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Abstract

Background: Like any research discipline, software engineering research must be of a
certain quality to be valuable. High quality research in software engineering ensures that
knowledge is accumulated and helpful advice is given to the industry. One way of
assessing research quality is to conduct systematic reviews of the published research

literature.

Objective: The purpose of this work was to assess the quality of published experiments in
software engineering with respect to the validity of inference and the quality of reporting.
More specifically, the aim was to investigate the level of statistical power, the analysis of
effect size, the handling of selection bias in quasi-experiments, and the completeness and
consistency of the reporting of information regarding subjects, experimental settings,
design, analysis, and validity. Furthermore, the work aimed at providing suggestions for

improvements, using the potential deficiencies detected as a basis.

Method: The quality was assessed by conducting a systematic review of the 113
experiments published in nine major software engineering journals and three conference

proceedings in the decade 1993-2002.

Results: The review revealed that software engineering experiments were generally
designed with unacceptably low power and that inadequate attention was paid to issues of
statistical power. Effect sizes were sparsely reported and not interpreted with respect to
their practical importance for the particular context. There seemed to be little awareness of
the importance of controlling for selection bias in quasi-experiments. Moreover, the review
revealed a need for more complete and standardized reporting of information, which is

crucial for understanding software engineering experiments and judging their results.

Implications: The consequence of low power is that the actual effects of software
engineering technologies will not be detected to an acceptable extent. The lack of reporting
of effect sizes and the improper interpretation of effect sizes result in ignorance of the
practical importance, and thereby the relevance to industry, of experimental results. The
lack of control for selection bias in quasi-experiments may make these experiments less
credible than randomized experiments. This is an unsatisfactory situation, because quasi-

experiments serve an important role in investigating cause-effect relationships in software




engineering, for example, in industrial settings. Finally, the incomplete and unstandardized

reporting makes it difficult for the reader to understand an experiment and judge its results.

Conclusions: Insufficient quality was revealed in the reviewed experiments. This has
implications for inferences drawn from the experiments and might in turn lead to the
accumulation of erroneous information and the offering of misleading advice to the

industry. Ways to improve this situation are suggested.
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Summary

1 Introduction

An indication of the maturity of a research discipline is the quality of the methods used.
One broad category of research methods is the experiment, which is the classical scientific
way of identifying cause-effect relationships. This thesis investigates the quality of
published software engineering experiments. In this respect, the thesis work differs from
traditional PhD work within software engineering, which usually investigates software

engineering topics. This introductory chapter further motivates this research perspective.

1.1 Empirical research in software engineering

Software engineering deals with the systematic development, evaluation, and maintenance
of software. It is multidisciplinary, in that it embraces technology, human behaviour, and
issues of economics (in terms of cost and effectiveness), and language (in terms of syntax
and semantics). Given this complexity, it is far from trivial to determine what works and
what does not. For example, which software engineering methods, techniques, languages,
or tools are most effective for whom in which situation? Or, which software engineering
skills are most helpful for performing different types of software engineering tasks?

If such questions are phrased as research questions and evaluated in a research study or
in a family of research studies, they can be answered scientifically. If research does not
investigate such problems, decisions might be based on who, among the software

engineering methods’ proponents, shouts the loudest.




Summary

People tend to interpret the term research differently. Hence, many activities that claim to
be research are, in fact, not. For example, building a system is development, not research,
if no research questions are investigated in the process. In 1992, Basili [6] presented four
research paradigms that help to distinguish research activities from development activities.
The paradigm applied in this thesis is that of empirical methods, according to which
research questions are those that can be answered by “objective observations” [11] and that
are investigated by such methods as experiments, surveys, case-studies, and action research
[113]. Central to the use of empirical methods is the importance of experience for the
formation of concepts and the acquisition of knowledge [115].

It is important to apply empirical methods in software engineering research for two
main reasons: (1) software engineering deals with human performance, and (2) software
engineering is an applied discipline. Regarding the human aspect, empirical methods have
traditionally been used in social science and psychology, where the concern is human
behaviour. Also, it is argued by Wohlin ef al. [126] that software engineering is very much
governed by human behaviour in that people develop, evaluate and maintain software and
it is conjectured by Endres and Rombach [38] p. 269 that “Human-based methods can only
be studied empirically.” Regarding the applied aspect, if they are to investigate the
practical challenges that the IT industry faces, research methods should be based on
observations and not on mathematical or theoretical proofs. Hence, software engineering
work is best studied by empirical methods.

It is not just single empirical studies that are valuable. In turn, published empirical
research can be used in secondary analyses for the purpose of research synthesis, which
summarizes or combines the findings of different studies on a topic or a research question
[34]. Such research synthesis is one important element in evidence-based research, which
aims at making scientifically gathered empirical evidence available to practitioners.
Evidence-based software engineering is presented by Dybd, Jergensen, and Kitchenham, in
[37, 59, 64].

The extent of published empirical studies in software engineering has been assessed by
Tichy et al. [121], Zelkowitz and Wallace [128], and Glass et al. [43]. Even though these
assessments had different perspectives and collected different types of data, their
conclusions were fairly similar: in sum, there is very little use of empirical methods to
assess the validity of claims. Whereas Tichy ef al., and Zelkowitch and Wallace, claim that
the practice should be improved, Glass et al. did not criticise current practice, but wonder

whether the research community might not benefit from a greater extent of empirical work.
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However, the worth of empirical methods in software engineering is emphasized by
many researchers [6-8, 39, 73, 113, 120] and empirical software engineering (ESE) has
become a working concept. In addition, as noted by Sjeberg et al. [113], the focus on ESE
is reflected in such forums as the Journal of Empirical Software Engineering (EMSE, from
1996), the IEEE International Symposium on Software Metrics (METRICS, from 1993),
Empirical Assessment & Evaluation in Software Engineering (EASE, from 1997), and the
IEEE International Symposium on Empirical Software Engineering (ISESE, from 2002).
From 2007, ISESE and METRICS will be merged into one conference called the
International Symposium on Empirical Software Engineering and Measurement (ESEM).
Furthermore, in 2000, Perry et al. [88] published a roadmap for empirical studies, in 2002,
Kitchenham et al. [66] provided guidelines for empirical research, in 2003, Endres and
Rombach summarized empirical evidence [38], and the future of empirical methods in
software engineering research is discussed in a recent article by Sjeberg er al. [113].
Furthermore, contributions from the workshop on critical assessments and future directions
for ESE issues in 2006 are edited by Basili ef al.[5] and published and a book on advanced

empirical software engineering issues, edited by Shull ez. a/ [109] is forthcoming.

1.2 The role of the software engineering experiment

The role of the experiment in software engineering research is to compare different
software engineering technologies, methods, etc. with respect to, for example,
effectiveness, usefulness, or costs by letting software engineers conduct one or more
software engineering tasks. Whereas other empirical methods aim at observing and
explaining, the experiment tests hypotheses and can be used as a decision tool. Hence, it
plays an important role in answering key questions for practitioners in the IT industry, for
example, what works best for a specific development task, method A or Method B?
However, the experiment must not be viewed in isolation. As Endres and Romback write:
“Learning is best accelerated by a combination of controlled experiments and case-
studies”, [38] p. 270.

The first experiment in software engineering was reported by Grant in 1967 [44] and
up to 1993, only 17 experiments in software engineering were published according to
Zendler [129]. The review described in this thesis found 114 published software
engineering experiments from 1993-2002. Hence, there was a formidable increase in

experimentation in the period 1993-2002 compared with the first two and a half decades in
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the history of software engineering experimentation. Furthermore, an assessment by Segal
et al. [103] of publications in the Journal of Empirical Software Engineering from 1997-
2003 revealed a dominance of experiments over other empirical methods. In addition, in
recent years, guidelines and text books on experimentation suited for software engineering
have been published by Kitchenham et al. [66], Juristo and Moreno [57], and Wohlin ef al.
[126], as well as additional literature on methods listed in Section 2. Thus, the experiment

is receiving increasing attention in software engineering research.

1.3 Assessment of experimental quality

The analysis of experimental results consists of making interpretations of, and drawing
conclusions from, quantitative data, often by using statistical methods. Experimental
quality can be formally expressed in terms of the validity of such inferences. In this thesis,
quality is measured in terms of three factors: the validity of inference, and the
completeness and consistency of the reporting of experimental information.

Four main types of validity are described by Shadish et al. [106]: Statistical conclusion

validity, internal validity, construct validity and external validity; see Table 1.

Table 1. Validity types

Statistical conclusion The validity of inferences about the correlation (covariation) between treatment

validity and outcome.

Internal validity The validity of inferences about whether an observed covariation between A (the
presumed treatment) and B (the presumed outcome) indicates a causal relationship

from A to B as those variables were manipulated or measured.

Construct validity The degree to which inferences are warranted from the observed persons, settings,
and cause and effect operations included in a study to the constructs that these

instances might represent.

External validity The validity of inference about whether the cause-effect relationship holds over

variation in persons, settings, treatment variables, and measurement variables.

These types of validity seek to cover decisions that the researcher must face when
making inferences from the data:

e [s there a relationship between the variables? (statistical conclusion validity)

e Does the relationship indicate a causal relationship? (internal validity)
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e How good is the relationship between the abstract constructs and the sampling
particulars? (construct validity)

e How can we generalize from the results? (external validity)

Validity cannot be measured directly, but the experiment can be checked against
possible threats to validity [106]. In order to enable valid inferences, and thereby
conclusions that can be relied upon, the experiment must therefore be designed and
analyzed to avoid or control such threats to validity. Only then can the experiments help to
provide a foundation for theory building in software engineering and provide practical
guidance to the industry, which is the ultimate goal of all research in software engineering.

The importance of quality of reporting is emphasized by Endres and Rombach [38], p.
272: “Empirical results are transferable only if abstracted and packaged with context”. It is
important to report (1) information that enables the experiment to be replicated, and (2)
information that enables the reader to understand and judge the experiment and inferences
made.

Conducting experiments is a complex task, which might explain why reports from
other research areas show a lack of validity in experimentation and sparse reporting of
important experimental information, for example, information systems [4, 95], medicine
[3, 20, 32, 47], and social science [22, 25, 60, 61, 84, 102, 106, 118]. Because ESE is a
younger research discipline than these other research areas, it probably suffers from similar
problems regarding quality. However, we cannot assume that the same problems are
present in ESE without verifying their existence. Moreover, the feature of quality
challenges might be domain-specific and discussions of directions for improvements must
be suited to the specific research problems present within the area in question. Hence, there
is a need to assess the quality of experimentation in ESE, to understand the cause of
possible insufficiencies, and to provide guidelines to improve the quality of experiments.
This is the rationale for the research work described in this thesis, which is a systematic

review of software engineering experiments published in the decade 1993-2002.
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1.4 Thesis structure

The thesis is organized as follows:

Summary. This part introduces the thesis papers. Section 2 describes the background to
the research problem and gives an overview of related literature. Section 3 presents the
research questions. Section 4 describes the research method applied. Section 5 summarizes
the result of the research. Section 6 summarizes the answers to the research questions,
discusses implications of the results, provides recommendations for improvements,
presents limitations of the thesis work, and offers directions for future research. Section 7
concludes. Appendix A presents the underlying data-material for this review. Appendix B
presents a preliminary review of experiments published in 2007. Then, references for the

summary are listed.

Papers. This part includes the four papers of this thesis. The papers assess distinct aspects
of the quality of the reviewed controlled experiments and provide recommendations for

improvements.

Paper 1: A survey of controlled experiments in software engineering
Dag LK. Sjeberg, Jo E. Hannay, Ove Hansen, Vigdis By Kampenes, Amela
Karahasanovic, Nils-Kristian Liborg, and Anette C. Rekdal
IEEFE Transactions on Software Engineering, Vol. 31, No. 9, pp. 733-753, 2005.

Paper 1 summarizes the characteristics of the experiments surveyed, such as topics
investigated, tasks performed, the nature of the participants, the type of application
systems used, and the experimental environment. Dag Sjoberg provided the idea for
this work and initiated it. My contribution was to participate in defining inclusion and
exclusion criteria for the selection of articles, hereunder the definition of controlled
experiments in software engineering, and to participate in reading and judging articles
in the later selection phase. I also participated in the collection of the entire dataset and
was responsible for collecting the data on tasks, and internal and external validity. Dag
Sjeberg took the lead in the analysis and the writing of the overall article, but I was

responsible for several parts of the work.




1 Introduction

Abstract: The classical method for identifying cause-effect relationships is to conduct
controlled experiments. This paper reports on how controlled experiments in software
engineering are conducted at present and the extent to which relevant information is
reported. Among the 5,453 scientific articles published in 12 leading software
engineering journals and conferences in the decade from 1993 to 2002, 103 articles
(1.9 percent) reported controlled experiments in which individuals or teams performed
one or more software engineering tasks. This survey characterizes quantitatively the
topics of the experiments and their subjects (number of subjects, students versus
professionals, recruitment, and rewards for participation), tasks (type of task, duration,
and type and size of application), and environments (location, development tools).
Furthermore, the survey reports on how internal and external validity is addressed and
the extent to which experiments are replicated. The gathered data reflects the relevance
of software engineering experiments to industrial practice and the scientific maturity of

software engineering research.

Paper 2: A systematic review of statistical power in software engineering experiments
Tore Dyba, Vigdis By Kampenes, and Dag [.K. Sjeberg
Information and Software Technology, Vol. 48, No. 8, pp. 745-755, 2006.

Paper 2 assesses the statistical power level in the experiments and gives
recommendations for improvements. Tore Dyba provided the idea for this work and
initiated it. All three authors participated in planning the review. I performed an
independent review of all the articles identifying primary tests for each experiment.
Tore Dyba did the same work and all three authors met to discuss the differences in our
findings and agreed on a final set of primary tests. Tore Dyba took the lead in the

analysis and writing of the article, with the two authors contributing.

Abstract. Statistical power is an inherent part of empirical studies that employ
significance testing and is essential for the planning of studies, for the interpretation of
study results, and for the validity of study conclusions. This paper reports a quantitative
assessment of the statistical power of empirical software engineering research, using as
a basis the 103 papers on controlled experiments (of a total of 5453 papers) published

in nine major software engineering journals and three conference proceedings in the
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decade 1993-2002. The results show that the statistical power of software engineering
experiments falls substantially below accepted norms as well as the levels found in the
related discipline of information systems research. Given this study’s findings,
additional attention must be directed to the adequacy of sample sizes and research
designs to ensure acceptable levels of statistical power. Furthermore, the current
reporting of significance tests should be improved by reporting effect sizes and

confidence intervals.

Paper 3: A systematic review of effect size in software engineering experiments
Vigdis By Kampenes, Tore Dyb4, Jo E. Hannay and Dag 1.K. Sjeberg
To appear in Information and Software Technology, 2007.

Paper 3 describes the extent to which effect sizes are reported, how effect sizes have
been interpreted, and the values detected in the experiments. I provided the idea for this
work and initiated it. I also did the review of the experiments regarding the information
about effect sizes and performed the computation of effect sizes, when these were not
reported. I took the lead in the analysis and writing of the article, with the three authors

contributing.

Abstract. An effect size quantifies the effects of an experimental treatment.
Conclusions drawn from the results of tests of hypotheses might be erroneous if effect
sizes are not judged in addition to statistical significance. This paper reports a
systematic review of 92 controlled experiments published in 12 major software
engineering journals and conference proceedings in the decade 1993-2002. The review
investigates the practice of effect size reporting, summarizes standardized effect sizes
detected in the experiments, discusses the results, and provides recommendations for
improvements. Standardized and/or unstandardized effect sizes were reported in 29%
of the experiments. Interpretations of the effect sizes in terms of practical importance
were not discussed beyond references to standard conventions. The standardized effect
sizes computed from the reviewed experiments were equal to observations in
psychology studies and slightly larger than standard conventions in behavioural

science.
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Paper 4: A systematic review of quasi-experiments in software engineering
Vigdis By Kampenes, Tore Dyb4, Jo E. Hannay and Dag .K. Sjeberg
Submitted to Information and Software Technology, 2007.

Paper 4 reports on the types of quasi-experiment performed, the extent to which they
are performed, and the extent to which they are designed and analysed to handle threats
to selection bias. I provided the idea for the work and initiated it. I also did the review
of the experiments. In addition, Jo Hannay reviewed parts of the material. I took the

lead in the analysis and writing of the article, with the three authors contributing.

Abstract. Experiments in which study units are assigned to experimental groups
nonrandomly are called quasi-experiments. They allow investigations of cause-effect
relations in settings in which randomization is inappropriate, impractical, or too costly.
The procedure by which the nonrandom assignments are made might result in selection
bias, that is, pre-experimental differences between the groups that could influence the
results. By detecting the cause of the selection bias, and designing and analyzing the
experiments accordingly, the effect of the bias may be reduced or eliminated. To
investigate how quasi-experiments are performed in software engineering (SE), we
conducted a systematic review of the experiments published in nine major SE journals
and three conference proceedings in the decade 1993-2002. Among the 114
experiments detected, 35% were quasi-experiments. In addition to field experiments,
we found several applications for quasi-experiments in SE. However, there seems to be
little awareness of the precise nature of quasi-experiments and the potential for
selection bias in them. The term “quasi-experiment” was used in only 10% of the
articles reporting quasi-experiments; only half of the quasi-experiments measured a
pretest score to control for selection bias, and only 8% reported a threat of selection
bias. On average, larger effect sizes were seen in randomized than in quasi-
experiments, which might be due to selection bias in the quasi-experiments. We
conclude that quasi-experimentation is useful in many settings in SE, but their design
and analysis must be improved (in ways described in this paper), to ensure that

inferences made from this kind of experiment are valid.




Summary

2 Background

This chapter categorizes the literature on the methodology for experimentation in ESE and
places the thesis in context. Then, the topics for the assessment of the quality of

experiments are described and the challenges that motivated this work are highlighted.

2.1 Types of existing guidelines on experimentation in ESE

Currently, there are 34 scientific articles and three books dedicated to experimental
methodology in ESE; see Table 2. The literature includes textbooks, guidelines,
assessments, and position papers, all of which have the common feature of offering
guidance regarding experimentation, either explicitly or in terms of recommendations
based on assessments or experiences. Excluded from this overview is literature that focuses
on methods of investigating specific software engineering topics, such as estimation,
programming, or defect detection.

In Table 2, this literature is categorized according to (1) whether the guidance is based
on a review of the literature or uses empirical data to provide examples only and (2)
whether the text focuses on experiments or concerns empirical research in general.

For the majority of the literature, the text is not based on a systematic review. These are
guidelines, text books, and position papers that either discuss future directions of
experimentation and/or empirical research methods, or address experimental methodology,
for example, replications, meta-analysis, or the assessment of statistical power. Twenty-
two percent of the texts categorized are literature reviews of published experiments. The
majority of these reviews assess the extent to which various empirical research methods
are used. Only two articles describe an assessment of experiments: Hannay et al. [46],
which assesses the use of theory in experiments and Zendler [129], which builds a theory
for software engineering practice on the basis of published experiments.

So, the table reveals that few assessments of experiments are performed, even if there
are many experimental method issues addressed in the literature. In this respect, this thesis
work fills a gap in the ESE literature on the methodology of experimentation.

Note that argumentation can be based on reviews made by others. The overview shown
in Table 2 has not taken this aspect into consideration, because it was difficult to categorize
the literature accordingly. There were several ways in which studies based their arguments

on evidence drawn from reviews made by others: either directly through references to
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software engineering reviews or reviews in other research fields, or indirectly through
references to related guidelines that in turn referred to reviews. In addition, there were
various degrees to which studies based their arguments on results from other reviews.
Nevertheless, Table 2 illustrates that there is a need for more quantitative assessments on

which the literature can be based, either directly or indirectly.

2.2 Quality of design and analysis of experiments

The basics of the design and analysis of experiments are well established and documented;
see, for example, [23, 85]. The general fundamentals of statistics are described in text
books, such as [10] and separate books are often dedicated to specific statistical methods;
see, for example, [24]. However, the appropriate use of the theoretical basis for
experimentation is limited by constraints that often occur in practice and that create threats
to validity.

The reviewed experiments are investigated according to the following threats to
validity, which are due to deficiencies in the design and analysis of the experiment:
insufficient statistical power, lack of analysis of effect size, and potential systematic bias in

quasi-experiments.

2.2.1 Statistical power

Statistical power is defined as the probability that a statistical test will correctly reject the
null hypothesis [29]. A test without sufficient statistical power will not be able to provide
the researcher with enough information to draw conclusions regarding the acceptance or
rejection of the null hypothesis. Hence, a lack of statistical power is a threat to the validity
of conclusions drawn from statistical data.

Knowledge of statistical power can influence each of the planning, execution, and
results of empirical research. If the power of statistical tests is weak, the probability of
finding significant effects is small, and it is then likely that the outcomes of the study will
be insignificant. Furthermore, if the study fails to provide information about the statistical
power of its tests, it is not possible to determine whether the insignificant results were due
to insufficient power or the phenomenon under investigation actually did not exist. This
will inevitably lead to misinterpretation of the outcomes of the study.

Thus, failure to provide an adequate level of statistical power has implications for both

the execution and outcome of research: “If resources are limited and preclude attaining a
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2 Background

satisfactory level of statistical power, the research is probably not worth the time,
effort, and cost of inferential statistics.” [4] (p. 96).

The fundamental approach to statistical power analysis was established by Jacob
Cohen, who first addressed the issue in 1962 in a description of a review of a volume of
the Journal of Abnormal and Social Psychology [27]. The result from the review
demonstrated the neglect of power issues and motivated Cohen to write his book on

statistical power in 1969 [28]. He writes:

What behavioral scientist would view with equanimity the question of the probability
that his investigation would lead to statistically significant result, i.e., its power? And it
was clear to me that most behavioral scientists not only could not answer this and

related questions, but were even unaware that such questions were answerable.

Cohen 1969 [28] (preface)

His book has become a standard reference on statistical power, in large part because of his
definitions of small, medium, and large effect sizes, which make power calculations
possible when little or no knowledge about the effect size is available. His book was later
supplemented by other books [68, 71] and guidelines [3, 124] on statistical power.

Cohen’s work has prompted researchers in other disciplines to assess the statistical
power of their literature. This is seen in social and abnormal psychology [25, 102], applied
psychology [22, 84], education [15], communication [21], behavioural accounting [12],
marketing [100], management [19, 41, 74, 84], international business [16], and information
systems [4, 95]. All these assessments reported overall insufficient power in the
experiments, even if some of the assessments found sufficient power for the detection of
large effect sizes.

In ESE, in 1981, Moher et al. [82] were the first to describe how to perform power
analysis. Moher ef al. [83] also mention power indirectly through discussions about sample
size in 1982. Then power does not seem to be addressed until Miller et al. [80] published
an article in 1997 about the little used and misunderstood concepts of statistical power.
Following this publication, power has been addressed frequently. In their textbook on
experimentation published in 1999, Wohlin et al. [126] describe the concept of power and
list lack of power as a threat to statistical conclusion validity. In 2000, Miller [77]
emphasised the importance of reporting the power of the experiment when including non-

significant results in meta-analysis. Kitchenham et al. [66] published guidelines in 2002
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that recommend calculating the minimum sample size required to achieved the expected
power. In 2003, Juristo and Moreno [57] described the concept of power and how to
determine sample size in their text book on experimentation. Miller mentions power
analysis in relation to statistical significance testing in 2004 [78] as well as in relation to
the replication of experiments in 2005 [79]. Increased statistical power is part of the vision
for future empirical research presented by Sjeberg ef al. in 2007 [113].

The only assessment of statistical power analysis in software engineering experiments
was made by Miller et al. [80]. The message was that there is inadequate reporting of, and
attention paid to, statistical power in the ESE literature, which leads to potentially flawed

research designs and questionable validity of results:

Any researcher not undertaking a power analysis of their experiment has no idea of the
role that luck or fate is playing with their work and consequently neither does the
Software Engineering community.

Miller [80] p. 286.

Although Miller ef al. [80] made an important contribution in directing attention to the
concept of statistical power in ESE research and how it can be incorporated within the
experimental design process, they based their arguments on an informal review of the
literature. In order to verify whether this result was representative for software engineering
experiments in general, it would be necessary to conduct more formal investigations,
similar to that of other disciplines, of the state-of-the-practice in ESE research with respect
to statistical power. This was the rationale for the thesis work on the assessment of

statistical power in software engineering experiments as described in Paper 2.

2.2.2 Effect size
An effect size tells us the degree to which the phenomenon under investigation is present
in the population. It is the magnitude of the relationship between treatment variables and
outcome variables. There are several types of effect size measures, for example,
correlations, odds ratios, and differences between means.

If effect size is not judged as part of the experimental results, incorrect or imprecise
conclusions might be drawn. Whereas p-values reveal whether a finding is statistically

significant, effect size indicates practical significance, importance, or meaningfulness.
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Interpreting effect sizes is thus critical, because it is possible for a finding to be statistically
significant but not meaningful, and vice versa [31, 71].

Shadish et al. [106] describe the inaccurate estimation of effect size as a threat to
statistical conclusion validity. They also recommend reporting effect size as part of the
results from statistical tests; hence, a lack of reporting of effect size can also be regarded as
a threat to statistical conclusion validity.

In addition to being meaningful for the analysis and reporting of experimental results,
previously published effect sizes can be used in meta-analyses [50], in statistical power
analyses [29, 71], and for purposes of comparison. Such use requires the reporting of either
effect sizes, or sufficient data to enable effect sizes to be estimated.

The first approach to determining the magnitude of the effect was published seven
decades ago for a study of agricultural treatments [26], but effect size as a concept was first
introduced by Cohen in 1969 [28] in his work on power analysis. His definitions of effect
size values have become standard, not only for power analysis, but also as reference values
when reporting effect sizes as part of experimental results. In 1976, Glass [42] introduced
the concept of meta-analysis, as a method of combining the results of studies that used
different scales of measurement by applying effect size measures. He proposed two types
of measure, which have become de facto standards: the standardized mean difference
effect size and the product-moment correlation coefficient.

So, initially, there were two main applications for effect size measures: power analysis
and meta-analysis. Then authors started recommending effect size analysis to substitute or
supplement the null hypothesis testing procedure [30, 35, 53, 61, 119]. Now, there exist
text books on effect size estimation for reporting experimental results [45, 67, 96] and a
number of papers that suggest new or adjusted measures of effect size [13, 86, 87, 97, 98].

In psychology research, assessments have revealed an unacceptable low reporting of
effect size in published articles [60, 118]. Several journals in social science now require
that effect sizes be reported [122], and recommendations for the reporting of effect sizes
are included in publishing guidelines for research in medicine [3] and psychology [124],
from which the following quotation is found:

We must stress again that reporting and interpreting effect sizes in the context of

previously reported effects is essential to good research. It enables readers to evaluate

the stability of results across samples, designs, and analyses. Reporting effect sizes
also informs power analyses and meta-analyses needed in future research.

Wilkinson and the task Force on Statistical Inference [124], p.599.
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There is one major limitation of the effect size measure: there is no unambiguous
mapping from an effect size to a value of practical importance. Even small effects might
have practical importance. For example, the optimization of a method for detecting defects
that yields only a 1% increase in error detection would be of little practical importance for
most types of software, but might be of great practical importance for safety-critical
software, particularly if the added 1% belongs to the most critical type of errors. Hence,
observed effect sizes must be judged in context [13, 35, 53, 61, 99, 101, 117, 122, 124].
This means that a contextual judgment of observed effect sizes must be made and a
standardized interpretation avoided. Therefore, in addition to the reporting of effect sizes, a
nuanced interpretation and discussion of them is important. Sechrest and Yeaton [101]
offer approaches to deciding whether a given difference between groups is large/small,
important/unimportant:

e A judgmental approach that combines intuitive judgments with the judgment of experts
in the field.

e A normative approach, where the size of effect is compared with empirically based
norms.

e A cost-benefit analysis that seeks to establish that the benefits outweigh the costs. Even
a small effect may be worthwhile if the costs of producing it are relatively trivial. In
software engineering, effort tends to be the major cost drivers, hence a cost-benefit
analysis equals a cost-effectiveness analysis, where effect sizes are weighted by the

efforts required to produce them.

As an alternative to assessing the standardized effect size for practical importance,
Wilkilson et al. [124] suggest that the unstandardized effect size should be reported when
the unit of measurements are meaningful on a practical level, for example, the mean
difference instead of the standardized mean difference. Unstandardized measures of effect
size are not given much attention in the literature, but are included in the overview of
effect size measures in [72].

In ESE, the magnitude of effect is first mention in relation to power considerations by
Moher et al. in 1981 [82]. Then it is not addressed until 1995 by Pfleeger [90]. In the
planning of the experiment, she recommends asking such questions as “How large a
difference will be considered important?” Then, in 1997, Miller ef al. [80] described the

concept of measure of effect size and its role in power analyses. The earliest
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recommendation that effect size be reported was made by Miller in the context of meta-

analyses in 2000:

Although the significance test is obviously an important result from the experimental
procedure, it is by no means the full story. The effect size is equally important, without
it other researchers are in a poor position to estimate the importance of the results,
even if they are significant. Unfortunately few, if any, software engineering
experiments report effect size estimates, their incorporation into the results of
empirical studies would greatly aid other researchers.

Miller [77], p.37

The reporting of effect size is also recommended by Kitchenham et al. in 2002 [66].
The authors also recommend distinguishing between statistical significance and practical

importance:

...first see whether the result is real (statistical significant); then see whether it matters
(practical significance). For example, with a large enough dataset, it is possible to
confirm that a correlation as low as 0.1 is significantly different from 0. However, such
a low correlation is unlikely to be of any practical importance. In some cases, even if

the results are not statistical significant, they may have some practical importance.

Kitchenham et al. [66], p. 731

The reporting of effect size is also recommended by Miller in 2004 [78] as a
supplement to significance testing and in 2005 [79] to compare studies and replications.
The most recent article that recommends the reporting of effect sizes is the article on the
future of empirical methods by Sjeberg ef al. [113] in 2007.

So, the importance of effect size reporting and the role that effect size has in power
analyses and meta-analyses have been addressed earlier in ESE. However, there has been
no formal assessment of the extent to which effect sizes are used and, if reported, how they
are interpreted. Furthermore, unstandardized effect sizes are not mentioned in the ESE
literature and there exists no overview in our field of the standardized effect size values
observed. Further discussions of the use of effect size in software engineering experiments

will gain from knowledge of the state of practice. Hence, the aim of the systematic review
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of effect size, as described in Paper 3, was to provide empirical evidence about the use of

effect sizes and, on the basis of the findings, to suggest directions for improvement.

2.2.3 Quasi-experimentation

Randomization is the procedure of randomly assigning participants to experimental groups.
Experiments in which study units are assigned to experimental groups nonrandomly are
called quasi-experiments [33]. They allow the investigation of cause-effect relations in
settings in which randomization is inappropriate, impractical, or too costly. For example, in
software engineering, the costs of teaching the experimental subjects all the technologies
(the different treatment conditions) so that they can apply them in a meaningful way may
be prohibitive. Moreover, when the levels of participants’ skill constitute treatment
conditions, or if different departments of companies constitute experimental groups,
randomization cannot be used.

The nonrandom assignment procedure might result in selection bias, that is, a
systematic difference between the experimental groups that could influence the results. For
example, when projects are compared within a company, there is a chance that participants
within projects are more alike than between projects, e.g., in terms of some types of skill
that influence the performance in the experiment. Moreover, if the participants select
experimental groups themselves, people with similar backgrounds might select the same
group. Such differences between experimental groups might generate other differences of
importance for the experimental outcome as well. Hence, selection bias is a threat to
internal validity. By detecting the cause of the selection bias, and designing and analyzing
the experiments accordingly, the effect of the bias may be reduced or eliminated.

The concept of randomization was introduced by Fisher in 1925 [18]. Its use is
widespread, because it is the cornerstone that underlies the use of statistical methods.
Statistical methods require that the observations are realizations of independently
distributed random variables and randomization usually makes this assumption valid [85].
Randomization also prevents any systematic differences between the experimental groups
before the experimental tasks are performed. Simple randomization does not guarantee
equal experimental groups in a single experiment, but because differences are created only
by chance, the various participant characteristics will be divided equally among the
treatment conditions in the long run, over several experiments.

However, experimental practices revealed that it is not always possible to achieve ideal

methodological circumstances. Moreover, there are experimental settings for which
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randomization is possible, but not optimal for the purpose of the study. The need for valid
inferences from such experiments motivated the work on the theory of quasi-
experimentation. This work was first presented by Campbell [17] in 1957 and by Campbell
and Stanley [18] in 1963 and later developed by Cook and Campbell [33] and Shadish et
al. [106]. The theory provides the following: (1) alternative experimental designs for
studying outcomes when a randomized experiment is not possible, (2) practical advice for
implementing quasi-experimental designs, and (3) a conceptual framework for evaluating
such research through validity assessments [104]. The theory claims that when properly
designed and analysed, quasi-experiments can be good approximations to randomized
experiments. Central to the theory is the use of various design elements to control for the
potential selection bias that might be present due to the non-random assignment procedure.

Researchers have attempted to assess how elements from the quasi-experimental theory
work in practice. This is not trivial because selection bias cannot be measured directly
from experimental results. Findings in psychology suggest that by avoiding the self-
selection of experimental groups as the assignment method and/or adjusting for pre-
experimental differences by using pretest scores, selection bias can be eliminated
completely [2], or at least to some extent [51, 52, 75, 105].

However, the quasi-experimental theory seems not to be implemented in practice to
any large extent. Shadish er al. [106] claim that the most frequently used quasi-
experimental designs typically lead to causal conclusions that are ambiguous. Further,
empirical results from research in medical science, psychology, and criminology show that
randomized experiments and quasi-experiments have provided different results [20, 32, 51,
81, 105, 107, 116, 123, 125].

To improve the performance of nonrandomized experiments, publication guidelines in
psychology recommend that researchers determine sources of bias in quasi-experiments,
adjust for their effects, and describe how this has been done [124]. Moreover, the
importance of conducting quasi-experiments properly has been recognized in fields of
research other than psychology, such as environmental science [70], economics [76], and,
recently, medical science [47-49].

In ESE, the handling of non-randomized experiments is first mentioned by Pfleeger in
1994 [90]; she recommends documenting the areas where lack of randomization may affect
the validity of results in cases where complete randomization is not possible. The term
quasi-experiment was first used in the ESE literature by Wohlin et al. in 1999 [126]. In the

context of meta-analyses, Miller [77] recommends using randomization because of the
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published observed differences in effect sizes reported in epidemiological trials. In their
guidelines in 2002, Kitchenham et al. [66] recommend identifying and controlling for bias
in non-randomized experiments. They also recommend using well-documented
experimental designs and consulting a statistician if it is not possible to implement such
designs. Then, in 2003, Laitenberger and Rombach [69] described the concept and conduct
of quasi-experiments and claimed that quasi-experiments represent a promising approach
to increasing the amount of empirical studies in the software engineering industry. In 2007,
Sjeberg et al. [113] recognised that quasi-experiments will play an important role in future
experimental research in ESE, because they offer opportunities to improve the rigour of
large-scale industrial studies.

So, the quasi-experiment is recognized as an important part of cause-effect
investigations by several researchers in different areas, including ESE. Assessments in
other areas of research show that quasi-experiments are poorly performed and that
randomized experiments and quasi-experiments sometimes provide different results. Such
assessments have not yet been conducted in ESE. In order to determine how the situation
can be improved, it is necessary to provide and overview of the state of practice.
Furthermore, a discussion of how to handle selection bias in software engineering quasi-
experiments requires an overview of the types of quasi-experiments being conducted. The
lack of any such overview inspired the work on quasi-experimentation that is described in

Paper 4.

2.3 Quality of reporting of experiments

When reporting experiments, it is important to prioritize what information to include.
Many reviews have documented deficiencies in reports of clinical trials in medical
research, which have resulted in detailed guidelines on what to report [3]. Research in
psychology has experienced similar problems and publication guidelines have been
developed [1, 124].

In ESE, the method literature presented in Table 2 gives implicit guidelines on what to
report through recommendations regarding what issues are important in experimentation.
Explicit guidelines on reporting are provided by the following works. In 1987, Basili et al.
[8] suggested a framework for experimentation that provides a structure for presenting
experiments. In 1999, Singer [112] provided an introduction to the American

Psychological Association (APA) style guidelines. In 1999, Wohlin ef al. [126] described
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the presentation and packaging of experiments and in 2002, Kitchenham provided
guidelines for reporting [66]. In 2003, Juristo and Moreno [57] provided a guide to
documenting experimentation. Simultaneously, Shaw [108] published advice on how to
write good software engineering research papers. With respect to the replication of
experiments, knowledge sharing through packages with raw data and text documentations
was addressed by Shull and co-authors in two articles from 2002 and 2004 [110, 111].
These articles describe a solution to the problem of space when reporting experiments in
journal articles. In 2005 Jedlitschka and Pfahl [55] reported a survey of the most prominent
published proposals for reporting guidelines and suggest a unified standard for reporting of
controlled experiments. These guidelines have been subject to an evaluation study [63] and
an improved version will be provided [56].

Existing guidelines tend to be based on empirical data from other research areas or only
on anecdotal evidence. In order to determine more specifically what kinds of guideline are
need the most, a systematic assessment of the reporting practices in ESE was required.

Such an assessment is provided in this thesis for some experimental issues.
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3 Research Questions

The quality of experiments in ESE has not been previously assessed systematically. Hence,
a systematic review of published experiments in software engineering and
recommendations for improvements based on the findings may be a helpful contribution
to, the ideally, continuous process of increasing quality of ESE experiments. More

specifically, this research had two main aims:

1. To provide a quality assessment. To that end, the extent to which software
engineering experiments are designed, analysed, and reported to help enable valid
inference from the results must be determined.

2. To provide recommendations for improvements. Appropriate ways to address the

potential deficiencies found in the quality assessment must be determined.

The assessment of quality is limited to the following issues of design and analysis:
statistical power level, effect size analysis, and quasi-experimentation. Statistical power
analysis is performed in the design phase, but affects the analysis because the results must
be viewed in relation to the planned power. Low power is a threat to statistical conclusion
validity. Effect size analysis is performed in the analysis of results. However, it must be
considered in the design phase in order to include the magnitude of effect in research
questions or the formulation of hypotheses and procedures for gathering data. If effect
sizes are not reported, statistical conclusion validity is threatened. Quasi-experimentation
requires extra effort in the design and analysis phase in order to eliminate or reduce
potential selection bias. Selection bias is a threat to internal validity.

Thus, the experiments are assessed according to aspects of statistical conclusion
validity and internal validity. Concept validity and external validity are assessed only in
terms of how they are reported in the articles.

The quality of reporting influences the reader’s ability to understand the experiment

and validate the results.
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The aim of assessing quality is refined into subgoals, captured by the following

research questions:

RQ1 What is the statistical power level for the detection of small, medium, and
large effect size values?

RQ2a) To what extent is effect size reported as part of the experimental results?

RQ2b) If effect size is reported, how is it interpreted?

RQ3a) To what extent is randomization used in the assignment procedure?

RQ3b) To what extent are quasi-experiments designed and analysed to control for
selection bias?

RQ4 To what extent is information regarding the following attributes reported:

subjects, experimental setting, experimental design, analysis, and validity?

RQ1 is answered in Paper 2, RQs 2a-b are answered in Paper 3, and RQs 3a-b are
answered in Paper 4. RQ4 is addressed in all four papers, but especially emphasized in

Paper 1.
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4 Research Method

This section describes the execution of the systematic review. A systematic review is a
rigorous and auditable method for evaluating and interpreting all available research
relevant to a particular research question, topic area, or phenomenon of interest [62]. Using
existing guidelines for medical researchers as a basis, Kitchenham [62] described the
following procedures for performing systematic reviews:

1. Identification of the need for a review

Development of a review protocol

Identification of research

Selection of primary studies

Study quality assessment

Data extraction & monitoring

Data synthesis

e A U

Reporting the review

This review work started two years before these guidelines were available. Hence,
these procedures have not been followed strictly, but have been used as guidance in the
later phases of the work. Still, the research method of the thesis can be described in terms

of the main steps described in the guidelines, as shown below.

4.1 Identification of the need for a review

The aim of this investigation was to make an empirical assessment of software engineering
experiments and, on the basis of the findings, provide recommendations for improvements.
The necessity of making valid inferences from the results provides the motivation for this
work.

The chosen research method was a systematic review of published experiments over a
decade, because published articles are the main source of information about experiments
conducted world wide. By making the assessment a quantitative review of the literature,
the state of practice of software engineering experimentation would be revealed. In
addition, a thorough empirical foundation would be established, upon which further
qualitative investigations of experimentation could be based, for example, elaborations of

the reasons for the quantitative findings.
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An investigation of related work on assessments of experimentation in software
engineering revealed that the major difference between those assessments and this review
work is that they describe the extent and characteristics of various types of empirical study,
while this review provide an in-depth study of controlled experiments only; see Paper 1 for

details.

4.2 Development of a review protocol

The first part of this review involved several people and was organised as a research
project. This part comprised the selection of experiments, as well as the data gathering,
analysis, and reporting of the experimental issues described in Paper 1. For this part,
decisions regarding the planning and conducting the review were made in weekly meetings
and substantiated in a document that took the form of a comprehensive version of the
upcoming journal article. In addition, decisions were documented in meeting reports and
separate database documentation. Elements in the planning process were

e research questions,

e procedures for selection of studies,

e operational definition of a controlled experiment,

e inclusion and exclusion criteria,

e data to be extracted,

e reporting strategies, and

e time schedule and distribution of tasks.

The second part of the systematic review comprised the investigation of statistical
power, effect size, and quasi-experimentation, which are described in Papers 2-4. As the
database of articles was already established, this part only comprised data extraction,
analysis, and reporting, as well as the planning of these activities. No formal protocol
documents were made for this part, because few people were involved. The researcher

responsible documented definitions and organised the data collection.

4.3 Identification of research

This review included 113 experiments in software engineering that were found in 103
articles published in nine major journals and three conference proceedings in the decade

from 1993 to 2002; see Table 3. We consider these included journals to be leaders in
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software engineering research. Furthermore, ICSE is the principal conference in software
engineering, and ISESE, Metrics, and EASE are major venues in empirical software
engineering that report a relatively high proportion of controlled software engineering
experiments. The conference Empirical Assessment & Evaluation in Software Engineering
(EASE) is partially included, in that 10 selected articles from EASE appear in special
issues of JSS, EMSE, and IST.

Table 3. Distribution of ESE studies employing controlled experiments: Jan. 1993 — Dec. 2002.

Journal/Conference Proceeding Number Percent
Journal of Systems and Software (JSS) 24 23.3
Empirical Software Engineering (EMSE) 22 21.4
IEEE Transactions on Software Engineering (TSE) 17 16.5
International Conference on Software Engineering (ICSE) 12 11.7
IEEE International Symposium on Software Metrics (METRICS) 10 9.7
Information and Software Technology (IST) 8 7.8
IEEE Software 4 3.9
IEEE International Symposium on Empirical Software Engineering (ISESE) 3 2.9
Software Maintenance and Evolution (SME) 2 1.9
ACM Transactions on Software Engineering Methodology (TOSEM) 1 1.0
Software: Practice and Experience (SP&E) - -
IEEE Computer - -
TOTAL: 103 100%

4.4 Selection of primary studies

In order to identify and extract article that described controlled experiments, one researcher
systematically read the titles and abstracts of the 5,453 scientific articles published in the
selected journals and conference proceedings for the period 1993-2002. Excluded from the
search were editorials, prefaces, article summaries, interviews, news, reviews,
correspondence, discussions, comments, reader’s letters, and summaries of tutorials,
workshops, panels, and poster sessions. If it was unclear from the title or abstract whether a
controlled experiment was described, the entire article was read by both the same
researcher and another person in the project team. Note that identifying the relevant articles
is not straightforward because the terminology in this area is confusing. For example,

several authors claim that they describe experiments even though no treatment is applied in
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the study. The following operational definition of a software engineering experiment was

used in the review:

Software engineering experiment: A randomized experiment or a quasi-experiment in
which individuals or teams (the experimental units) conduct one or more sofiware
engineering tasks for the sake of comparing different populations, processes, methods,

techniques, languages, or tools (the treatments).

Inclusion criteria were as follows: the use of at least two treatment conditions, subjects,
or teams as experimental units, and the performance of a software engineering task. In
addition, the study had to be a cause-effect investigation, i.e., the use of a treatment had to
precede the measure of an outcome.

Excluded from the review were several types of study that share certain characteristics
with experiments, but do not apply the deliberate intervention essential to experiments. So,
correlation studies, studies that are based solely on calculations using existing data (e.g.,
from data mining), and evaluations of simulated teams based on data for individuals were
excluded. The last category falls outside the operational definition because the units are
constructed after the run of the experiment. Studies that use projects or companies as
treatment groups, in which data is collected at several levels (treatment defined, but no
experimental unit defined) were also excluded. These were considered to be multiple case
studies (even though the authors might refer to them as experiments). Also excluded were
articles that, at the outset, would not provide sufficient data for our analyses (e.g.,
summaries of research programs). Moreover, usability experiments were not included
because those are part of another discipline (human computer interaction). The list of

included articles is provided in Appendix A.

4.5 Study quality assessment

Because the review aimed at assessing the quality of experiments, no experiment was
excluded from the dataset on the grounds of a lack of quality. However, for investigations
of statistical power and effect size, which were done on the level of statistical tests, seven
experiments were excluded because we were unable to track which tests answered which

hypothesis or research question.
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4.6 Data extraction & monitoring

For the first part of the review (Paper 1), six researchers gathered data so that each aspect
was covered by at least two persons. After the initial analysis, the results were compared
and possible conflicts resolved by reviewing the articles collectively a third time or
handing the article over to a third person.

For the investigation of statistical power (Paper 2), two researchers identified the
primary statistical tests independently. A third researcher was then involved in reaching a
consensus on which experiments and tests to include, using these two datasets as a basis.

Data for the effect size investigation (Paper3) was extracted by one researcher, whereas
a dual review was done for parts of the data extraction in the investigation of quasi-
experimentation (Paper 4).

The data from the first part of the review was stored in a relational database (MS SQL
Server 2000). Data extracted for the investigation of power, effect size, and assignment
methods were stored in separate excel sheets.

The total data model is shown in Figure 1. Some data was specific to an article, some
was specific to an experiment, and some information concerned the combination of article
and experiment. For example, an article might describe several experiments and a single
experiment might be described in several articles, typically with a different focus in each
article. Moreover, some data was specific to a statistical test or a task and some
experiments were not analysed by statistical testing. Four experiments were reported in
more than one article. In these cases, for some parts of the review, the data from the most
recently published article was used for reporting, as recommended in [62]. Which articles
that are included in each part of the review is described in Appendix A, as well as article-

categorizations for some assessments.

4.7 Data synthesis and reporting the review

The data synthesis was a descriptive, quantitative analysis. All results relevant to the
investigation were tabulated and figures were used when appropriate. The reviews were

reported in the four journal articles, which constitute the main part of this thesis.
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5 Results

This section describes the results of the review: the assessments of statistical power, effect

size analyses, quasi-experimentation, and quality of reporting.

5.1 Assessment of statistical power

The assessment of statistical power answered research question 1:

RQ 1:  What is the statistical power level for the detection of small, medium and

large effect size values?

The investigation of statistical power is described in detail in Paper 2. This part of the
review included the 92 experiments for which statistical testing was performed and the
tests clearly described. For each primary statistical test in the experiment, the power was
calculated on the basis of the type of statistical test and sample size. A significance level of
0.05 was used for all the tests and the power was calculated for small, medium, and large
effect sizes as defined by Cohen [29]. By using this information, which is available in the
planning phase of the experiment, the power calculated represents the pre-experimental
power and hence shows how the experiment was designed with regard to power.

The result revealed an average power for detecting medium effect sizes in the software
engineering experiments of 0.36, i.e., there was, on average, a probability of 0.36 that a
null hypothesis would be rejected correctly; see Table 4. This power is far below the
commonly accepted level of 0.8, which is also assumed to be the target level by most IS
researchers [95].

Power increases with increasing effect size, provided that all other factors are kept
constant. However, the average power for detecting large effect sizes, according to
Cohen’s definition, was 0.63, which is also below the commonly acceptable level.

The power level of the tests would still have been acceptable if the effect sizes in ESE
overall had been large. Unfortunately, this does not seem to be the case, judging from the
results of the effect size computation (Paper 3). The median effect size value estimated
from the experimental tests was 0.60 and even though 29% of the effect sizes were very

large (above 1.10), 53% were of small or medium size (Table 4).
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Table 4. Statistical power and observed effect sizes

Small effect size =~ Medium effect size ~ Large effect size

Average power

0.11 0.36 0.63
Based on 459 tests (Paper 2)
Proportion of effect sizes *
Based on 284 tests for which effect size 30% 23% 47%

was possible to estimate (Paper 3)

* Standardized mean difference effect size was estimated for all tests. In this table, values in (0-0.35) are
categorized as “small”, (0.26-0.65) as “medium” and (0.66, ->) as “large”.

An additional indication that little attention is paid to considerations of power is that
only 15% of the articles referred to the power of their significance test, and for only one
experiment was it reported that an a priori power analysis had been performed.

The consequence of this low level of statistical power is that it is likely that many
software engineering experiments fail to detect the actual effects of the technology being
investigated. This review revealed that significance at the 0.05 level was achieved for half
the tests (Table 5). Hence, combining this result with the low power observed suggests that
increased power in software engineering experiments will lead to more tests being

significant.

Table 5. Extent of statistical significance

Tests
Results Number Percentage
p-value < 0.05 119 513
p-value > 0.05 113 48.7
Total 232 100.0

5.2 Assessment of effect size analysis

The review of effect size reporting used all 113 experiments and answered research

questions 2a) and 2b):

RQ 2a: To what extent is effect size reported as part of the experimental results?

RQ 2b: If effect size is reported, how is it interpreted?

The assessment of the 92 experiments that performed significance testing and described the

tests clearly is presented in detail in Paper 3.
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Overall, only 27 of the 113 descriptions of experiments (24%) reported at least one
effect size (Table 6). All these experiments reported effect size as a supplement to
information about statistical significance, whereas none of the experiments that did not use
statistical testing reported any effect size. Only two of the experiments reported both

standardized and unstandardized effect sizes.

Table 6. Extent of effect size reporting

Experiments reporting effect size

Analysis method Number of Number Percentage
experiments
Significance testing 99 27 27%
Descriptive statistics only 14 0 0
Total 113 27 24%

*In Paper 3, only 92 experiments were included in the investigation of effect size. Included here are
(1) the additional seven experiments that used significance testing, but for which it was difficult to
identify primary tests or main aims and (2) the 14 experiments for which statistical testing was not
performed.

The reporting of unstandardized effect size was done more frequently for significant,
than for non-significant, results. Another factor that seemed to influence the extent of
effect size reporting is the number of treatment conditions tested in the experiment. None
of the 51 primary tests that compared more than two treatment conditions reported the
standardized effect size for the pairwise comparisons of treatments. Only four of these 51
tests reported the unstandardized effect size.

An important aspect of effect size reporting is the interpretation of its value. Even if the
unstandardized effect size lends itself better to discussions of practical importance than
does the standardized one, the only references to practical importance were made with
respect to standardized effect sizes. In these cases, reference was made to Cohen’s
definitions of small, medium, and large values. Hence, the practical importance of the
values was not discussed directly in relation to contextual factors, which is the
recommended (but difficult) practice. This result is not unexpected, because few guidelines
exist on how to discuss the practical importance of the results on the basis of effect size
measures in general, and no guidelines directed to software engineering experiments in
particular. Still, the result revealed insufficiencies that need to be addressed and discussed

in the ESE community.
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The unstandardized effect sizes appeared to be very suitable for discussions of the
practical importance, for example, “Procedural roles reduced the loss of only singular

defects by about 30%.” However, no such discussion was added to these measures.

5.3 Assessment of quasi-experimentation

This part of the review was based on all the 113 experiments and answered research

questions 3a and 3b.

RQ 3a: To what extent is randomization used in the assignment procedure?
RQ 3b: To what extent are quasi-experiments designed and analysed to control for

selection bias?

The results are described in detail in Paper 4. Among the 113 experiments, 66 were
randomized experiments (58%) and 40 were quasi-experiments (35%), while the
assignment procedure could not be obtained for 7 experiments (6%).

There seemed to be little knowledge about quasi-experimentation, because only four
reports used the term quasi-experiment, only three of the quasi-experiments addressed
threats to validity regarding selection bias, and relatively few used design elements to
control for selection bias in the analysis. Regarding design elements, fewer than half of the
experiments applied a pretest score to control for a potential selection bias and, apart from
crossover design seen in eight quasi-experiments, no other ways of controlling for
selection bias was observed.

The results suggest a need for better control regarding selection bias in software
engineering experiments, in order to ensure valid inferences. Moreover, increased
reporting of possible threats to selection bias that might influence the result is required, so
that readers will understand the challenges in the experiments and can judge the results on
this basis.

A comparison of the results from quasi-experiments with randomized experiments
revealed lower average effect sizes in the quasi-experiments than in the randomized ones.
There were few data points in this comparison of effect sizes; hence, this result should be
investigated further in follow-up studies. Still, we should take note of the results, because
the hypothesis that selection bias might influence the results from quasi-experiments has a

theoretical foundation [106] and has empirical support in other research fields.
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In order to discuss the use of quasi-experiments in software engineering, we must know
the types of non-random assignment procedures that are used. This review detected four
types; see Table 7.

(1) The non-equivalent experimental group design is the typical quasi-experimental
design, which is described thoroughly in the literature [33, 106]. It was used in 38% of the
quasi-experiments. Examples are field experiments in which professionals were included
into the experimental groups on the basis of their availability and student experiments in
which two sections of a class constituted the experimental groups on the basis of
convenience. A third example is the investigation of how software engineering skills
influenced performance for different technologies. For such comparisons, the most
appropriate inclusion of participants to skill groups is to select subjects who already have
skills, which is a non-random assignment procedure.

(2) Haphazard assignment is a non-random assignment procedure with no known bias,
for example, when participants are assigned to experimental groups on an alternating basis

from a sorted list. Haphazard assignment was used in 30% of the quasi-experiments.

Table 7. Types of quasi-experiments in software engineering

Type of quasi-experimental design Number Percent
Non-equivalent experimental group design 15 37.5
Haphazard assignment 12 30.0
Some randomization 7 17.5
Intra-subject experiments in which all participants 6 15.0

applied the treatment conditions in the same order

Total 40 100.0

(3) Seven of the experiments were a combination of quasi-experiments and randomized
experiments; hence, some of the comparisons in the experiments were exposed to a non-
random assignment procedure.

(4) For six of the experiments, all the participants applied all treatments in the same
order, only once. The reasons for choosing such designs are an expected larger learning
effect from one of the technologies (which prevents a crossover design) combined with
few available participants (which prevent an inter-subject design). However, this is a weak
quasi-experimental design because it does not allow proper control of how learning effects

may influence the second technology.
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Only 45% of the quasi-experiments measured a pretest score of the participants’s
performance ability and none of the experiments attempted to measure such a score for
teams of participants beyond averaging individual skills. Hence, how to measure software

engineering skill appear to be a challenge for the ESE community.

5.4 Assessment of quality of reporting

The assessment of the quality of reporting answered research question 4:

RQ 4:  To what extent is information regarding the following attributes reported.:

subjects, experimental setting, experimental design, analysis, and validity?

The quality of reporting was assessed in all parts of this review and is described in all the
four papers included in this thesis, but is particularly emphasised in Paper 1. The major
findings are now summarized.

Large variations in the quality of reporting are seen both across types of information
assessed and across experiments. Insufficiencies include incomplete reporting, information
reported at different places in the articles, and lack of consistent terminology. An example
is the reporting of validity considerations that were made for % of the experiments, at
different places in the articles, and under different headings. For 54 experiments (48%),
there was a special section entitled “Threats to (internal/external) validity” or other
combinations that included the terms “threats” or “validity.” Nine other experiments
(eight%) had special sections on threats to validity but with other names (e.g., “Limitations
to the results™). The reporting of threats to validity in yet another eight experiments were
found in other sections.

An overview of the extent of the reporting of information regarding subjects,
experimental setting, experimental design and analysis, and validity assessments is
presented in Table 8.

Information regarding subjects was reported by most of the experiments in terms of
sample size, types of subjects, and background information. However, only 21% reported
the amount of drop-outs. Moreover, the type of background information and level of detail
varied substantially. An example of detailed information on programming experience is:
“On average, subjects’ previous programming experience was 7.5 years, using 4.6 different

programming languages with a largest program of 3510 LOC. Before the course, 69
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percent of the subjects had some previous experience with object-oriented programming,
58 percent with programming GUIs.” An example of a high-level description without
figures is: “Some of the students had industrial programming experience.” How the
participants were recruited was described for only 36% of the experiments.

A description of the task performed was provided for all the experiments, but the
duration of the performance was reported for only 61%. In addition, descriptions of the
size of the materials and the use of tools were reported for slightly more than half the
experiments.

Regarding experimental design and analysis, some experiments applied standard design
names and referred to textbooks, while others just described the design in their own words.
Moreover, whether a between-subject or a within-subject design was used for the particular
tests was not always stated explicitly and was sometimes difficult to identify. Overall,
issues of design and analysis were sparsely addressed. Only one experiment defined the
population of subjects to which the results could be generalized. Moreover, as described in
the previous sections, the assessments of power, effect size, and assignment procedures
revealed incomplete reporting of these issues.

Even if internal and external validity were discussed in 2/3 of the experiments, most of
these discussions took the form of a defence for the design and conducting of the
experiment. Hence, threats to validity seemed underreported. Reports of only 5% and 11%
of the experiments contained a discussion of statistical conclusion validity and construct

validity, respectively.
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Table 8. Extent of reporting for various experimental variables

Information Variables Extent of reporting.
attributes Number of experiments
N Total %
Subjects Sample size 113 113 100
Mortality rate 24 113 21.2
Type (student/professionals) 112 113 99.1
Recruitment (Voluntarily/mandatory) 41 113 36.3
Some kind of background information 99 113 87.6
- Programming experience 37 113 32.7
- Work experience 24 113 21.2
- Task related experience 80 113 70.8
- Grades 6 113 53
Experimental setting  Task 113 113 100.0
Duration 69 113 61.1
Application system 101 113 89.4
Size of materials 67 113 59.3
Location 40 113 35.4
The use of tools 62 113 54.9
Design and analysis ~ Well-defined population 1 113 0.9
Statistical power | 92 1.1
Effect size * 27 92 29.3
Information available for estimation of at least
one effect size 64 92 69.6
Assignment procedure (randomized or quasi) 86 113 76.1
Randomization method 3 66 4.5
Validity/limitations ~ Discussion of internal validity 71 113 62.8
Threats to internal validity 26 113 23.0
Discussion of external validity 78 113 69.0
Discussing of statistical conclusion validityt 5 99 5.1
Discussion of construct validityf 12 113 10.6

Note: Which experiments and articles that are included in these assessments is described in Appendix A.

* Extent of reporting refers to the number of experiments with at least one effect size reported.

1 The number of experiments that discuss statistical conclusion validity and/or construct validity is based on
the explicit use of these terms. The reporting of these types of validity needs to be investigated more
thoroughly in future work.
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6 Discussion

This section summarizes the answers to the research questions, discusses implications of
the results, provides recommendations for improvements, presents limitations of the thesis

work, and offers directions for future research.

6.1 Answers to the research questions

Below are the answers to each research question.

o RQI: What is the statistical power level for the detection of small, medium and large

effect size values?
The average statistical power levels for detection of small, medium, and large effect
size values were, 0.11, 0.36, and 0.63, respectively, which is below acceptable norms
as well as below the levels found in the related discipline of IS research. In addition,
and perhaps as an explanation for the low power level, the review revealed that
inadequate attention was paid to power issues in the articles, with respect to the
discussion, use, and reporting of statistical power analysis. This indicates that
considerations of statistical power are underemphasized in experimental software
engineering research.

o RQ2a: To what extent is effect size reported as part of the experimental results?
Effect size was reported for only 24% of the experiments. Only two of the experiments
reported both standardized and unstandardized effect sizes. Unstandardized effect sizes
were reported more frequently for significant results than for non-significant result.
None of the 51 primary tests that compared more than two treatment conditions
reported the standardized effect size for the pairwise comparisons of treatments. Only
four of these 51 tests reported the unstandardized effect size.

o RQ2b: If effect size is reported, how is it interpreted?

Interpretations of the standardized effect sizes were made mostly in terms of references
to Cohen’s definitions of values for small, medium, and large effect sizes. The practical
implications of the results were not discussed in relation to contextual factors.
Unstandardized effect sizes appeared to be very useful as a basis for discussions
regarding the practical importance of the results. However, no interpretations or

thorough discussions of these values were made.
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RQ3a: To what extent is randomization used in the assignment procedure?
Randomization was performed in the majority of the experiments (58%), which
suggests that many researchers in software engineering are aware that randomization is
the most effective way of handling threats to internal validity. However, randomization
is not always desirable or possible in SE, to which the percentage of quasi-experiments
(35%) bears witness.

RQ3b: To what extent are quasi-experiments designed and analysed to control for
selection bias?

Approximately half of the quasi-experiments applied design elements to control for
selection bias; only three reported a threat to selection bias, and only four called the
experiment a quasi-experiment. Hence, the impression is that there is little awareness
of quasi-experimentation among researchers in software engineering.

RQ4: To what extent is information regarding the following attributes reported:
subjects, experimental setting, experimental design, analysis, and validity?

Large variations in reporting quality are seen both across types of information assessed
and across experiments. Insufficiencies include incomplete reporting, information
reported at different places in the articles, and a lack of consistent terminology.
Information about subjects and experimental settings varied substantially. For example,
sample size and a description of tasks were reported for all the experiments, whereas
information regarding recruitment and location were reported for less than 40 %.
Furthermore, the subject’s background information and the level of detail of this
information varied to a large extent across experiments. For the most part, information

regarding design, analysis, and validity was reported sparsely.

6.2 Implications

Low statistical power, sparse reporting of effect size, and insufficient handling of selection

bias in quasi-experiments present threats to valid inference. In turn, this might lead to

deficiencies in the accumulation of knowledge and the presentation of advice to industry.

More specifically, the implication of low statistical power is that the actual effects of

new technologies or other types of treatment that are tested in the experiments will not be

detected to an acceptable extent. Only half of the primary tests were significant at the 0.05

level, which supports this claim. In turn, low powered experiments might not be replicated,

due to non-significant findings. Moreover, in addition to influencing single studies, low
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power may also result in invalid inferences being made from meta-analyses that include
low-powered studies. In sum, low-powered experiments will tend to produce an
inconsistent body of literature, thus hindering the advancement of knowledge.

Sparse reporting of effect sizes means that the inference from the hypothesis testing
result is based on the p-values for most experiments. Because p-values provide no
information about the practical importance of the results, the inferences made might be
erroneous, or at least too little nuanced. More specifically, if an experiment includes a
sufficient number of subjects, it is always possible to identify statistically significant
differences, while if the experiment includes too few subjects (i.e. if it has insufficient
power), p-values may be misleading.

A consequence of not interpreting the practical importance of effect size in relation to
contextual factors is that the practical importance of the results will not be judged, because
there is no unambiguous mapping from effect size measures to a measure of practical
importance. For example, a medium effect size might be important for detecting an
inspection technique in one domain, whereas a large effect size is required for a specific
testing technique to be cost-effective. This means that applying Cohen’s conventions
mechanically has the same unwanted consequences as using the p-value mechanically.

When applying a non-random assignment procedure, the researcher must control for
potential selection bias. The consequence of not controlling for potential selection bias in
quasi-experiments, by using appropriate design elements, is that selection bias might
influence the results. Hence, the observed effect might be caused by factors other than the
treatment.

Incomplete and unstandardized reporting of experimental information and results
means that readers will have difficulty in understanding the experiment and judging the
result. Furthermore, little and arbitrary reporting on context variables, such as the
experimental setting and the participants’s skills hinders the accumulation of knowledge

regarding which context factors influence which kinds of performance.
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6.3 Recommendations for improvements

One main impression from the quality assessment is that the design and analysis of
experiments needs to be better suited to the experimental situation at hand. A tendency
seems to be to analyse all experiments as if they were randomized experiments with
sufficient power even if this is not the case, with the aim of making a yes/no decision about
the hypotheses tested on the basis of the results. Hence, the overall recommendation that
issues from the assessment of experimental quality is a more deliberate use of design
elements and an analysis that better adheres to the limitations of the experiment. Moreover,
there is a need for more complete and standardized reporting of information that is crucial
for understanding the experiment and judging the result.

Based on the findings, the following three major recommendations regarding software
engineering experimentation are given: include effect size considerations and power
considerations in the planning of the experiment, be aware of the extra effort required for
quasi-experimentation; and improve completeness and the standardization of reporting.

These recommendations are elaborated below.

6.3.1 Include effect size considerations and power considerations in the planning of
the experiment

The low statistical power and the sparse reporting of both considerations of power and
effect sizes suggest that a major challenge in software engineering experimentation is to
specify which size of effect to detect in the experiment and to report and interpret effect
size values.

There are three reasons for including considerations of effect size in the planning
stages of the experiment. (1) Statements about which effect sizes are interesting to detect
enable hypotheses to be formulated concretely and informatively, in comparison to the
standard: “null difference” versus “not null difference”. (2) Considering effect size early
forces the researcher to evaluate the outcome measure with regard to its usefulness in the
inference process. If the measure is difficult to transform into effect size measures, other
measures should be considered. (3) Considering effect size allows power to be considered,
1.e., the sample size required to obtain a certain power is computed for a given effect size,
test, and significance level. If this computation shows that an unrealistically large sample
size is required, the researcher must change elements of the design and repeat the sample

size computation in order to achieve acceptable power for the main test. Alternatively, if it
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i1s impossible to achieve acceptable power, the experiment will still have value as an
exploratory study as long as this is made explicit.

For determining the effect size to be detected in the experiment, the researcher can
both assess similar empirical research in the area and use the effect sizes found in these
studies as a guide, and look at their own studies and pilot studies for guidance. Due to the
limited number of empirical studies in software engineering, this approach may be difficult
to apply at present [80]. However, increased reporting of effect size and discussions of
their values will improve the current availability of effect size values. As a guide for the
probability of achieving certain standardized effect sizes in software engineering
experiments, the range of the two types of standardized effect size values detected in
software engineering experiments can be used (Paper 3). Moreover, Cohen’s definitions of
small, medium, and large standardized effect size values available for several statistical
tests are a useful aid when no other information is available. In addition to considerations
regarding standardized effect sizes, the corresponding unstandardized effect sizes should
be assessed. This is because the researcher needs to reflcet upon the practical importance
of the various possible effect size values when the experiment is being planned and
because the unstandardized effect size is better suited for such judgements than are the

standardized ones.

6.3.2 Be aware of the extra effort required for quasi-experimentation.

This investigation revealed a need for improved design and analysis of quasi-experiments
in ESE. More specifically, in order to control for selection bias, design elements such as
pretest scores, crossover design, and several comparison groups should be used to a greater
extent than is the case at present. If selection bias cannot be controlled for, quasi-
experimental designs should be avoided, because it will be difficult to determine whether
the result is due to the treatment or other factors.

Thirty percent of the quasi-experiments used haphazard assignment. In all of these
experiments, the groups were formed so as to be balanced regarding one type of participant
skill. This shows that, for many researchers, a non-random assignment procedure is viewed
as being more appropriate than randomization for balancing the experimental groups.
However, even if haphazard assignment might be a good approximation to randomization,
little is known about its consequences, whereas the statistical consequences of

randomization procedures have been well researched [106]. Therefore, whenever feasible,
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the researcher should use randomization, for example, blocked randomization based on one
type of skill, in order to utilize the advantages of randomization.

Some experiments use randomization for some primary tests and a non-random
assignment procedure for other primary tests. The author must make it explicit in the text
that they are using such a mix and control threats to selection bias in the quasi-
experimental part of the experiment.

Since there has been an increased focus on quasi-experiments in the method literature
in recent years and since the importance of such experiments has been emphasized [69,
113], we might see an increase in experiments that use a quasi-experimental design. Such
an increase will make it even more important to consider how to improve the conducting of

quasi-experiments in software engineering.

6.3.3 Improve completeness and the standardization of reporting.

Authors of scientific articles have limited space available and must prioritize what

information to report. The impression from the review is that the reporting of many tests is

prioritized in the service of the complete reporting of a few tests. This is not a

recommended practice. The quality of reporting will benefit from complete and thorough

reporting of the major results only.

The findings from the assessment of the quality of reporting revealed that some
information that is crucial for understanding and judging the experiment was reported for
less than half the experiments. There is great room for improvement in the reporting of
such information, as listed below.

e Recruitment. Recruiting subjects to experiments is not a trivial task, from either a
methodological or a practical point of view. For example, volunteers may bias the
results because they are often more motivated, skilled, etc., than are subjects who take
part because it is mandatory in some way.

e Location. There is a trade-off between realism and control regarding the location of an
experiment. Running an experiment in the usual office environment of subjects that are
professionals allows a certain amount of realism, yet increases the threat to internal
validity due to breaks, phone calls, and other interruptions. Controlling and monitoring
the experiment is easier in a laboratory set up, but in such a setting, realism suffers.

o Well-defined population. 1f one tests hypotheses using statistics, it is necessary to have

a well-defined population from which the sample is drawn [66].
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o  Mortality rate. All the experiments reported the sample size, which means that there is
general agreement on the importance of this variable. However, there are two types of
sample size: the number of subjects initially included in the experiment and the number
of subjects included in the data analysis. Both these numbers must be reported, as well
as the reasons for drop-outs or exclusions.

e Statistical power. Information from significance testing is incomplete if the statistical
power is not included. In particular, if no significance is found, the result should be
judged against the level of statistical power. The reporting of power compensates to
some degree for the lack of validity due to low power or extremely high power,
because the reader will be informed about how the power influences the result and can
draw inferences accordingly.

e FEffect size. The recommendation is to always report both a standardized and an
unstandardized effect size measure, because they serve different, supplementary
purposes. The standardized effect size aids other researchers in using the results.
Moreover, it embraces both the location and spread of all the observations. The
unstandardized effect size is easier to interpret than the standardized one and is
therefore better suited as a basis for discussions of the practical importance of the
results.

e Randomization method. If the method of randomization is not reported, the reader will
be in no position to judge whether the procedure is in accordance with
recommendations for randomization procedures.

e Threats to validity. Validity assessments should be reported for all experiments. It is
difficult to report threats objectively, but the attempt must be made. All the potential
types of threats to validity described by Shadish ef al. [106] must be assessed, but not
necessarily discussed due to space limitations in the article. The focus should be on
reporting actual threats only. Threats that are handled or that are not a problem in the
particular experiment can be omitted, because a thorough description of experimental

design will include such information.

In the current section, special emphasis is given to the variables that are reported most
infrequently. Nevertheless, all the variables listed in Table 5 should be reported. Hence,
Table 5 can be used as a checklist to help to improve the completeness of the reporting of

software engineering experiments. However, this is not a complete list, and researchers in
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software engineering should consult additional guidelines, such as those offered by
Kitchenham et al. [66] and Jedlitschka et al. [55, 56].

The second issue in reporting quality is the location within the paper of the reporting of
various issues. Experimental issues were described in various places in the articles, which
often made information difficult to find. The experience with the review work suggested
the following recommendation for reporting elements:

e structure abstracts appropriately,

e place all information about experimental design and conduct in one section,
e describe the methods of analysis used in one section,

e present the results in a single section,

e present threats to validity in one section, and

e conclude the paper in one section.

6.4 Limitations to this investigation

The main limitations to this research are publication selection bias and inaccuracy in data
extraction, which are described in the individual papers. These limitations are summarized
below.

e The review included published articles in what are regarded as the major journals and
conference proceedings in software engineering in general and empirical software
engineering in particular. Still, some experiments may have been overlooked, some of
which might have provided useful insight to this review finding.

e An additional threat regarding the set of selected articles is that there is a risk that the
findings are obsolete; the articles selected are from 5-14 years old. Therefore, a
preliminary systematic review of experiments published in 2007 has been performed,
see Appendix B. The results indicate that the recommendations given in this thesis are
still relevant today.

e There exist no keyword standards for extracting controlled experiments from journals
in a consistent manner. The operational definition of a controlled experiment with
corresponding inclusion and exclusion criteria were used for the inclusion of articles.
Still, the process was difficult and some experiments might have been overlooked.

e The lack of completeness and consistency in reporting made it difficult to gather the
data. For example, it was not always clear from the reporting of the studies which

hypothesis were actually tested, which significance tests corresponded to which
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hypothesis, or how many observations were included for each test; hence, the
extraction process may have resulted in inaccuracy in the data.

Not all the variables were gathered by several researchers. Even if these variables were
double checked by the same researcher, this represents a limitation of the process by

which data was gathered.

Moreover, the review process did not follow all the steps for a systematic review that

are suggested in [62]. In particular, for the investigation of effect size and quasi-

experimentation, the research questions were changed during the review, which turned into

an iterative process. Moreover, the process by which data was gathered became iterative

because the gathered data triggered the collection of additional data. Pre-review mapping

and piloting the review protocol, as suggested in [14], might have helped to reduce the

number of iterations. In addition, the authors of the selected papers were not contacted for

validity of the classification of their respective paper, although the procedure was partly

applied in Paper 4. If the authors were contacted, issues might have been cleared.

6.5 Future work

Among the areas for future work identified through this research are the following:

Reasons for lack of quality. The quantitative assessments performed in this thesis
described current practice, but did not reveal the reasons for the practices. Hence, it
would be interesting to follow up the findings by conducting a qualitative investigation,
for example, a survey or interviews aimed at extracting reasons for the lack of

reporting of power and effect size.

Similar reviews of other experimental topics. This review shows that quantitative
assessments of methodological aspects of software engineering research are valuable.
The findings reveal insufficiencies and act as a basis for discussions of future practices.
Hence, similar assessments of other experimental topics will contribute to the
improvements of experimental quality in ESE. Examples of such topics are: a more
detailed analysis of how experimental design is described in the articles; an
investigation of what types of design are performed; whether or not the methods

analysis used are appropriate for the design of the experiment; the extent to which the
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hypotheses and research questions are supported by similar research; the extent to
which the results are discussed in the context of related research; An investigation of
what types of measures (constructs) are used; and whether or not, and if so to what
extent, do researchers tend to adapt to already used measures or develop their own
measures suited for their experiment.

Systematic reviews of methodological topics are not constrained to experiments.

Future work includes similar reviews of, for example, case studies and surveys.

The impact of context variables. This review revealed a relatively low and arbitrary
reporting of context variables, which might influence the results. Future work should
investigate the extent to which the variation in the performance of subjects can be
explained by their background, such as education and work experience, and to increase
our knowledge of the impact of using students versus professionals as subjects in

software engineering experiments.

Effect size of practical importance. The investigation of effect size reveals that effect
size 1s seldom reported and that practical importance is seldom discussed on the basis
of the effect sizes. The recommendations provided in this thesis assume that the
reporting of effect sizes influences the quality of inferences made from the results and
that the lack of reporting of effect sizes is due to a lack of knowledge about its
importance. However, an alternative explanation is that the interpretation of effect sizes
is too difficult for effect sizes to have any value for the making of inferences. Future
work should include further discussions and research on how to report and interpret

effect size in software engineering experiments.

Selection bias in quasi-experiments. This review found different results from quasi-
experiments and randomized experiments. This finding should be investigated further,
to reveal the effect of bias from different types of non-random assignment procedures
in software engineering experiments. It is also of major interest to explore the extent to
which the different types of design element eliminate or reduce the effect of bias. This

can be investigated in experiments and in simulation studies.

47



Summary

Statistical conclusion and construct validity. Only 5% of the experiments explicitly
mentioned statistical conclusion validity and only 11% explicitly mentioned construct
validity. However, these types of validity may have been addressed under different
names and this possibility should be investigated further. Moreover, interesting future

work would include assessments of which types of threat are reported.

Replication of this review. This review revealed a need for increased statistical power,
effect size reporting, control for selection bias in quasi-experiments, and completeness
of reporting. It is hoped that this review and the corresponding recommendations for
improvements, as well as other recently published guidelines, will inspire researchers
in software engineering to improve current practice. In order to evaluate whether this
has been the case, a replication of this review should be performed by assessing

software engineering experiments published in the decade 2003-2012.

Further development and evaluation of the guidelines. This thesis work consists of
review results and guidelines. In combination, these two elements are ment to informe
and inspire researchers to improve their experimental quality. How successful this
approach is should be evaluated by (1) inspections as suggested by Kitchenham et al.
[63] and (2) an investigation of the amount of papers making citation to the guidelines
and assess whether the papers apply the recommendations. In addition, the guidelines
must be consider to be further developed, for example, by providing a more detailed

guidance on how to report effect size for different types of tests.
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7 Conclusion

Software engineering research must be of a certain quality to be valuable. The quality of
research can be investigated by conducting systematic reviews of the published literature,
as was the case in this thesis.

Insufficient experimental quality was revealed with respect to the validity of inference
and the completeness and consistency of the reporting of the experiments and their results.
More specifically, this review revealed a need for an increased level of statistical power,
increased use of effect size analysis, increased control for selection bias in quasi-
experiments, and more complete and standardized reporting of these issues and the
information regarding experimental subjects and settings. However, implementing these
improvements face certain difficulties. Challenges and suggested approaches for meeting

them are:

e FEstimation and interpretation of effect size values. The challenge of estimating or
guessing an effect size during the planning of the experiment is probably a major
reason why statistical power is not considered. In addition, the interpretation of
observed effect sizes is not straightforward and might explain why effect sizes are not
reported well enough.

Increased attention should be paid to effect sizes in the reporting of experiments.
Researchers should report both standardized and unstandardized effect sizes and

discuss these measures and the obtained values.

e Difficulty in including a sufficient number of subjects to achieve acceptable power.
Particularly for experiments with professionals, it may be difficult to obtain large
sample sizes in software engineering experiments. Even if attempts must be made to
increase power, low-power experiments can still be valuable. However, such
experiments are more exploratory than a well-designed experiment and this must be
stated explicitly in the report. Statistical power must be reported and discussed as part
of the results if significance testing is performed. An alternative is to omit significance

testing and analyse the results by effect sizes and confidence intervals only.
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Little knowledge of which skill factors that influence different types of performance for
different types of technologies. In order to allow pretest-based control with selection
bias in quasi-experiments, we need more knowledge about the effect that different
types of subject skill have on the performance of software engineering tasks. If
researchers increase their reporting of how subjects’ skills are distributed in their
experimental groups, meta-studies can investigate how different types of skill influence

performance in various experimental settings.
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Appendix A. The underlying data-material for this review

This Appendix lists the reviewed articles, describes which articles that are used in each
part of the review and provides information about article-categorization in parts of the

analysis.

A.1 Experiments and articles used in each part of the review

There are 103 articles included in this systematic review [1, 103], which reports 113
unique controlled experiments. A total of 12 articles reports more than one experiment [2,
20, 39, 42, 43, 48, 56, 66, 75, 95, 96, 103]. Four of the experiments are reported in more
than one article:

e one experiment was reported in [37, 38, 66]

e one experiment was reported in [69, 70]

e one experiment was reported in [8, 9, 11, 28]

e one experiment was reported in [72, 73]

Those articles that report the same experiments describe different research focus and
different analyses of the data from the particular experiment. Hence, these articles are not
“duplicates”. There were 120 article-experiments in the study database. For the parts of
this review that assessed analysis issues, only one article per experiment (the most recently
published one) is included, because we wanted the unit of assessment to be unique

experiments.

A.1.1. Experiments and articles included in the review of statistical power (Paper 2)

In the review of statistical power, 92 experiments are included. The exclusion of articles is

described below:

e For fourteen experiments, no statistical testing was performed. These experiments are
excluded from the review. The following articles each report one of these experiments:
[14, 18, 22-24, 30, 45, 47, 51, 61, 100]. In addition, two experiments without statistical
testing is reported in [96]. These twelve articles are excluded from the review of
statistical power. One of the three experiments described in [95] did not perform
statistical testing. Hence the experiment, but not the article, is excluded from the

review.
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e For seven experiments, we were not able to track which tests answered which
hypothesis or research question. These are reported in the following eight articles,
which are excluded from the review of statistical power [10, 41, 69, 70, 76, 85, 94, 97].

e Only one article per experiment is included in the review of statistical power. Hence,
the following five articles are excluded [8, 9, 11, 37, 72]. One description of one
experiment is excluded from [66], but the article also reports another experiment and is

therefore not excluded.

There are 78 articles (103-12-8-5) included in the review of statistical power.

A.1.2. Experiments and articles included in the review of effect size (Paper 3)

The same 92 experiments and 78 articles included in the review of statistical power are
included in the review of effect size, as described in Paper 3. In addition, a review of the
reporting of effect size was performed for the 21 remaining experiments (reported in 20
articles) that were originally excluded from the statistical power and effect size
investigation, i.e., the experiments for which no statistical testing was performed and for
which we were not able to track which tests answered which hypothesis or research
question [10, 14, 18, 22-24, 30, 41, 45, 47, 51, 61, 70, 76, 85, 94-97, 100]. The result from

this additional review was presented in the summary of the thesis.

A.1.3. Experiments and articles included in the review of quasi-experiments (Paper 4)
All the 113 experiments were included in the review of quasi-experiments. Only one article
per experiment was included and, hence, the following six articles were excluded: [8, 9,

11, 37, 69, 72]. These articles were used as additional source for information, but the data

gathering was based on the most recently published article of the particular experiment.

A.1.4. Experiments and articles included in the assessment of reporting quality (all
papers)

All the 103 articles describing the 113 experiments are included in the review that is
described in Paper 1. Those articles that describe the same experiment were assessed in
combination, in order to provide as complete information as possible about the particular

experiment regarding topic, subjects, tasks and experimental setting.
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A summary of the assessment of reporting quality is provided in Table 8 in the
summary of the thesis. Information regarding design and analysis and validity/limitations
were gathered from one of the following sets of experiments/articles:

e unique experiments reported in the most recently published article (113 experiments,
97 articles), six articles were excluded: [8, 9, 11, 37, 69, 72].

o randomized experiments (66 experiments).

e unique experiments with statistical tests performed (99 experiments, 91 articles), see
the description above of included experiments/articles in the review of statistical
power.

e unique experiments with clearly described tests-hypotheses connection (92

experiments, 78 articles), see descriptions above.

A.2. Information about article-categorization in parts of the analysis

Reporting of power. Of the 78 papers in the review of statistical power, 12 articles discuss
statistical power associated with the testing of null hypotheses [12, 13, 20, 25, 48, 49, 55,
58, 62, 64, 101, 103], while only one of the papers performed an a priori power analysis

and used it to guide the choice of sample size [101].

Reporting of effect size. The following articles report at least one effect size for at least one

of the reported experiments:

e Both standardized and unstandardized effect size are reported in two articles and two
experiments [4, 49]

e Standardized effect size only is reported in five articles and eight experiments [12, 13,
39, 48, 64]

e Unstandardized effect size only is reported in 15 articles and 17 experiments [3, 17, 20,

27, 32,33, 50, 54, 56, 75, 80, 82, 86, 92, 93]

Assignment procedure. In the mail-correspondence with the authors of unknown
assignment procedures, I stated that the articles would be kept anonymous. Therefore, lists

of articles categorized as quasi-experiments and randomized experiments are not provided.

53



Summary

References for the reviewed articles from 1993-2002

[1]

2]

[10]

[11]

[12]

T.K. Abdel-Hamid, K. Sengupta, and D. Ronan, Software project control: an
experimental investigation of judgment with fallible information, [EEE
Transactions on Software Engineering 19 (6) (1993) 603-612.

R. Agarwal, P. De, and A.P. Sinha, Comprehending object and process models: an
empirical study, /[EEE Transactions on Software Engineering 25 (4) (1999) 541-
556.

E. Arisholm, D.I.LK. Sjeberg, and M. Jergensen, Assessing the changeability of two
object-oriented design alternatives? A controlled experiment, Empirical Software
Engineering 6 (3) (2001) 231-237.

V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sorumgard, and
M.V. Zelkowitz, The empirical investigation of perspective-based reading,
Empirical Software Engineering 1 (2) (1996) 133-164.

A.C. Benander, B. Benander, and H. Pu, Recursion vs. iteration: an empirical study
of comprehension, The Journal of Systems and Software 32 (1) (1996) 73-82.

A.C. Benander, B.A. Benander, and J. Sang, An empirical analysis of debugging
performance? Differences between iterative and recursive constructs, The Journal
of Systems and Software 54 (1) (2000) 17-28.

A. Bianchi, F. Lanubile, and G. Visaggio, A controlled experiment to assess the
effectiveness of inspection meetings, Proceedings of the Seventh International
Software Metrics Symposium (METRICS'01), London, England, April 4-6 IEEE
Computer Society (2001) 42-50.

S. Biffl, Using inspection data for defect estimation, /EEE Software 17 (6) (2000)
36-43.

S. Biffl and W. Grossmann, Evaluating the accuracy of defect estimation models
based on inspection data from two inspection cycles, Proceedings of the 23rd
international conference on Software engineering (ICSE), Toronto, Canada, May
12-19 IEEE Computer Society (2001) 145-154.

S. Biffl and M. Halling, Investigating the influence of inspector capability factors
with four inspection techniques on inspection performance, Proceedings of the Sth
International Software Metrics Symposium (METRICS'02)

Ottawa, Canada, June 4-7 IEEE Computer Society (2002) 107-117.

S. Biffl, B. Freimut, and O. Laitenberger, Investigating the cost-effectiveness of
reinspections in software development, Proceedings of the 23rd international
conference on Software engineering (ICSE), Toronto, Canada, Mai 12-19 IEEE
Computer Society (2001) 155-164.

L.C. Briand, C. Bunse, and J.W. Daly, A controlled experiment for evaluating
quality guidelines on the maintainability of object-oriented designs, /EEE
Transactions on Software Engineering 27 (6) (2001) 513-530.

54



Appendix A. The underlying data-material for this review

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

L.C. Briand, C. Bunse, J.W. Daly, and C. Differding, Technical communication: an
experimental comparison of the maintainability of object-oriented and structured
design documents, Empirical Software Engineering 2 (3) (1997) 291-312.

A. Brooks, F. Utbult, C. Mulligan, and R. Jeffery, Early lifecycle work: influence
of individual characteristics, methodological constraints, and interface constraints,
Empirical Software Engineering 5 (3) (2000) 269-285.

J.M. Burkhardt, F. Detienne, and S. Wiedenbeck, Object-oriented program
comprehension: effect of expertise, task and phase, Empirical Software
Engineering 7 (2) (2002) 115-156.

C. Calero, M. Piattini, and M. Genero, Empirical validation of referential integrity
metrics, Information and Software Technology 43 (15) (2001) 949-957.

M. Cartwright, An empirical view of inheritance, Information and Sofiware
Technology 40 (14) (1998) 795-799.

D.Y. Chen and P.J. Lee, On the study of software reuse using reusable C++
components, The Journal of Systems and Software 20 (1) (1993) 19-36.

K. Cox and K. Phalp, Replicating the CREWS use case authoring guidelines
experiment, Empirical Software Engineering 5 (3) (2000) 245-267.

J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood, Evaluating inheritance
depth on the maintainability of object-oriented software, Empirical Software
Engineering 1 (2) (1996) 109-132.

D.E.H. Damian, A. Eberlein, M.L.G. Shaw, and B. Gaines, Using different
communication media in requirements negotiation, /EEE Software 17 (3) (2000)
28-36.

A. Drappa and J. Ludewig, Simulation in software engineering training,
Proceedings of the 22nd International Conference on Software Engineering
(ICSE), Limerick, Ireland, June 4-11 ACM (2000) 199-208.

A. Dunsmore, M. Roper, and M. Wood, Object-oriented inspection in the face of
delocalisation, /CSE. Proceedings of the 22nd international conference on Software
engineering, (2000) 467-476.

A. Dunsmore, M. Roper, and M. Wood, Systematic object-oriented inspection an
empirical study, ICSE. Proceedings of the 23rd international conference on
Software engineering, (2001) 135-144.

A. Dunsmore, M. Roper, and M. Wood, Further investigations into the
development and evaluation of reading techniques for object-oriented code
inspection, ICSE. Proceedings of the 24th international conference on Software
engineering, (2002) 47-57.

K. Finney, K. Rennolls, and A. Fedorec, Measuring the comprehensibility of Z
specifications, The Journal of Systems and Software 42 (1) (1998) 3-15.

55



Summary

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

W.B. Frakes and T.P. Pole, An empirical study of representation methods for
reusable software components, /[EEE Transactions on Software Engineering 20 (8)
(1994) 617-630.

B. Freimut, O. Laitenberger, and S. Biffl, Investigating the impact of reading
techniques on the accuracy of different defect content estimation techniques,
Proceedings of the Seventh International Software Metrics Symposium
(METRICS'01)

London, England, April 4-6 IEEE Computer Society (2001) 51-62.

P. Fusaro, F. Lanubile, and G. Visaggio, A relicated experiment to assess
Requirements inspection techniques, Empirical Software Engineering 2 (1) (1997)
39-57.

L.D. Gowen and J.S. Collofello, Assessing traditional verification's effectiveness
on safety-critical software systems, The Journal of Systems and Software 26 (2)
(1994) 103-115.

R. Harrison, S. Counsell, and R. Nithi, Experimental assessment of the effect of
inheritance on the maintainability of object-oriented systems, The Journal of
Systems and Software 52 (2-3) (2000) 173-179.

S.M. Henry and K. Todd Stevens, Using Belbin's leadership role to improve team
effectiveness: an empirical investigation, The Journal of Systems and Software 44
(3) (1999) 241-250.

G.S. Howard, T. Bodnovich, T. Janicki, J. Liegle, S. Klein, P. Albert, and D.
Cannon, The efficacy of matching information systems development
methodologies with application characteristics - an empirical study, The Journal of
Systems and Software 45 (3) (1999) 177-195.

M. Host and C. Wohlin, An experimental study of individual subjective effort
estimation and combinations of the estimates, Proceedings of the 20th international
conference on Software engineering (ICSE), Kyoto, Japan, April 19-25 IEEE
Computer Society (1998) 332-339.

M. Host and C. Johansson, Evaluation of code review methods through interviews
and experimentation, The Journal of Systems and Software 52 (2-3) (2000) 113-
120.

M. Host, B. Regnell, and C. Wohlin, Using students as subjects - a comparative
study of students and professionals in lead-time impact assessment, Empirical
Software Engineering 5 (3) (2000) 201-214.

P.M. Johnson and D. Tjahjono, Assessing software review meetings: a controlled
experimental study using CSRS, Proceedings of the 19th international conference
on Software engineering (ICSE) Boston, Massachusetts, USA, May 17-23 ACM
Press (1997) 118-127.

P.M. Johnson and D. Tjahjono, Does Every Inspection Really Need a Meeting?,
Empirical Software Engineering 3 (1) (1998) 9-35.

56



Appendix A. The underlying data-material for this review

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

M. Jorgensen and D.L.K. Sjeberg, Impact of effort estimates on software project
work, Information and Software Technology 43 (15) (2001) 939-948.

M. Keil, L. Wallace, D. Turk, G. Dixon-Randall, and U. Nulden, An investigation
of risk perception and risk propensity on the decision to continue a software
development project, The Journal of Systems and Software 53 (2) (2000) 145-157.

R.B. Kieburtz, L. Walton, L. McKinney, J.M. Bell, J. Hook, A. Kotov, J. Lewis,
D.P. Oliva, T. Sheard, and I. Smith, A software engineering experiment in software
component generation, Proceedings of the [8th international conference on
Software engineering (ICSE) Berlin, Germany, March 25-29 IEEE Computer
Society (1996) 542-552.

J.D. Kiper, B. Auernheimer, and C.K. Ames, Visual depiction of decision
statements: what is best for programmers and non-programmers?, Empirical
Software Engineering 2 (4) (1997) 361-379.

J. Koskinen, Experimental evaluation of hypertext access structures, Software
Maintenance and Evolution 14 (2) (2002) 83-108.

R. Krovi and A. Chandra, User cognitive representations: the case for an object-
oriented model, The Journal of Systems and Software 43 (3) (1998) 165-176.

S. Kusumoto, A. Chimura, T. Kikuno, K. Matsumoto, and Y. Mohri, A promising
approach to two-person software review in educational environment, The Journal
of Systems and Software 40 (3) (1998) 115-123.

O. Laitenberger and J.M. DeBaud, Perspective-based reading of code documents at
Robert Bosch GmbH, Information and Sofiware Technology 39 (11) (1997) 781-
791.

O. Laitenberger and H.M. Dreyer, Evaluating the usefulness and the ease of use of
a web-based inspection data collection tool, Proceedings of the 5th International
Software Metrics Symposium (METRICS), Maryland, USA, March 20-21 IEEE
Computer Society (1998) 122-132.

O. Laitenberger, K. El Emam, and T.G. Harbich, An internally replicated quasi-
experimental comparison of checklist and perspective based reading of code
documents, /EEE Transactions on Software Engineering 27 (5) (2001) 387-421.

O. Laitenberger, C. Atkinson, M. Schlich, and K. El Emam, An experimental
comparison of reading techniques for defect detection in UML design documents,
The Journal of Systems and Software 53 (2) (2000) 183-204.

L.P.W. Land, C. Sauer, and R. Jeffery, The use of procedural roles in code
inspections: an experimental study, Empirical Software Engineering 5 (1) (2000)
11-34.

F. Lanubile, F. Shull, and V.R. Basili, Experimenting with error abstraction in
requirements documents, 5th IEEE International Software Metrics Symposium
(METRICS), Maryland, USA, March 20-21 IEEE Computer Society (1998) 114-
121.

57



Summary

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

M. Lattanzi and S. Henry, Software reuse using C++ classes: the question of
inheritance, The Journal of Systems and Software 41 (2) (1998) 127-132.

K.B. Lloyd and D.J. Jankowski, A cognitive information processing and
information theory approach to diagram clarity: a synthesis and experimental
investigation, The Journal of Systems and Software 45 (3) (1999) 203-214.

C.M. Lott, Technical communication: a controlled experiment to evaluate on-line
process guidance, Empirical Software Engineering 2 (3) (1997) 269-289.

F. MacDonald and J. Miller, A comparison of tool-based and paper-based software
inspection, Empirical Software Engineering 3 (3) (1998) 233-253.

R.A. Maxion and R.T. Olszewski, Eliminating exception handling errors with
dependability cases: a comparative, empirical study, [EEE Transactions on
Software Engineering 26 (9) (2000) 888-906.

P. McCarthy, A.A. Porter, H. Siy, and L.G. Votta Jr, An experiment to assess cost-
benefits of inspection meetings and their alternatives: a pilot study, 3rd IEEE
International Software Metrics Symposium (METRICS), March 25-26 (1996) 100-
111.

J. Miller, M. Wood, and M. Roper, Further experiences with scenarios and
checklists, Empirical Software Engineering 3 (1) (1998) 37-64.

K.L. Mills, An experimental evaluation of specification techniques for improving
functional testing, The Journal of Systems and Software 32 (1) (1996) 83-95.

T. Moynihan, An experimental comparison of object-orientation and functional-
decomposition as paradigms for communicating system functionality to users, The
Journal of Systems and Software 33 (2) (1996) 163-169.

M.C. Ohlsson, C. Wohlin, and B. Regnell, A project effort estimation study,
Information and Software Technology 40 (11-12) (1998) 831-839.

M.C. Otero and J.J. Dolado, An initial experimental assessment of the dynamic
modeling in UML, Empirical Software Engineering 7 (1) (2002) 27-47.

M. Peleg and D. Dori, The model multiplicity problem: experimenting with real-
time specification methods, IEEE Transactions on Software Engineering 26 (8)
(2000) 742-759.

D. Pfahl, N. Koval, and G. Ruhe, An experiment for evaluating the effectiveness of
using a system dynamics simulation model in software project management
education, 7th IEEE International Software Metrics Symposium (METRICS),
London, England, April 4-6 IEEE Computer Society (2001) 97-1009.

A.A. Porter and L.G. Votta, An experiment to assess different defect detection
methods for software requirements inspections, Proceedings of the 16th
international conference on Software engineering (ICSE), (1994) 103-112.

58



Appendix A. The underlying data-material for this review

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

A.A. Porter and P.M. Johnson, Assessing software review meetings: results of a
comparative analysis of two experimental studies, IEEE Transactions on Software
Engineering 23 (3) (1997) 129-145.

A.A. Porter and L. Votta, Comparing detection methods for software requirements
inspections: a replication using professional subjects, Empirical Software
Engineering 3 (4) (1998) 355-379.

A.A. Porter, L.G. Votta, and V.R. Jr. Basili, Comparing detection methods for
software requirements inspections: a replicated experiment, /EEE Transactions on
Software Engineering 21 (6) (1995) 563-575.

A.A. Porter, H.P. Siy, C.A. Toman, and L.G. Votta, An experiment to assess the
cost-benefits of code inspections in large scale software development, /EEE
Transactions on Software Engineering 23 (6) (1997) 329-346.

A.A. Porter, H. Siy, A. Mockus, and L. Votta, Understanding the sources of
variation in software inspections, ACM Transactions on Sofiware Engineering and
Methodology 7 (1) (1998) 41-79.

L. Prechelt, Accelerating learning from experience: avoiding defects faster, /[EEE
Software 18 (6) (2001) 56-61.

L. Prechelt and W.F. Tichy, An experiment to assess the benefits of inter-module
type checking, 3rd IEEE International Software Metrics Symposium (METRICS),
Berlin, Germany, March 25-26 IEEE Computer Society (1996) 112-119.

L. Prechelt and W.F. Tichy, A controlled experiment to assess the benefits of
procedure argument type checking, IEEE Transactions on Software Engineering 24
(4) (1998) 302-312.

L. Prechelt and B. Unger, An experiment measuring the effects of personal
software process (PSP) training, IEEE Transactions on Software Engineering 27
(5) (2000) 465-472.

L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W.F. Tichy, Two controlled
experiments assessing the usefulness of design pattern documentation in program
maintenance, /[EEE Transactions on Software Engineering 28 (6) (2002) 595-606.

L. Prechelt, B. Unger, W.F. Tichy, P. Brossler, and L.G. Votta, A controlled
experiment in maintenance: comparing design patterns to simpler solutions, /EEE
Transactions on Software Engineering 27 (12) (2001) 1134-1144.

S. Ramanujan, R.W. Scamell, and J.R. Shah, An experimental investigation of the
impact of individual, program, and organizational characteristics on software
maintenance effort, The Journal of Systems and Software 54 (2) (2000) 137-157.

V. Ramesh and G. Browne, Expressing casual relationships in conceptual database
schemas, The Journal of Systems and Software 45 (3) (1999) 225-232.

59



Summary

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

B. Regnell, P. Runeson, and T. Thelin, Are the perspectives really different?
Further experimentation on Scenario-Based reading of requirements, Empirical
Software Engineering 5 (4) (2000) 331-356.

M. Roper, M. Wood, and J. Miller, An empirical evaluation of defect detection
technique, Information and Software Technology 39 (11) (1997) 763-775.

K.J. Rothermel, C.R. Cook, M.M. Burnett, J. Sconfeld, T.R.G. Green, and G.
Rothermel, WYSIWYT testing in the spreadsheet paradigm:an empirical

evaluation, Proceedings of the 22nd International Conference on Software
Engineering (ICSE) Limerick, Ireland, June 4-11 (2000) 230-239.

G. Sabaliauskaite, F. Matsukawa, S. Kusumoto, and K. Inoue, Experimental
comparison of checklist-based reading and perspective-based reading for UML
design document inspection reading, International Symposium on Empirical
Software Engineeering (ISESE), Nara, Japan, October 3-4 IEEE Computer Society
(2002) 148-160.

K. Sandahl, O. Blomkvist, J. Karlsson, C. Krysander, M. Lindvall, and N. Ohlsson,
An extended replication of an experiment for assessing methods for software
requirements inspections, Empirical Software Engineering 3 (4) (1998) 327-354.

B.G. Silverman and T. Mehzer, A study of strategies for computerized critiquing of
programmers, Empirical Software Engineering 2 (4) (1997) 339-359.

A.E.K. Sobel and M.R. Clarkson, Formal methods application: an empirical tale of
software development, /EEE Transactions on Software Engineering 28 (3) (2002)
308-316.

M.G. Sobol, A. Kagan, and H. Shimura, Performance criteria for relational
databases in different normal forms, The Journal of Systems and Software 34 (1)
(1996) 31-42.

E. Stensrud and I. Myrtveit, Human performance estimating with analogy and
regression models: an empirical validation, 5th [EEE International Sofiware
Metrics Symposium (METRICS), March 20-21 (1998) 205-213.

K. Takahashi, A. Oka, S. Yamamoto, and S. Isoda, A comparative study of
structured and text-oriented analysis and design methodologies, The Journal of
Systems and Software 28 (1) (1995) 69-75.

T. Thelin, P. Runeson, and B. Regnell, Usage-based reading - an experiment to

guide reviewers with use cases, Information and Software Technology 43 (15)
(2001) 925-938.

T. Thelin, P. Runeson, C. Wohlin, T. Olsson, and C. Anderson, How much
information is needed for usage-based reading, International Symposium on
Empirical Software Engineering (ISESE), Nara, Japan, October 3-4 IEEE
Computer Society (2002) 127-138.

60



Appendix B. A preliminary systematic review of experiments published in 2007

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

M. Tortorella and G. Visaggio, Evaluation of a scenario-based reading technique
for analysing process components, Sofiware Maintenance and Evolution 13 (3)
(2001) 149-166.

E. Tryggeseth, Report from an experiment: impact of documentation on
maintenance, Empirical Software Engineering 2 (2) (1997) 201-207.

K.G. van den Berg and P.M. van den Broek, Programmers' performance on
structured versus nonstructured function definitions, Information and Software
Technology 38 (7) (1996) 477-492.

R. Vinter, M. Loomes, and D. Kornbrot, Applying software metrics to formal
specifications: a cognitive approach, 5th [EEE International Software Metrics
Symposium (METRICS), Maryland, USA, March 20-21 IEEE Computer Society
(1998) 216-223.

G. Visaggio, Assessing the maintenance process through replicated, controlled
experiments, The Journal of Systems and Sofiware 44 (3) (1999) 187-197.

R.J. Walker, E.L.J. Baniassad, and G.C. Murphy, An initial assessment of aspect-
oriented programming, 2/st International Conference on Software Engineering
(ICSE), Los Angeles, USA, May 16-22 ACM (1999) 120-130.

L. Williams, R.R. Kessler, W. Cunningham, and R. Jeffries, Strengthening the case
for pair programming, /EEE Software 17 (4) (2000) 19-25.

C. Wohlin, Is prior knowledge of a programming language important for software
quality?, International Symposium on Empirical Software Engineering (ISESE),
Nara, Japan, October 3-4 IEEE Computer Society (2002) 27-36.

M.Y.M. Yen and R.W. Scamell, A human factors experimental comparison of SQL
and QBE, /EEE Transactions on Software Engineering 19 (4) (1993) 390-409.

C.S. Yoo and P.H. Seong, Experimental analysis of specification language diversity
impact on NPP software diversity, The Journal of Systems and Sofiware 62 (2)
(2002) 111-122.

A. Zendler, T. Pfeiffer, M. Eicks, and F. Lehner, Experimental comparison of
coarse-grained concepts in UML, OML, and TOS, The Journal of Systems and
Software 57 (1) (2001) 21-30.

Z. Zhang, V. Basili, and B. Shneiderman, Perspective-based usability inspection: an
empirical validation of efficacy, Empirical Software Engineering 4 (1) (1999) 43-
69.

S.H. Zweben, S.H. Edwards, B.W. Weide, and J.E. Hollingsworth, The effects of
layering and encapsulation on software development cost and quality, /EEE
Transactions on Software Engineering 21 (3) (1995) 200-208.

61



Summary

Appendix B. A preliminary systematic review of experiments published

in 2007

B.1. Purpose. In order to assess whether the findings from the systematic review of
experiments published in 1993-2002 are representative for contemporary practise, |

performed a review of the experiments published in 2007.

B.2. Method. The review assessed the experiments published in 2007 in Empirical
Software Engineering (EMSE), The Journal of Systems and Software (JSS), IEEE
Transactions on Software Engineering (TSE), and Information and software Technology
(IST). The results from this review are to be regarded as preliminary and a more thorough
investigation will be performed later. A more thorough investigation will include
independent review by several researchers both regarding extraction of articles and data
gathering. In addition, all the variables reported in this thesis will be investigated, whereas
this preliminary investigation only assessed a few.

In this preliminary investigation, the articles were selected by automatic search on the
word “experiment” in the title, abstract and keywords in the journals’ overviews of the
articles. Then these articles were manually investigated to reveal whether they described an
experiment according to the definition used in this thesis work, see section 4.4 in the

summary.

B.3. Results. A total of 258 articles were published in the four journals (Table B.1).
Among these, I found eight articles (3.1%) reporting 10 experiments [1-6, 8, 9]. Two
articles [4, 6] reported two experiments. Another article described two experiments, which
were analysed as one [8]. Hence, the article is regarded as reporting one experiment.

The extent of experiments found in these four journals in 2007 is quite similar to the

average extent found for the same four journals in 1993-2002 (2.9%).

The findings from the review comprised the following:
e Hypothesis testing was performed for seven experiments; hence three experiments
reported the results descriptively, only.

e Two experiments included professionals [2, 5]; seven included students.
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Table B.1. Articles that report controlled experiments

Review of articles in1993-2002 Review of articles in 2007
Journal Articles reporting Articles reporting
experiments experiments
Total no. of Total no. of
articles N Row % articles N Row %
investigated investigated
EMSE 124 22 17.7 24 2 8.3
JSS 886 24 2.7 108 5 4.6
TSE 687 17 2.5 48 0 0
IST 745 8 1.1 78 1 1.3
All 2442 71 2.9 258 8 3.1

The average number of participants was 32.4, the minimum number was nine and
the maximum number was 128.
Statistical power was reported for one of the seven experiments that performed
hypothesis testing (14.3%) [9].
Standardized effect size was not reported in any of the articles as part of
experimental results. However, one experiment reported the observed standardized
effect size in the discussion of statistical power [9].
Unstandardized effect size was reported for three experiments (30.0%) [1, 4].
Seven experiments described a randomization procedure (70.0%), one experiment
used a self-selection assignment procedure (quasi-experiment) (10.0%) [3] and two
experiments (20.0%) did not clearly describe whether a randomization procedure
was performed or not. One of these [8] was apparently randomized, as described in
another article [7]. The other experiment is probably a quasi-experiment, because a
pretest score was used to divide the subjects into groups with as similar
characteristics as possible [4].
The quasi-experiment compared the experimental groups with respect to a pretest
score in order to control for selection bias.
None of the randomized experiment described the randomization procedure.
The participants’ background information was reported for seven experiments
(70.0%):

o Age, task related knowledge (course about software development and

management) [1]

o Task related experience (UML knowledge), work experience [2]
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o Age, sex, task related experience (programming experience in years and
lines of code, course credits) [3]

o Task related knowledge (knowledge and opinions) [4]

o Gender [4]

o Age, work experience, task related experience (project management) [5]

o Task related experience (java experience in years and number of courses,
experience in static analysis tools) [9]

In addition, the participants’ background information for one experiment [8§]

was reported in another paper:

o Years of education, task related experience (java programming experience
in loc and years) [7]

e Eight experiments reported threats to validity/limitations (80.0%). The two

experiments that did not report any limitations did not perform hypothesis testing.

B.4. Conclusion:

e The reporting of statistical power and effect size is still unacceptably low.

e There are still needs for improvements regarding reporting of assignment
procedures.

e The one quasi-experiment that was evaluated in this review controlled the
experimental groups for a potential selection bias in the analysis. However, this is
insufficient evidence to conclude that the SE community has improved regarding
quasi-experimental design and analysis compared to research conducted in previous
years.

e Background information is still reported in an unstandardized manner.

These preliminary findings indicates that there are little improvements regarding the
quality of experimentation in SE, today, compared to the findings from the review of the
experiments published in 1993-2002. Hence, the guidelines provided in this thesis are still

relevant for current experimentation in software engineering.
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Software Engineering
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Abstract

The classical method for identifying cause-effect relationships is to conduct controlled
experiments. This paper reports on how controlled experiments in software engineering are
conducted at present and the extent to which relevant information is reported. Among the
5,453 scientific articles published in 12 leading software engineering journals and
conferences in the decade from 1993 to 2002, 103 articles (1.9 percent) reported controlled
experiments in which individuals or teams performed one or more software engineering
tasks. This survey characterizes quantitatively the topics of the experiments and their
subjects (number of subjects, students versus professionals, recruitment, and rewards for
participation), tasks (type of task, duration, and type and size of application), and
environments (location, development tools). Furthermore, the survey reports on how
internal and external validity is addressed and the extent to which experiments are
replicated. The gathered data reflects the relevance of software engineering experiments to

industrial practice and the scientific maturity of software engineering research.

Keywords: Controlled experiments, survey, research methodology, empirical software engineering.
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A Survey of Controlled Experiments in Software Engineering

1 Introduction

There is an increasing understanding in the software engineering community that empirical
studies are needed to develop or improve processes, methods and tools for software
development and maintenance [6, 4, 35, 16, 43, 5, 32, 41, 50, 15]. An important category
of empirical study is that of the controlled experiment, the conducting of which is the
classical scientific method for identifying cause-effect relationships.

This paper reports on a survey that quantitatively characterises the controlled
experiments in software engineering published in nine journals and three conference
proceedings in the decade from 1993 to 2002. The journals are ACM Transaction on
Software Engineering Methodology (TOSEM), Empirical Software Engineering (EMSE),
IEEE Computer, IEEE Software, IEEE Transactions on Software Engineering (TSE),
Information and Software Technology (IST), Journal of Systems and Software (JSS),
Software Maintenance and Evolution (SME), Software: Practice and Experience (SP&E).
The conferences are the International Conference on Software Engineering (ICSE), IEEE
International Symposium on Empirical Software Engineering (ISESE), and IEEE
International Symposium on Software Metrics (METRICS). The conference Empirical
Assessment & Evaluation in Software Engineering (EASE) is partially included in that ten
selected articles from EASE appear in special issues of JSS, ESE, and IST. We consider
the above journals to be leaders in software engineering. ICSE is the principal conference
in software engineering, and ISESE, Metrics, and EASE are major venues in empirical
software engineering that report a relatively high proportion of controlled software
engineering experiments.

Research in empirical software engineering should aim to acquire general knowledge
about which technology (process, method, technique, language or tool) is useful for whom
to conduct which (software engineering) tasks in which environments. Hence, this survey
focuses on the kind of technology being studied in the experiments investigated (which
reflects the topics of the experiments), the subjects that took part, the tasks they performed,
the type of application systems on which these tasks were performed, and the environments
in which the experiments were conducted. This survey also includes data on experiment
replication and the extent to which internal and external validity is discussed.

The paper is organised as follows. Section 2 describes related work. Section 3 defines

the research method for the survey. Section 4 reports the extent of controlled experiments,
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and Sections 5-10 report our main findings. Section 11 discusses threats to validity of this

survey. Section 12 summarises.

2 Related Work

Table 1 summarises the purpose, scope and extent of four major surveys in addition to this
survey. Tichy et al. [43] compare the amount of experimental work published in a few
computer science journals and conference proceedings with the amount of experimental
work published in a journal on artificial neural network and a journal on optical
engineering. In total, 403 articles were surveyed and classified into five categories: formal
theory, design and modeling, empirical work, hypothesis testing and other. Zelkowitz and
Wallace [49] propose a taxonomy of empirical studies in software engineering and report a
survey in which 612 articles were classified within this taxonomy. Glass et al. [20]
investigate 369 articles with respect to topic, research approach, research method,
reference discipline and level of analysis.

The above surveys give a comprehensive picture of research methods used in software
engineering. They differ in purpose, selection criteria and taxonomies. Nevertheless, their
results suggest the same conclusions: the majority of published articles in computer science
and software engineering provide little or no empirical validation, and the proportion of
controlled experiments is particularly low. The surveys propose means to increase the
amount of empirical studies and their quality.

The major difference between those surveys and ours is that they describe the extent
and characteristics of various types of empirical study, while we provide an in-depth study
of controlled experiments only. A comparison of those surveys and ours regarding the
extent of controlled experiments is provided in Section 4.

In addition to the general surveys described above, there are several surveys within
subdisciplines of software engineering, for example, object-oriented technology [14],
testing techniques [28] and software effort estimation [25]. Furthermore, Shaw [38]
categorises the research reported in articles submitted and accepted for ICSE 2002, and
Zendler [51] reports a survey of 31 experiments with the aim of developing a preliminary

theory about software engineering.
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Table 1. Surveys of empirical studies in software engineering

(Tichy et al. (Zelkowitz et (Glass et al. (Zendler 2001)  Our survey
1995) al. 1997) 2002)

Purpose Compares the Classifies Surveys topics, Develops a Surveys topics,
extent of empirical research preliminary SE  subjects, tasks,
empirical studies  studies in SE approaches, theory from environments, and
in computer and validates research the results of internal and
science with the taxonomy  methods, various SE external validity
other fields of empirical reference experiments of controlled

studies disciplines and experiments in SE
proposed by level of
the authors analysis.

Scope Comp. Sci., incl.  SE SE SE SE
SE

Journals ACM (random ICSE Proc., IEEE Software, Various EASE, EMSE,
publications), IEEE IST, JSS, journals and ICSE, IEEE
TSE, PLDI Software, TSE  SP&E, conference Computer, IEEE
Proc., TOCS, TOSEM, TSE proceedings Software, ISESE,
TOPLAS IST, JSME, JSS,

METRICS, SP&E,
TOSEM, TSE

Sampling of  1991-1994, one All papers in Every fifth Not reported All papers in the

papers to four volumes 1985, 1990 paper in the period 1993-2002
per journal, and 1995 period 1995-
random selection 1999
of work
published by
ACM in 1993

Number of 403 612 369 49 papers 5453 papers

investigated assessed, 31 scanned, 103

papers papers papers analysed in

analysed in depth
depth

3 Research Method

This section describes the kind of experiments that are considered in this survey, and the

procedure for identifying and analysing the relevant articles.

3.1 Controlled experiments in software engineering

Shadish et al. [37] provide the following definitions:

e Experiment. A study in which an intervention is deliberately introduced to observe its
effects.

e Randomised experiment. An experiment in which units are assigned to receive the
treatment or an alternative condition by a random process such as the toss of a coin or a
table of random numbers.

e Quasi-Experiment: An experiment in which units are not assigned to conditions

randomly.
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e Correlation study: Usually synonymous with non-experimental or observational study;

a study that simply observes the size and direction of a relationship among variables.

To identify the effects of the deliberate intervention in an experiment, factors that may
influence the outcome, in addition to the treatment, should also be controlled'. This is the
challenge of internal validity (see Section 10.1). Note that control is not an all or nothing
condition; the degree of control varies on a continuous scale. Based on the definitions
given above, we present an operational definition used for this survey. Since the term
‘experiment’ is inconsistently used in the software engineering community (often used

synonymously with empirical study), we use the term ‘controlled experiment’:

Controlled experiment in software engineering (operational definition):

A randomised experiment or a quasi-experiment in which individuals or teams (the
experimental units) conduct one or more software engineering tasks for the sake of
comparing different populations, processes, methods, techniques, languages or tools

(the treatments).

We do not distinguish between randomised experiments and quasi-experiments in this
survey, because both experimental designs are relevant to empirical software engineering
experimentation. Random assignment of experimental units to treatments may not always
be feasible, e.g., for logistic reasons. For example, one of the surveyed experiments used
units formed from existing training groups in a company — random assignment would, in
this case, have disturbed the training process.

We exclude several types of study that share certain characteristics with controlled
experiments, because while these may be highly relevant for the field, they do not apply
the deliberate intervention essential to controlled experiments. Thus, we exclude
correlation studies, studies that are solely based on calculations on existing data (e.g., from
data mining), and evaluations of simulated teams based on data for individuals. The last
category falls outside our operational definition, because the units are constructed after the

run of the experiment.

' Some definitions are very explicit on the aspect of control, for example, Zimney [52] defines a
psychological experiment as “objective observation of phenomena which are made to occur in a strictly
controlled situation in which one or more factors are varied and the others are kept constant”, see discussion
of this definition in [10].
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Studies that use projects or companies as treatment groups, in which data is collected at
several levels (treatment defined, but no experimental unit defined) are also excluded
because we consider these to be multiple case studies [47] (even though the authors might
refer to them as experiments). Our survey focuses on articles that provide the main
reporting of experiments. This excludes articles that at the outset would not provide
sufficient data for our analyses (e.g., summaries of research programs). Moreover, usability
experiments are not included since we regard those as part of another discipline (human

computer interaction).

3.2 Identification of articles that report controlled experiments

In order to identify and extract controlled experiments, one researcher systematically read
the titles and abstracts of 5453 scientific articles published in the selected journals and
conference proceedings for the period 1993-2002. Excluded from the search were
editorials, prefaces, article, summaries, interviews, news, reviews, correspondence,
discussions, comments, reader’s letters and summaries of tutorials, workshops, panels and
poster sessions.

If it was unclear from the title or abstract whether a controlled experiment was
described, the entire article was read by both the same researcher and another person in the
project team. In the end, 103 articles were selected. Note that identifying the relevant
articles is not straightforward, because the terminology in this area is confusing. For
example, several authors claim that they describe experiments even though no treatment is

applied in the study.

3.3 Analysis of the articles

The survey data is stored in a relational database (MS SQL Server 2000)°. Some data is
specific to an article, some is specific to an experiment and some information concerns the
combination of article and experiment. Moreover, an article might describe several
experiments and an experiment might be described in several articles, typically with a
different focus in each article. Consequently, we defined a data model with the entities
article, experiment and article-experiment with a set of attributes relevant to our survey. In
addition to the survey database, a catalogue of all the articles in searchable pdf-format was

generated. (About 3/4 of the articles were provided in searchable pdf-format by the journal

2 MS SQL Server 2000 is a registered trademark of Microsoft Corp.
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publishers; the remaining 1/4 were OCR-scanned.)’ The articles were analysed according
to the six aspects listed in Table 2. Each aspect encompasses a set of attributes for data
extraction.

Six researchers analysed the articles, so that each aspect above was covered by at least
two persons. After the initial analysis, the results were compared and possible conflicts
resolved by reviewing the articles collectively a third time or handing over the article to a

third person. The main analysis tool was SAS*.

Table 2. Aspects and their attributes for data extractions

Aspect Attributes

Extent Authors, Affiliation, Country, Year, Journal/Conference.

Topic Treatment, Title, Keywords.

Subjects Number of subjects categorised into (subcategories of) students and professionals, Subject

selection mode, Subject background and Subject recruitment information (voluntary, part
of course, paid, etc.).

Task and Location of experiment, Development tool, Work mode (individual or team), Duration,
Environment Application type (commercial or constructed), Application/Task size.
Replication Replication indicator, Subjects, Topic, Extent.

Internal validity  Category of threat to internal validity, Explicitness.

External Category of threat to external validity, Explicitness.
validity
4 Extent

Controlled experiments, as defined in Section 3.1, are reported in 103 (1.9%) of the 5453
articles scanned for this survey, see Table 3. The 103 articles report a total of 113
controlled experiments. Twelve articles report more than one experiment and four
experiments are reported in several articles.

EMSE, ISESE and METRICS, which focus specifically on empirical software
engineering, report a higher proportion of controlled experiments than the other journals
and the ICSE conference. The mean proportion of controlled experiments across years
varies between 0.6 and 3.5, but we see no marked trend over years. An overview of the

trend for the individual journals/conferences is presented in the appendix.

3 The survey database and catalogue of articles may be provided upon request to the corresponding author
and under the conditions of a signed agreement towards the use of the data.

4 SAS is a registered trademark of SAS Institute Inc.
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Table 3. Articles reporting controlled experiments

Articles reporting controlled experiments

Journal/Conference Total no. of articles investigated N Row %
EMSE 124 22 17.7
ISESE 20 3 15.0
METRICS 177 10 5.6
JSS 886 24 2.7
TSE 687 17 2.5
ICSE 520 12 2.3
IST 745 8 1.1
SME 186 2 1.1
IEEE SW 532 4 0.8
TOSEM 125 1 0.8
IEEE Comp 780 0 0
SP&E 671 0 0
All 5453 103 1.9

The surveys summarised in Table 1 also report extent. Tichy et al. have the study type
definition with the broadest scope and report that 14% of the articles published in the
specific software engineering journals TSE and TOPLAS (Transactions on Programming
Languages and Systems) describe empirical work. In Glass et al., the authors classify 3%
of the articles as laboratory experiments using human subjects and <1% as field
experiments. According to the survey by Zelkowitz and Wallace, experiments defined as
controlled methods are reported in 2.9% of the articles. Our survey finds the lowest
percentage of articles (1.9%) that report controlled experiments. This might be because our
study type definition is narrower than those of the other studies or because our
investigation spans more sources and years.

We rank institutions and scholars according to the number of experiments published
(not the quality), but relative to their fractional representation on the article(s) that reports
the experiment. Glass and Chen [18] also ranked institutions and scholars but according to
publication in systems and software engineering, and they used a more complex ranking
scheme for scholars.

In total, 207 scholars are involved in the experiments of our survey. Table 4 presents
the top 20 ranked scholars. Due to the fractional distribution, the number of experiments in
which a scholar has actually been involved, is typically higher than the scores in Table 4.
For instance, the top ranked scholar, Giuseppe Visaggio, was involved in six experiments
described in four papers authored by one to three scholars, resulting in a fractional score of
4.2 experiments. Among the 20 top ranked scholars, three (Laitenberger, Roper, Wood)
were involved in eight experiments, one was involved in seven, four in six, two in five,

nine in four, and one was involved in three experiments.
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There are 109 institutions from 19 countries involved in the experiments of our survey.
The scores for institutions are accumulated from the scores of affiliated authors. Table 5
presents the top 10 ranked institutions.

The institution that has used most professionals as subjects throughout the surveyed
time period is Fraunhofer Institute, Kaiserslautern. In total, they used 100 professionals in
six experiments, ranging from 11 to 20 in a single experiment. The institution that
conducted the experiment involving the largest number (68) of professionals as subjects

was Andersen Consulting (now Accenture), Norway.

Table 4. Top 20 scholars conducting controlled experiments in software engineering 1993-2002

Rank Experiments  Scholar Affiliation
1 4.2 Visaggio G Dipartimento di Informatica, University of Bari
Prechelt L abaXX Technology AG; Fakultit fiir Informatik, Universitit
2 2.7 Karlsruhe
Laitenberger O  Fraunhofer Institute for Experimental Software Engineering,
3 2.6 Kaiserslautern
3 2.6 Porter A A Department of Computer Science, University of Maryland
Wohlin C Dept. of SE and Comp. Sci., Blekinge Inst. of Technology;
5 2.4 Dept. of Com. Systems, Lund University
6 2.3 RoperM Department of Computer Science, University of Strathclyde
Wood M Department of Computer and Information Sciences,
6 23 University of Strathclyde
Votta L G Software Production Research Department, AT&T Bell
8 2.0 Laboratories/Lucent Technologies
Koskinen J Department of Computer Science and Information Systems,
8 2.0 University of Jyviskyla
10 1.8 Miller ] Department of Computer Science, University of Strathclyde
Jorgensen M Department of Informatics, University of Oslo; Simula
10 1.8 Research Laboratory, Oslo
Sjeberg D Department of Informatics, University of Oslo; Simula
10 1.8 Research Laboratory, Oslo
El Emam K Canadian National Research Council, Institute for Information
13 1.3 Technology
13 1.3 Regnell B Department of Communication Systems, Lund University
13 1.3 HostM Department of Communication Systems, Lund University
16 Daly J W Agilent Technologies, Fraunhofer Institute for Experimental
1.2 Software Engineering, Kaiserslautern
16 1.2 Tichy WF Fakultit fiir Informatik, Universitét Karlsruhe
Unger B sd&m GmbH and Co.; Fakultét fiir Informatik, Universitit
16 1.2 Karlsruhe
19 Basili VR Department of Computer Science, University of Maryland
19 Lanubile F Dipartimento di Informatica, University of Bari
Total 113 Total number of scholars 207
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Table 5. Top 10 institutions conducting controlled experiments in software engineering 1993-2002

Rank Experiments Institution Country

1 8.7 Department of Computer and Information Sciences, University of Scotland
Strathclyde

2 7.6 Fraunhofer Institute for Experimental Software Engineering, Germany
Kaiserslautern

3 6.3 Department of Communication Systems, Lund University Sweden

4 6.2 Department of Computer Science, University of Maryland USA

5 5.2 Dipartimento di Informatica, University of Bari Italy

6 4.1 Fakultit fiir Informatik, Universitdt Karlsruhe Germany

7 4.0 Department of Informatics, University of Oslo Norway

8 23 Department of Computer and Information Science, The Ohio State USA
University

9 2.1 Software Production Research Dept., AT&T Bell Labs/Lucent USA
Technologies

10 2.0 Cleveland State University USA

Total 113 Total number of institutions 109  Total number of countries 19

5 Topics

This section describes two classifications of the 103 analysed articles according to their
main topic. The first classification illustrates the experiments’ discipline coverage relative
to software engineering as a whole, while the second classification has a more technical
focus on software engineering method and methodology. The analysis is with respect to
article, rather than experiment, this is adequate since no two experiments on different
topics are reported in the same article. Both classifications emphasise the treatment of an
experiment, since treatment, being the intervention of interest (Section 3) indicates the de

facto topic under investigation.

5.1 Classification scheme: Glass et al.

There are a number of classification schemes for computing science and software
engineering, e.g., SWEBOK [1] and Glass ef al. [20]. The classification scheme of Glass et
al. is aimed at positioning software engineering research relative to a backdrop of overall
computing disciplines, i.e.,, computer science, software engineering, and information
systems, and their classification categories are meant to give uniformity across all three
fields [19]. The scheme is, therefore, somewhat general. On the other hand, this scheme
has actually been used in classifying work undertaken in software engineering, and can
therefore be used for illustrating the relative topic coverage of controlled experiments in

software engineering.
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Fig. 1 shows the distribution to topic categories of controlled experiments in software
engineering relative to software engineering research in general. Controlled experiments

seem to cover at least the categories that are well represented by general SE research, but

remember that the overall number of controlled experiments performed is low (Section 2).

topics.

Recall that experiments on topics purely within human computer interaction are not
included in this survey, as is the case for topics purely within information systems. Our

focus on experiments with human subjects also excludes a range of software engineering

The two most prominent categories are Software life-cycle/engineering (49%) and
Methods/Techniques (32%) due to respectively, the relatively large number of experiments

on inspection techniques and object-oriented design techniques.
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Fig. 1. Comparative distribution to topic of software engineering research and software engineering

experiments using the scheme of Glass et al. Only nonvoid categories are shown.
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5.2 Classification scheme: IEEE Keyword Taxonomy

The IEEE Keyword Taxonomy [24] provides a more technical perspective than the scheme
of Glass et al. [20]. This taxonomy is recommended for authors of IEEE articles, and is an
extended version of the ACM Computing Classification [2].

We use the IEEE keywords to denote topic categories. The classification according to
the IEEE Keyword Taxonomy is given in Table 6. The two prominent technical areas are
Code inspections and walkthroughs (35%) and Object-oriented design methods (8%). The

numbers of experiments are limited for other areas.

6 Subjects

This section describes the kind of subjects that take part in the experiments, the kind of

information that is reported about them, and how they are recruited.

6.1 Number and Categories of Subjects in the Experiments

In total, 5,88 subjects took part in the 113 experiments investigated in this survey. Eighty-
seven percent were students and nine percent were professionals. The reported subject
types are divided into the categories given in Table 7.

The number of participants per experiment ranges from four to 266, with a mean value

of 48.6 (Table 8). Students participated in 91 (81%) of the experiments, either alone or
together with professionals and/or scientists, and professionals took part in 27 experiments
(24%). The use of professionals as subjects has been relatively stable over time.
Undergraduates are used much more often than graduate students. For one experiment, no
information about subject type was provided; for eight experiments, no details about type
of students were given; and for five experiments with mixed types of subject, no
information about the number in each category was provided.

The issue of differences between students and professionals has been discussed in the
literature [13, 12, 48, 36]. Interestingly, while seven articles describe experiments using
both students and professionals, only three of them measure the difference in performance
between the two groups. In the first experiment, categorised as Software psychology, three
programming tasks were performed. For two of the tasks, there was no difference between
the groups, whereas for the third task, the professionals were significantly better. In the
second experiment, also in Software psychology, there was no difference. In the third
experiment, categorised as Maintenance process, the professionals were significantly

better.
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The performance in an experiment may differ between subcategories of subjects, that
is, there may be an interaction effect between treatment and subcategory [3]. However,
none of the surveyed experiments distinguished between subcategories of professionals or
students.

The experiment with the highest number of professionals (68) was classified as Cost
estimation in the IEEE-taxonomy (Table 6). Then there were five experiments with 29-35
professionals, of which one also employed 20 students. These five were categorised in
descending order (regarding number of subjects) as Modules and Interfaces, Code
Inspections and walkthroughs, Maintenance process, Software Psychology (understanding
code), and Patterns.

The total number of participants was reported in all the articles, either explicitly or
implicitly; in the latter case we could roughly calculate the number (for instance, from the
information that 10 teams averaging four subjects participated). Subject mortality (drop-
outs) was reported in 24 experiments (2% mortality on average). Even in experiments with
as many as 266 subjects (as well as many other experiments with a relatively high number
of subjects), no mortality was reported. One article states that “Non-random drop-out of
subjects has been avoided by the experimental design, i.e. assignment of groups only on
the second day of the experiment, i.e. directly before the treatment, and not before the pre-
test already on the first day of the experiment.” However, most articles say nothing about
how mortality was managed.

There are good reasons for conducting experiments with students as subjects, for
example, for testing experimental design and initial hypotheses, or for educational
purposes [42]. Depending on the actual experiment, students may also be representative of
junior/inexperienced professionals. However, the low proportion of professionals used in
software engineering experiments reduces experimental realism, which in turn may inhibit
the understanding of industrial software processes and consequently technology transfer
from the research community to industry. Hence, to break the trend of few professionals as
subjects, new strategies are needed to overcome these challenges, see e.g., discussions in

[39, 40].
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Table 6. Classification of articles according to IEEE taxonomy

Articles
IEEE Taxonomy N (group) N % (group) %

General 3 2.9

Software psychology 3 2.9
Requirements/Specifications 4 3.9

Languages 1 1.0

Methodologies 2 1.9

Validation 1 1.0
Design Tools and Techniques 1 1.0

Modules and interfaces 1 1.0
Coding Tools and Techniques 2 1.9

Object-oriented programming 1 1.0

Structured programming 1 1.0
Software/Program Verification 3 29

Formal methods 3 2.9
Testing and Debugging 40 354

Code inspections and walkthroughs 37 359

Debugging aids 1 1.0

Testing strategies 1 1.0

Testing tools 1 1.0
Programming Environments/Construction Tools 2 1.9

Graphical environments 2 1.9
Distribution, Maintenance, and Enhancement 3 2.9

Documentation 1 1.0

Maintenance process 2 1.9
Metrics/Measurement 1 1.0

Complexity measures 1 1.0
Management 8 7.1

Cost estimation 1 1.0

Productivity 1 1.0

Programming teams 1 1.0

Project control & modeling 1 1.0

Risk management 1 1.0

Time estimation 3 2.9
Design 15 13.3

Design notations and documentation 2 1.9

Representation 2 1.9

Methodologies 3 2.9

Object-oriented design methods 8 7.8
Software Architectures 7 6.2

Domain-specific architectures 3 2.9

Languages 2 1.9

Patterns 2 1.9
Reusable Software 4 39

Reuse models 4 3.9
Software and System Safety 1 1.0

Software and System Safety 1 1.0
Software Construction 4 3.9

Error processing 1 1.0

Programming paradigms 3 2.9
Software Engineering Process 5 4.9

Software process models 5 4.9
Total 103 100
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Table 7. Subject categories

Subject Category ~ Reported Subject Types N %

Undergraduates Undergraduates, Bachelors, Third and fourth-year students, 2969 54.1
Last-year students, Honors and Majors.

Graduates Graduate students, Students following graduate courses or Master’s 594 10.8
programs, MSc and PhD students.

Students, type Students in computer science, Students. 1203 21.9

unknown

Professionals Developers, Practitioners, Software engineers, Analysts, 517 94
Domain experts, Business managers, Facilitators, Professionals.

Scientists Professors, Post-doctorates, Staff members of educational institutions. 74 1.3

Unknown 131 23

Total 5488 100

Table 8. Participants in experiments

Experiments Subjects
Category of subjects N % Mean Std Min Median Max Sum
Students only Undergraduates only 43 38.1 632 61.1 10 43 266 2719
Graduates only 15 133 25.1 11.1 9 24 48 377
Undergraduates and
graduates 16 142 60.6 57.8 6 42 208 970
Students, type unknown 8 7.1 655 703 13 43 231 524
82 72.6 56.0 56.8 6 36266 4590
Professionals only 21 186 20.0 140 4 20 68 420
Mixed group of
subjects 9 8.0 493 372 12 42 120 444
Unknown 1 09 340 - 34 34 34 34
Total 113 100 48.6 51.6 4 30 266 5488

Number and size of experiments in terms of subjects. The mixed group of subjects include students with
scientists and/or professionals.

6.2 Information about subjects

In order to generalise from an experiment with a given group of subjects (sample
population), one needs information about various characteristics and their variation both in
the sample and in the group to which the results will be generalised (target population) [7].
For professionals, depending on what we wish to study, it would be relevant to know the
variations regarding competence, productivity, education, experience (including domains),
age, culture, etc. However, there is no generally accepted set of background variables for
guiding data collection in a given type of study, simply because the software engineering

community does not know which variables are the important ones. We have chosen to
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focus on the variables that are reported in the analysed articles, that is, gender, age,
education, experience and task-related training.

The analysed articles vary to a large extent on how they report such information. For
14 of the 113 experiments, no information about the subjects was reported. Moreover, the
level of detail reported varies substantially. An example of detailed information on
programming experience is: “On average, subjects’ previous programming experience was
7.5 years, using 4.6 different programming languages with a largest program of 3510
LOC. Before the course, 69% of the subjects had some previous experience with object-
oriented programming, 58% with programming GUIs.” An example of a high level
description without figures is: “Some of the students had industrial programming
experience.”

For the 91 experiments with students, the following information was reported: gender
(seven experiments), age (six experiments), grades (six experiments), programming
experience (general description: 17 experiments, number of years/languages: 11
experiments), work experience in industry (general description: nine experiments, number
of years: nine experiments), task-related experience (64 experiments) and task-related
training (27 experiments). The training was either tailored specifically for the experiment
or was part of a course, or the experiment could be conducted as part of a training session.

For the 27 experiments with professionals, more details on the subjects’ background
were given. Categories of professional such as reviewers, analysts, programmers and
managers were given for seven experiments. Subjects’ degrees were described for three
experiments. Gender and age were given for, respectively, two and three experiments.
Language and nationality were given for oneexperiment (subjects from two countries
participated). A general description of programming experience was given for two
experiments. Programming experience in years/languages was given for seven
experiments. Self-assessment of programming experience was reported for two
experiments. Work experience in years was given for five experiments. A general
description of task-related experience was reported in one experiment. Task-related
experience was measured in years for 13 experiments. Task-related training was reported
for 12 experiments.

The relatively low and arbitrary reporting on context variables is a hindrance for meta-
studies, which are needed to identify which context factors influence which kinds of
performance. The impact of the various context factors will, of course, depend on the

treatments and actual tasks to be performed in the experiments. Future work should
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investigate the extent to which the variation in performance of subjects can be explained by
their background, such as education and work experience, and to increase our knowledge
of the impact of using students versus professionals as subjects in software engineering

experiments.

6.3 Recruitment of subjects

Recruiting subjects to experiments is not a trivial task; either from a methodological or a
practical point of view. For example, volunteers may bias the results because they are often
more motivated, skilled, efc. than subjects who take part because it is mandatory in some
way [8]. Information about whether participation was mandatory is reported for 41 (36%)
of the experiments. For 12 of them (all student experiments), participation was mandatory.
Information about subject compensation for taking part in experiments is reported for 39
(35%) of the experiments. The grades of students were affected by the participation in 10
cases, and they received extra credits in nine cases (Table 9). In three cases, students were
paid to take part, and in one case, students were sponsored for a trip to an exhibition. No
compensation to professionals is reported. Typically, the experiments with professionals
were organised as part of normal projects or training programmes, and payment was thus
implicitly provided by the employer. Hence, it seems that none of the researchers or
research teams paid companies or professionals for taking part in experiments.

If one applies statistical hypothesis testing, a requirement is to have a well-defined

population from which the sample is drawn: “If you cannot define the population from

Table 9. Subject reward data

Experiment Participant
Reward N % N %
Grade 10 8.8 732 133
Extra credits 9 8.0 660 12.0
Payment 3 2.7 121 2.2
Other rewards 1 0.9 24 0.4
No reward 16 14.4 458 8.3
Unknown 74 65.5 3493 64.6
Total 113 100 5488 100
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which your subjects/objects are drawn, it is not possible to draw any inference from the
results of your experiment” [30].” Nevertheless, none of the experiments in this survey that
apply statistical hypothesis testing actually reported sampling from a well-defined target
population.

For only a couple of experiments, random sampling of subjects was claimed. How the
random sampling was carried out, was not described. The dominant approach was
convenience sampling: “Subjects are selected because of their convenient accessibility to
the researcher. These subjects are chosen simply because they are the easiest to obtain for
the study. This technique is easy, fast and usually the least expensive and troublesome. ...
The criticism of this technique is that bias is introduced into the sample.” [34]. This does
not mean that convenience sampling is generally inappropriate. For example, Ferber [17]
refers to the exploratory, the illustrative, and the clinical situations in which convenience
sampling may be appropriate. In software engineering, the most convenient way of
recruiting subjects is to use the students that are taught by the researcher. (Note that
convenience sampling is also common in other disciplines such as clinical medicine [34]
and social sciences [33].)

To increase the potential for sampling subjects from a well-defined population and to
alleviate the problem of having few professionals as subjects (Section 6.1), the
experimental software engineering community should apply new incentives, for example,
paying companies directly for the hours spent on an experiment [3] or offer the companies
tailored, internal courses where the course exercises can be used in experiments [27].
Payment would require that researchers include expenses for this kind of experiment in

their applications to funding bodies, see further discussion in [39].

7 Tasks

The tasks that subjects are asked to carry out are an important characteristic of a software
engineering experiment. Tasks may include building a software application from scratch or
performing various operations on an existing application. This section reports on the
surveyed experiments according to a high-level categorisation of their tasks and the

duration of those tasks. Moreover, we describe the total magnitude of the experiments by

* This claim should, as we understand it, not be interpreted outside the context of statistical hypothesis
testing. Obviously, even a study without a well-defined population (but with a well-defined sample) may
enable the researcher to infer about similar projects, e.g., based on argumentation by analogy or by theory,
see further discussion in [26].
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reporting the product of the number of subjects and the duration of the tasks. Finally, we

describe the kinds and size of application and materials used in the experiments.

7.1 Task categorisation

We categorise tasks given to subjects according to the main tasks in a software process.
We have defined four general categories, Plan, Create, Modify and Analyse that reflect
major tasks on software artefacts. Table 10 shows subcategories within these major
categories that have been identified in the surveyed experiments.

Task categorisation is somewhat different from topic categorisation. Tasks of a certain
category can be used to test hypotheses within various topics. For example, a maintenance
task can be used to test a certain design, or an experiment assigned to the Patterns category
in the IEEE taxonomy might have design, coding or maintenance tasks.

Table 10 shows the number of experiments deploying each kind of task. Note that tasks
of several categories might be involved in a single experiment. A task is represented by its
fraction of all tasks in an experiment, for example, an experiment with one Design task and
one Coding task gives a contribution of 0.5 to each of the two task categories. (Note also
that we do not distinguish between tasks and sub-tasks because there is no commonly
agreed definition of the unit of task. Hence, in the relatively few cases in which the
experimenters have divided their tasks into subtasks, we have considered them as one task
as long as they fall within the same category.) Due to experiment design, a task may be
performed several times by the same subjects but with different treatments. In such cases,
however, the task is only counted once.

The proportion of planning, creation, modification and analysis tasks is, respectively,
10%, 20%, 16% and 54%. Inspection tasks occur in 37 (33%) of the experiments, and are
by far the most prominent. This is in accordance with the topic classification of articles
reported in Section 5. Thirty-six of these experiments involve individual inspections, 29
involve team inspections. Twenty-eight experiments involve both individual and team
inspections. Inspection tasks are typically conducted using pen and paper, although some
use support tools.

Document comprehension tasks form the basis of various software engineering tasks,
and typically involve answering questions about system structure and functionality.

Twenty-three experiments involve document comprehension tasks, 12 of these pertain to

95



A Survey of Controlled Experiments in Software Engineering

code documents, nine are design comprehension, one concerns a requirements document
and one concerns process components.

Maintenance tasks pertain to all document types. The surveyed experiments, however,
only deal with design and code maintenance tasks; 19 experiments give code maintenance
tasks, and three give change tasks on design documents (including impact analyses). None
give both. In 10 of the code maintenance tasks, new functionality was added. One of the
code maintenance tasks is a pen-and-paper maintenance task performed jointly with a

comprehension task.

Table 10. Task categorization, duration, and material size

Duration Materials®
Experiments Subject level Slot level

Task category N’ % Occ.'| N Occ.” median (h)*| N* Occ.” median (h)* Occ.
Plan 11.0 9.7 11
Project planning 4.5 4.0 5 1.5 2 0.5 3
Requirements analysis 1.0 0.9 1 1.0 1 0.7
Estimation 55 4.9 6 0.5 1 0.5 3
Create 228  20.2 25
Design 7.4 6.6 11]2.8 4 0.91(3.8 5 1.0 6
Coding 154 13.6 19148 6 3.53]1.3 2 0.9 1
Modify 186 165 22
Maintenance - (18.6) (16.5) (22) (15)
Change design 1.3 1.2 3105 1 0.50(0.5 1 1.0 3
Change code 17.3 15.3 19[12.3 13 092|1.5 2 1.7 12
Analyse 60.7 537 98
Inspection - (35.1) @3L1D) @37 (28)
Individual 21.4 19.0 36|63 8 2.2918.0 14 2.0 27
Team 13.7 12.1 291 1.3 3 1.00(6.0 12 2.0 24
Testing 6.6 59 10] 4.0 6 0.99(1.0 1 0.3 7
Document compreh. - (19.0) (16.8) (23) (17)
Process doc. 1.0 0.9 1
Req. Doc. 1.0 0.9 1| 1.0 1 1.01 1
Design doc. 6.8 6.0 9135 4 0.37]1.0 2 1.5 7
Code doc. 10.2 9.0 12|43 5 0.06|1.8 3 2.1 9
All experiments 113 100 -l 41 - 1.03°| 28 - 2.0° -

* The fraction of experiments.

1 Occurrences of experiments. One experiment might be represented in several task categories.

1 Median duration of tasks by category. The last row shows the median total duration for all the tasks of an
experiment.

§ The occurrences of experiments in each task category that report size of materials. The total number of
experiments that report size of materials is 67.

Coding and Design are tasks in which new artefacts are produced. Modifying existing
code or design documents is classified as maintenance.
Most of the Testing tasks involve the generation of test harnesses and test cases.

Testing here also includes debugging using debugging tools, but excludes inspections.
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Three experiments investigate the effects of preplanning estimates on detailed
estimates (anchoring). In one of these, the Estimation task is part of a Project planning
exercise. One experiment involves estimation in a larger project, although project planning
as such is not a task in the experiment in question. Two experiments issue estimation tasks
in order to compare various estimation techniques.

Four of the five experiments with Project planning tasks are all-student experiments in
which the subjects were asked to role-play in project planning or to simulate projects. The
fifth one involves both professionals and students assessing how 10 different factors affect
the lead-time of software development projects.

In the experiment involving Requirements analysis, the subjects were asked to
negotiate a software requirements meeting with a customer.

Forty experiments deploy tasks in several categories. Among these experiments, five
involve three tasks, two involve four tasks: one has comprehension, maintenance and
inspection (individual and team) tasks, and one has design, coding, team inspection and

testing.

7.2 Task duration

An important task characteristic is duration. Accurate duration data per subject (typically
in dependent variables) is reported in 41 (36%) of the experiments and at slot level in 28
(25 %) of the experiments. (Time slots are coarse-grained indications, typically upper
bounds, of how much time the subjects took to perform a task. For example, we chose a
slot of two hours from the information that “We gave each subject up to three hours to
review each document (i.e., one document in the morning, and one in the afternoon). Only
one subject took more than two hours™.) Duration data that is not considered sufficient for
analysis is contained in phrases like “Six days, no time limit’, “From 1 to 11 days
depending on the subjects’ skills”, and “Non-programming subjects had 30 min. to finish
their task. Programming subjects had one week”.

Fig. 2 shows the frequency by time interval of the 41 experiments with detailed
subject-level time information. It appears that about 2/3 of the experiments last less than
two hours.

The two leftmost ‘Subject level’ columns of Table 10 show, for each task category
respectively, the fraction of and the number of experiments with subject-level duration data

that include tasks of this category. The third ‘Subject level” column shows the median
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Fig. 2. Distribution of experiments with subject-level duration data to time intervals.

duration in hours for these tasks. For example, three experiments have duration data for
design tasks. The fraction of the time spent on design activities in these three experiments,
relative to the total time for all experiments (with subject-level time data), is 2.3. The
median time used on design tasks in these experiments is 0.85 hours. The median duration
of all experiments with subject-level data is 1.0 hours and 2.0 hours for the experiments
with slot-level data.

Fig. 3 shows the actual task duration for the subject-level occurrences of Table 10. In
the interests of saving space, four data points at, respectively, 25 (Change code), 18.5
(Coding), 18.5 (Design) and 55 hours (Coding) are omitted from the figure. It appears that
there is large variance in duration, and that it seems independent of the type of task being
performed.

Little is mentioned in the articles about control over context variables in experiments
with multiple sessions, idle periods, or that span several days or weeks. Although the issue
in principle concerns all experiments, it would be particularly interesting to know how
experimenters have ensured control in experiments that involve long tasks.

The data described above reflects the duration of explicitly measured software
engineering-specific tasks as described in Section 7.1. Often however, subjects perform
additional tasks (training, preparation, post-mortem questionnaires, etc.) whose durations
are not captured in dependent variables or are otherwise measured explicitly. If one wants
to reflect the total time spent by subjects (perhaps in the interest of logistics), information

at a different level must be gathered. Although most experiments (close to 80%) provide
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some sort of information about total experiment duration, the data is, in general, measured
and reported arbitrarily, and is consequently difficult to summarise here.

The median duration of the tasks of 1.0/2.0 hours is, of course, a very small fraction of
the time of a typical industrial development project. The extent to which short tasks are a
threat to external validity, is difficult to judge in general. The actual tasks in the
experiments may be representative of typical industrial (sub)tasks. However, the lack of
studies that describe “typical” tasks within certain categories and contexts makes such a
judgement difficult. More studies are needed to investigate the relevance of the tasks being

conducted in software engineering experiments.
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Fig. 3. Task categories and subject-level duration data.

7.3 Magnitude of experiments — combination of number of subjects and
duration

Many aspects of the complexity of software engineering only manifest themselves in
controlled experiments if the experiments involve a sufficiently large number of subjects
and tasks, for example, differences among subgroups of subjects [3]. Hence, we can

characterise the experiments in terms of the scale of the combination of subjects and tasks
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(here, measured in terms of duration of the task). The magnitude of an experiment can be
described in terms of the total number of person-hours or person-days; that is, the number
of subjects multiplied with the length of the tasks.

In this survey, the experiment with the largest number of professionals lasts less than
one hour. However, in general, there seems to be no significant relationship between
duration and the number of subjects.

We here categorise the 69 experiments with duration data (41 with subject-level data
and 28 slot-level data), according to subject numbers and task duration into, respectively, S
(small), M (medium), and L (large), such that each category contains roughly 1/3 of the
experiments. In practice, this gives the following categories. For subject numbers, S: <23,
M: 23-47, and L: > 47. For duration, S: < 0.96 hours, M: 0.96-2.9, and L: > 2.9 hours.
(The subject groups cannot be made completely even because there are six experiments
with 24 subjects.) The person-hours categorisation is obtained by crossing these two
categorisations in configurations (subject category, duration category) as follows, S
(small): (S,S), (S,M), (M,S); M (medium): (S,L), (M,M), (L,S); L (large): (M,L), (L,L),
(L,M). Table 11 shows that experiments with professionals use a smaller number of
subjects than do experiments with students. Both experiments with students and
experiments with professionals have a uniform distribution for the three levels of duration.
Regarding magnitude, most student experiments are in the middle category and a fair
number are large, while most experiments with professionals are small and only one

experiment is large.

Table 11. Distribution of experiments to subject number, duration, and subject-duration categories

Measure Subjects (N) Duration (/) Person-Hours
Level S M L S M L S M L
Students (only) 15 18 21 18 19 17 14 24 16
Professionals (only) 5 3 0 3 2 3 4 3 1
Combination/Other 1 3 3 2 2 3 2 2 3
Total 21 24 24 23 23 23 20 29 20
Sum 69 69 69
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7.4 Application and materials

Applications may be of various types, such as commercial, open source, the result of a
student project, or custom-built for the purpose of the experiment. Table 12 shows that
75% of the surveyed experiments involved applications that were either constructed for the
purpose of the experiment or were parts of student projects. Commercial applications were
used in 16 experiments, of which 10 included inspection tasks (eight of these had team
inspections in addition to individual inspections), two included design tasks, one had
coding and maintenance (change code), one had coding only, one had (design)
comprehension and maintenance (change design), and one had estimation. For 12

experiments, the reporting is

Table 12. Distribution of experiments to application type

Application type N %

Constructed 80 70.8
Commercial 16 142
Student project 5 4.4
Open source 0 0.0
Unclear 12 10.6
Total 113 100

unclear in this respect, but 11 of these appear to have used custom-built applications. There
are no open source applications registered in this survey. The small fraction of commercial
or industrial applications used in current software engineering experiments puts in question
the possibility of generalizing the experimental results to an industrial setting.

The size of the materials presented to subjects gives some indications of the
comprehensiveness of the experiments. Size in the form of pages, lines of code (LOC) or
other quantities is reported in 67 (59%) of the experiments. The diversity of the surveyed
experiments and how they report information about materials makes it difficult to give a
systematic overview of the size of the experiment materials. Nevertheless, below we
describe in brief the size of materials per task category, cf. the rightmost column of Table
10.

Three experiments with Project planning tasks report materials size: a one-page case
scenario, a scenario in terms of 500 adjusted function points, and a four-page program

representation, respectively. The three Estimation experiments are based on a 1,000
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person-hour project, a four-page program representation, and on the creation of 10
programs (no sizes on these), respectively.

Five of the six experiments with size indications for Design tasks are on requirements
documents (1-2 pages, six modules). The sixth experiment gives a one-page task
description. Materials size is reported in one instance for a coding task (specification given
in three tables).

Two experiments with Change design tasks have a 30 page design document as
material (one experiment is an internal replication of the other; the materials of the former
are improved, but their sizes are more or less the same), and one has a 1,500 LOC system
as input. In the experiments with Change code tasks, the applications to be maintained
range from 54 to 2,700 LOC. The largest application also involves 100 pages of
documentation. Three experiments report the number of classes (6-10).

Twenty-eight experiments give materials size for Inspection tasks (individual or team).
Fourteen give LOC (ranging from 135-3,955 LOC). In one instance, the materials size is
given as 300 LOC, but the size of the entire system is 65,000 LOC. Page counts (ranging
from 16-47 pages) are given in 14 instances (all different from the 14 with LOC). Materials
size for Testing tasks (25-2,000 LOC) is reported in seven experiments (one also reports 10
classes). Reported materials sizes for Document comprehension tasks are varied (five
diagrams, seven screens, 16 screenshots, etc.), but five experiments give LOC (92-2,700
LOC) for Code comprehension tasks, and five experiments give page counts (2-30 pages)
for Design comprehension tasks.

In addition, some experiments (with tasks in the Create category) report the size of
produced task solutions. Five experiments with Coding give LOC (in the range 86-2,000
LOC) for produced code, and in one experiment the size for a Design task is provided
implicitly, in that the solution design document written by the experimenters is two pages.
Also, the amount of added code is given for two maintenance tasks: 50—150 LOC and 35—

79 LOC, respectively.

8 Environments

The strength of controlled experiments lies in that they may be used to isolate causal
relationships. However, controlled experiments in the field of software engineering are
often conducted in artificially designed environments that make it difficult to generalise the

results to industrial contexts. In short, “Internal and external validity can be negatively
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related” [37]. This section describes the surveyed experiments according to their location

and tools used.

8.1 Location

There is a trade-off between realism and control regarding the location of an experiment.
Running an experiment in the usual office environment of subjects that are professionals
allows a certain amount of realism, yet increases the threat to internal validity due to
breaks, phone calls and other interruptions. Controlling and monitoring the experiment is
easier in a laboratory set up, but in such a setting realism suffers.

For the 27 experiments with professionals or with professionals and students, 17 report
no explicit information about the experimental setting. Only one experiment is reported to
have been run in a usual office environment. The pilot of another experiment was run in an
office environment, but the main experiment was run in a classroom setting in order to
increase the internal validity. Three other experiments were run in a classroom setting, two
of which were run as part of a training course. Seven experiments are explicitly reported to
have been run in a laboratory environment.

Of the 85 experiments with students or with students and scientists, 56 report no
explicit information about the experimental setting. For, respectively, 13 and seven of
those experiments, it was explicitly stated they were conducted in a laboratory and
classroom. For another group of nine experiments, some sort of university setting was
stated, for example, “academic settings”, “conducted under exam conditions” and
“supervised setting”. However, one may assume that all the experiments with students
were carried out in a laboratory or classroom. Moreover, we believe that the distinction
between a classroom and laboratory setting for students may be blurred and may depend on
cultural differences, apart from the fact that a laboratory usually would include the use of
PCs or workstations (2/3 of the experiments that report the use of a laboratory also report
the use of PC or workstation, see the next section).

Approximately half of all the experiments with students report the name of the actual
university/college. For the 27 experiments that include professionals, the name of the
company is reported in 12 cases. For four experiments, the company is not named, but the
type of company is specified. Note that, depending on the actual experiment, certain

companies have a policy such that they must remain anonymous in the reporting of the
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experiment. In five cases, the professionals are described as coming from ‘“several”

. . . . . . 6
companies or organisations. The exact number of companies is not given.

8.2 Tools

It is a challenge to configure the experimental environment with an infrastructure with
supporting tools that resembles an industrial development environment. Among the
surveyed experiments, 55% report on tools to support the tasks of the experiments (Table
13). This includes both explicit descriptions, e.g., “Sun-4, GNU C compiler ”, and implicit,

but clear indications, e.g., “Developed programs were run against a set of test data’.

Table 13. Distribution of experiments to specific tool

Tool N %
PC or workstation (only) 32 28.3
Pen and paper (only) 25 22.1
Combination 5 4.4
Unknown 51 45.1
Total 113 100

Table 13 shows that the use of computer tools is slightly higher than the use of pen and
paper. However, it is likely that a larger proportion of those experiments that do not report
on tools are actually pen and paper experiments, because the added effort and
administrative overhead of using computer tools might inspire researchers to report the use
of tools more than the use of pen and paper.

The task types that give the largest and smallest contribution to the PC or workstation
category are, respectively, Coding and Inspection. Other than that, there is little correlation
between task type and tool for the experiments that actually report on this issue. Moreover,
there was no difference between experiments with professionals and experiments with
students regarding the use of tools.

Three of the five experiments with Combination in Table 13 explicitly test the effects

of computerised tool use versus pen and paper.

6 Before we decided to rely exclusively on the information reported in the articles, we approached the
corresponding authors of these five experiments to acquire more information about the extent of companies
involved in the experiments. It turned out that in two experiments, the subjects attended a course aimed at
people from industry (the number of companies of the participants was unknown). One author replied that it
was a mistake in the article; all participants actually came from the same company. One replied that he did
not know, but our impression was that it was only two companies. The last one did not respond to our
request.
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The relatively meagre proportion of experiments that report on the use of tools to
support assigned tasks may be due to an unawareness of, or a lack of interest in, the
relevance of this issue. For example, most of the experiments in the Unknown category are
inspection experiments, for which it may be normal to use pen and paper. However, for
most design, coding, testing and maintenance tasks, computer tools would have been used
in an industrial setting, although the line is not clear-cut. For example, designers may
sketch preliminary versions by hand, but the final design would be made using a tool.

In general, increasing the realism of software engineering experiments entails an
increased use of industrial supporting tools. The community should thus recognise the
effort and resources needed to set up PC or workstation environments with the right
licences, installations, access rights, etc., and to familiarise the subjects with the tools.
Moreover, the tools must be checked to demonstrate acceptable performance and stability
when many subjects are working simultaneously.

In the experiments of this survey, there is almost no discussion of the relationships
among the three dimensions subject, task and environment. For the community to progress,
this issue needs to be investigated. For example, a professional development tool will
probably become more useful the larger and more complex the tasks and application

systems become, assuming that the subjects are sufficiently proficient with the tool.

9 Replication

In this survey, 20 of the experiments are described by the authors themselves as
replications. These experiments constitute 14 series of replications. Table 14 summarises
the series including both the original experiments and the replications, and reports
differences between them. Most replications (35%) are conducted in the area of Inspection
(seven replications in series 1, 2 and 3) and Maintenance (five replications in series 4, 5
and 6). Among the 20 replications, five can be considered as close replications in the
terminology of Lindsay and Ehrenberg [31], i.e.,, one attempts to retain, as much as is
possible, most of the known conditions of the original experiment. The other replications
are considered to be differentiated replications, i.e., they involve variations in essential
aspects of the experimental conditions. One prominent variation involves conducting the
experiment with other kinds of subject; three replications use professionals instead of

students, three use undergraduates instead of graduates, and one uses students instead of
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professionals. Other variations include conducting the experiment on different application

systems (four), and with different tasks (three).

Table 14. Replicated experiments

Seri Exp. Stud. Prof. Con. Rej. Authors Repl. Type  Other differences
e
s Topic
1 Perspective-Based Reading 0 X - - - -
(requirements inspection) 1 X X same differentiated
2 X X others differentiated undergrads, (originally graduates)
3 X X  others differentiated undergrads, more, time extended
4 X X  others differentiated undergraduate
2 Perspective-Based Reading 0 X - - -
1 X X  others differentiated
3 Perspective-Based reading 0 X - -
1 X X same differentiated Diff. applications
2 X X same close
4 Maintenance Process 0 X - - -
1 X X same differentiated More tasks than in Exp. 0
2 X X same  differentiated Same as Exp. |
5 Maintainability of OO systems 0 X - - -
(inheritance depth) 1 X same  close
6  Maintainability of OO systems 0 X - - -
(inheritance depth) 1 X X others differentiated diff. appl. and tasks, added
hypotheses
2 X X  others differentiated Diff. appl.
7 Quality guidelines 0 X - -
(maintainability of OO systems) 1 X X same differentiated more subjects, diff. Tasks
8 DB referential integrity metrics 0* X - - -
1 X X X same  differentiated
9  Layering and encapsulation 0 X - - -
1 X X same  close
10 Comprehension of OO models 0 X - - -
1 X X same differentiated Diff. applications
11 Visual depiction of decision stmt. 0* X - - -
1 X X others close
12 Defect detection 0* X - -
1 X X others close
13 Use Case guidelines 0* X - - -
1 X X X  others differentiated Diff. eval. criteria
14 Design Patterns 0 X -
1 X X same differentiated diff. prog. lang. and rating scale.

Column Exp. presents the number in the replication series. The original experiments are denoted by ‘0.
Columns Stud. and Prof- indicate whether the subjects were students or professionals. Columns Con. and Rej.
Indicate whether the replications confirm or reject the findings of the original experiment. ‘*’ indicate that
the original experiment was published in a journal or conference proceedings not included in the survey.

In all the five close replications, the results of the original experiment were confirmed
(three were conducted by the same authors, two by others). Among the 15 differentiated
replications, seven were conducted by other authors. Six of these reported results differing
from the original experiment, and one partly confirmed the results of the original
experiment. Among the differentiated replications conducted by the original authors, we
found the opposite pattern; seven replications confirmed the results of the original
experiment, and only one reported partly different results.

“Methodological authorities generally regard replication, or what is also referred to as

‘repeating a study’, to be a crucial aspect of the scientific method” [31]. However, only
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18% of the surveyed experiments were replications. A discussion of the form and extent
ofreplication that would be benefit software engineering is beyond the scope of this paper,

but should be an issue of discussion for the research community.

10 Threats to internal and external validity

Two important aspects of the quality of an experiment are their internal and external
validity. This section discusses how, and the extent to which, threats to internal and
external validity are reported for the surveyed experiments. Descriptions of such threats are
made in various ways and under different headings. For 54 experiments (48% of all
experiments), there is a special section entitled “Threats to (internal/external) validity” or
other combinations that include the terms “threats” or “validity”. Nine other experiments
(8%) have special sections on threats to validity but with other names (e.g., “Limitations to
the results”). The reporting of threats to validity in yet another eight experiments were

found in other sections.

10.1 Internal validity

Internal validity of an experiment is “the validity of inferences about whether observed co-
variation between A (the presumed treatment) and B (the presumed outcome) reflects a
causal relationship from A to B as those variables were manipulated or measured” [37].
Changes in B may have causes other than, or alternative to, the manipulation of 4. Such an
alternative cause for the outcome is called a confound or confounding factor. For further
discussions (including formal definitions) of concepts of confounding, see [21].

Threats to internal validity are addressed explicitly for 71 experiments (63%). (We did
not include threats that are addressed implicitly as part of the experimental design.) We
classified the reporting of threats to internal validity according to the scheme of Shadish et
al. [37] shown in Table 15. That table also shows examples of threats in the various
categories reported for the surveyed experiments. A version of this scheme, with other
examples from software engineering, is presented in [46].

Table 16 shows the distribution of the experiments according to the scheme of Table
15. Almost half of all experiments report on selection threats (46%) and/or instrumentation
threats (40%). The distribution of number of threat categories reported is as follows: 22
experiments report one threat, 11 experiments report two threats, 23 report three, 10 report

four, four report five, and one experiment reports seven threats.
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Table 16 also shows whether the authors consider the threats to be present but not
handled by the authors, or reduced or eliminated due to actions taken by the authors or due
to other circumstances. Only 18% of the threats (reported in 23% of the experiments) are
not handled, but it may be the case that threats that are not reduced or eliminated are under-
reported.

Classifying internal validity is not always straightforward. For example, “learning
effects” are often classified as “maturation” in the experiments, while this should be
“testing” according to the categories given in Shadish et al. [37]. Maturation threats refer
to “natural changes that would occur even in the absence of treatment, such as growing
older, hungrier, wiser, stronger, or more experienced’, while testing threats refer to effects
of practice and familiarity within the experiment that could be mistaken for treatment
effects [37]. Moreover, threats that by this scheme pertain to statistical conclusion validity
or construct validity were, for a few experiments, reported as internal validity threats. In
part, this may be due to non-trivial subtleties in threat classification, illustrated by the fact
that the line of development starting with Campbell et al. [9], via Cook ef al. [11] to the
present classification scheme in [37], shows considerable variation. For example, the
notions of statistical conclusion validity and construct validity appeared for the first time in

1979 [11].7

"In addition, there are threats that scholars put in different main categories. For example, what Trochim [44]
and Wohlin [46] refer to as “social threats” are categorised as threats to internal validity by them, but as
threats to construct validity by Shadish et al. [37]. Four experiments address “social threats” in our survey,
but since we follow the scheme of Shadish et al., such threats are not included in our survey.
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Table 15. Threats to internal validity: reasons why inferences that the relationship between two
variables is causal may be incorrect

Description given by Shadish et al.

Examples from the survey

Ambiguous Temporal Precedence:
Lack of clarity about which variable
occurred first may yield confusion
about which variable is the cause and
which is the effect.

Selection: Systematic differences
over conditions in respondent
characteristics that could also cause
the observed effect.

History: Events occurring
concurrently with treatment could
cause the observed effect.

Maturation: Naturally occurring
changes over time could be confused
with a treatment effect.

Regression: When units are selected
for their extreme scores, they will
often have less extreme scores on
other variables, an occurrence that
can be confused with a treatment
effect.

Attrition: Loss of respondents to
treatment or to measurement can
produce artifactual effects if that loss
is systematically correlated with
conditions.

Testing: Exposure to a test can affect
scores on subsequent exposures to
that test, an occurrence that can be
confused with a treatment effect.

Instrumentation: The nature of a
measure may change over time or
conditions in a way that could be
confused with a treatment effect.

Additive and Interactive Effects of
Threats to Internal Validity: The
impact of a threat can be added to
that of another threat or may depend
on the level of another threat.

None

Random assignment and blocking, in combination with
randomisation or alone, and within-subject design were
often mentioned as reducing factors.

Most cases concerned individuals or teams communicating
during the experiments. Attempts to reduce this effect
include: “The subjects were instructed not to discuss the
experiment or otherwise do anything between the tests that
could cause an unwanted effect on the results.”

Most cases concerned boredom, fatigue, demotivation and
loss of enthusiasm, for example: “The boredom effect might
have affected the second run of the experiment, because
subjects had to perform a second complete inspection using
the same review technique”, “Demotivation may also play a
part as subjects become bored with three weeks of testing””

“The absence of pretest scores to assign subjects to groups,
the use of simple tasks, and the presence of multiple groups
control for statistical regression”

“A threat to the internal validity that was considered in the
analysis is that the subjects did not have enough time to
apply all the use cases”, “Of the twenty subjects who
expressed an interest in the study only thirteen of them
actually turned up to participate”

“We cannot exclude that learning was still in progress
during the experiment. We tried to minimize the learning
effect by teaching requirements specification and review and
having a training session before the experiment itself.”

“Instrumentation effects may result from differences in the
specification documents. Such variation is impossible to
avoid, but we controlled for it by having each team inspect
both documents.”

None

Further discussions of the impact of motivation of subjects in software engineering experiments may be
found in [23].
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Table 16. Threats to internal validity

No of experiments

Threat not Threat Threat % of
handled reduced eliminated all
Category Total exp.
Selection 10 35 7 52 46.0
Instrumentation 9 30 6 45 39.8
Maturation 3 14 6 23 20.4
Testing 2 22 4 28 24.8
History 3 9 6 18 15.9
Attrition 5 3 4 12 10.6
Regression 0 1 | 2 1.8
Ambiguous Temporal 0 0 0 0 0.0
Precedence
Additive and Interactive Effects 0 0 0 0 0.0
of Threats to Internal Validity
No of threats” 32(17.8%) 114 (63.3%) 34 (18.9%) 180 (100%)
No of Experiments 26 (23.0%) 55 (48.7%) 19 (16.8%) 717 (62.8%)

* We do not distinguish between one or more threats within a category for a given experiment; that is, only
one threat per category is counted per experiment.

1 Note that the total number of experiments is not the sum of the previous three columns because one
experiment may be represented in more than one category.

10.2 External validity

External validity concerns inferences about the extent to which a causal relationship holds
over variations in persons, settings, treatments and outcomes [37]. This section summarises
how the authors report threats to external validity regarding these issues.

Threats to external validity are reported for 78 experiments (69%). Table 17 shows a
categorisation of the threats based on Shadish ef al. [37]. Threats regarding subjects are
discussed in a total of 67 experiments (rows one, four, five, six and seven), regarding task
in 60, environment in 23 and treatment in six.

Most threats regarding subjects deal with difficulties of generalising from students to
professionals (45 experiments). Another category of experiments (14) also uses students,
but the experimenters argue that this may not be a threat to validity because the students
for this kind of task would (probably) have the same ability as professionals (seven),
because the students were close to finalising their education and start working in industry
(four), or because one other study showed no difference between students and
professionals (three). few experiments (three) that use professionals claim that threats to
external validity were not critical because the experiment was conducted with
professionals (they did not discuss the representativeness of their actual sample of

professionals). A few experiments (three) considered that running an experiment within a
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single organization was a threat to the generalisation to other organizations. Very few

experiments (two) explicitly described the lack of random sampling as a threat to validity.

Table 17. Threats to external validity

Factors addressed as threats to external validity =~ Experiments %
Subject (only) 14 12.4
Task (only) 10 8.8
Environment (only) 1 0.9
Subject and environment 2 1.8
Subject and task 31 27.4
Subject, environment and task 14 12.4
Treatment and subject, task or environment 6 53
Threats to external validity not addressed 35 31.0
Total 113 100

Most of the task-related threats concern size and complexity of the tasks (16
experiments) and experimental material (34), such as program code, inspection documents
and database systems. For experiments on inspection, one threat discussed was that the
inspection process applied was not considered representative for industrial practice (nine).
The (short) duration of the experiment was also regarded as a threat (three). One
experiment stated that “all our results were obtained from one project, in one application
domain, using one language and environment, within one software organisation.
Therefore, we cannot claim that our conclusions have general applicability, until our work
has been replicated.” Another experiment stated that the subjects might not have used the
technique intended to be studied in the experiment.

Threats regarding environment were either stated as a problem of generalising from the
experimental setting with no specific reasons (five experiments) or stated with concrete
reasons for the difficulties: use of laboratory or classroom (nine), individual work (five),
and use of pen and paper (six).

A major finding is that the reporting is vague and unsystematic. The community needs
guidelines that provide significant support for how to draw conclusions from the
experimental results and on how to address threats to internal and external validity and

their consequences.
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11 Threats to Validity of this Survey

The main threats to validity for this study are publication selection bias, inaccuracy in data

extraction and misclassification.

11.1 Selection of journals and conferences

We consider the 12 surveyed journals and conferences to be leaders in software
engineering in general and empirical software engineering in particular. (Our selection of
journals is a superset of those selected by others, as shown in Table 1.) Nevertheless, a
systematic survey that included, in addition, grey literature (theses, technical reports,
working papers, efc.) describing controlled experiments in software engineering would, in

principle, provide more data and allow more general conclusions to be drawn [29].

11.2 Selection of articles

To help ensure an unbiased selection process, we defined research questions in advance,
organised the selection of articles as a multistage process, involved several researchers in
this process, and documented the reasons for inclusion/exclusion as suggested in [29].

The initial investigation of the titles and abstracts of 5,453 articles resulted in 140
survey articles. Based on recorded comments, 80 of these were reanalysed by one or two
other researchers and discussed in the project group. Seventeen further articles were then
excluded because they described studies without a treatment. Moreover, three articles were
found to be exploratory, observational or constituting a pre-study. Eight were found to fall
outside the field of software engineering five were excluded on the grounds that they were
summary articles, while four articles described multiple case studies. We used Inspec and
various search engines to check the completeness of our inclusion, and cross-checked for
inclusion with other surveys [51, 22, 25]. Still, the process was difficult and we may not
have managed to detect all articles that we would have liked to include.

Another challenge was that there is no keyword standard that we are aware of that
distinguishes between methods in empirical software engineering and that could be used to
extract controlled experiments in a consistent manner. For example, none of the selected
articles matched the IEEE keyword taxonomy; indeed, this taxonomy has no appropriate
keywords for the methods of empirical software engineering. (MIS Quarterly has ceased to
use their keyword classification scheme due to the presence of full-text search engines and

the difficulty of keeping keyword classification schemes up to date [45].)
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Moreover, article and experiment duplication is a potential threat to frequency counts
and the statistics in this survey. Among the 113 experiments covered in the 103 articles,
109 are reported in one article, two are reported in two articles, one is reported in three
articles, and one is reported in four. Among the 103 surveyed articles, 91 report a single
experiment, seven report two experiments, and five report three experiments. We detected
one case of near article duplicates in different journals. The structure of the database is
designed to handle duplication, but a threat would be that duplication goes undetected.
However, at least three people have read through all relevant articles without detecting

further duplicates.

11.3 Data extraction

The data was extracted from the articles independently by two researchers. The inter-rater
agreement varied from 73% to 100%. Disagreements were resolved by discussion and,
when necessary, by involving other project members. Data extraction from prose is
difficult at the outset and the lack of standard terminology and standards for reporting

experiments in software engineering may have resulted in some inaccuracy in the data.

11.4 Classification to topics

The classification of articles to topics was done in two steps. First, the articles were
classified automatically on the basis of title, list of keywords, and registered treatment.
Then, this classification was double-checked by two researchers. The inter-rater agreement
between the algorithm and the two researchers was 75% for the comparative classification
using Glass et al.’s scheme, and 66% for the IEEE-classification. The topic classification
was difficult, due to the lack of a well-defined method of classifying according to the

schemes used.

12 Summary

This paper reported a survey that characterized quantitatively the controlled experiments in
software engineering published in nine journals and three conference proceedings in the
decade from 1993 to 2002. Included were randomised experiments or quasi-experiments in
which individuals or teams (the experimental units) applied a process, method, technique,
language or tool (the treatments) to conduct one or more software engineering tasks. Out of

5,453 articles scanned, we identified 103 articles that reported 113 controlled experiments.
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Although as many as 108 institutions from 19 countries were involved in conducting
the experiments, a relatively low proportion of software engineering articles (1.9%) report
controlled experiments, given that controlled experiments is the classical scientific method
for identifying cause-effect relationships. One reason may be the large effort and resources
needed to run well-designed experiments.

An important issue that pertains to all software engineering research is its relevance to
the industry. For experiments, both the topics under investigation and how representative
of an industrial setting an experiment is will influence industrial relevance. The two major
areas investigated in the experiments were inspection techniques and object-oriented
design techniques. This survey also gave some indications as to how realistic the
experiments were relative to the subjects that took part, the tasks they performed, the types
of applications on which these tasks were done, and the environment in which the subjects
worked.

In total, 5,488 subjects participated in the experiments. The number of participants
ranged from 4 to 266, with a mean value of 49. In total, 87% of the subjects were students,
whereas only 9% were professionals. This indicates that one may question how
representative the experimental results are for an industrial setting.

The same applies to the kind of application used in the experiments. In 75%, the
applications were constructed for the purpose of the experiment or constituted student
projects. Commercial applications were used in 14% of the experiments.

Threats to internal and external validity were addressed in respectively, 63% and 69%
of the experiments. Among the threats to internal validity, about 1/5 were not handled, 3/5
were reduced and 1/5 were eliminated. This could either mean that the experiments all over
had a high degree of internal validity or that the internal threats that were not reduced or
eliminated were underreported. Threats to external validity regarding subject and task were
discussed in more than half of the experiments, regarding environment in about 1/4 of the
experiments and regarding treatment in only a few. Threats to internal validity regarding
selection and instrumentation were most frequently reported.

A major finding of this survey is that the reporting is often vague and unsystematic,
and there is often a lack of consistent terminology. The community needs guidelines that
provide significant support on how to deal with the methodological and practical
complexity of conducting and reporting high-quality, preferably realistic, software
engineering experiments. We recommend that researchers should accurately report the

following: the type and number of subjects, including the mortality rate; context variables
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such as general software engineering experience and experience specific to the tasks of the
experiments; how the subjects were recruited; the application areas and type of tasks; the
duration of the tasks; and internal and external validity of the experiments, including being
specific about the sample and target population of the experiment. A more uniform way of
reporting experiments will help to improve the review of articles, replication of

experiments, meta-analysis and theory building.

Appendix
See table 18 and Table 19.

Table 18. Total number of articles investigated

Year
Journal 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Total
EMSE - - - 10 24 14 17 19 24 16 124
ISESE - - - - - - - - - 20 20
METRICS 15 11 - 17 18 32 31 - 30 23 177
JSS 87 78 76 74 82 91 95 112 101 90 886
TSE 85 74 77 65 52 83 55 68 62 76 687
ICSE 48 31 32 59 51 64 56 64 58 57 520
IST 67 69 62 69 76 80 87 83 78 74 745
SME 12 16 22 21 18 18 20 19 19 21 186
IEEE SW 50 56 45 51 52 48 59 60 55 56 532
TOSEM 13 12 10 13 12 13 13 14 11 14 125
IEEE Comp 70 76 74 83 91 79 78 73 81 75 780
SP&E 69 59 68 68 71 72 68 65 65 66 671
Total 516 482 466 530 547 584 579 577 584 588 5453
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Table 19. Number of articles that report controlled experiments

Year
Journal 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Total
EMSE - - - 2 6 5 1 5 1 2 22 (17.7%
of 124)
ISESE - - - - - - - - - 3 3 (15.0%
of 20)
METRICS 0 0 - 2 0 4 0 - 3 1 10 (5.6%
of 177)
JSS 1 1 1 4 0 4 5 6 1 1 24 (2.7%
of 886)
TSE 2 1 2 0 2 1 1 3 3 2 17 (2.5%
of 678)
ICSE 0 1 0 1 1 1 1 3 3 1 12 (2.3%
of 520)
IST 0 0 0 1 2 2 0 0 3 0 8 (1.1%
of 745)
SME 0 0 0 0 0 0 0 0 1 1 2 (1.1%
of 186)
IEEE SW 0 0 0 0 0 0 0 3 1 0 4 (0.8%
of 532)
TOSEM 0 0 0 0 0 1 0 0 0 0 1 (0.8%
of 125)
IEEE comp 0 0 0 0 0 0 0 0 0 0 0 (0%
of 780)
SP&E 0 0 0 0 0 0 0 0 0 0 0 (0%
of 671)
Total 3 3 3 10 11 18 8 20 16 11 103
06% 0.6% 0.6% 19% 2.0% 3.1% 14% 3.5% 27% 1.9% (1.9%
Of516 0f 482 Of466 of 530 of 547 of 584 of 579 of 577 of 584 of 588 of 5453)
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Abstract

Statistical power is an inherent part of empirical studies that employ significance testing
and is essential for the planning of studies, for the interpretation of study results, and for
the validity of study conclusions. This paper reports a quantitative assessment of the
statistical power of empirical software engineering research based on the 103 papers on
controlled experiments (of a total of 5453 papers) published in nine major software
engineering journals and three conference proceedings in the decade 1993-2002. The
results show that the statistical power of software engineering experiments falls
substantially below accepted norms as well as the levels found in the related discipline of
information systems research. Given this study’s findings, additional attention must be
directed to the adequacy of sample sizes and research designs to ensure acceptable levels
of statistical power. Furthermore, the current reporting of significance tests should be

enhanced by also reporting effect sizes and confidence intervals.

Keywords: Empirical software engineering, controlled experiment, systematic review,

statistical power, effect size.
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1 Introduction

An important use of statistical significance testing in empirical software engineering (ESE)
research is to test hypotheses in controlled experiments. An important component of such
testing is the notion of statistical power, which is defined as the probability that a statistical
test will correctly reject the null hypothesis [12]. A test without sufficient statistical power
will not be able to provide the researcher with enough information to draw conclusions
regarding the acceptance or rejection of the null hypothesis.

Knowledge of statistical power can influence both the planning, execution and results
of empirical research. If the power of statistical tests is weak, the probability of finding
significant effects is small, and the outcomes of the study will likely be insignificant.
Furthermore, if the study fails to provide information about the statistical power of its tests,
we cannot determine whether the insignificant results were due to insufficient power or if
the phenomenon actually did not exist. This will inevitably lead to misinterpretation of the
outcomes of the study.

Thus, failure to provide an adequate level of statistical power has implications for both
the execution and outcome of research: “If resources are limited and preclude attaining a
satisfactory level of statistical power, the research is probably not worth the time, effort,
and cost of inferential statistics.” ([1], p. 96).

These considerations have prompted researchers in disciplines such as social and
abnormal psychology [8,10,38], applied psychology [6,30], communication [7], behavioral
accounting [2], marketing [37], management [5,16,25,30], international business [4], and
information systems research [1,36] to determine the post hoc statistical power of their
respective literature.

Within software engineering (SE), Miller et al. [29] discussed the role of statistical
power analysis in ESE research, suggesting that there is inadequate reporting and attention
afforded to statistical power in the ESE literature, which leads to potentially flawed

research designs and questionable validity of results:

Any researcher not undertaking a power analysis of their experiment has no idea of
the role that luck or fate is playing with their work and consequently neither does the

Software Engineering community (p.286).
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Although Miller ef al. [29] made an important contribution in directing attention to the
concept of statistical power in ESE research and how it can be incorporated within the
experimental design process, they based their arguments on an informal review of the
literature. There is, therefore, a need to conduct more formal investigations, similar to that
of other disciplines, of the state-of-the-practice in ESE research with respect to statistical
power.

The purpose of this paper is thus (1) to perform a systematic review and quantitative
assessment of the statistical power of ESE research in a sample of published controlled
experiments, (2) to discuss the implications of these findings, and (3) to discuss techniques
that ESE researchers can use to increase the statistical power of their studies in order to
improve the quality and validity of ESE research.

In section 2, we present a brief background on statistical power and its determinants. In
Section 3, we provide an overview of the research method employed to review and
determine the statistical power in controlled software engineering experiments. Section 4
reports the results of the review, while Section 5 provides a discussion of the results, their
implications, and some recommendations that should improve the quality and validity of

future ESE research. Section 6 provides some concluding comments.
2 Background: statistical power

2.1 Power and errors in statistical inference

According to Neyman and Pearson’s [31,32] method of statistical inference, testing
hypotheses requires that we specify an acceptable level of statistical error, or the risk we
are willing to take regarding the correctness of our decisions. Regardless of which decision
rule we select, there are generally two ways of being correct and two ways of making an
error in the choice between the null (Hy) and the alternate (Ha) hypotheses (see Table 1).

A Type I error is the error made when Hj (the tested hypothesis) is wrongly rejected. In
other words, a Type I error is committed whenever the sample results fall into the rejection
region, even though H, is true. Conventionally, the probability of committing a Type I
error is represented by the level of statistical significance, denoted by the lowercase Greek
letter alpha (o). Conversely, the probability of being correct, given that H is true is equal

to 1—o.
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Table 1. Ways of being correct or making an error when choosing between two competing hypotheses.

Unknown true state of nature

Hy: No Difference Hj: Difference

Statistical Accept Hy 1-oi: Correct B: Type II error

conclusion .
Reject Hy o Type I error 1-B: Correct (power)

The probability of making an error of Type II, also known as beta (P), is the probability
of failing to reject the null hypothesis when it is actually false. Thus, when a sample result
does not fall into the rejection region, even though some Hj is true, we are led to make a
Type II error. Consequently, the probability of correctly rejecting the null hypothesis, i.e.,
the probability of making a correct decision given that Hy is true, is 1-3; the power of the
statistical test. It is literally the probability of finding out that H, is wrong, given the
decision rule and the true Ha.

As can be seen from Table 1, statistical power is particularly important when there is a
true difference in the population. In this situation, when the phenomenon actually exists,
the statistical test must be powerful enough to detect it. If the test reveals a non-significant
result in this case, the conclusion of “no effect” would be misleading and we would thus be
committing a Type II error.

Traditionally, o is set to .05 to guard against Type I error, while B is set to .20 to guard
against Type II error. Accepting these conventions also means that we are guarded four
times more against Type I errors than we are against Type II errors. However, the
distribution of risk between Type I and Type II errors need to be appropriate to the
situation at hand. An illustrative case is made by Mazen et al. [25] regarding the ill-fated
Challenger space shuttle, in which NASA officials faced a choice between two types of

assumptions, each with a distinctive cost:

The first [assumption] was that the shuttle was unsafe to fly because the performance
of the O-ring used in the rocket-booster was different from that used on previous
missions. The second was that the shuttle was safe to fly because there would be no
difference between the performance of the O-rings in this and previous missions. If the
mission had been aborted and the O-ring had indeed been functional, Type I error

would have been committed. Obviously the cost of the Type Il error, launching with a
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defective O-ring, was much greater than the cost that would have been incurred with

Type I error (ibid., p. 370).

2.2 Determinants of statistical power

The fundamental approach to statistical power analysis was established by Cohen [12],
who described the relationships among the four variables involved in statistical inference:
significance criterion (o), sample size (N), population effect size (ES), and statistical power
(1-P). For any statistical model, these relationships are such that each is a function of the
other three. Thus, we can determine the power for any statistical test, given o, N, and ES
(Table 2).

The appropriate sections of Cohen [12] or Kraemer and Thiemann [21] should be
consulted for details on how to perform statistical power analysis. Specifically, Chapter 12
in Cohen’s book provides the computational procedures that are used to determine the
power and sample size values of the commonly used power tables and power charts.

As mentioned, the significance criterion () is the probability of incorrectly rejecting
the null hypothesis. Power increases with larger o.. A small o will, thus, result in relatively
small power. The directionality of the significance criterion also affects the power of a
statistical test. A non-directional two-tailed test will have lower power than a directional
one-tailed test at the same o, provided that the sample result is in the predicted direction.
Note that a directional test has no power to detect effects in the direction opposite to the

one predicted (see Figure 1).

Accept H, <«———— RejectH,

p

Figure 1: Statistical power and the probability of Type I and Type II error in testing a directional
hypothesis.
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The second determinant of power is sample size (N). At any given o level, increased
sample size reduces the standard deviations of the sampling distributions for Hy and Hj.
This reduction results in less overlap of the distributions, increased precision, and thus
increased power (see Figure 1).

The final determinant of power is the effect size (ES), which refers to the true size of
the difference between H, and H, (the null hypothesis is that the effect size is 0), i.e., the
degree to which the phenomenon is present in the population. The larger the effect size, the
greater the probability that the effect will be detected and the null hypothesis rejected.

The nature of the effect size will vary from one statistical procedure to the next (e.g., a
standardized mean difference or a correlation coefficient), but its function in power
analysis is the same in all procedures. Thus, each statistical test has its own scale-free and
continuous effect size index, ranging upward from zero (see Table 3). So, whereas p values
reveal whether a finding is statistically significant, effect size indices are measures of
practical significance or meaningfulness. Interpreting effect sizes is thus critical, because it
is possible for a finding to be statistically significant but not meaningful, and vice versa
[13,23].

Effect size is probably the most difficult aspect of power analysis to specify or
estimate. It can sometimes be determined by a critical assessment of prior empirical
research in the area. However, due to a lack of empirical studies and cumulative findings in
software engineering, the best option for a reasonable estimation of effect size is expert
judgment [29].

Cohen [12] has facilitated such estimation of effect size. Based on a review of prior
behavioral research, he developed operational definitions of three levels of effect sizes
(small, medium, and large) with different quantitative levels for the different types of
statistical test. In information systems (IS) research and in the behavioral sciences, the
operationalized definitions of the effect size for each of these categories have become a

research standard for the most commonly used statistical tests [1,36].

Table 2. Determinants of statistical power.

Significance criterion (o) The chosen risk of committing a Type I error (e.g. o = 0.05).
Sample size (N) The total number of subjects included in the analysis of data.

Effect size (ES) The magnitude of the effect under the alternate hypothesis (e.g. d = 0.5).

126



2 Background: statistical power

Table 3. Effect-size indexes and their values for small, medium, and large effects for the most common
statistical tests ([13], p. 157).

Effect Size
Statistical Test Effect-Size Index Small  Medium Large
1. The t-test for the difference between m,—m,
. d=—"—">= .20 .50 .80
two independent means o
2. The t-test for the significance of
a product-moment correlation R .10 .30 .50
coefficient,
3. The test for the difference between
i q=2z,—2Z4 .10 30 50
two independent rs
4. The normal curve test for the
difference between two independent h=¢,—¢, .20 .50 .80
proportions
5. The chi-square test for goodness of
fit (one-way) or association in two- .10 .30 .50
way contingency tables
. . o,
6. One-way analysis of variance f=—" 10 25 40
o
7. Multiple and multiple partial R?
. f 2 = .02 15 35
correlation 1= R?

Cohen established these conventions in 1977 [11], and they have been fixed ever since.
His intent was that “medium [effect size] represents an effect likely to be visible to the
naked eye of a careful observer ... small [effect size] to be noticeably smaller than medium
but not so small as to be trivial, and ... large [effect size] to be the same distance above
medium as small was below it.” ([13],p.156). Table 3 gives the definition of the ES indices
and the corresponding ES values for the most common statistical tests. These ES values
enable the comparison of power levels across studies in this survey, as well as across
surveys conducted in other disciplines. As an example, the ES index for the #-test of the
difference between independent means, d, is the difference expressed in units of the

within-population standard deviation. For this test, the small, medium, and large ESs are,
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respectively, d = .20, .50, and .80. Thus, an operationally defined medium difference

between means is half a standard deviation.

3 Research Method

We assessed all the 103 papers on controlled experiments (of a total of 5453 papers),
identified by Sjeberg et al. [40], published in nine major software engineering journals and
three conference proceedings during the decade 1993-2002 (Table 4). These journals and
conference proceedings were chosen because they were considered to be representative of
ESE research. Furthermore, since controlled experiments are empirical studies that employ
inferential statistics, they were considered a relevant sample in this study.

Since the term “experiment” is used inconsistently in the software engineering
community (often being used synonymously with empirical study), we use the term
“controlled experiment”. A study was defined as a controlled experiment if individuals or
teams (the experimental units) conducted one or more software engineering tasks for the
sake of comparing different populations, processes, methods, techniques, languages, or
tools (the treatments). We did not distinguish between randomized experiments and quasi-

experiments in this study, because both designs are relevant to ESE experimentation.

All articles
1993 - 2002
n=>5453
I
| |
Not controlled Controlled
experiments experiments
n=>5350 n=103
|
| |
Excluded* Analyzed
n=25 n="78

Figure 2: Results of the literature review. *25 articles were excluded due to duplicate reporting, no
statistical analysis or unspecified statistical tests.

We excluded several types of study that share certain characteristics with experiments.
While these might be highly relevant for the field, they are not controlled experiments as
defined above. Thus, we excluded correlation studies, studies that are based solely on

calculations on existing data, and simulated team evaluations that use data for individuals.
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Studies that used projects or companies as treatment groups, in which data was collected at
several levels (treatment defined, but no experimental unit defined) were also excluded
because we consider these to be multiple case studies [43].

In order to identify and extract controlled experiments, one researcher systematically
read the titles and abstracts of the 5453 scientific articles. Excluded from the search were
editorials, prefaces, article summaries, interviews, news, reviews, correspondence,
discussions, comments, reader’s letters and summaries of tutorials, workshops, panels and
poster sessions. If it was unclear from the title or abstract whether a controlled experiment
was described, the complete article was read by two researchers.

These criteria were met by 103 articles, which reported 113 experiments, (Table 4). All
of them involved a number of significance tests. However, not all of these were equally
relevant to the hypotheses of the studies. In fact, it was not always clear from the reporting
of the studies which hypotheses were actually tested or which significance tests

corresponded to which hypotheses.

Table 4. Distribution of ESE studies employing controlled experiments: Jan. 1993 — Dec. 2002.

Journal/Conference Proceeding Number Percent
Journal of Systems and Software (JSS) 24 23.3
Empirical Software Engineering (EMSE) 22 21.4
IEEE Transactions on Software Engineering (TSE) 17 16.5
International Conference on Software Engineering (ICSE) 12 11.7
IEEE International Symposium on Software Metrics (METRICS) 10 9.7
Information and Software Technology (IST) 8 7.8
IEEE Software 4 3.9
IEEE International Symposium on Empirical Software Engineering (ISESE) 3 2.9
Software Maintenance and Evolution (SME) 2 1.9
ACM Transactions on Software Engineering (TOSEM) 1 1.0

Software: Practice and Experience (SP&E) - -

IEEE Computer - -

TOTAL: 103 100%
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The first two authors read all 103 articles in detail and made separate extractions of the
power data. Based on these two data sets, all three authors reviewed all tests in all
experiments to reach a consensus on which experiments and tests to include. For 14
experiments, no statistical analysis was performed and for seven experiments, we did not
manage to track which tests answered which hypothesis or research question. Five
experiments were reported in more than one article. In these cases, we included the one
most recently published. This assessment resulted in 78 articles (Figure 2). Of these
articles, we identified 459 statistical tests corresponding to the main hypotheses or research
questions of 92 experiments.

Similar to the methodology used by Baroudi and Orlikowski for MIS research [1], both
parametric and nonparametric tests of the major hypotheses were included in this study.
Table 5 shows the distribution of the 459 statistical tests in the final sample for which
statistical power could be determined post hoc. The main parametric tests were Analysis of
Variance (ANOVA) and #-tests. The main nonparametric tests were Wilcoxon, Mann-
Whitney, Fisher’s exact test, Chi-square, and Kruskall-Wallis. Other tests include Tukey’s
pairwise comparison (18), nonparametric rank-sum test (6), Poisson (3), regression (3),
Mood’s median test (2), proportion (2), and Spearman rank correlation (2).

The power of the nonparametric tests was determined by using analogous parametric
tests where appropriate [9,10,18,21]. For example, the #-test for means approximates to the
Mann-Whitney U test and the Wilcoxon rank test, the parametric F test to the Kruskal-
Wallis H test, and Pearson’s r to the Spearman Rank Correlation. Chi-square
approximations were not needed since Cohen provided separate tables to determine its
power.

Following the post hoc method, the power of each test was determined by using the
stated sample size, setting the a level to the conventional level of .05, and choosing the
nondirectional critical region for all power computations. Furthermore, power was
calculated in relation to Cohen’s definitions of small, medium, and large effect sizes [12].
This is similar to that of past surveys of statistical power in other disciplines, such as IS

research [1,36]. All power calculations were made using SamplePower 2.0 from SPSS®,

¥ See www.spss.com/samplepower/
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Table 5. Distribution of statistical tests employed in 92 controlled SE experiments.

Statistical test Number Percent

ANOVA 179 39.0
t-test 117 25.5
Wilcoxon 41 8.9
Mann-Whitney 39 8.5
Fisher’s exact test 15 3.3
Chi-square 14 3.1
Kruskall-Wallis 8 1.7
Other tests 46 10.0

TOTAL: 459 100%

4 Results

The 78 articles selected for this study with available data for calculating power yielded 459
statistical tests of the major hypotheses being investigated in the 92 reported controlled
experiments. Table 6 shows the distribution of sample size for the experiments by type of
statistical test. On average, the statistical tests covered 55 observations. However, the high
standard deviation for several of the tests reveals a large amount of variation in sample
sizes. For example, among the ANOVA subsample the average sample size was 79, yet
165 of the 179 tests examined had an average sample size of 50, while the remaining 14
tests had an average of 450. Similarly, for the Chi-square subsample the average sample
size was 126. However, two of the tests had a sample size of 531 observations, while the
average sample size of the remaining 12 tests was 58 observations. Also, in the group of
other tests, with an average sample size of 39 observations, the three regression tests had a
sample size of 242 observations, while the average sample size for the remaining 43 tests

was 25 observations.
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Table 6. Distribution of sample sizes (observations) occurring in 92 controlled SE experiments.

Statistical test Mean Std. Min Median Max
ANOVA 79 118 6 65 800
t-test 34 29 5 30 136
Wilcoxon 40 23 10 34 78
Mann-Whitney 34 13 6 32 66
Fisher’s exact test 40 27 16 20 74
Chi-square 119 180 10 30 531
Kruskall-Wallis 26 19 15 15 69
Other 38 57 10 16 242
TOTAL: 55 87 5 34 800

Several of the experiments surveyed in this study used within-subject designs so that
each subject contributed several observations to the sample size of a statistical test. The
most extreme cases were as follows: one study that used 800 observations from 100
subjects for an ANOVA test; another study that used 564 observations from 94 subjects for
an ANOVA test; and yet another study that used 531 observations from 266 subjects in a
Chi-square test. The latter study was also the one with the highest number of subjects in
our sample.

So, while the average sample size of all 459 statistical tests in this study was 55
observations, with a standard deviation of 87, the median sample size was as low as 34
observations. Correspondingly, the average number of subjects in the surveyed
experiments was 48, with a standard deviation of 51 and a median of 30. As a comparison,
the average sample size of all tests in Rademacher’s power study in IS research was 179
subjects (with a standard deviation of 196) [36].

Table 7 presents the power distribution of the 459 statistical tests in the 92 experiments
using Cohen’s conventional values for small, medium, and large effect sizes (see Table 3).

Small effect size: The average statistical power of the tests when we assumed small
effect sizes was as low as .11. This means that if the phenomena being investigated exhibit
a small effect size, then, on average, the SE studies examined have only a one in ten

chance of detecting them. Table 7 shows that only one test is above the .80 conventional
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power level and that 97% have a less than 50 percent chance of detecting significant
findings.

Medium effect size: When we assume medium effect sizes, the average statistical power
of the tests increases to .36. Although this is an improvement over the .11 power level
achieved by tests of small effect sizes, the studies only have, on average, just about a one-
third chance of detecting phenomena exhibiting a medium effect size. Table 7 indicates
that only 6% of the tests examined achieve the conventional .80 power level or better, and
that 78% of the tests have a less than 50 percent chance of detecting significant results.

Large effect size: Assuming large effect sizes, the average statistical power of the tests
increases further, to .63. This means that, on average, the studies still have slightly less
than a two-thirds chance of detecting their phenomena. As can be seen from Table 7, 31%
of the tests attain or exceed the .80 power level, and 70% obtain a greater than 50 percent
chance of correctly rejecting their null hypotheses. Thus, even when we assume that the
effect being studied is so large as to make statistical testing unnecessary, as much as 69%
of the tests fall below the .80 level.

Table 8 presents the power of the studies by type of statistical test employed. None of
the tests reaches the conventional .80 power level; not even when we assume large effect
sizes. ANOVA and t-tests account for almost two-thirds of all statistical analyses in
controlled SE experiments, yet their mean power level for detecting large effect sizes is
only .67 and .61 respectively, while the corresponding power levels assuming medium
effect sizes are as low as .40 and .33.

In summary, this quantitative assessment revealed that controlled SE experiments, on
average, only have a two-thirds chance of detecting phenomena with large effect sizes. The
corresponding chance of detecting phenomena with medium effect sizes is around one in
three, while there is only a one in ten chance of detecting small effect sizes.

Finally, a qualitative assessment of the treatment of power within the sampled studies
revealed an interesting pattern. Of the 78 papers in our sample, 12 discussed the statistical
power associated with the testing of null hypotheses. Of these studies, nine elaborated on
the specific procedures for determining the statistical power of tests. Three of the nine
performed a priori power analysis, while six performed the analysis a posteriori. Only one
of the papers that performed an a priori power analysis used it to guide the choice of
sample size. In this case, the authors explicitly stated that they were only interested in large

effect sizes and that they regarded a power level of 0.5 as sufficient. Still, they included
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Table 7. Frequency and cumulative percentage distribution of power in 92 controlled SE experiments.

Small effect size Medium effect size Large effect size
Power level Frequency Cum. % Frequency Cum. % Frequency Cum. %
91-.99 - - 18 100 69 100
.81-.90 1 100 11 96 75 85
71 -.80 - 100 14 94 49 69
.61-.70 2 100 13 91 70 58
.51-.60 9 99 44 88 58 43
41-.50 2 97 50 78 21 30
31-.40 - 97 76 67 43 25
21-.30 13 97 107 51 43 16
11-.20 120 94 94 27 31 7
.00 -.10 312 68 32 7 - -
TOTAL: 459 - 459 - 459 -
Average power: 0.11 0.36 0.63

Table 8. Power analysis by type of statistical test in 92 controlled SE experiments.

Small effect size Medium effect size Large effect size
Statistical test Means Std. Dev. Means Std. Dev. Means Std. Dev.
ANOVA 12 11 40 24 .67 28
t-test .10 .03 33 17 .61 23
Wilcoxon 12 .05 46 24 714 24
Mann-Whitney .09 .02 29 .10 .59 .19
Fisher’s exact test .06 .05 25 22 49 34
Chi-square 18 .20 43 .33 .64 28
Kruskall-Wallis .09 .02 31 15 .59 28
Other .10 11 26 25 44 24
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so few subjects in the experiment that the average power to detect a large effect size of
their statistical tests was as low as 0.28. Of the six papers that performed a posteriori
power analysis, two gave recommendations for the necessary sample sizes in future
replication studies. Thus, overall, 84.6% of the sampled experimental studies did not

reference the statistical power of their significance tests.

5 Discussion

In this section, we discuss the implications of the findings in this study for the
interpretation of experimental SE research. We suggest several ways to increase statistical
power, and we provide recommendations for future research. First, however, we compare

the main findings in the current study with the related discipline of IS research.

5.1 Comparison with IS research

We compared the results of the current study with two corresponding reviews of the
statistical power levels in IS research [1,36]. In the former study, 63 statistically-based
studies were identified from the issues of Communications of the ACM, Decision Sciences,
Management Science, and MIS Quarterly over the five-year period from January 1980 to
July 1985. The final sample included 149 statistical tests from 57 studies. In the latter
study, 65 statistically-based studies that employed 167 statistical tests were selected from
MIS Quarterly over the seven-year period from January 1990 to September 1997. In
comparison, the current study included 92 controlled experiments that comprised 459
statistical tests published in nine major software engineering journals and three conference
proceedings during the decade 1993-2002 (see Tables 4 and 5).

Statistical power in the two IS research studies and the current SE research study for
small, medium, and large effect sizes are compared in Table 9. The results of the two IS
studies indicate that the power levels for all effect sizes have improved substantially in the
decade between the two studies. Furthermore, the results show that IS research now meets
the desired power level of .80 specified by Cohen [12] for medium effect sizes, which is

assumed as the target level by most IS researchers [36].
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Table 9: Comparison of current survey with statistical power values in prior IS research.

Means for different effect-size assumptions

Related IS study No. of Articles Small Medium Large
Baroudi and Orlikowski [1] 57 19 .60 .83
Rademacher [36] 65 34 .81 .96
Current study 78 A1 .36 .63

The results of the current study show that the power of experimental SE research falls
markedly below the levels attained by IS research. One reason for this difference might be
that the IS field has benefited from the early power review of Baroudi and Orlikowski [1],
and thus explicit attention has been paid to statistical power, which has paid off with
contemporary research displaying improved power levels, as demonstrated by Rademacher
[36]. What is particularly worrying for SE research is that the power level displayed by the
current study not only falls markedly below the level of 1999 study by Rademacher, but
that it also falls markedly below the level of the 1989 study by Baroudi and Orlikowski.

While medium effect sizes are considered the target level in IS research [36], and the
average power to detect these effect sizes are .81 in IS research, Table 7 indicates that only
6% of the tests examined in the current research achieve this level, and that as much as
78% of the tests in the current research have a less than 50 percent chance of detecting
significant results for medium effects. Unless it can be demonstrated that medium (and
large) effect sizes are irrelevant to SE research, this should be a cause for concern for SE
researchers and practitioners. Consequently, we should explore in more depth what
constitutes meaningful effect sizes within SE research, in order to establish specific SE
conventions.

A comparison of power data for the two most popular types of statistical test in
experimental SE research, with the corresponding tests in IS research, is provided in Table
10. As can be seen from Table 5, these tests (ANOVA and t-test) constitute about two-
thirds of the statistical tests in our sample. The results show that, on average, IS research
employ sample sizes that are twice as large as those found in SE research for these tests. In
fact, the situation is a little worse than that, since observations are used as the sample size

in the current study, while the IS studies refer to subjects. Moreover, the power levels of
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the current study to detect medium effect sizes are only about half of the corresponding

power levels of IS research.

Table 10: Comparison of the two most popular types of tests in the current survey with corresponding
power data for IS research.

Baroudi and

Statistical test Orlikowski [1] Rademacher [36] Current study

ANOVA (medium effect size):

Sample size' 64 136 79
Power (mean value) .56 .82 40
Power (std. deviation) .30 .19 24

t-test (medium effect size):

Sample size' 45 70 34
Power (mean value) .53 74 33
Power (std. deviation) 27 18 17

"Note that sample size in the two IS studies refers to subjects, while in the current study it refers to
observations.

5.2 Implications for interpreting experimental SE research

An important finding of this study is that explicit consideration of power issues, e.g., in
terms of discussion, use, and reporting of statistical power analysis, in experimental SE
research is very limited. As mentioned above, 15.4% of the papers discussed statistical
power in relation to their testing of the null hypothesis, but in only one paper did the
authors perform an a priori power analysis. In addition, and perhaps as a consequence, the
post hoc power analyses showed that, overall, the studies examined had low statistical
power. Even for large effect sizes, as much as 69% of the tests fell below the .80 level.
This implies that considerations of statistical power are underemphasized in experimental
SE research.

Two major issues that are particularly important for experimental SE research arise
from this underemphasis of statistical power: (1) the interpretation of results from
individual studies and (2) the interpretation of results from the combination or replication
of empirical studies [22,24,27,29,35]. As mentioned above, a test without sufficient

statistical power will not provide the researcher with enough information to draw
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conclusions regarding the acceptance or rejection of the null hypothesis. If no effects are
detected in this situation, researchers should not conclude that the phenomenon does not
exist. Rather, they should report that no significant findings were demonstrated in their
study, and that this may be due to the low statistical power associated with their tests.

Another issue regarding the interpretation of results from individual studies with low
power is the use of multiple tests. In this case, which included 91.3% of the experiments,
the probability of obtaining at least one statistically significant effect might be large, even
if the probability that any specific effect is statistically significant is small (see [28]). As an
example, recall from Table 7 that the probability that a medium effect size is statistically
significant is only .36. At the same time, the 84 experiments in this study with more than
one test had an average of 5.4 tests per experiment. Thus, with this number of tests, we
would expect about two statistically significant results for medium effect sizes in each of
the experiments in this study. So, although power is sufficient for attaining statistical
significance somewhere, it is not sufficient for any specific test. Again, this inadequate
power for testing specific effects makes it difficult to interpret properly the results of any
single study. It would be helpful, therefore, if researchers reporting results from statistical
hypothesis testing were to distinguish between the tests of primary and secondary
hypotheses.

Low statistical power also has a substantial impact on the ability to replicate
experimental studies based on null hypothesis testing. Ottenbacher nicely demonstrates an
apparent paradox that results from the replication of such low powered studies [34],

showing that:

... the more often we are well guided by theory and prior observation, but conduct
a low power study, the more we decrease the probability of replication! Thus a
literature with low statistical power is not only committing a passive error, but can
actually contribute to diverting attention and resources in unproductive directions

(ibid., 273).

Consequently, the tendency to underpower SE studies makes replication and meta-
analysis troublesome, and will tend to produce an inconsistent body of literature, thus
hindering the advancement of knowledge.

The results of our review also raise another important issue: the interpretation of

studies with very high levels of power. Some of the studies in this review employed large
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sample sizes, ranging from 400 to 800 observations. This poses a problem for
interpretation, because virtually any study can be made to show significant results if the
sample size is large enough, regardless of how small the true effect size may be [18].
Hence, it is of particular importance that researchers who report statistically significant
results from studies with very large sample sizes, or with very large power levels, also
report the corresponding effect sizes. This will put the reader in a better position to
interpret the results and judge whether the statistically significant findings have practical

importance.

5.3 Ways to increase statistical power

Increase the size of the sample: The most obvious way to increase the statistical power
of a study is to increase the size of the sample. However, there is invariably some cost in
terms of time, effort, and money per subject that must be considered. With this in mind,
most researchers try to use the smallest number of subjects necessary to have a reasonable
chance of obtaining significant results with a meaningful effect size [9]. However, while
using only a few subjects may result in meaningful effects not being detected, trivial
effects may show up as significant results when the sample size is very large.
Consequently, if the researcher wants significance to reflect a sizable effect and also wants
to avoid being led into a blind alley by a significant result, attention should be paid to both
aspects of sample size. As a general rule, the sample size should be large enough to give
confidence that meaningful effects will be detected. At the same time, the reporting of
effect sizes will ensure that trivial associations will be detected even though they might be
statistically significant.

Relax the significance criterion: Power can also be increased by relaxing the
significance criterion. This approach is not common, however, because of widespread
concern about keeping Type I errors to a fixed, low level of, e.g., .01 or .05. Still, as the
example of the Challenger space shuttle showed, the significance criterion and the power
level should be determined by the relative seriousness of Type I and Type II errors. Thus,
researchers should be aware of the costs of both types of errors when setting the alpha and
power levels, and must make sure that they explain the consequences of the raised
probability of Type I errors if they relax the significance criterion. When possible,
researchers should analyze the relative consequences of Type I and Type II errors for the

specific treatment situation under investigation.
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Choose powerful statistical tests: In general, parametric tests are more powerful than
their analogous nonparametric test [21]. Thus, the power of a study can most often be
increased by choosing an appropriate parametric test. It is important to note, however, that
these tests make a number of assumptions about the properties (parameters) of the
populations, such as the mean and standard deviation, from which samples are drawn. On
the other hand, given the empirical evidence for the robustness and enhanced power
provided by parametric tests, “researchers are encouraged to use the parametric test most
appropriate for their study and resort to non-parametric procedures only in the rare case of
extreme assumption violations” ([1], p. 98).

The power of a test can also be increased by retaining as much information as possible
about the dependent variable. In general, tests comparing data categorized into groups are
less powerful than tests using data measured along a continuum. As Baroudi and
Orlikowski recommend [1], “statistics that permit continuous data to be analyzed in
continuous form, such as regression, should be used over those that require data to be
divided in groups, such as the analysis of variance” (p. 99).

Furthermore, as we have already noted, the direction of the significance criterion also
affects the power of a statistical test. A directional, one-tailed test will yield higher power
than a non-directional two-tailed test at the same alpha level, provided that the sample
results are in the predicted direction. Note, however, that a directional test has no power to
detect effects in the direction opposite to that predicted. Thus, the primary guide for the
researcher deciding whether a hypothesis should be tested with a directional or non-
directional test must be the comparative term of the original research question.

Reduce measurement error and subject heterogeneity: The larger the variance on the
scores within the treatment and control groups, the smaller the effect size and the power
will be. One source of such variance is measurement error, i.e. variability in scores that is
unrelated to the characteristic being measured. Another source is the heterogeneity of
subjects on the measure [23]. Thus, anything that makes the population standard deviation
small will increase power, other things being equal.

In general, subject heterogeneity can be reduced by selecting or developing measures
that do not discriminate strongly among subjects. If the measure, nevertheless, does
respond substantially to subject differences, these could be reduced statistically during data
analysis. To reduce such variance, and thus increase statistical power, the researcher can
utilize a repeated measures or paired subjects design, or a factorial design that employs

blocking, stratification, or matching criteria [39]. Researchers can also reduce subject
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heterogeneity by employing a research design that covaries a pretest measure with the
dependent variable [14].

Measurement error can be reduced by exercising careful control over experimental
subjects and conditions. In addition, the researcher can use some form of aggregation, or
averaging, of multiple measures that contain errors individually, to reduce the influence of
error on the composite scores [33,41]. So, whenever applicable, the researcher should use
reliable, multi-item measures to increase power [15].

Balance groups: The statistical power of a study is based less on the total number of
subjects involved than on the number in each group or cell within the design. In addition,
because the power of a test with unequal group sizes is estimated using the harmonic mean
[12], the “effective” group size is skewed toward the size of the group with the fewest
subjects. Thus, with a fixed number of subjects, maximal statistical power is attained when
they are divided equally into treatment and control groups [23]. Researchers should,
therefore, try to obtain equal, or in the case of factorial designs, proportional, group sizes
rather than getting a large sample size that results in there being unequal or disproportional
groups [1].

Investigate only relevant variables: One of the best strategies for increasing statistical
power is to use theory and prior research to identify those variables that are most likely to
have an effect [23]. Careful selection of which independent variables to include and which
variables to exclude is, thus, crucial to raising the power of a study and the legitimacy of
its potential findings. Kraemer and Thiemann suggested that only factors that are
absolutely necessary to the research question, or that have a documented and strong
relationship to the response, should be included in a study [21]. Accordingly, they
recommended “Choose a few predictor variables and choose them carefully.” (p. 65), or as
McClelland put it [26]: “Doubling one’s thinking is likely to be much more productive
than doubling one’s sample size.” (p. 964).

In summary, when criterion significance and power levels are set, and a threshold for
the minimum effect size to be detected has been decided, the two primary factors for
consideration in a power analysis are the operative effect size and the sample size. Since
much of what determines effect size has to do with the selection of measures, statistical
analysis, treatment implementation, and other issues that are intrinsic parts of the research
design, effect size enhancements are, generally, more cost-effective to engineer than are
sample size increases [23]. However, determining how best to enhance the effect size

requires some analysis and diagnosis of these factors for the particular research situation at
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hand. A tactic that is almost always effective, though, is procedural and statistical variance
control. Procedural variance control means tight standardization of treatment and control
conditions, sampling, and measurement, while statistical variance control uses such
techniques as covariates or blocking factors to separate variance judged irrelevant to the
assessment of treatment effects from the error term for significance testing (see above). As
shown by Lipsey [23], such techniques can sometimes increase the operative effect size
two or threefold or even more.

Thus, when designing SE experiments, the goal should be to obtain the largest possible
effect size with the smallest investment in the number of subjects studied. This
presupposes that the researcher understands the factors that influence statistical power and
skilfully applies that knowledge in the planning and implementation of each study
undertaken. For a more in-depth treatment of these issues, see Lipsey’s excellent work on

design sensitivity to the statistical power of experimental research [23].

5.4 Limitations

The main limitations of this study are publication selection bias and inaccuracy in data
extraction. As the basis for our investigation was the recent survey of controlled SE
experiments performed by [40], the current study has the same publication selection basis
as the main study. However, we consider the 12 surveyed journals and conferences to be
leaders in software engineering in general and empirical software engineering in particular.
Besides, Sjeberg et al.’s selection of journals is a superset of those selected by others (e.g.,
[17,44]. Nevertheless, if the main study also had included the grey literature (theses,
technical reports, working papers, etc.) on controlled SE experiments, the current study
could, in principle, provide more data and possibly allow more general conclusions to be
drawn [19]. Regarding the selection of articles, the main study utilized a multistage process
involving several researchers who documented the reasons for inclusion/exclusion as
suggested in [19] (see [40]).

As described in Section 3, the first two authors read all 103 articles included in the
main study in detail and made separate extractions of the power data. Based on these two
data sets, all three authors reviewed all tests in all experiments to reach a consensus on
which experiments and tests to include. However, because it was not always clear from the

reporting of the studies which hypotheses were actually tested, which significance tests
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corresponded to which hypotheses, or how many observations that were included for each

test, the extraction process may have resulted in some inaccuracy in the data.

5.5 Recommendations for future research

Based on the problems that we have identified that are associated with statistical power in
experimental SE research, we offer some recommendations to SE researchers who perform
null hypothesis testing.

First, before embarking on studies involving statistical inference, we recommend that
SE researchers plan for acceptable power on the basis of attention to the effect size, either
by assessing previous empirical research in the area and using the effect sizes found in
these studies as a guide, or by looking at their own studies and pilot studies for guidance.
However, due to the limited number of empirical studies in SE this approach may be
difficult to apply [29]. Alternatively, researchers can use a judgmental approach to decide
what effect size they are interested in detecting. However, until there is a better basis for
establishing conventions specific to SE, we recommend the same general target level of
medium effect sizes as used in IS research, determined according to Cohen’s definitions
[12].

Second, we recommend that SE researchers analyze the implications of the relative
seriousness of Type I and Type II errors for the specific treatment situation under
investigation. Unless there are specific circumstances, we do not recommend that
researchers relax the commonly accepted norm of setting alpha to .05. Similarly, we
recommend that SE researchers plan for a power level of at least .80 and perform power
analyses accordingly. Thus, rather than relaxing alpha, we generally recommend increasing
power to better balance the probabilities of committing Type I and Type II errors.

Third, in agreement with Kitchenham ef al. [20] and Wilkinson et al. [42], we
recommend that significance tests of experimental studies be accompanied by effect size
measures and confidence intervals to better inform readers. In addition, studies should
report the data for calculating such items as sample sizes, alpha level, means, standard
deviations, statistical tests, the tails of the tests, and the value of the statistics.

Finally, we recommend that journal editors and reviewers pay closer attention to the
issue of statistical power. This way, readers will be in a better position to make informed
decisions about the validity of the results and meta-analysts will be in a better position to

perform secondary analyses.
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6 Conclusion

The purpose of this research was to perform a quantitative assessment of the statistical
power of current experimental SE research. Since this is the first study of its kind in SE
research, it was not possible to compare the statistical power data of the current study with
prior experimental SE research. Therefore, we found it useful to draw on the related
discipline of IS research, because this provided convenient baseline data for measuring and
validating the results of the statistical power analysis of this research.

The results showed that there is inadequate attention to power issues in general, and
that the level of statistical power in SE research falls substantially below accepted norms as
well as below the levels found in the related discipline of IS research. For example, only
six percent of the studies in this analysis had power of .80 or more to detect a medium
effect size, which figure is assumed as the target level by most IS researchers.

In conclusion, attention must be directed to the adequacy of sample sizes and research
designs in experimental SE research to ensure acceptable levels of power (i.e., -3 > .80),
assuming that Type I errors are to be controlled at o0 = .05. At a minimum, the current
reporting of significance tests should be enhanced by reporting the effect sizes and
confidence intervals to permit secondary analysis and to allow the reader a richer

understanding of, and an increased trust in, a study’s results and implications.
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Appendix A: A numeric guide to sample size for the z-test

We assume that a researcher plans to test a non-directional hypothesis that two means do
not differ by conducting a controlled experiment with one experimental and one control
group. Such a study can be analyzed suitably with an unpaired #-test with two-tailed

rejection regions.

The effect size index (d) under these circumstances can be calculated by

where My is the mean score of the experimental group;
M is the mean score of the control group; and

o is the standard deviation based on either group or both.

A small effect size would be d = .2, a medium effect size would be d = .5, while a large
effect size would be d = .8.

The sample size’ (N) required for each group as a function of effect size, alpha, and
power is shown in Table A.1'°. As an example, if the researcher wants to be able to detect a
medium difference (d = .5) between the two independent means at o = .05, a sample size of
N = 64 is required in each group. Similarly, at the same alpha level, if the researcher has 60
subjects available for the experiment, a power level of .85 will be attained for detecting a
large effect size. Alternatively, by relaxing the alpha level to .10, 30 subjects in each group

would yield a power of .60 to detect a medium effect size.

? In fact, the samples size in the table represents the harmonic mean of the sample sizes in the treatment and
control groups.
10 Calculation of the sample sizes in Table A.1 was made with SamplePower 2.0 from SPSS.
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Table A.1: A numeric guide to sample size for small, medium, and large effects sizes for different

values of a and power for a two-tailed #-test.

a=.01 a=.05 a=.10

Power d=.2 d=.5 d=.8 d=.2 d=.5 d=.8 d=.2 d=.5 d=.8

.95 893 145 58 651 105 42 542 88 35
.90 746 121 49 527 86 34 429 70 28
.85 655 107 43 450 73 30 361 59 24
.80 586 96 39 394 64 26 310 51 21
75 530 87 35 348 57 23 200 44 18
.70 483 79 32 310 51 21 236 39 16
.65 441 72 30 276 45 19 207 34 14
.60 402 66 27 246 41 17 181 30 12
.55 367 61 25 219 36 15 158 26 11
.50 334 55 23 194 32 14 136 23 10
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Abstract

An effect size quantifies the effects of an experimental treatment. Conclusions drawn from
hypothesis testing results might be erroneous if effect sizes are not judged in addition to
statistical significance. This paper reports a systematic review of 92 controlled experiments
published in twelve major software engineering journals and conference proceedings in the
decade 1993-2002. The review investigates the practice of effect size reporting, summarizes
standardized effect sizes detected in the experiments, discusses the results and gives advice
for improvements. Standardized and/or unstandardized effect sizes were reported in 29% of
the experiments. Interpretations of the effect sizes in terms of practical importance were not
discussed beyond references to standard conventions. The standardized effect sizes computed
from the reviewed experiments were equal to observations in psychology studies and slightly

larger than standard conventions in behavioural science.

Keywords: Empirical software engineering; Controlled experiments; Effect size; Statistical

significance; Practical importance.
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1 Introduction

Software engineering experiments investigate the cause-effect relationships between
treatments applied (process, method, technique, language, tool, etc.) and outcome variables
measured (time, effectiveness, quality, efficiency, etc). An effect size is the magnitude of the
relationship between treatment variables and outcome variables, and is computed on the basis
of the sample data to make inferences about a population (analogously to the concept of
hypothesis testing). An effect size tells us the degree to which the phenomenon under
investigation is present in the population. There are several types of effect size measures'', for
example, correlations, odds ratios and differences between means.

Wrong or imprecise conclusions might be drawn from hypothesis testing results if effect
sizes are not judged in addition to statistical significance. In particular, p-values are
insufficient for decision-making; if an experiment includes a sufficient number of subjects, it
is always possible to identify statistically significant differences, or if the experiment includes
too few subjects (insufficient power), p-values may also be misleading. So, whereas p-values
reveal whether a finding is statistically significant, effect size indicates practical significance,
importance or meaningfulness. Interpreting effect sizes is thus critical, because it is possible
for a finding to be statistically significant but not meaningful, and vice versa [7, 27]. Hence,
as also recommended by others [12, 23, 29], effect sizes should be part of experimental results
in software engineering.

There is no unambiguous mapping from an effect size to a value of practical importance.
Hence, observed effect sizes must be judged in context [2, 9, 18, 21, 35, 36, 41, 42, 45]. Even
small effects might be of practical importance. For example, the optimization of a defect-
detection method that yields only a one percent increase in error detection would be of little
practical importance for most types of software, but might be of high practical importance for
safety-critical software, particularly if the added one percent belongs to the most critical type
of errors. This means that a contextual, subjective judgment of observed effect sizes must be
made and a ritualized interpretation avoided. Hence, not only is the reporting of effect sizes
important, but also a nuanced interpretation and discussion of those values.

Effect size estimation is not a new method. An approach to determining the magnitude of
the effect of agricultural treatments was published seven decades ago [3], and reporting effect

sizes in addition to statistical significance has been recommended for a long time in

""" We will refer to specific values as effect sizes, and ways (formulae) to compute effect sizes as effect size
measures.
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behavioural science [4, 45]. Reporting effect sizes is also urged in medical science. A group
of scientists and editors have developed the CONSORT statement to improve the quality of
reporting of randomized clinical trials. One recommendation is that one should report “for
each primary and secondary outcome, a summary of results for each group and the estimated
effect size and its precision (e.g., 95% confidence interval)” [1]: p.682].

In addition to being meaningful in the analysis and reporting of experimental results,
previously published effect sizes can be used in meta-analyses [17] and in statistical power
analyses [5, 27], and for comparison purpose. Such use requires the reporting of either effect
sizes, or sufficient data for effect size estimation.

This article reports on a systematic review of the literature on effect size issues in
controlled experiments published in empirical software engineering. A total of 113 controlled
experiments were reported in the decade from 1993-2002 in 12 leading journals and
conference proceedings in software engineering [39]. Of these 113 experiments, this review
investigates the 92 for which statistical hypothesis testing was performed and primary tests

were identifiable. The aim of this review is to investigate the following:

o The extent of effect size reporting and the interpretation of the effect sizes given by the
authors of the reviewed experiments, i.e., the extent to which effect sizes are used to
describe the experimental result as a supplement to statistical significance, and when
effect sizes are reported, how they are described and interpreted. This investigation is
motivated by the belief that the use of effect sizes affects conclusions made from
experiments.

e The extent to which experimental results are reported in such a way that standardized
effect sizes can be estimated. This is an assessment of the completeness of the reporting of
descriptive statistics. A complete reporting of descriptive statistics will allow the reader to
verify the reporting of test results and effect size estimates, and to estimate effect sizes
other than those reported.

o The standardized effect sizes detected in software engineering experiments. The rationale
for this investigation is to provide an overview of effect sizes detected in software
engineering experiments so that researchers can make relative comparisons of observed

effect size estimates.

The remainder of this paper is organized as follows. Section 2 summarizes relevant

concepts and measures of effect size. Section 3 describes the research method applied in this
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review. Section 4 reports the results. Section 5 discusses the findings, the implications for
power analysis, the limitations of the study, and presents guidelines for reporting effect sizes.

Section 6 concludes.

2 Background: effect size

The effect that one inspection method has on the number of defects detected compared with
another inspection method is an example of an effect in software engineering that we wish to
investigate by conducting experiments. This unknown effect is referred to as the population
effect size. It cannot be computed directly as long as we do not have access to the total
population of subjects that falls within the scope of the research questions of our
investigation. However, the population effect size may be estimated from sample data from a
single experiment. Estimated effect sizes from several experiments can further be aggregated
and analyzed to provide even stronger foundations for inferences about the population effect
size (meta-analysis).

Figure 1 gives an overview of the effect size concepts described in the next sections.
Measures of effect size can be classified as standardized or unstandardized. Standardized
measures are scale-free because they are defined in terms of the variability in the data. Types
of standardized measures of effect size are presented in Section 2.1. Unstandardized measures

encompass all other types of effect size measures and will be described in Section 2.2.

2.1 Standardized effect size

Two families of standardized effect size measures are often referred to in the literature: the d
family and the r family. Below, we will emphasize Hedges’ g in the d family and the point-

biserial correlation in the » family, because these are the two types applied in this review.

2.1.1 The d family

The d family consists of variations over standardized mean difference. Assume that we have
two groups, Group 1 and Group 2. Moreover, assume that the experimental observations in
Group 1, yi1...., yim, are normally distributed with mean x; and variance o°, and the

observations in Group 2, y»1,...,V2m, are normally distributed with mean u, and variance .
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The effect of one software engineering process, method, technique, language or tool compared with
another one with regards to a measurable feature. An example is the difference in comparison of
comprehension of design documents presented in UML versus natural language.

Population effect size

estimates

The observed effect of one experimental treatment condition (specific software engineering process,
method, technique, language or tool) compared with another treatment condition with regards to a
measured outcome. An example is the observed difference in comprehension of design documents

(measured outcome) presented in UML and natural language (the two treatment conditions).

Effect size estimate

Standardized effect size estimate
A scale-free effect size estimate

Unstandardized effect size estimate
Measure expressed in the original outcome
scale or in terms of percentages/proportions

d family
Variations of

“Standardized mean

difference”

o Hedges’ g
o Cohen’s d
o Glass’ A

r family
Correlations,
“variance accounted
for”

* Point-biserial
correlation

other

* odds ratio
* log odds ratio

Mean difference
Median difference
Difference in
percentage or
proportions

Ratio of mean
values

Other

Figure 1. Population and estimated effect size as defined for software engineering and examples of types

of effect size measures for the comparison of two treatment conditions.

More specifically:

defined as

Population standardized mean difference, d

Yi~N (u1, 0°)

Y2~N(,u2, 0'2)

pop

The population standardized mean difference effect size measure, which we will call d,,,, 1s

t ;_luz (1 )
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The population standardized mean difference takes positive or negative values, depending on

the choice of w; and uy It is estimated by the difference between sample means (X1, X>2)
divided by an estimate of population standard deviation. Different estimators of the
population standard deviation give different effect size estimators. The three estimators most
often referred to in the literature are Hedges’ g, Cohen’s d and Glass’ A [24, 34]. Hedges’ g

has the pooled standard deviation, S, as the standardizer:

XI—XZ (2)

Hedge's g = 5

P

The pooled standard deviation is based on the standard deviations in both groups, s;, s2:

_ |(m=1)s?+(m,—Dsy?
| R ®
Cohen’s d also has the pooled standard deviation as its standardizer, but with »; replacing

(ni—1)in Formula (3) and in the estimators of the single s;. Glass’ A applies the standard

deviation in one group only; the one considered to be the control. According to [17], these
three estimators have the same properties in large samples (i.e., they are equivalent in the
limit (n;+n,)—o0), but Hedges’ g has the best properties for small samples when multiplied
by a correction factor that adjusts for small sample bias (Formula 4 below). Hence, we
applied Hedges’ g as the estimator for d,,, in our investigation and will not consider Cohen’s

d and Glass’ A further.

: e 1 3
correction factor for Hedge's g =1 WN-2)-T “4)

where N is the total sample size.

Hedges’ g assumes homogeneity of variance in the two experimental groups. Kline [24]
suggests that if the ratio of the largest standard deviation over the smallest standard deviation
is larger than four, the effect sizes should be calculated twice using each standard deviation
and the diverging results discussed. Other solutions are to replace s, with an estimate of the
standard deviation of whichever sample is the reasonable baseline comparison group [14], or
to use the square root of the mean of s5; s, [5].

Formulas (2) above are applicable for outcomes measured on the continuous scale. When
aggregating study results from several studies and the standardized mean difference is to be
estimated, there is a need for estimators that approximate a standardized mean difference

effect size for variables that are measured on scales other than the continuous. When the
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outcome is dichotomous (binary), approximations to the standardized mean difference can be
expressed in terms of an arcsine transformation [15] or an odds ratio [24, 37, 38]. When the
outcome is ordinal (e.g., small, medium, large) a continuous scale might be assumed and
formulas (2) applied, but note that when the number of categories is less than five, this
approach will underestimate the population effect size [38]. When nominal outcomes are
used, the standardized mean difference must be computed for pairs of categories applying the
methods for dichotomous outcomes.

When raw data is unavailable, or means and standard deviations are not reported, effect
size estimation can be based on various kinds of statistics. This is relevant for meta-analyses
or statistical power analyses, or if a reader wants to judge published results in terms of effect
sizes when these are not reported. Table 7 shows the set of formulas for computing Hedges’ g
that we applied in our investigation. Computation of Hedges’ g in 40 different ways is
provided by the ES software tool [37, 38]. Descriptions of computations of standardized mean

difference effect size estimates for ANOVA designs are provided in [11].

2.1.2 The r family

The r family consists of the Pearson product-moment correlation in any of its combinations of
continuous and dichotomous variables [33]. For two treatment conditions and a continuous
outcome, the effect size is called the point-biserial correlation, which we will refer to as 7.
vop- When 7,0, is squared, it is also called #° and it can be interpreted to mean the proportion
of variance accounted for by the population means. Hence, we can express the population

point-biserial correlation as follows:

(o} 2 treatment (5)

Population point-biserial correlation, r > R
O~ total

pb-pop —

where the numerator is the variance of the population means around the grand mean, and the
denominator is the variance of all scores around the grand mean. r,;.,,, has the value range
[0,1]. An estimator of, 7,sp0p, based on information from an ANOVA table, is obtained by

taking the square root of the explained variance expressed in terms of the sum of squares of

— S S Treatment
rpb B V SSTotal (6)

Formulas based on #-values and other statistics, as well as estimators that adjust for bias, are

provided in [24, 28, 31, 32, 35].

the treatments and the total sum of squares:
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The point-biserial correlation is affected by the proportion of subjects in each
experimental group. It tends to be highest in a balanced design and approaches zero when the
design becomes more unbalanced [24]. As a consequence, r,, values from studies with
different splits in the sample size will not be directly comparable. To counteract this, the

following corrected r,;, is recommended [19]:
ary,

. 7
J(az—l)rpb2+l @

Corrected r,,=

where o= /0-2% . and p and ¢ are the proportions of subjects in each experimental group

(ptq=1).

Formula (6) above is applicable for outcomes measured on a continuous scale. When
both variables are dichotomous, the population point-biserial correlation is called @ and is
expressed in terms of the proportions in a 2*2 table, [14]. When reporting results from a table
larger than 2*2, an effect size estimator called Cramer’s V' can be applied [14]. When a
categorical outcome is measured on an ordinal scale (e.g., small, medium, large), a continuous
scale can be assumed and a point-biserial correlation calculated as for continuous outcome
[14]. The population effect size will be underestimated if fewer than five categories are
applied [38].

It is possible to compute r,, from Hedges’ g, and vice versa. Information might be
unavailable for computing one or the other, or one may prefer to view the results in terms of a
correlation coefficient when g, say, is reported in an article. The following formula maps g to

ro [5, 35]:

rpb: g H (8)
V& +(1/ pg)*(N—=2)/N)

where N is the total sample size. Note that the formula is simplified by the factor I/pg=4 for
a balanced design, (p=¢=0.5).

2.1.3 Interpretation of standardized effect sizes
It is not intuitively evident how to interpret standardized effect sizes. Some approaches are

listed below and described further in this section.

e Standardized effect sizes can be interpreted in terms of the properties of the formula, for
example, distributional overlap for the standardized mean difference and explained

variance for the point-biserial correlation.
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e Standardized effect sizes can be compared with
o effect sizes reported in similar experiments,
o effect sizes reported in the research field in question, for example, software
engineering as a whole, and
o standard conventions for small, medium and large effect sizes developed for

research in behavioural science.

The population standardized mean difference, d,,,, 1s expressed in terms of mean
difference divided by a measure of the variability in the data. We can interpret this formula as
the degree of distributional overlap of values for two populations. A large degree of
nonoverlap means a large effect size, and when the two distributions are perfectly

superimposed, the effect size is zero [5], see Table 1.

Table 1. Distributional nonoverlap percentages for values of d,,, [5]

pop 00 05 1.0 1.3 20 30 40
Degree of non-overlap 0% 33% 55% 65% 81% 93% 98%

This is further visualized in Figure 2: The unstandardized effect sizes (represented by the
differences between the full and dotted vertical line) are equal in (a) and (b). However, the
standardized effect size in (a) is larger than the one in (b), because the degree of non-overlap
is larger in (a) than in (b). The standardized mean difference reflects what is visualized in the
figure: The effect size seems important in (a) but might be hardly noticeable in (b).

A point-biserial correlation can be interpreted in terms of the property of its square root
(see Formula 5 and 6); the percentage of total variance that is explained by treatment.

The second possibility of interpretation of a standardized effect size is to take advantage
of its standardized property, i.e., that it is comparable across measurement scales. The best
interpretation arises from comparison with experiments that test the same hypothesis as the
one in question [9]. In the absence of such experiments, an alternative is to compare the

observed effect size to effect sizes reported in the field of interest. We present effect sizes
observed in software engineering experiments in Section 4.2.2. A third alternative is to

compare the observed effect size against standard conventions that have been developed in
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2 /

\ Unstandardized effect size /

Figure 2. Illustration of how the standardized mean difference effect size can be

interpreted in terms of distributional overlap

behavioural science. Values for small, medium and large population standardized effect sizes
corresponding to various statistical tests and types of effect size measures are defined by
Cohen (1988, 1992). His definitions are based on a combination of a subjective view of
average effect sizes observed in behavioural science and a view of what small, medium and
large effect sizes should mean. The definitions for d,,, and 7., are shown in Table 2.

Cohen proposed his definitions for statistical power analyses, to help researchers guess on
effect sizes when no other sources for effect size estimation existed, i.e., no similar
experiments or pilot studies. His definitions are also used to interpret observed effect sizes,
but this is also only advisable when no other sources for effect size estimation are available
[43]. In later papers, Cohen recommends reporting effect size with a corresponding
confidence interval, but does not himself recommend applying the small, medium and large

categories in the evaluation of observed effect sizes [6, §].

Table 2. Values for small, medium, and large d,,, and r,;_,, [S]

Effect size index Effect size values

Small Medium Large

dpop  Standardized mean difference .20 .50 .80

Tphpop Point-biserial correlation .10 24 37

The interpretations described above do not include any contextual information. To

evaluate whether an observed effect is of practical importance for a specific context, the effect
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size must be discussed in relation to each relevant contextual factor, for example, whether the
size of efficiency improvement compensates for the effort needed for learning the new

method.

2.2 Unstandardized effect size

Unstandardized effect size measures are expressed in terms of raw units of whatever is being
measured. This may make the effect sizes easier to interpret, but in contrast to standardized
effect sizes, they are not independent of measurement scale. Examples are these: (i) the
difference between mean values (e.g., the difference in time taken to perform a given task
when using two different methods), (ii) percentage mean difference, and (iii) the difference in
proportion of subjects (e.g., the difference between experimental groups with respect to the
proportion of subjects viewing a script as correct). The concept of population effect size
applies here as well, for example, the effect size measure for population mean difference is
expressed as follows:

Population mean difference= i, — 1, 9)

where y; is the mean value in population i, which is estimated by the mean x; The
standardized counterpart is the standardized mean difference (Formula 1).

Unstandardized effect sizes lend themselves more directly to interpretations of practical
importance than do standardized values. For example, an unstandardized effect size of eight
hours difference in development effectiveness between two methods used for the same task
serves as a better basis for judging the practical importance of the result than a standardized

effect size of g=0.5.

2.3 Nonparametric effect size

The standardized effect size measures described in the preceding sections assume parametric
models for the outcome variable. Most of the standardized effect size measures developed are
parametric. However, assuming parametric models may be inappropriate in many instances,
and standardized nonparametric effect size measures based on median values have been
suggested in the literature [16, 25, 26]. Computation of these measures requires raw data that
is seldom available in articles presenting experimental results. Hence, these nonparametric
effect size measures are appropriate for reporting effect sizes, but not always useful in meta-

analyses.
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Alternatives or supplements to the standardized nonparametric effect size measure are the
unstandardized difference in median values or graphical presentations, for example, two box

plots within the same figure for easy comparison.

3 Research Method

This section describes how we identified the controlled experiments and primary tests, what

kind of information we gathered, and how effect size estimates were computed.

3.1 Identification of controlled experiments and primary tests

We assessed all the 103 papers on controlled experiments (of a total of 5453 papers),
identified by Sjeberg et al. [39]. Table 3 shows the actual journals and conference
proceedings, which were chosen because they were considered to be representative of
empirical software engineering research. Furthermore, since controlled experiments are
empirical studies that employ inferential statistics, they were considered a relevant sample in
this study. The 103 articles reported 113 controlled experiments. The article selection process
was determined from predefined criteria as suggested in [22], see [39] for full details.

Since the term “experiment” is used inconsistently in the software engineering community
(often being used synonymously with empirical study), we use the term “controlled
experiment”. A study was defined as a controlled experiment if individuals or teams (the
experimental units) conducted one or more software engineering tasks for the sake of
comparing different populations, processes, methods, techniques, languages or tools (the
treatments). We did not distinguish between randomized experiments and quasi-experiments
in this study, because both designs are relevant to software engineering experimentation. In
this article, we consistently use the term ‘experiment’ in the above-mentioned sense of
“controlled experiment”.

Results from several statistical tests were often reported in the reviewed articles; one
article reported 74 tests. We therefore classified each statistical test as either primary or
secondary. The primary test what the experiment is designed to evaluate. They were specified
in the article by hypotheses or research questions. If no hypothesis or research question was
stated, we classified as primary those tests that were described to address the main incentive
of the investigation. Secondary tests comprised all other tests.

Two of the authors of this paper read all the 103 articles and made separate extractions of

the primary tests. Then three of the authors reviewed these two data sets to reach a consensus
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on which experiments and tests to include. In 14 of the experiments, no statistical testing was
performed, and the corresponding articles were thus excluded from the investigation. Seven
experiments were excluded because it was impossible to track which result answered which
hypothesis or research question. Four experiments were reported in more than one article. In
these cases, we included the most recently published. We identified 459 statistical tests
corresponding to the main hypotheses or research questions of 92 experiments. Of these tests,
we excluded 25 tests of interaction effects, because no well-developed procedures exist for
computing effect sizes for interactions [11]. In addition, five tests were excluded because they
were regression analyses and involved no treatment. Thus, the final set comprised 429

primary tests, detected in 92 experiments and 78 articles (Figure 3).

Table 3. Distribution of articles describing controlled experiments in the period Jan. 1993 — Dec. 2002

Journal/Conference Proceeding' Number  Percent
Journal of Systems and Software (JSS) 24 23.3
Empirical Software Engineering (EMSE) 22 21.4
IEEE Transactions on Software Engineering (TSE) 17 16.5
International Conference on Software Engineering (ICSE) 12 11.7
IEEE International Symposium on Software Metrics (METRICS) 10 9.7
Information and Software Technology (IST) 8 7.8
IEEE Software 4 39
IEEE International Symposium on Empirical Software Engineering (ISESE) 3 2.9
Software Maintenance and Evolution (SME) 2 1.9
ACM Transactions on Software Engineering (TOSEM) 1 1.0

Software: Practice and Experience (SP&E) - -
IEEE Computer - -

TOTAL: 103 100%

'> The conference Empirical Assessment & Evaluation in Software Engineering (EASE) is partially included in
that ten selected articles from EASE appear in special issues of JSS, EMSE, and IST.
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All articles

1993 — 2002
n=5453
I
5350 Articles with no 103 Articles with
controlled experiments controlled experiments

25 Articles
excluded

Analyzed in this review:
78 Articles reporting
92 experiments and

429 primary tests

Figure 3. Results of the literature review selection process.

3.2 Information extracted

For each primary test, we recorded

e whether a standardized and/or unstandardized effect size or a graphical visualization of

the effect size was reported,

e when an effect size was reported, the interpretation of the effect size and whether practical

importance was discussed, and

e sample size, level of significance, p-value or information about rejection or acceptation of

the null hypothesis, and whether the test was one or two-sided.

In addition, we registered descriptive statistics and estimated the standardized mean
difference effect size for those tests with sufficient information reported. Our aim with this
computation was to investigate the range of effect sizes in software engineering experiments
across experimental topic, treatment and outcome. We therefore estimated the same
standardized mean difference population effect size, d,,p, for all tests, applying the absolute

value for Hedges’ g as the estimator. Each estimate was corrected for bias by Formula 4 in

Section 2.1.1.

The primary tests included parametric tests that compare mean values, nonparametric tests

that compare median values or ranks, and tests of the values of dichotomous variables. The

applied estimation formulas are listed in Table 7.
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We investigated the effect between two treatment conditions. Hence, when the primary
test was an overall comparison of more than two treatment conditions, we looked at the pair-
wise comparisons (contrasts) for our effect size estimation.

We wanted to present the effect sizes as point-biserial correlations as well as standardized
mean differences. The g-values were transformed into 7., by applying Formula (8) in Section
2.1.2. Then the values were corrected for unbalanced design by Formula (7). This correction
did not change the values to a great extent, since half of the tests had balanced design and the
split in sample size was larger than 70-30 for eight tests only (see Section 2.1.2). For those
primary tests for which g could not be computed, there was not sufficient information to
compute 7, either.

As stated in Section 2.1.1, the pooled standard deviation assumes that the standard
deviations are equal in both treatment groups. To check this assumption, we calculated the
ratio of standard deviations, when these were reported. The ratio of the largest standard
deviation over the smallest standard deviation exceeded four (Section 2.1.1) in seven tests.
Consequently, we did not include effect sizes for these tests.

Ten tests were one-sided with results in the direction opposite to the alternative
hypothesis. We regarded effect sizes for these tests as real effects and included them in our

analysis.

4 Results

The findings comprise two main parts: (1) How effect sizes were reported in the surveyed
experiments, with respect to the extent of reporting and interpretation of the reported values
and (2) the result of our estimation of standardized effect sizes from information reported in

the surveyed experiments.

4.1 The reporting of effect sizes in the surveyed experiments

4.1.1 Extent of effect size reporting

Only 29% of the experiments reported at least one effect size; see Table 4. Two of the 92
experiments reported both standardized and unstandardized effect sizes, eight reported
standardized effect sizes only and 17 reported unstandardized effect sizes only. Standardized
and unstandardized effect sizes were reported for, respectively, 55 and 46 of the 429 primary

tests of the reviewed experiments.
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Table 4. Extent of effect size reporting for experiments and primary tests, presented per type of statistical

test method
Levels of Experiments Primary tests
effect size reporting Total Parametric Non- Tests of
tests parametric dichotomous
tests variables
N % N % n % n % n %
Both standardized and 2 2.2 3 0.7 3 1.0 0 0 0 0
unstandardized
Standardized (only) 8 8.7 52 121 46 15.7 6 6.4 0 0
Unstandardized (only) 17 18.5 43 10.0 32 10.9 6 6.4 5 11.9
No effect size 65 70.7 | 331 772 | 212 724 | 82 872 37 88.1
Total 92 100 | 429 100 | 293 100 94 100 42 100

The different types of effect size measures are related to types of outcome and thereby to
types of statistical test. Table 4 shows that standardized effect sizes were reported most
frequently for parametric tests (46+3 of 293, that is, 17 percent), only a few for nonparametric
tests (6 percent) and not for any tests of dichotomous variables. The corresponding parametric
tests were ANOVA and #-tests; the nonparametric tests were Wilcoxon match pair tests. The
standardized mean difference was reported for all but one test, for which the point-biserial
correlation coefficient was reported (for an ANOVA test).

Unstandardized effect sizes were reported in equal proportions for parametric tests and
tests of dichotomous variables (32+3 of 293 and 5 of 42, respectively, that is, 12 percent) and
to a lesser extent for nonparametric tests (6 percent) see Table 4. Most of the 46
unstandardized effect sizes were reported as percentage mean difference (21 tests), but
reported were also absolute mean difference (nine tests), difference in proportions or
percentage (five tests), ratio of mean values (five tests), difference in average rank values
(three tests) and confidence interval for the mean difference (three tests).

For most of the 331 primary tests for which no effect size was reported, mean values,
frequencies or graphical presentations of results per experimental group were reported.

We compared the extent of effect size reporting according to whether the results were
significant or not (as defined by the authors); see Table 5. For standardized effect sizes there
was no difference, but unstandardized effect sizes were reported to a greater extent when
significant results occurred than when non-significant results occurred (17.9 percent versus

3.7 percent).
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Another factor that seems to influence the extent of effect size reporting is the number of
treatment conditions tested in the experiment. None of the 51 primary tests that compared
more than two treatment conditions reported the standardized effect size for the pair wise

comparisons of treatments. Only four of these 51 tests reported the unstandardized effect size.

4.1.2 The interpretation of the effect sizes given by the authors of the reviewed
experiments

Possible ways of interpreting the standardized effect size was presented in Section 2.1.3. In
one of the surveyed experiment, the point-biserial correlation was interpreted as the
percentage of explained variance, but the standardized mean difference effect size was not

interpreted in terms of distributional overlap for any of the experiments.

Table 5. Reporting of effect size and significance of results

Levels of Primary test results
effect size reporting Significant Non-significant
N n % N %
Both standardized and unstandardized 3 3 1.42 0 0
Standardized effect size (only) 52 24 11.3 28 12.9
Unstandardized effect size (only) 43 35 16.5 8 3.7
No effect size 331 150 70.8 181 83.4
Total 429 212 100 217 100

One article reported and compared the standardized effect sizes from three related
experiments. For the other experiments, standardized effect sizes were not compared with
related research. In two experiments, effect sizes were reported to aid future researchers in
planning their experiments, but the sizes were not discussed as part of the result. For the other
experiments, standardized mean difference effect sizes were compared with Cohen’s

conventions from behavioral science [5], for example:

We intend to discuss all practically significant results and not constrain ourselves to
discussing only statistically significant results. For this exploratory study we consider
effects where y > 0.6 to be of practical significance (the unit is one standard deviation).

We make this decision on the basis of effect size indices proposed by Cohen (1969).

This author judged sizes above 0.6 to be of practical importance. Two authors considered

sizes above 0.5 to be of practical importance and one author regarded observed sizes of 0.77
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as large. The unstandardized effect sizes were reported with no interpretations or references to

practical importance, for example, “Procedural roles reduced the loss of only singular defects by

about 30%.”

4.2 Our computation of standardized effect sizes from information
provided in the surveyed experiments

To identify the sizes of treatment effects found in software engineering experiments, we

estimated standardized effect sizes for the primary tests in the reviewed experiments.

4.2.1 Extent of information available for effect size estimation
We managed to estimate standardized mean difference effect sizes for a total of 284 primary
tests based on information provided in the reviewed articles. These tests were located in 64

(70%) of the 92 reviewed experiments.

Table 6. Extent of effect size estimation per type of statistical test method

Statistical test method  Total Primary tests Primary tests comparing Total number of
number of comparing two more than two treatment effect sizes
primary tests | treatment conditions* | conditions* computed

N  #ES %| N N % #ES #ES

Parametric test of 293 250 160 64| 43 14 33 55 215

continuous dependent

variable

ANOVA 116 78 50 64| 38 12 32 40
t-test 79 79 67 85 0

Paired #-test 39 39 35 90 0

ANCOVA 28 28 0 0 0

Tukey’s pair wise 18 18 0 0 0

comparisons

Repeated ANOVA 8 5 5 100 3 1 33 6
Poisson regression 3 3 3 100 0

Duncan posttest 1 0 1 0 0
ANOVA

Repeated MANOVA 1 0 1 1 100 9

Nonparametric test of 94 90 30 33 4 1 25 3 33

continuous dependent

variable

Wilcoxon 41 41 22 54 0

Mann-Whitney 39 39 2 5 0

Kruskal-Wallis 8 4 0 0 4 1 25 3

Rank-sum test 6 6 6 100 0
Dichotomous dependent 42 38 30 79 4 1 25 6 36
variable

Chi-square 25 21 16 76 4 1 25 6

Fisher’s exact test 15 15 12 80 0

Proportion test 2 2 2 100 0
Total 429 378 220 58%| 51 16 31% 64 284

*  N: total number of primary tests. n: number of primary tests for which effect sizes could be estimated for
the pair-wise comparisons, for tests comparing more than two treatments. #ES: number of effect sizes
estimated
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The numbers of effect sizes that were estimated for the various statistical tests are shown

in Table 6. Tests comparing two treatment conditions had sufficient information for effect

size estimation to be reported for 64% of the parametric tests of continuous variables. The

results for nonparametric tests and tests of dichotomous variables were 33% and 79%,

respectively. The corresponding results for tests comparing more than two treatment

conditions were lower; respectively, 33%, 25% and 25%. Hence, when more than two

treatment conditions were compared in a test, information for effect size estimation for the

corresponding pair-wise tests was, overall, sparsely reported in the reviewed articles.

Table 7 shows the formulas applied in our effect size estimation. Formula 2 was applied

for the majority of tests, including 33 nonparametric tests. We considered mean values to be

an appropriate measure of distributional location for nonparametric tests, as long as they were

Table 7. The estimation formulas for Hedges’ g that were applied in this investigation

.. Number
No Data needed and definition of Estimation formulas References of g
terms i
estimated
1  Hedges’ g g reported in the paper 18
2 Mean values, standard }1 _}2 [28] 190
deviations and group sample g=
sizes Sp
3 Independent t-test value and n +ny [28] 16
sample size (n) for each group ¢ =t\/ ny ny
4 F-ratio from two groups, one F (ny +ny) [28] 13
way ANOVA &= ‘/T
5  P-value and sample Find t-value based on the p-value and [28] |
size/degrees of freedom sample sizes, and use Formula 1.
6  Repeated measure design. Formula (2) in the text using the [38], where 4
One between-subject factor following estimate for standard deviation  also estimators
and one within-subject factor, MSge + (t—1) MS, 5, for MS,. and
t is the number of time points, § =\/ P MS,. are
MSy. is the between-subject provided.
mean square error and MS.
is the within-subject mean
square error.
7  Factorial design. Formula based on means, sample sizes, [11,30] 6
standard deviations, corrected for the
other factors.
8  Dichotomous outcome, 2*2 _In(odds outcome A) —In(odds outcome B) [15, 28, 38] 36
table of frequencies. &= 7
3
Total 284
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reported in the paper. In those cases where means and standard deviations were not reported,
Formulas 3, 4, 5, 6 and 7, which are based on #-value, F-values, p-value, mean square error
and/or sample sizes, respectively, were applied for parametric tests. Formula 8 was applied

for tests of dichotomous variables when frequencies and sample sizes were reported.

4.2.2 Standardized effect size values

The values for the 284 estimates of Hedges’ g range from 0 to 3.40 with a median value of
0.60; see Table 8. The cumulative percentages in the table are, for each g, the percentage of
effect sizes equal to or below that value. For example, 68% of the effect sizes in our review
are equal to or below g=1.00. For readers who prefer to view standardized effect sizes in
terms of correlations, the r,, values are also presented in Table 8. The range of values is (0,
0.87) with a median value of 0.3 and represents effect sizes that can be expected in studies

with balanced design. When the design is unbalanced, the effect sizes tend to decrease with

Table 8. Accumulative percentages for estimated values for Hedges’ g and the point-biserial correlation

Cumulative percentages Cumulative percentages

H , for 284 g effect size Point-biserial for 284 r,p, effect size

edge’s g . . ) . P!
estimates in software correlation estimates in software
engineering experiments engineering experiments
0.00 7 0.00 7

.10 11 0.10 19

.20 19 0.20 35

.30 28 0.30 50 median

40 35 0.40 62

.50 42 0.50 70

.60 50 median 0.60 84

.70 56 0.70 92

.80 60 0.80 97

.90 64 0.90 100

1.00 68

1.10 71

1.20 73

1.30 77

1.40 83

1.50 86

1.60 88

1.70 90

1.80 90

1.90 93

2.00 95

2.30 97

2.50 97

3.00 99

3.40 100

Mean g 0.81 Mean 7, 0.34

Stdg 0.69 Std 7, 0.23
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increased split in experimental group sizes and the researcher should be aware of this when
comparing r,, values from different experiments.

We defined size categories of the estimated g and r,, values by viewing the lower 33% of
the effect sizes, the middle 34%, and the largest 33%. In Table 9, we present these categories,
and we let the median value in these categories represent small, medium and large effect

sizes.

Table 9. Small, Medium and Large categories for 284 estimated values for Hedges’ g and the point-
biserial correlation

Size category Hedges’ g Point-biserial correlation, ,,
Effect sizes Median Effect sizes ~ Median

Small (lower 33%) 0.00 to 0.376 0.17 0.00t0 0.193  0.09

Medium (middle 34%) 0.378 to 1.000 0.60 0.193t00.456 0.30

Large (upper 33%) 1.002 to 3.40 1.40 0.456 t0 0.868  0.60

5 Discussion

This section discusses the findings, their implications, and the limitations to this review.

5.1 Comparison with research in behavioural science

It is only in the psychological and educational sciences that we have found similar
investigations of effect size reporting, and these assessed only the reporting of standardized
effect sizes. An assessment of 226 articles on educational and psychology research in 17
journals published in 1994-1995 revealed that standardized effect sizes were reported in 16
articles (7.1%) [20]. Both univariate and multivariate tests, analyzed by several different
statistical methods, were included in these 226 articles. This is similar to the proportion of
articles reporting standardized effect sizes found in our review (7.7%).

A study by Fidler ef al. [13] investigated 239 articles published in 1993-2001 that reported
new empirical data in the Journal of Consulting and Clinical Psychology. They found that
standardized effect size was reported to a greater degree in articles that reported ANOVA
tests and Chi-square tests, compared with our review; 32% and 13% compared with 3% and
0, respectively; see Table 10. The extent to which standardized effect sizes were reported in
articles that reported #-tests was similar in our and Fidler ef al. ’s investigation (15% and 16%,

respectively).
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Table 10. Number of articles reporting effect size. Comparison of published experiments in software
engineering and studies in psychology

Source Type of statistical test method applied *
ANOVA t-test Chi-square

Articles reporting controlled experiments
in software engineering (This review) 3% (1 0f32) 16% (5 of 32) 0% (0 0f9)
Articles reporting psychology studies [13] 32% (38 of 120) 15% (16 0of 108) 13% (16 of 126)

*In our review,116 ANOVA tests were reported in 32 articles, 118 #-tests were reported in 32 articles and 25 chi-
square tests were reported in nine articles.

Considering the maturity of psychological and educational research compared with the
relative young field of empirical software engineering, the sparse reporting of effect sizes in
our field may be expected. It was more surprising to find similar results to those of Keselman
et al. and Fidler et al. Still, this is a poor consolation, because the extent of effect size
reporting in the field of psychological and educational research is regarded as too low, [13,
20].

The sparse reporting of standardized effect sizes in software engineering might be due to
effect size estimation’s being little known. It is not a topic in standard research methods
courses, and formulas for the calculation of effect sizes do not appear in many statistical text
books (other than those devoted to meta-analysis). This may improve, as recent literature in
empirical software engineering recommends the reporting of effect sizes [12, 23, 29].

However, encouragements for the reporting of effect sizes do not seem to suffice. In the
behavioural sciences, it has been suggested that changes in editorial policies will be required
before reporting effect sizes will become a matter of routine [13, 44]. Trusty et al. [42] report
that 23 journals in the social sciences now require that effect sizes be reported, and in their
paper, they provide practical information for studies submitted to the Journal of Counseling &
Development on generating, reporting and interpreting effect sizes for various types of
statistical analysis.

We found one study in the behavioural sciences on the aggregation of standardized effect
sizes that was comparable with ours; 1766 effect sizes (standardized mean differences) were
estimated from 475 psychotherapy studies [10, 40]. This study found the same distribution of
effect sizes as we obtained. Hence, the treatment effects observed in software engineering
experiments are of the same magnitude as effects found in a large number of psychotherapy

studies; the same average and nearly the same spread of values.
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5 Discussion

As shown in Table 9, we categorized the effect sizes in our review into the 33% smallest,
the 34% middle and 33% largest values and let the median values in these categories
represent small, medium and large values in the data. In Table 11, we compare the
standardized mean difference effect sizes with corresponding results from an aggregation of
average effect sizes from meta-analyses of psychological, educational and behavioural
treatments effectiveness [27] (including the study of psychology studies by Smith et al.) and

the conventions for small, medium and large effect sizes in the behavioural sciences [5].

Table 11. Small, medium and large standardized mean difference effect sizes as observed in this review,
in an aggregation of meta-analyses in the social sciences and the conventions in the behavioural sciences

Source N Standardized mean

difference values

Small Medium  Large

Software engineering experiments (this review)* 284 effect sizes 0.17 0.60 1.40
Meta-analyses of psychological, educational and 102 average effect 0.15 0.45 0.90
behavioural studies, [27] sizes

Conventions from the behavioural sciences, [5] Not empirically based 0.20 0.50 0.80

*  The effect sizes were obtained as the median values for the 33% smallest, the 34% medium and
the 33% largest values.

1  The effect sizes were obtained as the middle point among the 33% smallest, the 34% medium
and the 33% largest values.

The medium and large effect sizes in our review are larger than those observed in the
meta-analyses and the conventions from the behavioural sciences. (Note that when we
considered the median value as appropriate measure of the middle of the categories, the
middle point values were even larger: (small: 0.19, medium: 0.69 and large: 2.2). The
discrepancies between the aggregated effect sizes on a study level and the aggregated effect
sizes on a meta-analysis level can be explained by the fact that the smallest and largest values
on a study level disappear in the overview of average values on the meta-level. The standard
conventions in the behavioural sciences seek to represent average values, which seems to be
confirmed by the results from the aggregation of meta-analyses. Hence, as our results are the
same as those from the aggregation of psychology studies, this might indicate that the
conventions from the behavioural sciences (i.e. Cohen’s definitions) are appropriate
comparators for average effect sizes in software engineering experiments as well (when

relevant related research is not present). The effect sizes obtained in our review provide
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additional information about the range of values in our field for Hedges’ g and the point-

biserial correlation.

5.2 Guidelines for reporting effect sizes

This section offers guidelines on how to report effect sizes.

5.2.1 Always report effect size

We recommend always reporting effect sizes as part of the experimental results, because there
is a risk of making poor inferences when effect sizes are not assessed: (A) nonsignificant
results might erroneously be judged to be of no practical importance, and (B) statistical

significance might be mistaken for practical importance; see Table 12.

Table 12. Potential problems of inference, when the effect size is not reported,, as a function of statistical
significance and effect size [35]

Statistical Effect size

significance Acceptably large Unacceptably small

p-values low No inferential problem (B) Mistaking statistical significance for practical
enough importance

p-values too (A) Failure to perceive No inferential problem

high practical importance of “non-

significant” results

The advantage of assessing both effect sizes and statistical significance when making
inferences is illustrated by one of the reviewed experiments in which object-oriented design
was compared with structured design with respect to the percentage of task-related questions
that were answered correctly. The results of statistical tests were nonsignificant at the 0.1
level. The standardized effect size was reported as 0.7, which was regarded as practically
important according to Cohen’s definitions. The sample size was 13, whereas 56 subjects
were needed to achieve a power of 80% at the 0.1 level of significance. If only statistical
significance had been reported, the result would have seemed less important than the effect

size suggested it to be.

5.2.2 Discuss practical importance

The evaluation of effect sizes based on average values or standard conventions is a first step
on the road to assessing the practical importance of the result. For a complete evaluation of
practical importance, the effect sizes must be judged in context. Since judging the practical

importance of one's experiment is nearly impossible without the relevant situational context
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5 Discussion

and since the experimental results may be applicable in a wide range of contexts, it may be
unrealistic to expect researchers to grade their results in terms of practical importance in their
research papers. Nevertheless, we believe that the relevance of software engineering studies
would be increased if researchers discussed this issue, possibly through illustrative examples.
Moreover, when an appropriate effect size is reported, the reader can assess practical
importance by applying it in their context-specific cost-benefit analysis, as also suggested by

[36].

5.2.3 Report both standardized and unstandardized effect size
We recommend reporting both standardized and unstandardized effect sizes, because these
two types are supplementary. A standardized effect size includes the variability in the data
and gives a complete “average” based on all the data in the sample. There are several
approaches to interpreting standardized effect sizes as described in Section 2.1.3. Apply each
of them if they bring more information to bear regarding discussion of the result. Moreover,
reporting standardized effect sizes aids researchers in planning new experiments (power
analysis) and enables comparisons with their own findings.

An unstandardized effect size is easier to interpret than a standardized one and serves as a
good basis for discussing practical importance. We place particular emphasis on the value of

measures in percentages, which makes the measure applicable to larger-scale projects.

5.2.4 Use the tool box of effect size measures

Many types of standardized effect size measures have been developed, 40 of which are
presented in Kirk [21]. However, only two types were reported in the reviewed experiments:
the standardized mean difference and the point-biserial correlation. Both of these are
parametric. No standardized nonparametric effect size measures were used for the 22% of
tests that were analysed by nonparametric methods, neither were any unstandardized effect
size measures based on median values used.

When reporting experimental results, we will urge researchers to apply the effect size
measure that best suites the data, e.g., nonparametric effect size measures for observations
that cannot be assumed to have any known distribution. When aggregating results from
different measurement scales, the choices are limited; the standardized mean difference effect
size and the point-biserial correlation are most commonly used, because they provide good

approximation formulas for variables that are not continuous.
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5.2.5 Report confidence intervals

When reporting an effect size, the accuracy of the estimate, measured in terms of a confidence
interval, should be reported as well. Although the exact calculation of confidence intervals for
a standardized effect size is complicated, good approximations exist for small effect sizes and
sample sizes that exceed 10 per group. Descriptions of both exact methods and
approximations are found in [14, 17, 24]. Calculating a confidence interval for an

unstandardized effect size is simpler and is provided by most statistical reporting tools.

5.2.6 Report descriptive statistics

We recommend always reporting, for each experimental group, results as mean values,
standard deviations, frequencies and sample sizes. When performing analysis of variance,
report standard ANOVA table results. Such information enables the reader to estimate effect
sizes. Even if you report the effect size measure you find most appropriate, the reader might
wish to compute a different one, to aggregate results or for purposes of comparison. For
factorial design, there might be different views on how to include the effect of different

factors; hence, descriptive statistics for subgroups might be useful.

5.3 Implication for power analysis

For statistical power analysis, Dybd ef al. [12] recommend applying a medium effect size, as
defined by Cohen, (for example, g=0.5) when no other information about the population
standardized effect size is available. Table 8 can be used as a guide to assess the likelihood of
obtaining specific values for Hedges’ g and the point-biserial correlation. For example, there
is a likelihood of 58% (100% - 42%) that Hedges’ g will be larger then 0.5 in software
engineering experiments.

If only large effects are interesting to detect, a large effect size is appropriate to apply in
the power-analysis. Moreover, if sufficient power is seen as difficult to achieve, we
recommend abstaining from hypothesis testing, and recommend instead reporting effect sizes
and confidence intervals when investigating hypotheses. Note that confidence intervals

contain all the information to be found in significance tests and much more [8].

5.4 Limitations of this study

The main limitations to this investigation are selection bias regarding articles and tests, and
possible inaccuracy in data extraction. The limitations regarding selection of articles and tests

are described in, respectively, [39] and [12].
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6 Conclusion

The coding of effect size reporting has two limitations: it was performed by one person
only, and the quantitative categorization represents a simplification of the complex matter of
reporting experimental results. Important nuances might have been lost and some experiments
treated “unfairly”. However, the categorization was checked, rechecked and discussed among
all authors.

The effect size calculations were also performed by one person only. Moreover, those
tests for which an effect size was not calculated, due to lack of sufficient information reported
in the article, represent a limitation to the completeness of the presentation of effect sizes.
Possible effect size calculation formulas and data that may have been used for effect size
calculation might have been overlooked in the reported experiments. Finally, the calculated

effects might be biased by any methodological inadequacies of the original studies.

6 Conclusion

This review investigated the extent of effect size reporting in selected journals and
conference proceedings in the decade 1993-2002, the interpretation of the effect sizes given
by the authors of the reviewed experiments, the extent to which experimental results are
reported in such a way that standardized effect sizes can be estimated, and the standardized
effect sizes detected in software engineering experiments.

We found that effect sizes were sparsely reported in the reviewed experiments. Only 29%
of the 92 experiments reported at least one standardized and/or unstandardized effect size, and
only two experiments reported both. The extent to which standardized effect size was reported
was equal to or below what is observed in research in psychology.

The standardized effect sizes were compared mainly with the standard conventions for
small, medium and large values defined by Jacob Cohen for the behavioural sciences. The
practical importance of the effect size in context was not discussed in any of the experiments.

We found sufficient information in the reviewed experiments to compute standardized
effect sizes for 25% to 79% of the primary tests, depending on the type of test.

The effect sizes computed in this investigation were similar to what is observed in
individual studies in research in psychology. These values are slightly larger than the standard
conventions for small, medium and large effect sizes in the behavioural sciences.

Based on our experiences with working with this review, we have three main
recommendations to make regarding effect size reporting. (1) Always report effect size in

addition to statistical significance, to avoid erroneous inferences. (2) Avoid allowing the
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effect size interpretation to become rigorous and a matter of routine. Apply the
unstandardized effect size for discussions of practical importance in context. (3) Always
report basic descriptive statistics, such as means, standard deviations, frequencies and sample
size, for each experimental group. This will enable researchers to estimate their own choice of

effect sizes.
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Abstract

Experiments in which study units are assigned to experimental groups nonrandomly are called
quasi-experiments. They allow investigations of cause-effect relations in settings in which
randomization is inappropriate, impractical, or too costly. The procedure by which the
nonrandom assignments are made might result in selection bias, that is, pre-experimental
differences between the groups that could influence the results. By detecting the cause of the
selection bias, and designing and analyzing the experiments accordingly, the effect of the bias
may be reduced or eliminated. To investigate how quasi-experiments are performed in
software engineering (SE), we conducted a systematic review of the experiments published in
nine major SE journals and three conference proceedings in the decade 1993-2002. Among
the 113 experiments detected, 35% were quasi-experiments. In addition to field experiments,
we found several applications for quasi-experiments in SE. However, there seems to be little
awareness of the precise nature of quasi-experiments and the potential for selection bias in
them. The term “quasi-experiment” was used in only 10% of the articles reporting quasi-
experiments; only half of the quasi-experiments measured a pretest score to control for
selection bias, and only 8% reported a threat of selection bias. On average, larger effect sizes
were seen in randomized than in quasi-experiments, which might be due to selection bias in
the quasi-experiments. We conclude that quasi-experimentation is useful in many settings in
SE, but their design and analysis must be improved (in ways described in this paper), to

ensure that inferences made from this kind of experiment are valid.

Keywords: quasi-experiments, randomization, field experiments, empirical software engineering, selection bias,

effect size.

183



A Systematic Review of Quasi-Experiments in Software Engineering

1 Introduction

In an experiment, an intervention is introduced deliberately to observe its effects. This is the
control that essentially allows the observation of treatment-outcome relations in experiments.
Internal wvalidity pertains to the validity of inferring causal relationships from these
observations, that is, “whether observed co-variation between A (the presumed treatment) and
B (the presumed outcome) reflects a causal relationship from 4 to B as those variables were
manipulated or measured” [39]. A challenge in this respect is that changes in B may have
causes other than the manipulation of 4. One technique to help avoid such alternative causes
is randomization, that is, the random assignment of study units (e.g., people) to experimental
groups, including blocked or stratified randomization, which seeks to balance the
experimental groups according to the characteristics of the participants.

However, randomization is not always desirable or possible. For example, in software
engineering (SE), the costs of teaching the experimental subjects all the treatment conditions
(different technologies) so that they can apply them in a meaningful way may be prohibitive.
Moreover, when the levels of participants’ skill constitute treatment conditions, or if different
departments of companies constitute experimental groups, randomization cannot be used.

Laitenberger and Rombach [23] claim that quasi-experiments (in which study units are
assigned to experimental groups nonrandomly) represent a promising approach to increasing
the amount of empirical studies in the SE industry, and Kitchenham [21] suggests that
researchers in SE need to become more familiar with the variety of quasi-experimental
designs, because they offer opportunities to improve the rigour of large-scale industrial
studies.

Different nonrandom assignment procedures produce different potential alternative causes
for observed treatment effects. Hence, in order to support internal validity in quasi-
experiments, these potential alternative causes must be identified and ruled out. This is done
in the design and analysis of the experiment, for example, by measuring a pretest score and
adjusting for initial group differences in the statistical analysis. According to Shadish [37], the
theory of quasi-experimentation [4, 5, 8] provides (1) alternative experimental designs for
studying outcomes when a randomized experiment is not possible, (2) practical advice for
implementing quasi-experimental designs, and (3) a conceptual framework for evaluating
such research (the validity typology). The theory was developed for research in social science
and has also been recognized in other fields of research, such as medical informatics [14],

environmental research [24], and economics [29].
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2 Background

Even though the theory of quasi-experiments asserts that quasi-experimentation can yield
plausible inferences about causal relationships [37], it seems that in many disciplines there is
little awareness of the fact that proper inferences from quasi-experiments require methods
different from those used for randomized experiments. Shadish ez al. [39] claim that the most
frequently used quasi-experimental designs typically lead to causal conclusions that are
ambiguous, and empirical results from research in medical science and psychology indicate
that randomized experiments and quasi-experiments provide different results [6, 7, 15, 38].
The purpose of this article is to report the state of practice in SE on these matters. This is done
by a systematic review of the 113 experiments reported in the decade from 1993-2002 in 12
leading journals and conference proceedings in SE [44]. We investigate the extent of quasi-
experimentation in SE, the types of quasi-experiments that are performed, how the quasi-
experiments are designed and analyzed, how threats to validity are reported, and whether
different results are reported for quasi-experiments and randomized experiments.

The remainder of this article is organized as follows. Section 2 presents the concepts used
in this investigation. Section 3 describes the research method applied. Section 4 reports the
results of this review. Section 5 discusses the findings and limitations of this review. Section

6 concludes.

2 Background

In this article, we use the vocabulary of experiments defined by Shadish et al. [39], Table 1.
Quasi-experiments are similar to randomized experiments, apart from the fact that they lack a
random assignment of study units to experimental groups (randomization'’). In a between-
subject design, there is exactly one experimental group for each treatment condition, and the
assignment procedure then assigns each subject to exactly one treatment. In a within-subject
design, experimental groups contain multiple treatments, possibly in different orders, and in
this case, the assignment procedure assigns each subject to one of these multiple treatment
sequences. We use the following operational definition of a controlled experiment defined by

Sjeberg et al. [44]:

A controlled experiment in software engineering is a randomized or quasi-experiment,

in which individuals or teams (the study units) conduct one or more software

" The random assignment of study units to treatment conditions should not be confused with the random
selection of study units from the study population to form the study sample, which is also referred to as random
sampling.
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engineering tasks for the sake of comparing different populations, processes, methods,

techniques, languages or tools (the treatments).
For simplicity, whenever we use the term “experiment” in the following, we use it in the
above-mentioned sense of “controlled experiment.” Moreover, the notion to apply a treatment

will be used, even if the participant’s level of SE skill also can constitute a treatment

Table 1. Vocabulary of experiments, from [39]

Experiment: A study in which an intervention is deliberately introduced to observe its effects.
Randomized Experiment. An experiment in which units are assigned to receive the treatment or an
alternative condition by a random process, such as the toss of a coin or a table of random numbers.

Quasi-Experiment. An experiment in which units are not assigned to conditions randomly.

2.1 Methods of randomization

Several types of method for random assignment are described in [39]. The two types most
relevant for this study are simple random assignment (also called complete randomization)
and random assignments from blocks (matches) or strata, which represent a restriction on the
randomization.

In simple randomization, the participants are divided into each experimental group by a
random procedure, that is; the probability of being assigned to a given group is the same for
all the participants. Simple randomization does not guarantee equal experimental groups in a
single experiment, but because differences are only created by chance, the various participant
characteristics will be divided equally among the treatment conditions in the long run, over
several experiments. In order to avoid large differences occurring by chance in a single
experiment, blocking or stratifying can be used, in which study units with similar scores on
the variables of interest are divided into blocks or strata and then assigned randomly to
experimental groups from each block or stratum. When blocking, the participants are divided
into pairs when there are two treatment conditions, into groups of three if there are three
conditions, etc. When stratifying, the participants are divided into strata that are larger than
the number of treatment conditions, for example, the 10 persons with the greatest number of
years of programming experience in one stratum, and the 10 persons with the fewest number

of years experience in another stratum. The use of blocks and strata in statistical analysis is
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described in most statistical textbooks. Determining the optimum number of blocks for a
given research setting is discussed in [12] and [31].

Randomization methods span from flipping a coin to using a random number computer
generator. The latter procedure is recommended in guidelines for statistical methods in
psychology [49], because it enables the supply of a random number seed or a starting number

that other researchers can use to check the methods later.

2.2 Selection bias, the problem with quasi-experimentation

Selection bias is a threat to internal validity. It is defined by Shadish et al. [39] to be
“systematic differences over conditions in respondent characteristics that could also cause
the observed effect.” When a selection is biased, treatment effects are confounded with
differences in the study population. Selection bias is presumed to be pervasive in quasi-
experiments. Hence, the assignment procedures used in quasi-experiments may lead to pre-
experimental differences that in turn may constitute alternative causes for the observed effect.
There may also be interactions between selection bias and other threats to internal validity.
For example, the participants in one quasi-experimental group might drop out from the
experiment (attrition) more often than participants from another experimental group, not
because of the treatment, but because they have characteristics that participants in the other
group do not have.

Different types of nonrandom assignment procedures might induce different types of
causes for selection bias. For example, when projects are compared within a company, there
is a chance that participants within projects are more alike than between projects, e.g., in
terms of some types of skills that influence the performance in the experiment. Moreover, if
the participants select experimental groups themselves, people with similar backgrounds
might select the same group. Such differences between experimental groups might cause
other differences of importance for the experimental outcome as well.

When the nonrandom assignment procedure has no known bias, it is called haphazard
assignment. This might be a good approximation to randomization if, for example,
participants are assigned to experimental groups from a sorted list on an alternating basis.

However, when haphazard assignment is possible, randomization is often possible as well.
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2.3 Design of quasi-experiments

Experimental designs are built from design elements, which can be categorized into four
types: assignment methods, measurements, comparison groups, and scheduling of treatments.
Corrin et al. [9] and Shadish et al. [39] show how quasi-experimental designs can be
strengthened by adding thoughtfully chosen design elements in order to reduce the number
and plausibility of internal validity threats. Among these, we have chosen to describe those
that we regard as particularly relevant for reducing selection threats in SE experiments: pretest
measures, nonequivalent dependent variables, several experimental groups, and within-
subject design (see Table 2).

A pretest measure 1is either taken from a real pretest, i.e., from a task identical to the
experimental task, but without any treatment, or it is a measure that is assumed to be
correlated with the dependent variable, for example, a similar task (calibration task or training
task) [3], exam score, or years of experience. The two latter examples are indicators of the
performance of human subjects, which include skill, abilities, knowledge, experience, etc. A
challenge is to define which of these characteristics are most relevant in the given
experimental setting and to find good operationalizations of those indicators. Pretest scores
are used when analyzing the final results to check, or adjust for, pre-experimental differences
between the experimental groups. In haphazard assignment, a pretest score can also be used in
the assignment procedure (similar to blocked or stratified randomization) to prevent initial
differences between the experimental groups.

The nonequivalent dependent variable is an additional dependent variable that is expected
not to be influenced by the treatments and is used to falsify the hypothesis of alternative
explanations for treatment effects or lack of effect. For example, when the outcome is
measured in terms of answers to a questionnaire, the nonequivalent dependent variables are
questions, the answers to which are assumed not to be influenced by the treatment, but are
related to the participants’ performance. If the answers from the outcome differ among the
experimental groups, whereas the answers from the nonequivalent dependent variables do not
differ among the groups, the belief that there are no other explanations for the results than the
effect of the treatment is strengthened. If both the outcome and the nonequivalent variables
differ among the experimental groups, there is an indication that treatment effects might be
confounded with group effect. See [42] for an example of use of this kind of nonequivalent

dependent variable.
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Applying several experimental groups allows control of how the quasi-experimental
groups influence the results. If the same result is observed for several experimental groups
using the same treatment, it confirms the belief that the result is due to treatment and not

group characteristics. This is a kind of replication within the single experiment.

Table 2. Techniques for handling threats to selection bias

Techniques Examples
Pretest scores for controlling for pre-experimental Results from pre-treatment tasks or measures of
differences between experimental groups indicators of subject performance, such as exam

scores or years of experience.
A nonequivalent dependent variable for falsifying the =~ Time used to perform a task if the technology used

hypothesis of alternative explanations for observed can be assumed not to influence performance time.
effect or lack of effect.

Several experimental groups for some or each Each treatment condition is applied in two
treatment condition in order to allow comparison of companies.

effect of different types of groups.

Within-subject design for enabling each subject to be Cross-over design: Two programming languages

its own control. Note that this design requires control are compared and half the participants apply first

with possible learning effects. one language and then the other. The order of
language is reversed in the other group.

The within-subject design is a method for compensating for initial experimental group
differences, as each subject or team serves as its own control. The challenge with within-
subject designs is that a learning effect might be confounded with a treatment effect. If
learning effects cannot be controlled, a within-subject design is inappropriate; see the
discussion in [22]. Ways of controlling learning effects are several replications of treatment
conditions, as in Design (a) in Table 3, or organising the cross-over-design in such a way that
it is possible to estimate and compare all learning effects, as in Design (b) in Table 3. An

example of a cross-over quasi-experiment is given by Laitenberger and Rombach [23].

Table 3. Two types of strong quasi-experimental designs.

a) Within-subject design, where the
participants are exposed to all treatments G: X;0 X,0 X0 X0, etc.
several times and in the same order.

b) 2*2 cross-over design, where G1: X,0 X,0
treatments are exposed to participants in G2: X,0 X,0
opposite order in the two experimental
groups.

Note: G; refers to experimental group 7, O refer to an observation/measurement and X refers to the use
of a treatment.
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Strategies for ruling out threats to selection bias are also presented by Reichardt [35].
These strategies mainly involve hypothesis formulations and constructions of comparison
groups and are called relabelling, substitution, and elaboration:

e In relabelling, the researcher rephrases the research question or hypothesis of the
treatment effect to include the joint effect from treatment and the effect of the selection
differences among the groups. The relabelling method can always be applied, but is
probably the least desirable method to use because the hypothesis of joint effect is often
not as interesting to investigate as the treatment effect alone.

e Substitution implies that the comparison is substituted by another comparison or by a pair
of other comparisons to control for the possible threats. For example, instead of making
one comparison in which the selection threat is difficult to rule out, a pair of comparisons
is made, in which one is constructed in such a way that the threat is expected to have a
positive effect, and the other one in such a way that the threat is expected to have a
negative effect. If the results of both comparisons are in the same direction, then the
researcher can conclude that the threat has been taken into account.

e FElaboration can be described as the “opposite” of substitution. The researcher retains the
original comparison for which the selection threats are difficult to rule out, but does not
replace it with a pair of comparisons as in substitution. Instead, he or she adds other
comparisons by, for example, measuring a nonequivalent dependent variable or using

several comparison groups, as described in Table 2.

2.4 Analysis of quasi-experiments

Cook and Campbell [8] give the following general advice when analysing quasi-experiments:
(1) plan the design carefully, so as to have available as much information that is required for
the analysis as possible, (2) use multiple and open-minded analyses, and (3) use an explicit
appraisal of the validity of the findings and the plausibility of alternative explanations.

An open-minded analysis means to be prepared to not necessarily use standard procedures
for analysis. An example is an investigation of two methods for software cost estimation
accuracy [13]. Nineteen projects were used and each project self selected which estimation
method to apply. The researchers observed that project characteristics (based on pretests
scores) seemed to overrule the effect of the estimation method. Hence, they analysed the

projects within blocks of similar projects.
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A pretest score may be applied in the analysis of continuous outcomes either (i) in an
analysis of pretest-posttest differences (gain-score), (ii) by creating blocks or strata
(retrospectively) within each experimental group on the basis of the pretest scores and
including the blocking variable in the analysis (ANOVA with blocking or stratifying), or (iii)
by applying the pretest as a covariate in the analysis (ANCOVA) [8]. These methods are
described and compared in [8]. Among other things, a convincing illustration of how the use
of a simple ANOVA yields an incorrect inference compared with using ANCOVA when the
experimental groups differ at pretest. An example of the use of ANCOVA is reported in [3].
In that study, a calibration task was used to measure pretest scores (applied as a covariate in
an ANCOVA), which affected the overall conclusion. Further improvement to an ANCOVA
by making a reliability adjustment is suggested by Trochim [47].

Scepticism regarding the use of traditional statistical methods, such as ANCOVA, to
adjust for selection bias is discussed by Lipsey and Cordray [27]. The major problem is the
sensitivity of the results to the violation of model assumptions for such methods. Lipsey and
Cordray recommend two groups of methods that have evolved over the last decade: The first
is a sequential assessment, in which the first step is to analyse whether certain assumptions
regarding the application of the treatment have been met. If the assumptions have been met,
the outcome is analysed. The second method is growing program evaluation modelling, which
focuses on repeated measures of the individual study unit as the base upon which to construct
any other analysis of interest.

The use of Bayesian statistics is suggested by Novich [32]. He argues that statistical
analyses involve much more than textbook tests of hypotheses and suggests applying
Bayesian statistics because this method allows background information to be incorporated
into the analysis. However, according to Rubin [36], sensitivity to inference of the assignment
mechanism in nonrandomized studies is the dominant issue, and this cannot be avoided

simply by changing the modes of inference to Bayesian methods.

3 Research Method

This section describes how the experiments and tests reviewed in this article were identified

and how the data was gathered.
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3.1 Identification of experiments

The 103 papers on experiments (of a total of 5,453 papers), identified by Sjeberg et al.
(2005), are assessed in this review. Table 4 shows the actual journals and conference
proceedings, which were chosen because they were considered to be representative of
empirical SE research. The 103 articles reported 113 experiments. The process for selecting
articles was determined from predefined criteria, as suggested in (Kitchenham, 2004); see

(Sjeberg et al., 2005) for full details.

3.2 Information extracted

Each of the 113 experiments was categorized as randomized experiment, quasi-experiment or
unknown with respect to the assignment procedure. Since one experiment could comprise
several tests for which some were exposed to randomization and some were not, we based our
categorization on the primary tests when these could be identified. In total, 429 primary tests
were identified in 92 experiments in a multi-review process; see [11] for details. We defined
the primary tests to be what the experiments were designed to evaluate, as indicated in the
descriptions of the hypotheses or research questions. If no hypothesis or research question
was stated, we classified as primary those tests that were described to address the main

incentive of the investigation. Secondary tests comprised all other tests.

Table 4. Distribution of articles describing controlled experiments in the period Jan. 1993 — Dec. 2002

Journal/Conference Proceeding'* Number %

Journal of Systems and Software (JSS) 24 23.3
Empirical Software Engineering (EMSE) 22 21.4
IEEE Transactions on Software Engineering (TSE) 17 16.5
International Conference on Software Engineering (ICSE) 12 11.7
IEEE International Symposium on Software Metrics (METRICS) 10 9.7

Information and Software Technology (IST) 8 7.8
IEEE Software 4 39
IEEE International Symposium on Empirical Software Engineering (ISESE) 3 2.9
Software Maintenance and Evolution (SME) 2 1.9
ACM Transactions on Software Engineering (TOSEM) 1 1.0
Software: Practice and Experience (SP&E) - -
IEEE Computer - -
TOTAL: 103 100%

'* The conference Empirical Assessment & Evaluation in Software Engineering (EASE) is partially included, in
that 10 selected articles from EASE appear in special issues of JSS, EMSE, and IST.
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The assignment procedure was not always described clearly in the articles. An experiment
was categorized as randomized if it was stated explicitly that randomization was used for all
the primary tests. An experiment was categorized as a quasi-experiment when a nonrandom
procedure was reported explicitly for at least one primary test and when the experimental
design or the experimental conduct was such that randomization was obviously impossible for
at least one primary test. In other cases, the experiment was categorized as unknown. An e-
mail request was sent to the authors of the experiments with an unknown assignment
procedure. Answers were received for 20 experiments, for which eight apparently employed
randomization and are categorized as such in this review.

In 14 of the experiments, no statistical testing was performed. In seven experiments, it
was impossible to track which result answered which hypothesis or research question. For
these 21 experiments (which are included in the review), no primary tests were identified and
hence, the assignment procedure was determined from the description of assignment to the
experimental groups. When teams were used as the study unit, we regarded the assignment
procedure to be the assignment of teams to experimental groups. We regarded the forming of
the teams as being part of the sampling procedure.

In addition to the categorization of each experiment as randomized experiment, quasi-
experiment or unknown with respect to the assignment procedure, the following attributes
were registered per primary test:

e study unit
e assignment method for randomized experiments and assignment procedure for quasi-

experiments

Moreover, the following attributes were registered per experiment:

e whether pretest scores were measured and used in the assignment procedure, descriptive
analysis and/or statistical analysis of outcome for at least one primary test

e whether between-subject or within-subject design was used

e whether techniques, other than using a pretest, were used for ruling out threats to selection
bias for at least one primary test

e whether the cross-over experiments assessed the results for differences in learning effects
for at least one primary test

e whether internal validity was addressed for at least one primary test

e whether threats to selection were reported for at least one primary test
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e  Whether professionals was used as study unit
e  Whether commercial applications were used

e standardized mean difference effect size for each primary test

Regarding the last five bulleted points, data on internal validity, threats to selection, the
use of professionals, and the use of commercial applications were gathered by Sjeberg et al.
[44] and effect size was estimated by Kampenes et al. [19]. This data is presented separately
for quasi-experiments and randomized experiments in this article.

Although attributes for data collection should ideally be determined prior to a review [20],
our experience is that the determination of which attributes to use and their appropriate
wording often needs revision during data collection. We therefore conducted a dual-reviewer
(VBK, JEH) pilot on approximately 30 % of the articles in order to stabilize (1) the
comprehension of description of study unit and experimental design and (2) the categorization

of each experiment as randomized experiment, quasi-experiment or unknown.

4 Results

This section presents the extent of randomization observed in the reviewed experiments and
how the quasi-experiments were designed and analyzed compared with randomized

experiments.

4.1 Extent of quasi-experiments

Of the 113 surveyed SE experiments, 40 (35%) were quasi-experiments (Table 5), although
the term “quasi-experiment” was used for only four experiments. There were 66 (61%)
randomized experiments. For seven experiments, randomization or nonrandomization was
neither explicitly stated nor obvious from the experimental design and clarifications were not
obtained from correspondence by email. Examples of phrases from these seven articles are:
“subjects were divided into two groups” and “subjects were assigned to groups A and B so
that both had subjects of equal ability.” For seven experiments, randomization was performed
for some of the tests or to some of the experimental groups, but not completely. We
categorized these as quasi-experiments. Only three experiments described the randomization

method applied: drawing a letter from a hat, drawing a number from a hat, and drawing lots.
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4.2 Design of quasi-experiments

We present the design of quasi-experiments in terms of the extent of use of pretest scores,
which assignment procedures that were used, the extent of field experiments, and the use of

teams as the study unit.

4.2.1 The use of pretest scores

Only 45 % of the quasi-experiments applied a pretest measure (Table 5). This was slightly
more than for the randomized experiments. The majority of the pretest measures were applied
in the assignment procedure (in 13 of 18 quasi-experiments and in 18 of 26 randomized
experiments (blocked or stratified randomization)). The pretest scores were mainly skill
indicators, such as exam scores, years of experience, or number of lines of code written.
However, for three experiments, a pre-treatment task was performed and a real pretest score
measured. Two of these experiments collected data through a questionnaire that was
completed by the participants both before and after the treatment was applied. For one
experiment, which investigated the effect of using design patterns, SE maintenance tasks were

performed both before and after the participants attended a course in design patterns.

Table 5. The extent of randomization and use of pre-test

Type of experiment Total number Use of pretest scores

of Total In assignment  In descriptive  In statistical
experiments analysis analysis
N % N %o* N %* N %o* N %*

Quasi-experiments 40 354 18 45.0 137 32.5 3 7.5 2 5.0
Randomized experiments 66 584 26 39.4 18 27.3 8 12.1 3 4.5
Unknown 7 6.2 3 42.9 3 42.9 0 0 0 0
Total 113 100 47 416 34 30.1 11 9.7 5 4.4

* Percentage of the total number of experiments for that particular type of experiment.
1 In addition to the twelve experiments using a pretest based assignment, one experiment, categorized as
some randomization, used blocked randomization.

4.2.2 Assignment procedures

We found four main types of nonrandom assignment procedures. The characteristics of these
types are shown in Table 6.

1  Assignment to nonequivalent experimental groups. There were four types of

nonequivalent group designs:
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a) Five experiments were designed to investigate the effect of indicators of subject
performance, such as experience and skill. The experimental groups were formed to
be unequal regarding these indicators. The groups were also nonequivalent with
respect to other types of experience or skill, due to the nonrandom assignment
procedure. Subjects were assigned on the basis of either questionnaire results or the
sampling of subjects from different populations.

b) For one of the experiments, subjects were assigned to experimental groups by
including subjects with specific knowledge of the technology (treatment) used.

c) Three experiments included subjects from different classes, projects, or universities.

d) Six experiments assigned participants to experimental groups on the basis of their
availability.

2 Haphazard assignment. Four experiments applied a pretest-based formula or procedure in
the assignment, which was not formally random but seemed to be a good approximation;
for example, assignment on an alternating basis from a ranked list of examination scores.
For eight experiments, a more judgmental approach was used to assign participants to
experimental groups, based on pretest scores and previous knowledge about the
participants. For eleven of the twelve experiments that used haphazard assignment, the
assignment procedure was not described clearly in the article but information was
obtained through mail communication.

3  Some randomization. For seven of the experiments, randomization was performed for
some, but not all, of the experimental groups or the primary tests. Hence, a nonrandom
assignment procedure was used as well.

4  Within-subject experiments in which all participants apply the treatment conditions in the
same order. For six experiments, all the participants were assigned to the same

experimental groups, applying both technologies in the same order.

Assignment to nonequivalent experimental groups, haphazard assignment and some
randomization were applied for both between-subject designs and cross-over designs for
quasi-experiments, see Table 7. All the cross-over designs observed compared two treatments.

The randomized experiments with other within-subject designs compared more than two

treatment conditions and scheduled the treatments in such a way that a true cross-over was not
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Table 6. Quasi-experiments detected in this review (number of experiments)

1) Nonequivalent experimental groups (15)

a)

b)

d)

Investigation of skill, experience, etc. as treatment (5)
Assignment, for already included participants, based on answers to a questionnaire
e C++ experience
e Database knowledge
Inclusion of subjects from different skill populations
e Students versus professional
e Programming knowledge
e PSP (personal software process) knowledge
Assignment based on knowledge of the technology (1)
e Subjects with knowledge of formal methods versus those without such knowledge were used in a
comparison of formal methods versus no formal analysis
Experimental groups created from similar groups (classes or projects) at different times (3)
e  Student classes from two succeeding years were used as experimental groups (2)
e Development courses at a company from two succeeding years were used as experimental groups
(1)
A natural assemblage of participants into experimental groups (6)
e Two sections of a student class were used as experimental groups (2)
e Availability and schedule played a role in the assignment of subjects to experimental groups (4)

2) Haphazard assignment (12)

a)

b)

Formula-based (4)
Assignment method:
e On an alternating basis from a ranked list of previous marks (2)
e An algorithm was used on a ranked list of previous marks (2)
Assignment based on the researcher’s subjective judgement (8)
The judgement was based on:
o Knowledge of the subjects’ skills (1)
e Background information collected from the subjects (2)
e Combination of experiences with the subjects’ skills and background information (3)
e  Grade point average (2)

3) Some randomization (7)

a)

b)
¢)

d)

Randomization and nonequivalent group design (4)

e  Experimental groups created partly from different physical locations (1)
In a three-group experiment, one experimental group was selected from one university, while the
two others were selected from a different university and assigned randomly to two groups

e Assignment based partly on knowledge of the technology (1)
In a three-group experiment, one experimental group was formed by subjects who already
understood the component before assignment, while other subjects were assigned randomly to the
two other groups in a study of reusable components

e Randomization and skill assessment in a factorial design (2)

Randomization for individuals, but not for teams, both being study units (1)

Randomization for three experimental groups (1). A fourth group was created by using the participants

from one of the other groups.

Randomization for two experimental groups (1). Some primary tests compared the pre- and post-

treatment scores within the groups, i.e. a nonrandomized comparison

4) Within-subject experiments in which all participants applied the treatment conditions in the same order (6)

a)
b)

c)
d)

In an inspection experiment, first the usual technique was applied; then the participants underwent
training in a new technique followed by applying the new technique in the experiment (3)

In an assessment of the effectiveness of inspection team meetings, individual results were compared with
team results, individual inspection being performed first by all participants (1)

All participants first performed a paper-based inspection, followed by using a web tool (1)

All participants applied estimation methods in the same order (1)
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Table 7. Experimental designs detected in this review

Experimental design and assignment procedure Experiments
N %
Quasi-experiments 40 354
Between-subject design, nonequivalent experimental groups (10), 22 55.0
haphazard assignment (10), and some randomization (2)

Within-subject design 18 45.0
Cross-over design, nonequivalent experimental groups (5), haphazard 8 20.0
assignment (2), and some randomization (1)

All participants applied the treatment conditions in the same order 6 15.0

Other design — some randomization 4 10.0

Randomized experiments 66 58.4
Between-subject design 32 48.5
Within-subject design 34 51.5

Cross-over design 19 28.8
Other Within-subject designs 15 22.7
Experiments with unknown assignment procedure 7 6.2

Total 113 100

obtained. Within-subject design is regarded as one way of reducing selection bias when
applying a nonrandom assignment procedure. Still, the extent of within-subject designs was

smaller for the quasi-experiments than for the randomized ones (45% versus 52%).

4.2.3 Field experiments

The percentage of experiments applying professionals as the study unit was roughly equal for
quasi-experiments and randomized experiments (20% versus 18%; see Table 8). Commercial
applications were used in 13 % of the experiments, slightly more in randomized experiments.
However, the professionals worked with commercial applications in six of the quasi-

experiments (13%) and in four of the randomized experiments (6%). Hence, on the basis of

Table 8. Number of randomized and quasi-experiments in the reviewed articles, by type of study unit

Type of experiment Total Median  Professionals Commercial Teams as
sample  as study unit*  applicationst study unit
size]

% N % N %
Quasi-experiments 40 42.0 8 20.0 5 12.5 16 40.0
Randomized experiments 66 34.5 12 182 10 152 11 16.7
Unknown 7 13.5 1 14.3 0 0 2 286
Total: 113 36.0 21 18.6 15 133 29 257

* Students only were used in 82 experiments and a mix of subjects in nine.

1 Other types of applications in the experiments were constructed applications (81), student applications
(5), unclear (9) and other (3).

1 Based on the comparison with the largest number of data-points per experiment for the 92 experiments
in which this was reported.
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type of study unit and application, a greater industrial focus was seen for quasi-experiments
than for randomized experiments. In addition, the quasi-experiments had slightly larger

sample sizes than the randomized experiments; see Table 8.

4.2.4 Teams

SE tasks are often performed in teams, and the team was the study unit in 26% of the
experiments, more often in quasi-experiments (40%) than in randomized experiments (17%);
see Table 8.

For eight of the 16 quasi-experiments with teams, the teams were reported as having been
formed as follows: by random assignment (4), by random assignment within experimental
groups (1), by the participants themselves (2), or on the basis of the researcher’s judgment for
creating equal teams based on the participants’ C++ marks (1). For eight of the 16 cases, the
method was not reported. In all eleven randomized experiments with teams, the teams were
formed by assigning individuals by a random process.

A pretest score was used for 36 of the 84 (43%) experiments using individuals and for 11
of the 29 (38%) experiments using teams. For all these experiments, the pretest was a measure
of the individual skill level, not of the overall team level.

One experiment reported that cost and time were constraints that hindered the use of
teams, even if teams would have been a more realistic study unit than individuals for that

particular experiment.

4.2.5 Analysis of quasi-experiments

Only two of the 40 quasi-experiments applied a pretest score in the analysis of results in order
to adjust for pre-experimental differences in the participants’ characteristics and only three
compared pretest-scores in a descriptive analysis, Table 5. In the randomized experiments,
slightly more (3 and 8) used pretest scores to adjust for pre-experimental differences
happening by chance.

The sparse use of pretest scores is one indication that researchers are, in general, unaware
of the potential selection bias in quasi-experiments and how the problem can be handled in
the analysis of the results. Another indication of this is that internal validity issues were
discussed to a lesser extent for quasi-experiments than for randomized experiments (60%

versus 70%); see Table 9, i.¢., it is addressed less where it is needed more. Moreover, in most
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Table 9. Threats to internal validity, as reported in the surveyed experiments

Type of experiment Internal validity =~ At least one internal ~ Threats to selection
awareness validity threat present bias present
Total N % N % N %
Quasi-experiments 40 24 60.0 10 25.0 3 7.5
Randomized experiments 66 46 69.7 16 24.4 7 10.6
Unknown 7 1 14.3 0 0 0 0
Total 113 71 62.8 26 23.0 10 8.8

Note: the results are presented as number of experiments.

cases when internal validity was addressed, no threat was claimed to be present. The presence
of at least one threat was reported to an equal extent for quasi- and randomized experiments.
Threats to selection bias were reported for only three of the quasi-experiments. There seems
to be some confusion regarding the term selection bias, because among the randomized
experiments, 11% reported threats to selection bias, probably referring to differences that
occurred by chance. In addition, it seems as though some experimenters referred to selection
bias when they meant lack of sampling representativeness.

The effect of the assignment procedure is reduced in within-subject designs because the
participants apply several treatment conditions. To be able to draw valid inferences, the
possible learning effects or carry-over effects must be equal for the different treatment
conditions and this must be controlled or tested for in the analysis. This was controlled for in
63% of the quasi-experiments and 32% of the randomized experiments that had a cross-over
design, and for 40% of the randomized experiments that had within-subject designs other than

cross-over; see Table 10.

Table 10. The extent of analysis of learning effects (cross-over) for within-subject designs

Design Total Experiments analyzing

learning effects

N %
Cross-over Quasi-experiments 8 5 62.5
Randomized experiments 19 6 31.6
Other within- Quasi-experiments 6 0 0
subject designs ~ Randomized experiments 15 6 40.0
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We attempted to measure whether selection bias influenced the results from the quasi-
experiments in this review. There was sufficient information for the effect size to be estimated
for 284 primary tests in 64 experiments; see [19] for details. None of these experiments
adjusted the results by pretest scores to control for selection bias. Overall, the randomized
experiments had higher average and median effect sizes than had the quasi-experiments; see
Table 11. However, the result was ambiguous across types of design; the quasi-experimental

cross-over designs had effect size values in the same range as the randomized experiments.

Table 11. Experimental results in terms of standardized mean difference effect size

Experimental design Effect size results from the primary tests ~ Number of
Mean median std Number experiments

of tests
Quasi- between-subject design 0.53 0.39 0.50 31 11
experiments Cross-over design 0.83 0.81 0.50 19 6
Same order of treatments 0.51 0.38 0.51 26 6
Total quasi-experiments 0.61 0.50 0.52 76 23
Randomized  Between-subject 0.83 0.69 0.69 104 24
experiments Cross-over design 0.99 0.63 0.91 31 12
Other within-subject designs 0.87 0.77 0.69 61 8
Total randomized experiments 0.86 0.68 0.73 196 44
Unknown 1.25 1.32 0.85 12 3
Overall 0.81 0.60 0.69 284 70%

*Some experiments had tests in different categories. A total of 64 unique experiments were represented in this
table.

5 Discussion

5.1 Extent of quasi-experimentation

Compared with the extent of quasi-experiments observed in other research areas (range 10%-
81%), SE places itself in the middle (39%), see Table 12. Fewer quasi-experiments than
randomized ones are conducted in research on medical science and psychology, whereas in

. .. . . . 1
experimental criminology, more quasi-experiments than randomized ones are conducted."

'* For simplicity, we use the terms “quasi-experiments” and “randomized experiments” even if these terms are
not always used in other research areas for comparative studies (trials) that use nonrandom and random
assignment procedures.
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Table 12. Proportion of quasi-experiments

Study Inclusion criteria No of Quasi-
exp. experiments
N %
Meta-analysis of psychology published reports in Psychological Abstracts 143 - 10
studies [40] 1975-1979
at least three comparison groups
between-subject design
information for effect size estimation
available
Review of methods in clinical comparative clinical trials published in one of ~ 67 - 16
trials [10] four medical journals in July — December
1979
Review of controlled clinical published controlled clinical trials in six 96 15 16
trials within surgery [30] medical journals in 1983
minimum total sample size:10 (five for cross-
over studies)
Review of controlled clinical studies published in 1946-1981reportingona 145 43 30
trials of acute myocardial comparison of a treatment to a control
infarction [6]
Review of controlled clinical published controlled clinical trials in a sample 114 49 43
trials within medicine [7] of medical journals in 1980
minimum total sample size:10 (five for cross-
over studies)
Review of experiments in all available comparative studies within seven 204 158 77
criminology [48] areas of criminal justice
Meta-analysis of experiments all available reported comparisons from 216 174 81

within school-based
prevention of problem

published in journals (80%), other
publications (10%) and unpublished reports

behavioural [51] (10%)
e 165 studies included, the results reported on
comparison level, not study level
This study e controlled experiments within SE published 113 38 39
in nine journals and three conference

proceedings in 1993-2002

Guidelines and textbooks on research in medical science and psychology typically favour
randomized experiments for cause-effect investigations, because of their potential to control
for bias [2, 18, 34, 49]. This might explain the relatively large extent of randomization in
these areas of research. In addition, especially in medical research, randomization is made
possible by patients easily enrolling themselves to randomization procedures at hospitals,
health care centres and medical doctors.

In contrast, sparse use of randomized experiments is reported in criminology. Many kinds
of intervention pertaining to criminal justice do not lend themselves readily to randomized
designs [25], because practical, ethical, financial and scientific factors play a role [41]. Hence,
it seems that experiments in criminology have mostly been performed in field settings, where
randomization is not feasible. In SE, even if 39% of the experiments were quasi-experiments,

only 13% (six) of them were field experiments in the sense that the subjects were
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professionals working with commercial systems. So, most of the quasi-experimentation in SE
consists of research other than field experiments, even though the running of field
experiments is regarded as the main incentive for running quasi-experiments in SE [21, 23].
The sparse use of field experiments may be explained by practical constraints, such as costs
for the industry, and methodological challenges, such as the level of experimental control that
can be achieved in a practical setting [23]. Whereas these constraints seem to lead to a large
amount of quasi-experiments being conducted in criminology, the same constraints seem to
lead SE researchers to use students as subjects and run randomized experiments rather than
quasi-experiments.

In addition to its use in field experiments, we observed the use of quasi-experimental
design in the following: investigations of how subject-performance indicators influence the
results; comparisons of students from different classes, years, universities, or with treatment-
specific knowledge; investigations that make assignments on the basis of the participant’s
availability; investigations of both teams and individuals for which randomization for both are
difficult; within-subject designs for which all participants apply all treatments once and in the
same order; and quasi-experiments using haphazard assignment. Except for haphazard
assignment, these quasi-experiments represent settings for which randomization is not
feasible, but where participants are available and the investigation of cause-effect
relationships is possible through a quasi-experimental design. For experiments that use
haphazard assignment, blocked or stratified randomization would probably have been
possible instead. The use of blocked or stratified randomization for these experiments would

have reduced the extent of quasi-experiments from 39% to 23%.

5.2 Results from quasi-experiments compared with randomized
experiments

We found that, on average, effect sizes were larger for the randomized experiments than for
the quasi-experiments. This might indicate that selection bias in the quasi-experiments
influenced the results. There is probably no single explanation for the observed direction of
difference. Selection bias in one nonrandomized comparison might be offset by an opposite
bias in another such comparison. Hence, it might act more as a random error than a systematic
bias that is due to a cause. This will reduce the confidence in the findings, but effect sizes will
be consistently neither over- nor underestimated [50]. The small number of quasi-experiments

in our review also gives us reason to view with caution the observed differences in effect sizes
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from randomized experiments and quasi-experiments. Nevertheless, we should take note of
the results, because the hypothesis that selection bias might influence the results from quasi-
experiments has a theoretical foundation and is also empirically supported in other research
fields. Meta-analyses in psychology, medical research, cognitive behavioural research and
criminology found treatment differences partly in favour of randomized experiments [40, 45,
51], partly in favour of quasi-experiments [6, 7, 30, 48], and some found no difference [26,
33]'°. In these investigations, the observed differences were all explained by the potential bias
in the quasi-experiments.

The theory of quasi-experimentation suggests how to control for selection bias.
Researchers have attempted to assess these suggested precautions empirically. We found that
the quasi-experimental 2*2 cross-over design resulted in effect sizes equal to those of
randomized experiments. Hence, the cross-over design seems to be effective in avoiding
selection bias. However, these results were based on only six experiments. We did not have
sufficient data to evaluate any other techniques for handling selection bias. However,
researchers in psychology have found that by avoiding self-selection of experimental groups
as the assignment method and/or adjusting for pre-experimental differences, selection bias
could be eliminated completely [1], or at least to some extent [15, 16, 28, 38] by using a

pretest score.

5.3 Indicators of subject performance

Pretest scores are useful for controlling and adjusting for undesirable pre-experimental
differences between experimental groups. Among the 49 experiments that measured a pretest
score, subject-performance indicators (measured as exam score, years of experience, and
number of lines of code written) were used in all but three experiments. This shows that
subject-performance indicators are much more commonly used as pretest scores than
measures from real pretest tasks.

Moreover, over half of the quasi-experiments did not apply a pretest score to control for
selection bias. We believe that even if this is partly due to lack of awareness of its importance,
it is also partly due to the fact that a relevant subject-performance indicator score is often
difficult to measure. Hence, we conclude that the SE community needs to conduct more

research on how to measure different concepts such as skill, ability, knowledge, experience,

'® The review of 74 meta-analyses in [25] revealed that some of the meta-analyses found treatment differences in
favour of randomized experiments, some in favour of quasi-experiments, and some found no difference. Overall,
no significant difference was found.
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motivation, etc. and how these concepts interact with different types of technologies [43]. In
our review, all the investigations of subject-performance indicators were quasi-experimental.
We believe that including participants with certain skills in a quasi-experiment is often more

relevant than teaching some kind of knowledge as part of a randomized experiment.

5.4 Quality of reporting

There was incomplete reporting of several of the variables that were investigated in this
review: type and rationale for assignment procedure, randomization method, threats to
internal validity, and information used for effect size estimation. In our experience, this makes
it difficult both to understand and evaluate experiments and to conduct systematic reviews
and meta-analyses. For 1/4 of the experiments, the assignment procedure was not described in
the articles. Only three of the randomized experiments reported the randomization method.
Sparse reporting of the method is also found in medical research; in four studies on clinical
trials, the randomization method was reported in, respectively, 0.8, 4, 19 and 51% [10, 17, 33,
46].

Even though some of the articles in our review provided excellent descriptions of
experimental design issues, in general, justification for the choice of assignment method was
lacking. Moreover, internal validity was addressed in only 55% of the experiments and there
was sufficient descriptive information for effect size to be estimated for only 64 of the 92

experiments that reported significance testing; see [19] for details.

5.5 Ways to improve quasi-experimental designs in SE

We detected four main types of quasi-experiment. We will here suggest how these
experimental designs could be strengthened by using the design elements described in Section

2.

5.5.1 Nonequivalent experimental group design
The main question to ask when the experimental groups are nonequivalent is: which factors
could cause these groups to differ before treatment is administered? The answer depends on
the assignment procedure. We observed four types of assignment procedures for
nonequivalent group designs; see Table 6 (1a-d).

(a) When investigating skill, the experimental groups differ deliberately regarding this
skill. In addition, the groups might differ with respect to other relevant types of skills or with

respect to other factors that differ between the populations for which the participants are

205



A Systematic Review of Quasi-Experiments in Software Engineering

sampled. The ways of controlling this are to (1) use pretest measures, for example
examination score from a common course that concern types of skills other than treatment
skill, (2) nonequivalent dependent variables that are assumed not to be influenced by the
treatment skill, and (3) several comparison groups that differ with regards to other factors that
may influence the results. If possible, we will recommend including participants from
different populations because this enables a balanced design. The alternative, which we do not
recommend, is to divide already included participants into skill groups on the basis of, for
example, a questionnaire.

(b) The same recommendations as above apply for quasi-experiments that include
subjects with knowledge of the technology under investigation, i.e., participants with different
knowledge in the different experimental groups. The experimental groups might differ with
respect to skills other than knowledge of the particular technology. This potential difference
must be controlled.

(c-d) When the experimental groups are formed from different student classes, projects or
universities, and when participants are included in experimental groups distant in time, or
based on availability, the potential factors that could cause the groups to differ are to be found
in the characteristics of the groups from which the participants are sampled. Do the students
from the different courses have the same curriculum history? Do the project participants have
the same amount of experience? What is the reason for their availability at certain time
points? Mainly pretest measures and nonequivalent dependent variables are used to control
for differences between the experimental groups. However, within-subject design and several

comparison groups are also useful if the experimental constraints allow it.

5.5.2 Haphazard assignment

Haphazard assignment might be a good approximation to randomization, especially when the
assignment procedure is formula based, which is the case for two of the reviewed
experiments. However, little is known about the consequences of haphazard assignment,
whereas the statistical consequences of randomization procedures have been well researched
[39]. In addition, haphazard assignment that is based on the researcher’s subjective judgment,
which was seen in four of the experiments, is difficult to report and recheck. The haphazard
assignment procedures observed in the reviewed experiments all used a pretest score in the

assignment. In general, we recommend using blocked randomization for such experiments.
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5.5.3 Some randomization

For seven of the experiments, the design was partly randomized and partly quasi-
experimental. Our recommendation for such experiments is to make this mix of design
explicit in the article and control threats to selection bias in the quasi-experimental part of the
experiment. Ways of controlling threats to selection bias depend on the actual nonrandom

assignment method; see Section 5.5.1.

5.5.4 Within-subject design in which all participants apply the treatments in the same
order

When the treatments are applied only once, this is a weak quasi-experimental design, because
it does not allow proper control of how learning effects may influence the second technology.
Still, it was used in six of the reviewed experiments. One explanation given was that the
assumed larger learning effect from one of the technologies prevented a cross-over design and
that there were too few participants available to achieve sufficient power in a between-subject
design. We recommend avoiding such designs and rather using a between-subject design that
i1s analyzed by confidence intervals and effect size measures, thus avoiding the power

problem.

5.5.5 Limitations of this review

Limitations regarding the selection of articles and tests are described in, respectively, [44] and
[11]. An additional threat regarding the set of selected articles is that there is a risk that the
findings are obsolete; the articles selected are from 5-14 years old.

Another threat to this review is possible inaccuracy in data extraction. The data was
extracted by one person (the first author, VBK). However, we conducted a dual-reviewer pilot
(VBK, JEH) on approximately 30 % of the articles in order to stabilize such attributes as
study unit, experimental design and the categorization of randomized experiment and quasi-
experiments, prior to the full review. Moreover, data for the attributes that were perceived to
be potential sources of inaccuracy were checked by one of the other authors (JEH). No
disagreements were found.

Effect sizes were not calculated for all the tests, due to the lack of sufficient information
reported in the articles. In addition, there were few experiments in each quasi-experimental
group. These are limitations to the comparison of effect size values between quasi-
experiments and randomized experiments. Another limitation to this comparison is that the
experiments differ in respects other than the assignment procedure, for example,

methodological quality, topic of investigation, and type of outcome measured.
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6 Conclusion

The purpose of this systematic review of the literature was to investigate the extent of
randomization and quasi-experimentation in SE, how the quasi-experiments were designed
and analyzed, how threats to validity were reported, and whether different results were
reported for quasi-experiments and randomized experiments.

One third of all the experiments investigated were quasi-experiments. Of these, four main
types were observed: (1) Nonequivalent experimental group designs, (2) experiments using
haphazard assignments, (3) experiments using some random and some nonrandom methods of
assignment, and (4) experiments in which all participants were assigned to the same
experimental groups in a within-subject design.

Reports of threats to selection bias were conspicuous by their absence. Pretest scores were
measured in nearly half of the quasi-experiments and cross-over designs were used in eight
quasi-experiments. Still, for nearly half the quasi-experiments, no effort to handle selection
bias was reported. Overall, the randomized experiments had higher average and median effect
sizes than had the quasi-experiments. However, the quasi-experimental cross-over designs
had effect size values in the same range as the randomized experiments. This result is based
on few quasi-experiments, but is in line with quasi-experimental theory and findings in other
fields of research: quasi-experiments might lead to results other than those of randomized
experiments unless they are well designed and analyzed to control for selection bias.

To conclude, there seems to be little awareness of how to design and analyze quasi-
experiments in SE to obtain valid inferences, for example, by carefully controlling for
selection bias. Nevertheless, several of the reviewed quasi-experiments were very well
performed and reported, and contributed to the recommendations given in this article on how
to improve the general conducting of quasi-experiments. We hope that this article will
contribute to an increased understanding of when quasi-experiments in SE are useful and an

increased awareness of how to design and analyse such experiments.
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