that we wish to 

investigate by conducting experiments. This unknown effect is referred to as the population 

effect size. It cannot be computed directly as long as we do not have access to the total 

population of subjects that falls within the scope of the research questions of our 

investigation. However, the population effect size may be estimated from sample data from a 

single experiment. Estimated effect sizes from several experiments can further be aggregated 

and analyzed to provide even stronger foundations for inferences about the population effect 

size (meta-analysis).  

 Figure 1 gives an overview of the effect size concepts described in the next sections. 

Measures of effect size can be classified as standardized or unstandardized. Standardized 

measures are scale-free because they are defined in terms of the variability in the data. Types 

of standardized measures of effect size are presented in Section 2.1. Unstandardized measures 

encompass all other types of effect size measures and will be described in Section 2.2.  

2.1 Standardized effect size 

Two families of standardized effect size measures are often referred to in the literature: the d 

family and the r family. Below, we will emphasize Hedges’ g in the d family and the point-

biserial correlation in the r family, because these are the two types applied in this review.  

2.1.1 The d family 

The d family consists of variations over standardized mean difference. Assume that we have 

two groups, Group 1 and Group 2. Moreover, assume that the experimental observations in 

Group 1, y11,…, y1n, are normally distributed with mean μ1 and variance σ2, and the 

observations in Group 2, y21,…,y2m, are normally distributed with mean μ2 and variance σ2. 



  2  Background: effect size 

 155 

 
 

Figure 1.   Population and estimated effect size as defined for software engineering and examples of types 
of effect size measures for the comparison of two treatment conditions. 

 

 

More specifically: 

Y1 ~ N (μ1, σ2) 

and 

Y2 ~ N (μ2, σ2) 
 

The population standardized mean difference effect size measure, which we will call dpop, is 

defined as  

 

σ
μμ 21, −=popddifferencemeandardizedtansPopulation                       (1) 

 

estimates 

Effect size estimate 
The observed effect of one experimental treatment condition (specific software engineering process, 
method, technique, language or tool) compared with another treatment condition with regards to a 
measured outcome. An example is the observed difference in comprehension of design documents 

(measured outcome) presented in UML and natural language (the two treatment conditions).  
 

Standardized effect size estimate 
A scale-free effect size estimate 

 

Unstandardized effect size estimate 
Measure expressed in the original outcome 
scale or in terms of percentages/proportions 

r family 
Correlations, 

“variance accounted 
for” 

Population effect size 
The effect of one software engineering process, method, technique, language or  tool compared with 

another one with regards to a measurable feature. An example is the difference in comparison of 
comprehension of design documents presented in UML versus natural language.  

• Point-biserial 
correlation  

• Mean difference 
• Median difference 
• Difference in 

percentage or 
proportions 

• Ratio of mean 
values 

• Other 

other 
 

• odds ratio 
• log odds ratio 
 

d family 
Variations of 

“Standardized mean 
difference” 

 
o Hedges’ g 
o Cohen’s d 
o Glass’ Δ 
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The population standardized mean difference takes positive or negative values, depending on 

the choice of μ1 and μ2. It is estimated by the difference between sample means ( 1Χ , 2Χ ) 

divided by an estimate of population standard deviation. Different estimators of the 

population standard deviation give different effect size estimators. The three estimators most 

often referred to in the literature are Hedges’ g, Cohen’s d and Glass’ Δ [24, 34]. Hedges’ g 

has the pooled standard deviation, Sp, as the standardizer: 

                       
ps
ΧΧgsHedge 21' −=                                                        (2) 

The pooled standard deviation is based on the standard deviations in both groups, s1, s2:  

 

                                             ,)1()1(
)1()1(

21

2
22

2
11

−+−
−+−= nn

snsnsp                                                 (3) 

 

 Cohen’s d also has the pooled standard deviation as its standardizer, but with ni replacing 

)1( −in in Formula (3) and in the estimators of the single si. Glass’ Δ applies the standard 

deviation in one group only; the one considered to be the control. According to [17], these 

three estimators have the same properties in large samples (i.e., they are equivalent in the 

limit (n1+n2)→∞), but Hedges’ g has the best properties for small samples when multiplied 

by a correction factor that adjusts for small sample bias (Formula 4 below). Hence, we 

applied Hedges’ g as the estimator for dpop in our investigation and will not consider Cohen’s 

d and Glass’ Δ further.  

    ,1)2(4
31' −−−= NgsHedgeforfactorcorrection                                (4) 

where N is the total sample size.  

 Hedges’ g assumes homogeneity of variance in the two experimental groups. Kline [24] 

suggests that if the ratio of the largest standard deviation over the smallest standard deviation 

is larger than four, the effect sizes should be calculated twice using each standard deviation 

and the diverging results discussed. Other solutions are to replace sp with an estimate of the 

standard deviation of whichever sample is the reasonable baseline comparison group [14], or 

to use the square root of the mean of s1, s2 [5].  

 Formulas (2) above are applicable for outcomes measured on the continuous scale. When 

aggregating study results from several studies and the standardized mean difference is to be 

estimated, there is a need for estimators that approximate a standardized mean difference 

effect size for variables that are measured on scales other than the continuous. When the 
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outcome is dichotomous (binary), approximations to the standardized mean difference can be 

expressed in terms of an arcsine transformation [15] or an odds ratio [24, 37, 38]. When the 

outcome is ordinal (e.g., small, medium, large) a continuous scale might be assumed and 

formulas (2) applied, but note that when the number of categories is less than five, this 

approach will underestimate the population effect size [38]. When nominal outcomes are 

used, the standardized mean difference must be computed for pairs of categories applying the 

methods for dichotomous outcomes. 

 When raw data is unavailable, or means and standard deviations are not reported, effect 

size estimation can be based on various kinds of statistics. This is relevant for meta-analyses 

or statistical power analyses, or if a reader wants to judge published results in terms of effect 

sizes when these are not reported. Table 7 shows the set of formulas for computing Hedges’ g 

that we applied in our investigation. Computation of Hedges’ g in 40 different ways is 

provided by the ES software tool [37, 38]. Descriptions of computations of standardized mean 

difference effect size estimates for ANOVA designs are provided in [11].  

2.1.2 The r family 
The r family consists of the Pearson product-moment correlation in any of its combinations of 

continuous and dichotomous variables [33]. For two treatment conditions and a continuous 

outcome, the effect size is called the point-biserial correlation, which we will refer to as rpb-

pop. When rpb-pop is squared, it is also called η2 and it can be interpreted to mean the proportion 

of variance accounted for by the population means. Hence, we can express the population 

point-biserial correlation as follows:  

Population point-biserial correlation, ,
2

2

total

treatment
pop-pb  r

σ
σ=              (5) 

where the numerator is the variance of the population means around the grand mean, and the 

denominator is the variance of all scores around the grand mean. rpb-pop has the value range 

[0,1]. An estimator of, rpb-pop, based on information from an ANOVA table, is obtained by 

taking the square root of the explained variance expressed in terms of the sum of squares of 

the treatments and the total sum of squares:  

                                             
Total

Treatment
pb SS

SSr =                                                                    (6) 

Formulas based on t-values and other statistics, as well as estimators that adjust for bias, are 

provided in [24, 28, 31, 32, 35].  
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 The point-biserial correlation is affected by the proportion of subjects in each 

experimental group. It tends to be highest in a balanced design and approaches zero when the 

design becomes more unbalanced [24]. As a consequence, rpb values from studies with 

different splits in the sample size will not be directly comparable. To counteract this, the 

following corrected rpb is recommended [19]: 

                                 ,
1)1( 22 +−

=
pb

pb
pb

ra
rarCorrected                                       (7) 

where qpa 25.0= , and p and q are the proportions of subjects in each experimental group 

(p+q=1).  

  Formula (6) above is applicable for outcomes measured on a continuous scale. When 

both variables are dichotomous, the population point-biserial correlation is called Φ and is 

expressed in terms of the proportions in a 2*2 table, [14]. When reporting results from a table 

larger than 2*2, an effect size estimator called Cramer’s V can be applied [14]. When a 

categorical outcome is measured on an ordinal scale (e.g., small, medium, large), a continuous 

scale can be assumed and a point-biserial correlation calculated as for continuous outcome 

[14]. The population effect size will be underestimated if fewer than five categories are 

applied [38].  

 It is possible to compute rpb from Hedges’ g, and vice versa. Information might be 

unavailable for computing one or the other, or one may prefer to view the results in terms of a 

correlation coefficient when g, say, is reported in an article. The following formula maps g to 

rpb [5, 35]: 

                                  ,
)/)2((*)/1(2 NNqpg

grpb
−+

=                               (8) 

                                                                                        

where N is the total sample size. Note that the formula is simplified by the factor 1/pq=4  for 

a balanced design, (p=q=0.5).  

2.1.3 Interpretation of standardized effect sizes 
It is not intuitively evident how to interpret standardized effect sizes. Some approaches are 

listed below and described further in this section.  

 

• Standardized effect sizes can be interpreted in terms of the properties of the formula, for 

example, distributional overlap for the standardized mean difference and explained 

variance for the point-biserial correlation. 
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• Standardized effect sizes can be compared with  

o effect sizes reported in similar experiments, 

o effect sizes reported in the research field in question, for example, software 

engineering as a whole, and  

o standard conventions for small, medium and large effect sizes developed for 

research in behavioural science.  

 

 The population standardized mean difference, dpop, is expressed in terms of mean 

difference divided by a measure of the variability in the data. We can interpret this formula as 

the degree of distributional overlap of values for two populations. A large degree of 

nonoverlap means a large effect size, and when the two distributions are perfectly 

superimposed, the effect size is zero [5], see Table 1.  

 
Table 1.  Distributional nonoverlap percentages for values of dpop [5] 

dpop 0.0 0.5 1.0 1.3 2.0 3.0 4.0 

Degree of non-overlap  0% 33% 55% 65% 81% 93% 98% 

 

This is further visualized in Figure 2: The unstandardized effect sizes (represented by the 

differences between the full and dotted vertical line) are equal in (a) and (b). However, the 

standardized effect size in (a) is larger than the one in (b), because the degree of non-overlap 

is larger in (a) than in (b). The standardized mean difference reflects what is visualized in the 

figure: The effect size seems important in (a) but might be hardly noticeable in (b).  

 A point-biserial correlation can be interpreted in terms of the property of its square root 

(see Formula 5 and 6); the percentage of total variance that is explained by treatment.  

 The second possibility of interpretation of a standardized effect size is to take advantage 

of its standardized property, i.e., that it is comparable across measurement scales. The best 

interpretation arises from comparison with experiments that test the same hypothesis as the 

one in question [9]. In the absence of such experiments, an alternative is to compare the 

 observed effect size to effect sizes reported in the field of interest. We present effect sizes 

observed in software engineering experiments in Section 4.2.2. A third alternative is to 

compare the observed effect size against standard conventions that have been developed in 
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Figure 2.   Illustration of how the standardized mean difference effect size can be  

  interpreted in terms of distributional overlap 

 

behavioural science. Values for small, medium and large population standardized effect sizes 

corresponding to various statistical tests and types of effect size measures are defined by 

Cohen (1988, 1992). His definitions are based on a combination of a subjective view of 

average effect sizes observed in behavioural science and a view of what small, medium and 

large effect sizes should mean. The definitions for dpop and rpb-pop are shown in Table 2.  

 Cohen proposed his definitions for statistical power analyses, to help researchers guess on 

effect sizes when no other sources for effect size estimation existed, i.e., no similar 

experiments or pilot studies. His definitions are also used to interpret observed effect sizes, 

but this is also only advisable when no other sources for effect size estimation are available 

[43]. In later papers, Cohen recommends reporting effect size with a corresponding 

confidence interval, but does not himself recommend applying the small, medium and large 

categories in the evaluation of observed effect sizes [6, 8]. 

 
Table 2.  Values for small, medium, and large dpop and rpb-pop [5] 

Effect size values Effect size index 

Small Medium Large 

dpop 

rpb-pop

Standardized mean difference 

Point-biserial correlation 

.20 

.10 

.50 

.24 

.80 

.37 

 

 The interpretations described above do not include any contextual information. To 

evaluate whether an observed effect is of practical importance for a specific context, the effect 

a) b)

Unstandardized effect size 
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size must be discussed in relation to each relevant contextual factor, for example, whether the 

size of efficiency improvement compensates for the effort needed for learning the new 

method.  

2.2 Unstandardized effect size 

Unstandardized effect size measures are expressed in terms of raw units of whatever is being 

measured. This may make the effect sizes easier to interpret, but in contrast to standardized 

effect sizes, they are not independent of measurement scale. Examples are these: (i) the 

difference between mean values (e.g., the difference in time taken to perform a given task 

when using two different methods), (ii) percentage mean difference, and (iii) the difference in 

proportion of subjects (e.g., the difference between experimental groups with respect to the 

proportion of subjects viewing a script as correct). The concept of population effect size 

applies here as well, for example, the effect size measure for population mean difference is 

expressed as follows: 

                                   ,21 μμ −=differencemeanPopulation                                             (9) 

 

where μi is the mean value in population i, which is estimated by the mean x i,  The 

standardized counterpart is the standardized mean difference (Formula 1).  

 Unstandardized effect sizes lend themselves more directly to interpretations of practical 

importance than do standardized values. For example, an unstandardized effect size of eight 

hours difference in development effectiveness between two methods used for the same task 

serves as a better basis for judging the practical importance of the result than a standardized 

effect size of g=0.5.  

2.3 Nonparametric effect size 

The standardized effect size measures described in the preceding sections assume parametric 

models for the outcome variable. Most of the standardized effect size measures developed are 

parametric. However, assuming parametric models may be inappropriate in many instances, 

and standardized nonparametric effect size measures based on median values have been 

suggested in the literature [16, 25, 26]. Computation of these measures requires raw data that 

is seldom available in articles presenting experimental results. Hence, these nonparametric 

effect size measures are appropriate for reporting effect sizes, but not always useful in meta-

analyses.  
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 Alternatives or supplements to the standardized nonparametric effect size measure are the 

unstandardized difference in median values or graphical presentations, for example, two box 

plots within the same figure for easy comparison.  

3 Research Method 
This section describes how we identified the controlled experiments and primary tests, what 

kind of information we gathered, and how effect size estimates were computed. 

3.1 Identification of controlled experiments and primary tests 

We assessed all the 103 papers on controlled experiments (of a total of 5453 papers), 

identified by Sjøberg et al. [39]. Table 3 shows the actual journals and conference 

proceedings, which were chosen because they were considered to be representative of 

empirical software engineering research. Furthermore, since controlled experiments are 

empirical studies that employ inferential statistics, they were considered a relevant sample in 

this study. The 103 articles reported 113 controlled experiments. The article selection process 

was determined from predefined criteria as suggested in [22], see [39] for full details. 

 Since the term “experiment” is used inconsistently in the software engineering community 

(often being used synonymously with empirical study), we use the term “controlled 

experiment”. A study was defined as a controlled experiment if individuals or teams (the 

experimental units) conducted one or more software engineering tasks for the sake of 

comparing different populations, processes, methods, techniques, languages or tools (the 

treatments). We did not distinguish between randomized experiments and quasi-experiments 

in this study, because both designs are relevant to software engineering experimentation. In 

this article, we consistently use the term ‘experiment’ in the above-mentioned sense of 

“controlled experiment”.  

 Results from several statistical tests were often reported in the reviewed articles; one 

article reported 74 tests. We therefore classified each statistical test as either primary or 

secondary. The primary test what the experiment is designed to evaluate. They were specified 

in the article by hypotheses or research questions. If no hypothesis or research question was 

stated, we classified as primary those tests that were described to address the main incentive 

of the investigation. Secondary tests comprised all other tests. 

 Two of the authors of this paper read all the 103 articles and made separate extractions of 

the primary tests. Then three of the authors reviewed these two data sets to reach a consensus 
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on which experiments and tests to include. In 14 of the experiments, no statistical testing was 

performed, and the corresponding articles were thus excluded from the investigation. Seven 

experiments were excluded because it was impossible to track which result answered which 

hypothesis or research question. Four experiments were reported in more than one article. In 

these cases, we included the most recently published. We identified 459 statistical tests 

corresponding to the main hypotheses or research questions of 92 experiments. Of these tests, 

we excluded 25 tests of interaction effects, because no well-developed procedures exist for 

computing effect sizes for interactions [11]. In addition, five tests were excluded because they 

were regression analyses and involved no treatment. Thus, the final set comprised 429 

primary tests, detected in 92 experiments and 78 articles (Figure 3). 

 
Table 3.  Distribution of articles describing controlled experiments in the period Jan. 1993 – Dec. 2002 

Journal/Conference Proceeding12 Number Percent 

Journal of Systems and Software (JSS) 

Empirical Software Engineering (EMSE) 

IEEE Transactions on Software Engineering (TSE) 

International Conference on Software Engineering (ICSE) 

IEEE International Symposium on Software Metrics (METRICS) 

Information and Software Technology (IST) 

IEEE Software 

IEEE International Symposium on Empirical Software Engineering (ISESE) 

Software Maintenance and Evolution (SME) 

ACM Transactions on Software Engineering (TOSEM) 

Software: Practice and Experience (SP&E) 

IEEE Computer 

TOTAL: 

24 

22 

17 

12 

10 

8 

4 

3 

2 

1 

- 

- 

103 

23.3 

21.4 

16.5 

11.7 

9.7 

7.8 

3.9 

2.9 

1.9 

1.0 

- 

- 

100% 

 

 

                                                 
12 The conference Empirical Assessment & Evaluation in Software Engineering (EASE) is partially included in 
that ten selected articles from EASE appear in special issues of JSS, EMSE, and IST. 
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103 Articles with  
con trolled experim en ts 

 
 

Figure 3.   Results of the literature review selection process. 

3.2 Information extracted 

For each primary test, we recorded 

• whether a standardized and/or unstandardized effect size or a graphical visualization of 

the effect size was reported, 

• when an effect size was reported, the interpretation of the effect size and whether practical 

importance was discussed, and 

• sample size, level of significance, p-value or information about rejection or acceptation of 

the null hypothesis, and whether the test was one or two-sided.  

 In addition, we registered descriptive statistics and estimated the standardized mean 

difference effect size for those tests with sufficient information reported. Our aim with this 

computation was to investigate the range of effect sizes in software engineering experiments 

across experimental topic, treatment and outcome. We therefore estimated the same 

standardized mean difference population effect size, dpop, for all tests, applying the absolute 

value for Hedges’ g as the estimator. Each estimate was corrected for bias by Formula 4 in 

Section 2.1.1.  

 The primary tests included parametric tests that compare mean values, nonparametric tests 

that compare median values or ranks, and tests of the values of dichotomous variables. The 

applied estimation formulas are listed in Table 7. 
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 We investigated the effect between two treatment conditions. Hence, when the primary 

test was an overall comparison of more than two treatment conditions, we looked at the pair-

wise comparisons (contrasts) for our effect size estimation.  

 We wanted to present the effect sizes as point-biserial correlations as well as standardized 

mean differences. The g-values were transformed into rpb, by applying Formula (8) in Section 

2.1.2. Then the values were corrected for unbalanced design by Formula (7). This correction 

did not change the values to a great extent, since half of the tests had balanced design and the 

split in sample size was larger than 70-30 for eight tests only (see Section 2.1.2). For those 

primary tests for which g could not be computed, there was not sufficient information to 

compute rpb, either. 

 As stated in Section 2.1.1, the pooled standard deviation assumes that the standard 

deviations are equal in both treatment groups. To check this assumption, we calculated the 

ratio of standard deviations, when these were reported. The ratio of the largest standard 

deviation over the smallest standard deviation exceeded four (Section 2.1.1) in seven tests. 

Consequently, we did not include effect sizes for these tests. 

 Ten tests were one-sided with results in the direction opposite to the alternative 

hypothesis. We regarded effect sizes for these tests as real effects and included them in our 

analysis.  

4 Results  
The findings comprise two main parts: (1) How effect sizes were reported in the surveyed 

experiments, with respect to the extent of reporting and interpretation of the reported values 

and (2) the result of our estimation of standardized effect sizes from information reported in 

the surveyed experiments.  

4.1 The reporting of effect sizes in the surveyed experiments 

4.1.1 Extent of effect size reporting 
Only 29% of the experiments reported at least one effect size; see Table 4. Two of the 92 

experiments reported both standardized and unstandardized effect sizes, eight reported 

standardized effect sizes only and 17 reported unstandardized effect sizes only. Standardized 

and unstandardized effect sizes were reported for, respectively, 55 and 46 of the 429 primary 

tests of the reviewed experiments. 
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Table 4.  Extent of effect size reporting for experiments and primary tests, presented per type of statistical 
test method 

 

Experiments Primary tests 

 

 

Total 

 

Parametric 

tests 

Non-

parametric 

tests 

Tests of 

dichotomous 

variables 

Levels of  

effect size reporting 

N % N % n % n % n % 

Both standardized and 

unstandardized  

2 2.2 3   0.7 3 1.0 0 0 0 0 

Standardized (only) 8 8.7 52 12.1 46 15.7 6 6.4 0 0 

Unstandardized (only) 17 18.5 43 10.0 32 10.9 6 6.4 5 11.9 

No effect size   65 70.7 331 77.2 212 72.4 82 87.2 37 88.1 

Total 92 100 429 100 293 100 94 100 42 100 

 

 The different types of effect size measures are related to types of outcome and thereby to 

types of statistical test. Table 4 shows that standardized effect sizes were reported most 

frequently for parametric tests (46+3 of 293, that is, 17 percent), only a few for nonparametric 

tests (6 percent) and not for any tests of dichotomous variables. The corresponding parametric 

tests were ANOVA and t-tests; the nonparametric tests were Wilcoxon match pair tests. The 

standardized mean difference was reported for all but one test, for which the point-biserial 

correlation coefficient was reported (for an ANOVA test).  

 Unstandardized effect sizes were reported in equal proportions for parametric tests and 

tests of dichotomous variables (32+3 of 293 and 5 of 42, respectively, that is, 12 percent) and 

to a lesser extent for nonparametric tests (6 percent) see Table 4. Most of the 46 

unstandardized effect sizes were reported as percentage mean difference (21 tests), but 

reported were also absolute mean difference (nine tests), difference in proportions or 

percentage (five tests), ratio of mean values (five tests), difference in average rank values 

(three tests) and confidence interval for the mean difference (three tests).  

 For most of the 331 primary tests for which no effect size was reported, mean values, 

frequencies or graphical presentations of results per experimental group were reported.  

 We compared the extent of effect size reporting according to whether the results were 

significant or not (as defined by the authors); see Table 5. For standardized effect sizes there 

was no difference, but unstandardized effect sizes were reported to a greater extent when 

significant results occurred than when non-significant results occurred (17.9 percent versus 

3.7 percent). 
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 Another factor that seems to influence the extent of effect size reporting is the number of 

treatment conditions tested in the experiment. None of the 51 primary tests that compared 

more than two treatment conditions reported the standardized effect size for the pair wise 

comparisons of treatments. Only four of these 51 tests reported the unstandardized effect size. 

4.1.2 The interpretation of the effect sizes given by the authors of the reviewed 
experiments 

Possible ways of interpreting the standardized effect size was presented in Section 2.1.3. In 

one of the surveyed experiment, the point-biserial correlation was interpreted as the 

percentage of explained variance, but the standardized mean difference effect size was not 

interpreted in terms of distributional overlap for any of the experiments. 

 
Table 5.  Reporting of effect size and significance of results 

Primary test results 

Significant Non-significant 

Levels of  

effect size reporting  

N n % N % 

Both standardized and unstandardized 

Standardized effect size (only) 

Unstandardized effect size (only) 

No effect size  

3 

52 

43 

331 

 3 

24 

35 

150 

1.42 

11.3 

16.5 

70.8 

 0 

28 

8 

181 

0 

12.9 

3.7 

83.4 

Total 429 212 100 217 100 

 

 One article reported and compared the standardized effect sizes from three related 

experiments. For the other experiments, standardized effect sizes were not compared with 

related research. In two experiments, effect sizes were reported to aid future researchers in 

planning their experiments, but the sizes were not discussed as part of the result. For the other 

experiments, standardized mean difference effect sizes were compared with Cohen’s 

conventions from behavioral science [5], for example:  

 

We intend to discuss all practically significant results and not constrain ourselves to 

discussing only statistically significant results. For this exploratory study we consider 

effects where γ ≥ 0.6 to be of practical significance (the unit is one standard deviation). 

We make this decision on the basis of effect size indices proposed by Cohen (1969).  

 

This author judged sizes above 0.6 to be of practical importance. Two authors considered 

sizes above 0.5 to be of practical importance and one author regarded observed sizes of 0.77 
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as large. The unstandardized effect sizes were reported with no interpretations or references to 

practical importance, for example, “Procedural roles reduced the loss of only singular defects by 

about 30%.”  

4.2 Our computation of standardized effect sizes from information 

provided in the surveyed experiments 

To identify the sizes of treatment effects found in software engineering experiments, we 

estimated standardized effect sizes for the primary tests in the reviewed experiments.  

4.2.1 Extent of information available for effect size estimation 

We managed to estimate standardized mean difference effect sizes for a total of 284 primary 

tests based on information provided in the reviewed articles. These tests were located in 64 

(70%) of the 92 reviewed experiments.  
 

Table 6.  Extent of effect size estimation per type of statistical test method 

Primary tests 
comparing two 
treatment conditions* 

Primary tests comparing 
more than two treatment 
conditions* 

Total number of 
effect sizes 
computed  

Statistical test method Total 
number of 
primary tests 

N #ES % N N % #ES #ES 

Parametric test of 
continuous dependent 
variable 

293  250 160 64 43 14 33 55 215 

  ANOVA 116  78 50 64 38 12 32 40  
 t-test 79  79 67 85 0    
 Paired t-test 39  39 35 90 0    
 ANCOVA 28  28 0 0 0    
 Tukey’s pair wise 

comparisons 
18  18 0 0 0    

 Repeated ANOVA 8  5 5 100 3 1 33 6  
 Poisson regression 3  3 3 100 0    
 Duncan posttest 

ANOVA 
1  0 1 0 0   

 Repeated MANOVA  1  0 1 1 100 9  
Nonparametric test of 
continuous dependent 
variable 

94  90 30 33 4 1 25 3 33 

 Wilcoxon 41  41 22 54 0    
 Mann-Whitney 39  39 2 5 0    
 Kruskal-Wallis 8  4 0 0 4 1 25 3  
 Rank-sum test 6  6 6 100 0    
Dichotomous dependent 
variable 

42  38 30 79 4 1 25 6 36 

 Chi-square 25  21 16 76 4 1 25 6  
 Fisher’s exact test 15  15 12 80 0    
 Proportion test 2  2 2 100 0    
Total 429  378 220 58% 51 16 31% 64 284 
* N: total number of primary tests.  n: number of primary tests for which effect sizes could be estimated for 
 the pair-wise comparisons, for tests comparing more than two treatments.  #ES: number of effect sizes 
 estimated  
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 The numbers of effect sizes that were estimated for the various statistical tests are shown 

in Table 6. Tests comparing two treatment conditions had sufficient information for effect 

size estimation to be reported for 64% of the parametric tests of continuous variables. The 

results for nonparametric tests and tests of dichotomous variables were 33% and 79%, 

respectively. The corresponding results for tests comparing more than two treatment 

conditions were lower; respectively, 33%, 25% and 25%. Hence, when more than two 

treatment conditions were compared in a test, information for effect size estimation for the 

corresponding pair-wise tests was, overall, sparsely reported in the reviewed articles.   

  Table 7 shows the formulas applied in our effect size estimation. Formula 2 was applied 

for the majority of tests, including 33 nonparametric tests. We considered mean values to be 

an appropriate measure of distributional location for nonparametric tests, as long as they were 

 

Table 7.  The estimation formulas for Hedges’ g that were applied in this investigation 

No Data needed and definition of 
terms Estimation formulas References 

Number 
of g 
estimated 

1 Hedges’ g 
 

g reported in the paper  18 

2 Mean values, standard 
deviations and group sample 
sizes 
 

ps

ΧΧ
g

21 −
=  

[28] 190 

3 Independent t-test value and 
sample size (n) for each group 
 

21

21
nn
nntg +=  [28] 16 

4 F-ratio from two groups, one 
way ANOVA 
 

21

21 )(
nn

nnFg +=  [28] 13 

5 P-value and sample 
size/degrees of freedom 

Find t-value based on the p-value and 
sample sizes, and use Formula 1. 
 

[28] 1 

6 Repeated measure design. 
One between-subject factor 
and one within-subject factor, 
t is the number of time points, 
MSbse is the between-subject 
mean square error and MSwse 
is the within-subject mean 
square error. 
 

Formula (2) in the text using the 
following estimate for standard deviation  

t
MStMSS wsebse )1( −+

=   

[38], where 
also estimators 
for MSbse and 
MSwse are 
provided. 

4 

7 Factorial design. 
 

Formula based on means, sample sizes, 
standard deviations, corrected for the 
other factors.         

[11, 30] 6 

8 Dichotomous outcome, 2*2 
table of frequencies. 

3

)ln()ln(
π

BoutcomeoddsAoutcomeoddsg −=  [15, 28, 38] 36 

Total 284 
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reported in the paper. In those cases where means and standard deviations were not reported, 

Formulas 3, 4, 5, 6 and 7, which are based on t-value, F-values, p-value, mean square error 

and/or sample sizes, respectively, were applied for parametric tests. Formula 8 was applied 

for tests of dichotomous variables when frequencies and sample sizes were reported. 

4.2.2 Standardized effect size values 
The values for the 284 estimates of Hedges’ g range from 0 to 3.40 with a median value of 

0.60; see Table 8. The cumulative percentages in the table are, for each g, the percentage of  

effect sizes equal to or below that value. For example, 68% of the effect sizes in our review 

are equal to or below g=1.00. For readers who prefer to view standardized effect sizes in 

terms of correlations, the rpb values are also presented in Table 8. The range of values is (0, 

0.87) with a median value of 0.3 and represents effect sizes that can be expected in studies 

with balanced design. When the design is unbalanced, the effect sizes tend to decrease with  
 

Table 8.  Accumulative percentages for estimated values for Hedges’ g and the point-biserial correlation 

Hedge’s g 

Cumulative percentages 
for 284 g effect size 
estimates in software 
engineering experiments 

 Point-biserial 
correlation 

Cumulative percentages 
for 284 rpb effect size 
estimates in software 
engineering experiments 

   0.00 7  0.00 7 
 .10 11  0.10 19 
 .20 19  0.20 35 
 .30 28  0.30 50 median 
 .40 35  0.40 62 
 .50 42  0.50 70 
 .60 50 median  0.60 84 
 .70 56  0.70 92 
 .80 60  0.80 97 
 .90 64  0.90 100 
1.00 68    
1.10 71    
1.20 73    
1.30 77    
1.40 83    
1.50 86    
1.60 88    
1.70 90    
1.80 90    
1.90 93    
2.00 95    
2.30 97    
2.50 97    
3.00 99    
3.40 100    
Mean g 0.81  Mean rpb 0.34 
Std g 0.69  Std rpb 0.23 
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increased split in experimental group sizes and the researcher should be aware of this when 

comparing rpb values from different experiments. 

  We defined size categories of the estimated g and rpb values by viewing the lower 33% of 

the effect sizes, the middle 34%, and the largest 33%. In Table 9, we present these categories, 

and we let the median value in these categories represent small, medium and large effect 

sizes. 

 
Table 9.  Small, Medium and Large categories for 284 estimated values for Hedges’ g and the point-

biserial correlation 
 

Hedges’ g Point-biserial correlation, rpb Size category 

Effect sizes Median Effect sizes Median 

Small (lower 33%) 0.00 to 0.376  0.17 0.00 to 0.193 0.09 

Medium (middle 34%) 0.378 to 1.000 0.60 0.193 to 0.456 0.30 

Large (upper 33%) 1.002 to 3.40 1.40 0.456 to 0.868 0.60 

5 Discussion 
This section discusses the findings, their implications, and the limitations to this review. 

5.1 Comparison with research in behavioural science 

It is only in the psychological and educational sciences that we have found similar 

investigations of effect size reporting, and these assessed only the reporting of standardized 

effect sizes. An assessment of 226 articles on educational and psychology research in 17 

journals published in 1994-1995 revealed that standardized effect sizes were reported in 16 

articles (7.1%) [20]. Both univariate and multivariate tests, analyzed by several different 

statistical methods, were included in these 226 articles. This is similar to the proportion of 

articles reporting standardized effect sizes found in our review (7.7%). 

 A study by Fidler et al. [13] investigated 239 articles published in 1993-2001 that reported 

new empirical data in the Journal of Consulting and Clinical Psychology. They found that 

standardized effect size was reported to a greater degree in articles that reported ANOVA 

tests and Chi-square tests, compared with our review; 32% and 13% compared with 3% and 

0, respectively; see Table 10. The extent to which standardized effect sizes were reported in 

articles that reported t-tests was similar in our and Fidler et al.’s investigation (15% and 16%, 

respectively).  
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Table 10.  Number of articles reporting effect size. Comparison of published experiments in software 
engineering and studies in psychology 

 

Type of statistical test method applied * Source 

ANOVA t-test Chi-square 

Articles reporting controlled experiments 

in software engineering (This review) 

 

3%   (1 of 32) 

 

16%  (5 of 32) 

 

0%  (0 of 9) 

Articles reporting psychology studies  [13] 32%  (38 of 120) 15%  (16 of 108) 13%  (16 of 126) 

*In our review,116 ANOVA tests were reported in 32 articles, 118 t-tests were reported in 32 articles and 25 chi-
square tests were reported in nine articles. 
 

 Considering the maturity of psychological and educational research compared with the 

relative young field of empirical software engineering, the sparse reporting of effect sizes in 

our field may be expected. It was more surprising to find similar results to those of Keselman 

et al. and Fidler et al. Still, this is a poor consolation, because the extent of effect size 

reporting in the field of psychological and educational research is regarded as too low, [13, 

20].  

 The sparse reporting of standardized effect sizes in software engineering might be due to 

effect size estimation’s being little known. It is not a topic in standard research methods 

courses, and formulas for the calculation of effect sizes do not appear in many statistical text 

books (other than those devoted to meta-analysis). This may improve, as recent literature in 

empirical software engineering recommends the reporting of effect sizes [12, 23, 29].  

 However, encouragements for the reporting of effect sizes do not seem to suffice. In the 

behavioural sciences, it has been suggested that changes in editorial policies will be required 

before reporting effect sizes will become a matter of routine [13, 44]. Trusty et al. [42] report 

that 23 journals in the social sciences now require that effect sizes be reported, and in their 

paper, they provide practical information for studies submitted to the Journal of Counseling & 

Development on generating, reporting and interpreting effect sizes for various types of 

statistical analysis. 

 We found one study in the behavioural sciences on the aggregation of standardized effect 

sizes that was comparable with ours; 1766 effect sizes (standardized mean differences) were 

estimated from 475 psychotherapy studies [10, 40]. This study found the same distribution of 

effect sizes as we obtained. Hence, the treatment effects observed in software engineering 

experiments are of the same magnitude as effects found in a large number of psychotherapy 

studies; the same average and nearly the same spread of values.  
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 As shown in Table 9, we categorized the effect sizes in our review into the 33% smallest, 

the 34% middle and 33% largest values and let the median values in these categories 

represent small, medium and large values in the data. In Table 11, we compare the 

standardized mean difference effect sizes with corresponding results from an aggregation of 

average effect sizes from meta-analyses of psychological, educational and behavioural 

treatments effectiveness [27] (including the study of psychology studies by Smith et al.) and 

the conventions for small, medium and large effect sizes in the behavioural sciences [5]. 
 
 

Table 11.  Small, medium and large standardized mean difference effect sizes as observed in this review, 
in an aggregation of meta-analyses in the social sciences and the conventions in the behavioural sciences 

 

Standardized mean 

difference values 

Source N 

Small Medium Large 

Software engineering experiments (this review)* 284 effect sizes  0.17 0.60 1.40 

Meta-analyses of psychological, educational and 

behavioural studies, [27]† 

102 average effect 

sizes 

0.15 0.45 0.90 

Conventions from the behavioural sciences, [5]  Not empirically based 0.20 0.50 0.80 

  *  The effect sizes were obtained as the median values for the 33% smallest, the 34% medium and  
   the 33% largest values. 
 †  The effect sizes were obtained as the middle point among the 33% smallest, the 34% medium  
  and the 33% largest values. 
 

 The medium and large effect sizes in our review are larger than those observed in the 

meta-analyses and the conventions from the behavioural sciences. (Note that when we 

considered the median value as appropriate measure of the middle of the categories, the 

middle point values were even larger: (small: 0.19, medium: 0.69 and large: 2.2). The 

discrepancies between the aggregated effect sizes on a study level and the aggregated effect 

sizes on a meta-analysis level can be explained by the fact that the smallest and largest values 

on a study level disappear in the overview of average values on the meta-level. The standard 

conventions in the behavioural sciences seek to represent average values, which seems to be 

confirmed by the results from the aggregation of meta-analyses. Hence, as our results are the 

same as those from the aggregation of psychology studies, this might indicate that the 

conventions from the behavioural sciences (i.e. Cohen’s definitions) are appropriate 

comparators for average effect sizes in software engineering experiments as well (when 

relevant related research is not present). The effect sizes obtained in our review provide 
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additional information about the range of values in our field for Hedges’ g and the point-

biserial correlation. 

5.2 Guidelines for reporting effect sizes  

This section offers guidelines on how to report effect sizes.   

5.2.1 Always report effect size 
We recommend always reporting effect sizes as part of the experimental results, because there 

is a risk of making poor inferences when effect sizes are not assessed: (A) nonsignificant 

results might erroneously be judged to be of no practical importance, and (B) statistical 

significance might be mistaken for practical importance; see Table 12.  

 
Table 12.  Potential problems of inference, when the effect size is not reported,, as a function of statistical 

significance and effect size  [35] 
 

Effect size Statistical 
significance Acceptably large Unacceptably small 
p-values low 
enough 
 

No inferential problem (B) Mistaking statistical significance for practical 
importance 

p-values too 
high 

(A) Failure to perceive 
practical importance of “non-
significant” results 

No inferential problem 

 

 The advantage of assessing both effect sizes and statistical significance when making 

inferences is illustrated by one of the reviewed experiments in which object-oriented design 

was compared with structured design with respect to the percentage of task-related questions 

that were answered correctly. The results of statistical tests were nonsignificant at the 0.1 

level. The standardized effect size was reported as 0.7, which was regarded as practically 

important according to Cohen’s definitions. The sample size was 13, whereas 56 subjects 

were needed to achieve a power of 80% at the 0.1 level of significance. If only statistical 

significance had been reported, the result would have seemed less important than the effect 

size suggested it to be. 

5.2.2 Discuss practical importance 
The evaluation of effect sizes based on average values or standard conventions is a first step 

on the road to assessing the practical importance of the result. For a complete evaluation of 

practical importance, the effect sizes must be judged in context. Since judging the practical 

importance of one's experiment is nearly impossible without the relevant situational context 
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and since the experimental results may be applicable in a wide range of contexts, it may be 

unrealistic to expect researchers to grade their results in terms of practical importance in their 

research papers. Nevertheless, we believe that the relevance of software engineering studies 

would be increased if researchers discussed this issue, possibly through illustrative examples.  

 Moreover, when an appropriate effect size is reported, the reader can assess practical 

importance by applying it in their context-specific cost-benefit analysis, as also suggested by 

[36].  

5.2.3 Report both standardized and unstandardized effect size 
We recommend reporting both standardized and unstandardized effect sizes, because these 

two types are supplementary. A standardized effect size includes the variability in the data 

and gives a complete “average” based on all the data in the sample. There are several 

approaches to interpreting standardized effect sizes as described in Section 2.1.3. Apply each 

of them if they bring more information to bear regarding discussion of the result. Moreover, 

reporting standardized effect sizes aids researchers in planning new experiments (power 

analysis) and enables comparisons with their own findings. 

 An unstandardized effect size is easier to interpret than a standardized one and serves as a 

good basis for discussing practical importance. We place particular emphasis on the value of 

measures in percentages, which makes the measure applicable to larger-scale projects.  

5.2.4 Use the tool box of effect size measures 
Many types of standardized effect size measures have been developed, 40 of which are 

presented in Kirk [21]. However, only two types were reported in the reviewed experiments: 

the standardized mean difference and the point-biserial correlation. Both of these are 

parametric. No standardized nonparametric effect size measures were used for the 22% of 

tests that were analysed by nonparametric methods, neither were any unstandardized effect 

size measures based on median values used.  

 When reporting experimental results, we will urge researchers to apply the effect size 

measure that best suites the data, e.g., nonparametric effect size measures for observations 

that cannot be assumed to have any known distribution. When aggregating results from 

different measurement scales, the choices are limited; the standardized mean difference effect 

size and the point-biserial correlation are most commonly used, because they provide good 

approximation formulas for variables that are not continuous.  
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5.2.5 Report confidence intervals 
When reporting an effect size, the accuracy of the estimate, measured in terms of a confidence 

interval, should be reported as well. Although the exact calculation of confidence intervals for 

a standardized effect size is complicated, good approximations exist for small effect sizes and 

sample sizes that exceed 10 per group. Descriptions of both exact methods and 

approximations are found in [14, 17, 24]. Calculating a confidence interval for an 

unstandardized effect size is simpler and is provided by most statistical reporting tools. 

5.2.6 Report descriptive statistics 
We recommend always reporting, for each experimental group, results as mean values, 

standard deviations, frequencies and sample sizes. When performing analysis of variance, 

report standard ANOVA table results. Such information enables the reader to estimate effect 

sizes. Even if you report the effect size measure you find most appropriate, the reader might 

wish to compute a different one, to aggregate results or for purposes of comparison. For 

factorial design, there might be different views on how to include the effect of different 

factors; hence, descriptive statistics for subgroups might be useful. 

5.3 Implication for power analysis 

For statistical power analysis, Dybå et al. [12] recommend applying a medium effect size, as 

defined by Cohen, (for example, g=0.5) when no other information about the population 

standardized effect size is available. Table 8 can be used as a guide to assess the likelihood of 

obtaining specific values for Hedges’ g and the point-biserial correlation. For example, there 

is a likelihood of 58% (100% - 42%) that Hedges’ g will be larger then 0.5 in software 

engineering experiments.  

 If only large effects are interesting to detect, a large effect size is appropriate to apply in 

the power-analysis. Moreover, if sufficient power is seen as difficult to achieve, we 

recommend abstaining from hypothesis testing, and recommend instead reporting effect sizes 

and confidence intervals when investigating hypotheses. Note that confidence intervals 

contain all the information to be found in significance tests and much more [8].  

5.4 Limitations of this study 

The main limitations to this investigation are selection bias regarding articles and tests, and 

possible inaccuracy in data extraction. The limitations regarding selection of articles and tests 

are described in, respectively, [39] and [12].  
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 The coding of effect size reporting has two limitations: it was performed by one person 

only, and the quantitative categorization represents a simplification of the complex matter of 

reporting experimental results. Important nuances might have been lost and some experiments 

treated “unfairly”. However, the categorization was checked, rechecked and discussed among 

all authors.  

 The effect size calculations were also performed by one person only. Moreover, those 

tests for which an effect size was not calculated, due to lack of sufficient information reported 

in the article, represent a limitation to the completeness of the presentation of effect sizes. 

Possible effect size calculation formulas and data that may have been used for effect size 

calculation might have been overlooked in the reported experiments. Finally, the calculated 

effects might be biased by any methodological inadequacies of the original studies.  

6 Conclusion  
 This review investigated the extent of effect size reporting in selected journals and 

conference proceedings in the decade 1993-2002, the interpretation of the effect sizes given 

by the authors of the reviewed experiments, the extent to which experimental results are 

reported in such a way that standardized effect sizes can be estimated, and the standardized 

effect sizes detected in software engineering experiments.  

 We found that effect sizes were sparsely reported in the reviewed experiments. Only 29% 

of the 92 experiments reported at least one standardized and/or unstandardized effect size, and 

only two experiments reported both. The extent to which standardized effect size was reported 

was equal to or below what is observed in research in psychology.  

 The standardized effect sizes were compared mainly with the standard conventions for 

small, medium and large values defined by Jacob Cohen for the behavioural sciences. The 

practical importance of the effect size in context was not discussed in any of the experiments.  

 We found sufficient information in the reviewed experiments to compute standardized 

effect sizes for 25% to 79% of the primary tests, depending on the type of test.  

 The effect sizes computed in this investigation were similar to what is observed in 

individual studies in research in psychology. These values are slightly larger than the standard 

conventions for small, medium and large effect sizes in the behavioural sciences. 

 Based on our experiences with working with this review, we have three main 

recommendations to make regarding effect size reporting. (1) Always report effect size in 

addition to statistical significance, to avoid erroneous inferences. (2) Avoid allowing the 
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effect size interpretation to become rigorous and a matter of routine. Apply the 

unstandardized effect size for discussions of practical importance in context. (3) Always 

report basic descriptive statistics, such as means, standard deviations, frequencies and sample 

size, for each experimental group. This will enable researchers to estimate their own choice of 

effect sizes.  
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Abstract  
Experiments in which study units are assigned to experimental groups nonrandomly are called 

quasi-experiments. They allow investigations of cause-effect relations in settings in which 

randomization is inappropriate, impractical, or too costly. The procedure by which the 

nonrandom assignments are made might result in selection bias, that is, pre-experimental 

differences between the groups that could influence the results. By detecting the cause of the 

selection bias, and designing and analyzing the experiments accordingly, the effect of the bias 

may be reduced or eliminated. To investigate how quasi-experiments are performed in 

software engineering (SE), we conducted a systematic review of the experiments published in 

nine major SE journals and three conference proceedings in the decade 1993-2002. Among 

the 113 experiments detected, 35% were quasi-experiments. In addition to field experiments, 

we found several applications for quasi-experiments in SE. However, there seems to be little 

awareness of the precise nature of quasi-experiments and the potential for selection bias in 

them. The term “quasi-experiment” was used in only 10% of the articles reporting quasi-

experiments; only half of the quasi-experiments measured a pretest score to control for 

selection bias, and only 8% reported a threat of selection bias. On average, larger effect sizes 

were seen in randomized than in quasi-experiments, which might be due to selection bias in 

the quasi-experiments. We conclude that quasi-experimentation is useful in many settings in 

SE, but their design and analysis must be improved (in ways described in this paper), to 

ensure that inferences made from this kind of experiment are valid.  
 

Keywords: quasi-experiments, randomization, field experiments, empirical software engineering, selection bias, 

effect size. 
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1 Introduction  
In an experiment, an intervention is introduced deliberately to observe its effects. This is the 

control that essentially allows the observation of treatment-outcome relations in experiments. 

Internal validity pertains to the validity of inferring causal relationships from these 

observations, that is, “whether observed co-variation between A (the presumed treatment) and 

B (the presumed outcome) reflects a causal relationship from A to B as those variables were 

manipulated or measured” [39]. A challenge in this respect is that changes in B may have 

causes other than the manipulation of A. One technique to help avoid such alternative causes 

is randomization, that is, the random assignment of study units (e.g., people) to experimental 

groups, including blocked or stratified randomization, which seeks to balance the 

experimental groups according to the characteristics of the participants.   

 However, randomization is not always desirable or possible. For example, in software 

engineering (SE), the costs of teaching the experimental subjects all the treatment conditions 

(different technologies) so that they can apply them in a meaningful way may be prohibitive. 

Moreover, when the levels of participants’ skill constitute treatment conditions, or if different 

departments of companies constitute experimental groups, randomization cannot be used.  

 Laitenberger and Rombach [23] claim that quasi-experiments (in which study units are 

assigned to experimental groups nonrandomly) represent a promising approach to increasing 

the amount of empirical studies in the SE industry, and Kitchenham [21] suggests that 

researchers in SE need to become more familiar with the variety of quasi-experimental 

designs, because they offer opportunities to improve the rigour of large-scale industrial 

studies. 

 Different nonrandom assignment procedures produce different potential alternative causes 

for observed treatment effects. Hence, in order to support internal validity in quasi-

experiments, these potential alternative causes must be identified and ruled out. This is done 

in the design and analysis of the experiment, for example, by measuring a pretest score and 

adjusting for initial group differences in the statistical analysis. According to Shadish [37], the 

theory of quasi-experimentation [4, 5, 8] provides (1) alternative experimental designs for 

studying outcomes when a randomized experiment is not possible, (2) practical advice for 

implementing quasi-experimental designs, and (3) a conceptual framework for evaluating 

such research (the validity typology). The theory was developed for research in social science 

and has also been recognized in other fields of research, such as medical informatics [14], 

environmental research [24], and economics [29]. 
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 Even though the theory of quasi-experiments asserts that quasi-experimentation can yield 

plausible inferences about causal relationships [37], it seems that in many disciplines there is 

little awareness of the fact that proper inferences from quasi-experiments require methods 

different from those used for randomized experiments. Shadish et al. [39] claim that the most 

frequently used quasi-experimental designs typically lead to causal conclusions that are 

ambiguous, and empirical results from research in medical science and psychology indicate 

that randomized experiments and quasi-experiments provide different results [6, 7, 15, 38]. 

The purpose of this article is to report the state of practice in SE on these matters. This is done 

by a systematic review of the 113 experiments reported in the decade from 1993-2002 in 12 

leading journals and conference proceedings in SE [44]. We investigate the extent of quasi-

experimentation in SE, the types of quasi-experiments that are performed, how the quasi-

experiments are designed and analyzed, how threats to validity are reported, and whether 

different results are reported for quasi-experiments and randomized experiments. 

 The remainder of this article is organized as follows. Section 2 presents the concepts used 

in this investigation. Section 3 describes the research method applied. Section 4 reports the 

results of this review. Section 5 discusses the findings and limitations of this review. Section 

6 concludes.  

2 Background 
In this article, we use the vocabulary of experiments defined by Shadish et al. [39], Table 1. 

Quasi-experiments are similar to randomized experiments, apart from the fact that they lack a 

random assignment of study units to experimental groups (randomization13). In a between-

subject design, there is exactly one experimental group for each treatment condition, and the 

assignment procedure then assigns each subject to exactly one treatment. In a within-subject 

design, experimental groups contain multiple treatments, possibly in different orders, and in 

this case, the assignment procedure assigns each subject to one of these multiple treatment 

sequences. We use the following operational definition of a controlled experiment defined by 

Sjøberg et al. [44]: 

  

A controlled experiment in software engineering is a randomized or quasi-experiment, 

in which individuals or teams (the study units) conduct one or more software 

                                                 
13 The random assignment of study units to treatment conditions should not be confused with the random 
selection of study units from the study population to form the study sample, which is also referred to as random 
sampling.  
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engineering tasks for the sake of comparing different populations, processes, methods, 

techniques, languages or tools (the treatments).  

 

 For simplicity, whenever we use the term “experiment” in the following, we use it in the 

above-mentioned sense of “controlled experiment.” Moreover, the notion to apply a treatment 

will be used, even if the participant’s level of SE skill also can constitute a treatment  

 
Table 1.  Vocabulary of experiments, from [39] 

Experiment: A study in which an intervention is deliberately introduced to observe its effects. 

Randomized Experiment: An experiment in which units are assigned to receive the treatment or an 

alternative condition by a random process, such as the toss of a coin or a table of random numbers. 

Quasi-Experiment: An experiment in which units are not assigned to conditions randomly. 

 

2.1 Methods of randomization 

Several types of method for random assignment are described in [39]. The two types most 

relevant for this study are simple random assignment (also called complete randomization) 

and random assignments from blocks (matches) or strata, which represent a restriction on the 

randomization.  

 In simple randomization, the participants are divided into each experimental group by a 

random procedure, that is; the probability of being assigned to a given group is the same for 

all the participants. Simple randomization does not guarantee equal experimental groups in a 

single experiment, but because differences are only created by chance, the various participant 

characteristics will be divided equally among the treatment conditions in the long run, over 

several experiments. In order to avoid large differences occurring by chance in a single 

experiment, blocking or stratifying can be used, in which study units with similar scores on 

the variables of interest are divided into blocks or strata and then assigned randomly to 

experimental groups from each block or stratum. When blocking, the participants are divided 

into pairs when there are two treatment conditions, into groups of three if there are three 

conditions, etc. When stratifying, the participants are divided into strata that are larger than 

the number of treatment conditions, for example, the 10 persons with the greatest number of 

years of programming experience in one stratum, and the 10 persons with the fewest number 

of years experience in another stratum. The use of blocks and strata in statistical analysis is 
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described in most statistical textbooks. Determining the optimum number of blocks for a 

given research setting is discussed in [12] and [31]. 

 Randomization methods span from flipping a coin to using a random number computer 

generator. The latter procedure is recommended in guidelines for statistical methods in 

psychology [49], because it enables the supply of a random number seed or a starting number 

that other researchers can use to check the methods later. 

2.2 Selection bias, the problem with quasi-experimentation 

Selection bias is a threat to internal validity. It is defined by Shadish et al. [39] to be 

“systematic differences over conditions in respondent characteristics that could also cause 

the observed effect.” When a selection is biased, treatment effects are confounded with 

differences in the study population. Selection bias is presumed to be pervasive in quasi-

experiments. Hence, the assignment procedures used in quasi-experiments may lead to pre-

experimental differences that in turn may constitute alternative causes for the observed effect. 

There may also be interactions between selection bias and other threats to internal validity. 

For example, the participants in one quasi-experimental group might drop out from the 

experiment (attrition) more often than participants from another experimental group, not 

because of the treatment, but because they have characteristics that participants in the other 

group do not have.  

 Different types of nonrandom assignment procedures might induce different types of 

causes for selection bias. For example, when projects are compared within a company, there 

is a chance that participants within projects are more alike than between projects, e.g., in 

terms of some types of skills that influence the performance in the experiment. Moreover, if 

the participants select experimental groups themselves, people with similar backgrounds 

might select the same group. Such differences between experimental groups might cause 

other differences of importance for the experimental outcome as well.  

 When the nonrandom assignment procedure has no known bias, it is called haphazard 

assignment. This might be a good approximation to randomization if, for example, 

participants are assigned to experimental groups from a sorted list on an alternating basis. 

However, when haphazard assignment is possible, randomization is often possible as well.  
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2.3 Design of quasi-experiments 

Experimental designs are built from design elements, which can be categorized into four 

types: assignment methods, measurements, comparison groups, and scheduling of treatments. 

Corrin et al. [9] and Shadish et al. [39] show how quasi-experimental designs can be 

strengthened by adding thoughtfully chosen design elements in order to reduce the number 

and plausibility of internal validity threats. Among these, we have chosen to describe those 

that we regard as particularly relevant for reducing selection threats in SE experiments: pretest 

measures, nonequivalent dependent variables, several experimental groups, and within-

subject design (see Table 2).  

 A pretest measure is either taken from a real pretest, i.e., from a task identical to the 

experimental task, but without any treatment, or it is a measure that is assumed to be 

correlated with the dependent variable, for example, a similar task (calibration task or training 

task) [3], exam score, or years of experience. The two latter examples are indicators of the 

performance of human subjects, which include skill, abilities, knowledge, experience, etc. A 

challenge is to define which of these characteristics are most relevant in the given 

experimental setting and to find good operationalizations of those indicators. Pretest scores 

are used when analyzing the final results to check, or adjust for, pre-experimental differences 

between the experimental groups. In haphazard assignment, a pretest score can also be used in 

the assignment procedure (similar to blocked or stratified randomization) to prevent initial 

differences between the experimental groups. 

 The nonequivalent dependent variable is an additional dependent variable that is expected 

not to be influenced by the treatments and is used to falsify the hypothesis of alternative 

explanations for treatment effects or lack of effect. For example, when the outcome is 

measured in terms of answers to a questionnaire, the nonequivalent dependent variables are 

questions, the answers to which are assumed not to be influenced by the treatment, but are 

related to the participants’ performance. If the answers from the outcome differ among the 

experimental groups, whereas the answers from the nonequivalent dependent variables do not 

differ among the groups, the belief that there are no other explanations for the results than the 

effect of the treatment is strengthened. If both the outcome and the nonequivalent variables 

differ among the experimental groups, there is an indication that treatment effects might be 

confounded with group effect. See [42] for an example of use of this kind of nonequivalent 

dependent variable. 



  2  Background 

 189 

 Applying several experimental groups allows control of how the quasi-experimental 

groups influence the results. If the same result is observed for several experimental groups 

using the same treatment, it confirms the belief that the result is due to treatment and not 

group characteristics. This is a kind of replication within the single experiment.  
 

Table 2.  Techniques for handling threats to selection bias 

Techniques Examples 
Pretest scores for controlling for pre-experimental 
differences between experimental groups 

Results from pre-treatment tasks or measures of 
indicators of subject performance, such as exam 
scores or years of experience.  

A nonequivalent dependent variable for falsifying the 
hypothesis of alternative explanations for observed 
effect or lack of effect. 

Time used to perform a task if the technology used 
can be assumed not to influence performance time. 

Several experimental groups for some or each 
treatment condition in order to allow comparison of 
effect of different types of groups. 

Each treatment condition is applied in two 
companies. 

Within-subject design for enabling each subject to be 
its own control. Note that this design requires control 
with possible learning effects. 

Cross-over design: Two programming languages 
are compared and half the participants apply first 
one language and then the other. The order of 
language is reversed in the other group. 

 

 The within-subject design is a method for compensating for initial experimental group 

differences, as each subject or team serves as its own control. The challenge with within-

subject designs is that a learning effect might be confounded with a treatment effect. If 

learning effects cannot be controlled, a within-subject design is inappropriate; see the 

discussion in [22]. Ways of controlling learning effects are several replications of treatment 

conditions, as in Design (a) in Table 3, or organising the cross-over-design in such a way that 

it is possible to estimate and compare all learning effects, as in Design (b) in Table 3. An 

example of a cross-over quasi-experiment is given by Laitenberger and Rombach [23]. 

 

 
Table 3.  Two types of strong quasi-experimental designs. 

a) Within-subject design, where the 
participants are exposed to all treatments 
several times and in the same order. 

 
G: X1O  X2O  X1O  X2O, etc. 

 
b) 2*2 cross-over design, where  

treatments are exposed to participants in 
opposite order in the two experimental 
groups. 

G1: X1O  X2O 
G2: X2O  X1O  

 Note: Gi refers to experimental group i, O refer to an observation/measurement and X refers to the use 
 of a treatment. 
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 Strategies for ruling out threats to selection bias are also presented by Reichardt [35]. 

These strategies mainly involve hypothesis formulations and constructions of comparison 

groups and are called relabelling, substitution, and elaboration:  

• In relabelling, the researcher rephrases the research question or hypothesis of the 

treatment effect to include the joint effect from treatment and the effect of the selection 

differences among the groups. The relabelling method can always be applied, but is 

probably the least desirable method to use because the hypothesis of joint effect is often 

not as interesting to investigate as the treatment effect alone.   

• Substitution implies that the comparison is substituted by another comparison or by a pair 

of other comparisons to control for the possible threats. For example, instead of making 

one comparison in which the selection threat is difficult to rule out, a pair of comparisons 

is made, in which one is constructed in such a way that the threat is expected to have a 

positive effect, and the other one in such a way that the threat is expected to have a 

negative effect. If the results of both comparisons are in the same direction, then the 

researcher can conclude that the threat has been taken into account.  

• Elaboration can be described as the “opposite” of substitution. The researcher retains the 

original comparison for which the selection threats are difficult to rule out, but does not 

replace it with a pair of comparisons as in substitution. Instead, he or she adds other 

comparisons by, for example, measuring a nonequivalent dependent variable or using 

several comparison groups, as described in Table 2. 

2.4 Analysis of quasi-experiments 

Cook and Campbell [8] give the following general advice when analysing quasi-experiments: 

(1) plan the design carefully, so as to have available as much information that is required for 

the analysis as possible, (2) use multiple and open-minded analyses, and (3) use an explicit 

appraisal of the validity of the findings and the plausibility of alternative explanations. 

 An open-minded analysis means to be prepared to not necessarily use standard procedures 

for analysis. An example is an investigation of two methods for software cost estimation 

accuracy [13]. Nineteen projects were used and each project self selected which estimation 

method to apply. The researchers observed that project characteristics (based on pretests 

scores) seemed to overrule the effect of the estimation method. Hence, they analysed the 

projects within blocks of similar projects.  
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 A pretest score may be applied in the analysis of continuous outcomes either (i) in an 

analysis of pretest-posttest differences (gain-score), (ii) by creating blocks or strata 

(retrospectively) within each experimental group on the basis of the pretest scores and 

including the blocking variable in the analysis (ANOVA with blocking or stratifying), or (iii) 

by applying the pretest as a covariate in the analysis (ANCOVA) [8]. These methods are 

described and compared in [8]. Among other things, a convincing illustration of how the use 

of a simple ANOVA yields an incorrect inference compared with using ANCOVA when the 

experimental groups differ at pretest. An example of the use of ANCOVA is reported in [3]. 

In that study, a calibration task was used to measure pretest scores (applied as a covariate in 

an ANCOVA), which affected the overall conclusion. Further improvement to an ANCOVA 

by making a reliability adjustment is suggested by Trochim [47].  

 Scepticism regarding the use of traditional statistical methods, such as ANCOVA, to 

adjust for selection bias is discussed by Lipsey and Cordray [27]. The major problem is the 

sensitivity of the results to the violation of model assumptions for such methods. Lipsey and 

Cordray recommend two groups of methods that have evolved over the last decade: The first 

is a sequential assessment, in which the first step is to analyse whether certain assumptions 

regarding the application of the treatment have been met. If the assumptions have been met, 

the outcome is analysed. The second method is growing program evaluation modelling, which 

focuses on repeated measures of the individual study unit as the base upon which to construct 

any other analysis of interest. 

 The use of Bayesian statistics is suggested by Novich [32]. He argues that statistical 

analyses involve much more than textbook tests of hypotheses and suggests applying 

Bayesian statistics because this method allows background information to be incorporated 

into the analysis. However, according to Rubin [36], sensitivity to inference of the assignment 

mechanism in nonrandomized studies is the dominant issue, and this cannot be avoided 

simply by changing the modes of inference to Bayesian methods.    

3 Research Method 
This section describes how the experiments and tests reviewed in this article were identified 

and how the data was gathered. 
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3.1 Identification of experiments  

The 103 papers on experiments (of a total of 5,453 papers), identified by Sjøberg et al. 

(2005), are assessed in this review. Table 4 shows the actual journals and conference 

proceedings, which were chosen because they were considered to be representative of 

empirical SE research. The 103 articles reported 113 experiments. The process for selecting 

articles was determined from predefined criteria, as suggested in (Kitchenham, 2004); see 

(Sjøberg et al., 2005) for full details. 

3.2 Information extracted 

Each of the 113 experiments was categorized as randomized experiment, quasi-experiment or 

unknown with respect to the assignment procedure. Since one experiment could comprise 

several tests for which some were exposed to randomization and some were not, we based our 

categorization on the primary tests when these could be identified. In total, 429 primary tests 

were identified in 92 experiments in a multi-review process; see [11] for details. We defined 

the primary tests to be what the experiments were designed to evaluate, as indicated in the 

descriptions of the hypotheses or research questions. If no hypothesis or research question 

was stated, we classified as primary those tests that were described to address the main 

incentive of the investigation. Secondary tests comprised all other tests.  

 
Table 4.  Distribution of articles describing controlled experiments in the period Jan. 1993 – Dec. 2002 

Journal/Conference Proceeding14 Number % 

Journal of Systems and Software (JSS) 
Empirical Software Engineering (EMSE) 
IEEE Transactions on Software Engineering (TSE) 
International Conference on Software Engineering (ICSE) 
IEEE International Symposium on Software Metrics (METRICS) 
Information and Software Technology (IST) 
IEEE Software 
IEEE International Symposium on Empirical Software Engineering (ISESE) 
Software Maintenance and Evolution (SME) 
ACM Transactions on Software Engineering (TOSEM) 
Software: Practice and Experience (SP&E) 
IEEE Computer 
TOTAL: 

24 
22 
17 
12 
10 
8 
4 
3 
2 
1 
- 
- 

103 

23.3 
21.4 
16.5 
11.7 
9.7 
7.8 
3.9 
2.9 
1.9 
1.0 
- 
- 

100% 

  

                                                 
14 The conference Empirical Assessment & Evaluation in Software Engineering (EASE) is partially included, in 
that 10 selected articles from EASE appear in special issues of JSS, EMSE, and IST. 
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 The assignment procedure was not always described clearly in the articles. An experiment 

was categorized as randomized if it was stated explicitly that randomization was used for all 

the primary tests. An experiment was categorized as a quasi-experiment when a nonrandom 

procedure was reported explicitly for at least one primary test and when the experimental 

design or the experimental conduct was such that randomization was obviously impossible for 

at least one primary test. In other cases, the experiment was categorized as unknown. An e-

mail request was sent to the authors of the experiments with an unknown assignment 

procedure. Answers were received for 20 experiments, for which eight apparently employed 

randomization and are categorized as such in this review.  

 In 14 of the experiments, no statistical testing was performed. In seven experiments, it 

was impossible to track which result answered which hypothesis or research question. For 

these 21 experiments (which are included in the review), no primary tests were identified and 

hence, the assignment procedure was determined from the description of assignment to the 

experimental groups. When teams were used as the study unit, we regarded the assignment 

procedure to be the assignment of teams to experimental groups. We regarded the forming of 

the teams as being part of the sampling procedure.  

 In addition to the categorization of each experiment as randomized experiment, quasi-

experiment or unknown with respect to the assignment procedure, the following attributes 

were registered per primary test: 

• study unit 

• assignment method for randomized experiments and assignment procedure for quasi-

experiments  

 

Moreover, the following attributes were registered per experiment: 

• whether pretest scores were measured and used in the assignment procedure, descriptive 

analysis and/or statistical analysis of outcome for at least one primary test 

• whether between-subject or within-subject design was used 

• whether techniques, other than using a pretest, were used for ruling out threats to selection 

bias for at least one primary test 

• whether the cross-over experiments assessed the results for differences in learning effects 

for at least one primary test 

• whether internal validity was addressed for at least one primary test 

• whether threats to selection were reported for at least one primary test 
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• Whether professionals was used as study unit 

• Whether commercial applications were used 

• standardized mean difference effect size for each primary test 

 

Regarding the last five bulleted points, data on internal validity, threats to selection, the 

use of professionals, and the use of commercial applications were gathered by Sjøberg et al. 

[44] and effect size was estimated by Kampenes et al. [19]. This data is presented separately 

for quasi-experiments and randomized experiments in this article. 

Although attributes for data collection should ideally be determined prior to a review [20], 

our experience is that the determination of which attributes to use and their appropriate 

wording often needs revision during data collection. We therefore conducted a dual-reviewer 

(VBK, JEH) pilot on approximately 30 % of the articles in order to stabilize (1) the 

comprehension of description of study unit and experimental design and (2) the categorization 

of each experiment as randomized experiment, quasi-experiment or unknown.  

4 Results  
This section presents the extent of randomization observed in the reviewed experiments and 

how the quasi-experiments were designed and analyzed compared with randomized 

experiments. 

4.1 Extent of quasi-experiments 

Of the 113 surveyed SE experiments, 40 (35%) were quasi-experiments (Table 5), although 

the term “quasi-experiment” was used for only four experiments. There were 66 (61%) 

randomized experiments. For seven experiments, randomization or nonrandomization was 

neither explicitly stated nor obvious from the experimental design and clarifications were not 

obtained from correspondence by email. Examples of phrases from these seven articles are: 

“subjects were divided into two groups” and “subjects were assigned to groups A and B so 

that both had subjects of equal ability.” For seven experiments, randomization was performed 

for some of the tests or to some of the experimental groups, but not completely. We 

categorized these as quasi-experiments. Only three experiments described the randomization 

method applied: drawing a letter from a hat, drawing a number from a hat, and drawing lots.   
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4.2 Design of quasi-experiments 

We present the design of quasi-experiments in terms of the extent of use of pretest scores, 

which assignment procedures that were used, the extent of field experiments, and the use of 

teams as the study unit.  

4.2.1 The use of pretest scores 
Only 45 % of the quasi-experiments applied a pretest measure (Table 5). This was slightly 

more than for the randomized experiments. The majority of the pretest measures were applied 

in the assignment procedure (in 13 of 18 quasi-experiments and in 18 of 26 randomized 

experiments (blocked or stratified randomization)). The pretest scores were mainly skill 

indicators, such as exam scores, years of experience, or number of lines of code written. 

However, for three experiments, a pre-treatment task was performed and a real pretest score 

measured. Two of these experiments collected data through a questionnaire that was 

completed by the participants both before and after the treatment was applied. For one 

experiment, which investigated the effect of using design patterns, SE maintenance tasks were 

performed both before and after the participants attended a course in design patterns. 

 
Table 5.  The extent of randomization and use of pre-test 

 

Use of pretest scores Total number 

of 

experiments  

Total  In assignment 

 

In descriptive 

analysis  

In statistical 

analysis  

Type of experiment 

N % N %* N %* N %* N %* 

Quasi-experiments 40 35.4 18 45.0 13† 32.5 3 7.5 2 5.0 

Randomized experiments 66 58.4 26 39.4 18 27.3 8 12.1 3 4.5 

Unknown  7 6.2 3 42.9 3 42.9 0 0 0 0 

Total 113 100 47 41.6 34 30.1 11 9.7 5 4.4 

* Percentage of the total number of experiments for that particular type of experiment. 
† In addition to the twelve experiments using a pretest based assignment, one experiment,  categorized as 
some  randomization, used blocked randomization.  
 

4.2.2 Assignment procedures 

We found four main types of nonrandom assignment procedures. The characteristics of these 

types are shown in Table 6. 

1 Assignment to nonequivalent experimental groups. There were four types of 

nonequivalent group designs:  
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a) Five experiments were designed to investigate the effect of indicators of subject 

performance, such as experience and skill. The experimental groups were formed to 

be unequal regarding these indicators. The groups were also nonequivalent with 

respect to other types of experience or skill, due to the nonrandom assignment 

procedure. Subjects were assigned on the basis of either questionnaire results or the 

sampling of subjects from different populations.  

b) For one of the experiments, subjects were assigned to experimental groups by 

including subjects with specific knowledge of the technology (treatment) used.  

c) Three experiments included subjects from different classes, projects, or universities.  

d) Six experiments assigned participants to experimental groups on the basis of their 

availability. 

2 Haphazard assignment. Four experiments applied a pretest-based formula or procedure in 

the assignment, which was not formally random but seemed to be a good approximation; 

for example, assignment on an alternating basis from a ranked list of examination scores. 

For eight experiments, a more judgmental approach was used to assign participants to 

experimental groups, based on pretest scores and previous knowledge about the 

participants. For eleven of the twelve experiments that used haphazard assignment, the 

assignment procedure was not described clearly in the article but information was 

obtained through mail communication.  

3 Some randomization. For seven of the experiments, randomization was performed for 

some, but not all, of the experimental groups or the primary tests. Hence, a nonrandom 

assignment procedure was used as well. 

4 Within-subject experiments in which all participants apply the treatment conditions in the 

same order. For six experiments, all the participants were assigned to the same 

experimental groups, applying both technologies in the same order. 

 

Assignment to nonequivalent experimental groups, haphazard assignment and some 

randomization were applied for both between-subject designs and cross-over designs for 

quasi-experiments, see Table 7. All the cross-over designs observed compared two treatments.  

The randomized experiments with other within-subject designs compared more than two 

treatment conditions and scheduled the treatments in such a way that a true cross-over was not 
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Table 6.  Quasi-experiments detected in this review (number of experiments)  

1) Nonequivalent experimental groups (15) 
a) Investigation of skill, experience, etc. as treatment (5) 

Assignment, for already included participants, based on answers to a questionnaire  
• C++ experience 
• Database knowledge 

       Inclusion of subjects from different skill populations 
• Students versus professional 
• Programming knowledge 
• PSP (personal software process) knowledge 

b) Assignment based on knowledge of the technology (1) 
• Subjects with knowledge of formal methods versus those without such knowledge were used in a 

comparison of formal methods versus no formal analysis  
c) Experimental groups created from similar groups (classes or projects) at different times (3) 

• Student classes from two succeeding years were used as experimental groups (2) 
• Development courses at a company from two succeeding years were used as experimental groups 

(1) 
d) A natural assemblage of participants into experimental groups (6) 

• Two sections of a student class were used as experimental groups (2) 
• Availability and schedule played a role in the assignment of subjects to experimental groups (4) 

2) Haphazard assignment (12) 
a)      Formula-based (4) 

Assignment method: 
• On an alternating basis from a ranked list of previous marks (2) 
• An algorithm was used on a ranked list of previous marks (2) 

b)      Assignment based on the researcher’s subjective judgement (8) 
The judgement was based on: 

• Knowledge of the subjects’ skills (1) 
• Background information collected from the subjects (2) 
• Combination of experiences with the subjects’ skills and background information (3) 
• Grade point average (2) 

3) Some randomization (7)  
a) Randomization and nonequivalent group design (4) 

• Experimental groups created partly from different physical locations (1) 
In a three-group experiment, one experimental group was selected from one university, while the 
two others were selected from a different university and assigned randomly to two groups 

• Assignment based partly on knowledge of the technology (1) 
In a three-group experiment, one experimental group was formed by subjects who already 
understood the component before assignment, while other subjects were assigned randomly to the 
two other groups in a study of reusable components  

• Randomization and skill assessment in a factorial design (2) 
b) Randomization for individuals, but not for teams, both being study units (1)  
c) Randomization for three experimental groups (1). A fourth group was created by using the participants 

from one of the other groups. 
d) Randomization for two experimental groups (1). Some primary tests compared the pre- and post-

treatment scores within the groups, i.e. a nonrandomized comparison  
4) Within-subject experiments in which all participants applied the treatment conditions in the same order (6) 
a) In an inspection experiment, first the usual technique was applied; then the participants underwent 

training in a new technique followed by applying the new technique in the experiment (3) 
b)   In an assessment of the effectiveness of inspection team meetings, individual results were compared with 

team results, individual inspection being performed first by all participants (1) 
c) All participants first performed a paper-based inspection, followed by using a web tool (1) 
d) All participants applied estimation methods in the same order (1) 
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Table 7.  Experimental designs detected in this review 

Experiments Experimental design and assignment procedure 
 N % 
Quasi-experiments 40 35.4 
 Between-subject design, nonequivalent experimental groups (10), 

haphazard assignment (10), and some randomization (2)  
22 55.0 

 Within-subject design 18 45.0 
  Cross-over design, nonequivalent experimental groups (5), haphazard 

assignment (2), and some randomization (1) 
8 20.0 

  All participants applied the treatment conditions in the same order 6 15.0 

 Other design – some randomization 4 10.0 
Randomized experiments 66 58.4 
 Between-subject design 32 48.5 
 Within-subject design 34 51.5 
  Cross-over design 19 28.8 
  Other Within-subject designs                15 22.7 
Experiments with unknown assignment procedure 7 6.2 

Total 113 100 
 

obtained. Within-subject design is regarded as one way of reducing selection bias when 

applying a nonrandom assignment procedure. Still, the extent of within-subject designs was 

smaller for the quasi-experiments than for the randomized ones (45% versus 52%).  

4.2.3 Field experiments   

The percentage of experiments applying professionals as the study unit was roughly equal for 

quasi-experiments and randomized experiments (20% versus 18%; see Table 8). Commercial 

applications were used in 13 % of the experiments, slightly more in randomized experiments. 

However, the professionals worked with commercial applications in six of the quasi-

experiments (13%) and in four of the randomized experiments (6%). Hence, on the basis of  

 
Table 8.  Number of randomized and quasi-experiments in the reviewed articles, by type of study unit 

Professionals 
as study unit* 

Commercial 
applications† 

Teams as 
study unit 

Type of experiment Total Median 
sample 
size‡ 

N % N % N % 
Quasi-experiments 40 42.0 8 20.0 5 12.5 16 40.0 
Randomized experiments 66 34.5 12 18.2 10 15.2 11 16.7 
Unknown  7 13.5 1 14.3 0 0 2 28.6 

Total: 113 36.0 21 18.6 15 13.3 29 25.7 
 * Students only were used in 82 experiments and a mix of subjects in nine. 
 † Other types of applications in the experiments were constructed applications (81), student applications 
    (5), unclear (9) and other (3). 
 ‡ Based on the comparison with the largest number of data-points per experiment for the 92 experiments 
    in which this was reported. 
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type of study unit and application, a greater industrial focus was seen for quasi-experiments 

than for randomized experiments. In addition, the quasi-experiments had slightly larger 

sample sizes than the randomized experiments; see Table 8.  

4.2.4 Teams  
SE tasks are often performed in teams, and the team was the study unit in 26% of the 

experiments, more often in quasi-experiments (40%) than in randomized experiments (17%); 

see Table 8.  

 For eight of the 16 quasi-experiments with teams, the teams were reported as having been 

formed as follows: by random assignment (4), by random assignment within experimental 

groups (1), by the participants themselves (2), or on the basis of the researcher’s judgment for 

creating equal teams based on the participants’ C++ marks (1). For eight of the 16 cases, the 

method was not reported. In all eleven randomized experiments with teams, the teams were 

formed by assigning individuals by a random process.  

 A pretest score was used for 36 of the 84 (43%) experiments using individuals and for 11 

of the 29 (38%) experiments using teams. For all these experiments, the pretest was a measure 

of the individual skill level, not of the overall team level.  

 One experiment reported that cost and time were constraints that hindered the use of 

teams, even if teams would have been a more realistic study unit than individuals for that 

particular experiment. 

4.2.5  Analysis of quasi-experiments 

Only two of the 40 quasi-experiments applied a pretest score in the analysis of results in order 

to adjust for pre-experimental differences in the participants’ characteristics and only three 

compared pretest-scores in a descriptive analysis, Table 5. In the randomized experiments, 

slightly more (3 and 8) used pretest scores to adjust for pre-experimental differences 

happening by chance.  

 The sparse use of pretest scores is one indication that researchers are, in general, unaware 

of the potential selection bias in quasi-experiments and how the problem can be handled in 

the analysis of the results. Another indication of this is that internal validity issues were 

discussed to a lesser extent for quasi-experiments than for randomized experiments (60% 

versus 70%); see Table 9, i.e., it is addressed less where it is needed more. Moreover, in most  
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Table 9.  Threats to internal validity, as reported in the surveyed experiments 

Internal validity 

awareness 

At least one internal 

validity threat present 

Threats to selection 

bias present 

Type of experiment  

 

Total N % N % N % 

Quasi-experiments 40 24 60.0 10 25.0 3 7.5 

Randomized experiments 66 46 69.7 16 24.4 7 10.6 

Unknown  7 1 14.3 0 0 0 0 

Total 113 71 62.8 26 23.0 10 8.8 

Note: the results are presented as number of experiments. 

 

cases when internal validity was addressed, no threat was claimed to be present. The presence 

of at least one threat was reported to an equal extent for quasi- and randomized experiments. 

Threats to selection bias were reported for only three of the quasi-experiments. There seems 

to be some confusion regarding the term selection bias, because among the randomized 

experiments, 11% reported threats to selection bias, probably referring to differences that 

occurred by chance. In addition, it seems as though some experimenters referred to selection 

bias when they meant lack of sampling representativeness.  

 The effect of the assignment procedure is reduced in within-subject designs because the 

participants apply several treatment conditions. To be able to draw valid inferences, the 

possible learning effects or carry-over effects must be equal for the different treatment 

conditions and this must be controlled or tested for in the analysis. This was controlled for in 

63% of the quasi-experiments and 32% of the randomized experiments that had a cross-over 

design, and for 40% of the randomized experiments that had within-subject designs other than 

cross-over; see Table 10.   

 

 
Table 10.  The extent of analysis of learning effects (cross-over) for within-subject designs 

Experiments analyzing 

learning effects 

Design Total 

N % 

Quasi-experiments 8 5 62.5 Cross-over 

Randomized experiments 19 6 31.6 

Quasi-experiments 6 0 0 Other within-

subject designs Randomized experiments 15 6 40.0 
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We attempted to measure whether selection bias influenced the results from the quasi-

experiments in this review. There was sufficient information for the effect size to be estimated 

for 284 primary tests in 64 experiments; see [19] for details. None of these experiments 

adjusted the results by pretest scores to control for selection bias. Overall, the randomized 

experiments had higher average and median effect sizes than had the quasi-experiments; see 

Table 11. However, the result was ambiguous across types of design; the quasi-experimental 

cross-over designs had effect size values in the same range as the randomized experiments.  
 

Table 11.  Experimental results in terms of standardized mean difference effect size 

Effect size results from the primary tests Experimental design   

Mean median std Number 

of tests 

Number of 

experiments 

between-subject design 0.53 0.39 0.50 31 11 

Cross-over design 0.83 0.81 0.50 19 6 

Same order of treatments 0.51 0.38 0.51 26 6 

Quasi-

experiments 

Total quasi-experiments 0.61 0.50 0.52 76 23 

Between-subject 0.83 0.69 0.69 104 24 

Cross-over design 0.99 0.63 0.91 31 12 

Other within-subject designs 0.87 0.77 0.69 61 8 

Randomized 

experiments 

Total randomized experiments 0.86 0.68 0.73 196 44 

Unknown 1.25 1.32 0.85 12 3 

Overall 0.81 0.60 0.69 284 70* 

*Some experiments had tests in different categories. A total of 64 unique experiments were represented in this    
table. 

5 Discussion 

5.1 Extent of quasi-experimentation 

Compared with the extent of quasi-experiments observed in other research areas (range 10%-

81%), SE places itself in the middle (39%), see Table 12. Fewer quasi-experiments than 

randomized ones are conducted in research on medical science and psychology, whereas in 

experimental criminology, more quasi-experiments than randomized ones are conducted.15  

                                                 
15 For simplicity, we use the terms “quasi-experiments” and “randomized experiments” even if these terms are 
not always used in other research areas for comparative studies (trials) that use nonrandom and random 
assignment procedures.   
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Table 12.   Proportion of quasi-experiments 

Quasi-
experiments 

Study Inclusion criteria No of 
exp. 

N % 

Meta-analysis of psychology 
studies [40] 

• published reports in Psychological Abstracts 
1975-1979 

• at least three comparison groups  
• between-subject design 
• information for effect size estimation 

available 

143 - 10 

Review of methods in clinical 
trials [10] 

• comparative clinical trials published in one of 
four medical journals in July – December 
1979 

67 - 16 

Review of controlled clinical 
trials within surgery [30] 

• published controlled clinical trials in six 
medical journals in 1983 

• minimum total sample size:10 (five for cross-
over studies) 

96 15 16 

Review of controlled clinical 
trials of acute myocardial 
infarction [6] 

• studies published in 1946-1981reporting on a 
comparison of a treatment to a control  

145 43 30 

Review of controlled clinical 
trials within medicine [7]  

• published controlled clinical trials in a sample 
of medical journals in 1980 

• minimum total sample size:10 (five for cross-
over studies) 

114 49 43 

Review of experiments in 
criminology [48] 

• all available comparative studies within seven 
areas of criminal justice 

204 158 77 

Meta-analysis of experiments 
within school-based 
prevention of problem 
behavioural [51] 

• all available reported comparisons from 
published in journals (80%), other 
publications (10%) and unpublished reports 
(10%) 

• 165 studies included, the results reported on 
comparison level, not study level 

216 174 81 

This study • controlled experiments within SE published 
in nine journals and three conference 
proceedings in 1993-2002  

113 38 39 

 

 Guidelines and textbooks on research in medical science and psychology typically favour 

randomized experiments for cause-effect investigations, because of their potential to control 

for bias [2, 18, 34, 49]. This might explain the relatively large extent of randomization in 

these areas of research. In addition, especially in medical research, randomization is made 

possible by patients easily enrolling themselves to randomization procedures at hospitals, 

health care centres and medical doctors. 

 In contrast, sparse use of randomized experiments is reported in criminology. Many kinds 

of intervention pertaining to criminal justice do not lend themselves readily to randomized 

designs [25], because practical, ethical, financial and scientific factors play a role [41]. Hence, 

it seems that experiments in criminology have mostly been performed in field settings, where 

randomization is not feasible. In SE, even if 39% of the experiments were quasi-experiments, 

only 13% (six) of them were field experiments in the sense that the subjects were 
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professionals working with commercial systems. So, most of the quasi-experimentation in SE 

consists of research other than field experiments, even though the running of field 

experiments is regarded as the main incentive for running quasi-experiments in SE [21, 23]. 

The sparse use of field experiments may be explained by practical constraints, such as costs 

for the industry, and methodological challenges, such as the level of experimental control that 

can be achieved in a practical setting [23]. Whereas these constraints seem to lead to a large 

amount of quasi-experiments being conducted in criminology, the same constraints seem to 

lead SE researchers to use students as subjects and run randomized experiments rather than 

quasi-experiments.  

  In addition to its use in field experiments, we observed the use of quasi-experimental 

design in the following: investigations of how subject-performance indicators influence the 

results; comparisons of students from different classes, years, universities, or with treatment-

specific knowledge; investigations that make assignments on the basis of the participant’s 

availability; investigations of both teams and individuals for which randomization for both are 

difficult; within-subject designs for which all participants apply all treatments once and in the 

same order; and quasi-experiments using haphazard assignment. Except for haphazard 

assignment, these quasi-experiments represent settings for which randomization is not 

feasible, but where participants are available and the investigation of cause-effect 

relationships is possible through a quasi-experimental design. For experiments that use 

haphazard assignment, blocked or stratified randomization would probably have been 

possible instead. The use of blocked or stratified randomization for these experiments would 

have reduced the extent of quasi-experiments from 39% to 23%.  

5.2 Results from quasi-experiments compared with randomized 

experiments 

We found that, on average, effect sizes were larger for the randomized experiments than for 

the quasi-experiments. This might indicate that selection bias in the quasi-experiments 

influenced the results. There is probably no single explanation for the observed direction of 

difference. Selection bias in one nonrandomized comparison might be offset by an opposite 

bias in another such comparison. Hence, it might act more as a random error than a systematic 

bias that is due to a cause. This will reduce the confidence in the findings, but effect sizes will 

be consistently neither over- nor underestimated [50]. The small number of quasi-experiments 

in our review also gives us reason to view with caution the observed differences in effect sizes 
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from randomized experiments and quasi-experiments. Nevertheless, we should take note of 

the results, because the hypothesis that selection bias might influence the results from quasi-

experiments has a theoretical foundation and is also empirically supported in other research 

fields. Meta-analyses in psychology, medical research, cognitive behavioural research and 

criminology found treatment differences partly in favour of randomized experiments [40, 45, 

51], partly in favour of quasi-experiments [6, 7, 30, 48], and some found no difference [26, 

33]16. In these investigations, the observed differences were all explained by the potential bias 

in the quasi-experiments. 

 The theory of quasi-experimentation suggests how to control for selection bias. 

Researchers have attempted to assess these suggested precautions empirically. We found that 

the quasi-experimental 2*2 cross-over design resulted in effect sizes equal to those of 

randomized experiments. Hence, the cross-over design seems to be effective in avoiding 

selection bias. However, these results were based on only six experiments. We did not have 

sufficient data to evaluate any other techniques for handling selection bias. However, 

researchers in psychology have found that by avoiding self-selection of experimental groups 

as the assignment method and/or adjusting for pre-experimental differences, selection bias 

could be eliminated completely [1], or at least to some extent [15, 16, 28, 38] by using a 

pretest score.  

5.3 Indicators of subject performance 

Pretest scores are useful for controlling and adjusting for undesirable pre-experimental 

differences between experimental groups. Among the 49 experiments that measured a pretest 

score, subject-performance indicators (measured as exam score, years of experience, and 

number of lines of code written) were used in all but three experiments. This shows that 

subject-performance indicators are much more commonly used as pretest scores than 

measures from real pretest tasks. 

 Moreover, over half of the quasi-experiments did not apply a pretest score to control for 

selection bias. We believe that even if this is partly due to lack of awareness of its importance, 

it is also partly due to the fact that a relevant subject-performance indicator score is often 

difficult to measure. Hence, we conclude that the SE community needs to conduct more 

research on how to measure different concepts such as skill, ability, knowledge, experience, 

                                                 
16 The review of 74 meta-analyses in [25] revealed that some of the meta-analyses found treatment differences in 
favour of randomized experiments, some in favour of quasi-experiments, and some found no difference. Overall, 
no significant difference was found. 
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motivation, etc. and how these concepts interact with different types of technologies [43]. In 

our review, all the investigations of subject-performance indicators were quasi-experimental. 

We believe that including participants with certain skills in a quasi-experiment is often more 

relevant than teaching some kind of knowledge as part of a randomized experiment. 

5.4 Quality of reporting 

There was incomplete reporting of several of the variables that were investigated in this 

review: type and rationale for assignment procedure, randomization method, threats to 

internal validity, and information used for effect size estimation. In our experience, this makes 

it difficult both to understand and evaluate experiments and to conduct systematic reviews 

and meta-analyses. For 1/4 of the experiments, the assignment procedure was not described in 

the articles. Only three of the randomized experiments reported the randomization method. 

Sparse reporting of the method is also found in medical research; in four studies on clinical 

trials, the randomization method was reported in, respectively, 0.8, 4, 19 and 51% [10, 17, 33, 

46]. 

 Even though some of the articles in our review provided excellent descriptions of 

experimental design issues, in general, justification for the choice of assignment method was 

lacking. Moreover, internal validity was addressed in only 55% of the experiments and there 

was sufficient descriptive information for effect size to be estimated for only 64 of the 92 

experiments that reported significance testing; see [19] for details.  

5.5 Ways to improve quasi-experimental designs in SE 

We detected four main types of quasi-experiment. We will here suggest how these 

experimental designs could be strengthened by using the design elements described in Section 

2. 

5.5.1 Nonequivalent experimental group design 
The main question to ask when the experimental groups are nonequivalent is: which factors 

could cause these groups to differ before treatment is administered? The answer depends on 

the assignment procedure. We observed four types of assignment procedures for 

nonequivalent group designs; see Table 6 (1a-d).  

 (a) When investigating skill, the experimental groups differ deliberately regarding this 

skill. In addition, the groups might differ with respect to other relevant types of skills or with 

respect to other factors that differ between the populations for which the participants are 
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sampled. The ways of controlling this are to (1) use pretest measures, for example 

examination score from a common course that concern types of skills other than treatment 

skill, (2) nonequivalent dependent variables that are assumed not to be influenced by the 

treatment skill, and (3) several comparison groups that differ with regards to other factors that 

may influence the results. If possible, we will recommend including participants from 

different populations because this enables a balanced design. The alternative, which we do not 

recommend, is to divide already included participants into skill groups on the basis of, for 

example, a questionnaire. 

  (b) The same recommendations as above apply for quasi-experiments that include 

subjects with knowledge of the technology under investigation, i.e., participants with different 

knowledge in the different experimental groups. The experimental groups might differ with 

respect to skills other than knowledge of the particular technology. This potential difference 

must be controlled. 

 (c-d) When the experimental groups are formed from different student classes, projects or 

universities, and when participants are included in experimental groups distant in time, or 

based on availability, the potential factors that could cause the groups to differ are to be found 

in the characteristics of the groups from which the participants are sampled. Do the students 

from the different courses have the same curriculum history? Do the project participants have 

the same amount of experience? What is the reason for their availability at certain time 

points? Mainly pretest measures and nonequivalent dependent variables are used to control 

for differences between the experimental groups. However, within-subject design and several 

comparison groups are also useful if the experimental constraints allow it.   

5.5.2 Haphazard assignment 

Haphazard assignment might be a good approximation to randomization, especially when the 

assignment procedure is formula based, which is the case for two of the reviewed 

experiments. However, little is known about the consequences of haphazard assignment, 

whereas the statistical consequences of randomization procedures have been well researched 

[39]. In addition, haphazard assignment that is based on the researcher’s subjective judgment, 

which was seen in four of the experiments, is difficult to report and recheck. The haphazard 

assignment procedures observed in the reviewed experiments all used a pretest score in the 

assignment. In general, we recommend using blocked randomization for such experiments. 
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5.5.3  Some randomization 
For seven of the experiments, the design was partly randomized and partly quasi-

experimental. Our recommendation for such experiments is to make this mix of design 

explicit in the article and control threats to selection bias in the quasi-experimental part of the 

experiment. Ways of controlling threats to selection bias depend on the actual nonrandom 

assignment method; see Section 5.5.1. 

5.5.4 Within-subject design in which all participants apply the treatments in the same 
order  

When the treatments are applied only once, this is a weak quasi-experimental design, because 

it does not allow proper control of how learning effects may influence the second technology. 

Still, it was used in six of the reviewed experiments. One explanation given was that the 

assumed larger learning effect from one of the technologies prevented a cross-over design and 

that there were too few participants available to achieve sufficient power in a between-subject 

design. We recommend avoiding such designs and rather using a between-subject design that 

is analyzed by confidence intervals and effect size measures, thus avoiding the power 

problem. 

5.5.5 Limitations of this review 
Limitations regarding the selection of articles and tests are described in, respectively, [44] and 

[11]. An additional threat regarding the set of selected articles is that there is a risk that the 

findings are obsolete; the articles selected are from 5-14 years old.  

 Another threat to this review is possible inaccuracy in data extraction. The data was 

extracted by one person (the first author, VBK). However, we conducted a dual-reviewer pilot 

(VBK, JEH) on approximately 30 % of the articles in order to stabilize such attributes as 

study unit, experimental design and the categorization of randomized experiment and quasi-

experiments, prior to the full review. Moreover, data for the attributes that were perceived to 

be potential sources of inaccuracy were checked by one of the other authors (JEH). No 

disagreements were found. 

 Effect sizes were not calculated for all the tests, due to the lack of sufficient information 

reported in the articles. In addition, there were few experiments in each quasi-experimental 

group. These are limitations to the comparison of effect size values between quasi-

experiments and randomized experiments. Another limitation to this comparison is that the 

experiments differ in respects other than the assignment procedure, for example, 

methodological quality, topic of investigation, and type of outcome measured.  
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6 Conclusion  
The purpose of this systematic review of the literature was to investigate the extent of 

randomization and quasi-experimentation in SE, how the quasi-experiments were designed 

and analyzed, how threats to validity were reported, and whether different results were 

reported for quasi-experiments and randomized experiments. 

 One third of all the experiments investigated were quasi-experiments. Of these, four main 

types were observed: (1) Nonequivalent experimental group designs, (2) experiments using 

haphazard assignments, (3) experiments using some random and some nonrandom methods of 

assignment, and (4) experiments in which all participants were assigned to the same 

experimental groups in a within-subject design.  

 Reports of threats to selection bias were conspicuous by their absence. Pretest scores were 

measured in nearly half of the quasi-experiments and cross-over designs were used in eight 

quasi-experiments. Still, for nearly half the quasi-experiments, no effort to handle selection 

bias was reported. Overall, the randomized experiments had higher average and median effect 

sizes than had the quasi-experiments. However, the quasi-experimental cross-over designs 

had effect size values in the same range as the randomized experiments. This result is based 

on few quasi-experiments, but is in line with quasi-experimental theory and findings in other 

fields of research: quasi-experiments might lead to results other than those of randomized 

experiments unless they are well designed and analyzed to control for selection bias.  

 To conclude, there seems to be little awareness of how to design and analyze quasi-

experiments in SE to obtain valid inferences, for example, by carefully controlling for 

selection bias. Nevertheless, several of the reviewed quasi-experiments were very well 

performed and reported, and contributed to the recommendations given in this article on how 

to improve the general conducting of quasi-experiments. We hope that this article will 

contribute to an increased understanding of when quasi-experiments in SE are useful and an 

increased awareness of how to design and analyse such experiments.  
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