
Optimizing the Aliev-Panfilov Model of Cardiac Excitation on
Heterogeneous Systems

Didem Unat ∗1, Xing Cai2, and Scott B. Baden †1

1Computer Science and Engineering, University of California-San Diego, USA
2Department of Informatics, University of Oslo, and Simula Research Laboratory, Norway

Abstract The Aliev-Panfilov model is a simple model for signal
propagation in cardiac tissue, and accounts for complex behav-
ior such as how spiral waves break up and form elaborate pat-
terns. Spiral waves can lead to life-threatening situations such
as ventricular fibrillation. We discuss an implementation and un-
derlying optimizations for the nVIDIA Tesla C1060 GPU as well
as an implementation on multiple GPUs running under MPI. We
achieve nearly perfect scaling on 4 GPUs, in single precision,
running 58 times faster than a CPU-only implementation and 26
times faster in double precision.

Keywords cardiac simulation, CUDA, GPU programming

1 Introduction
Numerical simulations play a vital role in health sciences
and biomedical engineering and can be used in clinical
diagnosis and treatment. For example, we can simulate
the propagation of electrical signals in the heart using the
Aliev-Panfilov model [1], which is a reaction-diffusion
system [2]. The model comprises two parts: a system of
two ordinary differential equations (ODEs) and a partial
differential equation (PDE). The ODE part describes the
kinetics of reactions occurring at every point in space, and
the PDE part describes the spatial diffusion of reactants.
In our models, the reactions are the cellular exchanges of
various ions across the cell membrane during the cellular
electrical impulse.

Our simulation has two state variables. The first corre-
sponds to the transmembrane potential while the second
represents the recovery of the tissue. Two numerical meth-
ods for solving the Aliev-Panfilov model were thoroughly
discussed in Hanslien et al. [3]. For the GPU implementa-
tion in the present paper, the first-order explicit numerical
scheme from Hanslien et al. is adopted.

Although the Aliev-Panfilov model is simple, it can
demonstrate complex behavior of spiral waves that are
known to cause life-threatening situations such as ventric-
ular fibrillation. Since simulations run slowly at higher res-

∗Didem Unat was supported by a Center of Excellence grant from the
Norwegian Research Council to the Center for Biomedical Computing at
the Simula Research Laboratory.

†Scott Baden was supported by the Center for Biomedical Computing
at the Simula Research Laboratory.

olutions, we have an incentive to accelerate the simulation
in order to improve turnaround time.

Graphic Processing Units (GPUs) are an affective means
of accelerating cardiac simulations [5], including the
Aliev-Panfilov model. Owing to their small size, it is
possible to integrate them in the biomedical devices in a
clinical setting GPUs provide a large number of stream-
ing cores on a single chip and high on-chip memory band-
width. Both the ODE and PDE solvers are highly data par-
allel and can take advantage acceleration. The ODE solver
requires a lot of computational power and the PDE solver
requires high memory bandwidth.

In this paper, we present results with, and an imple-
mentation of, the Aliev-Panfilov model running under the
CUDA programming model [6]. We also describe a multi-
GPU implementation that uses MPI to couple the GPUs,
along with latency hiding techniques. We conclude with a
performance evaluation to evaluate the effectiveness of our
optimizations.

2 Implementation Details
The cardiac simulation uses the finite-difference technique
for the PDE solver, which is similar to a Jacobi update
for the 5-point Laplacian operator. The solver sweeps
over a uniformly spaced mesh, updating the voltage
according to weighted contributions from the four nearest
neighboring positions in space, as illustrated in Figure 1.
The PDE solver requires ghost cell communication with
the neighboring threads in every iteration. On the other
hand, the ODE solver is trivially parallelizable, because
there are no data dependencies. We combine the two
solvers into one CUDA kernel to minimize the global
memory traffic.

Data Decomposition. On a GPU device, it is not
possible to fit the entire grid into high level memory.
Instead, the input grid must be divided into tiles. A
typical approach would be 2D domain decomposition
that generates 2D thread blocks. However, we observe
benefits of generating 1D thread blocks for a 2D tile,
which effectively reduces index calculations and enables
reuse of data in registers or shared memory. As a result,



Figure 1: Stencil computation on a 2D grid and its mem-
ory access pattern. Data and thread block decomposition
of Nx x Ny input mesh. The mesh is divided into dx x dy
tiles. Each CUDA thread processes a column in a tile.

we divide the input grids into tiles of size dx ·dy and create
a one-dimensional thread block of size dx to process
a tile. A thread block processes one row of a tile at a
time and a thread computes the entire column of a tile,
as illustrated in Figure 1. Compared with a 2D thread
blocking strategy, one-dimensional thread blocks provide
a 12% improvement in double precision performance and
64% improvement in single precision.

Utilizing Registers and Shared Memory. Updating
a row requires the rows above and below that row. We
store the top and bottom rows in registers, but we keep the
center row in shared memory since all threads share that
row. To reduce the number of global memory accesses,
we reuse the data already in shared memory and registers
by letting a thread block compute more than one row. We
implement this by keeping a queue of rows and rotating
them. At all times we have 1 row in shared memory and
2 rows in registers. In this scheme, a row starts at the
bottom, continues to the center and then to the top.

Ghost Cells. The ghost cells within a tile require
special handling. To handle the east and west borders, we
could create additional threads. However, this strategy
would leave the border threads idle during computation.
Instead, we choose to use threads in the first and last
column of a thread block to read the east and west borders.
The north and south ghost cells do not need special
handling because all threads share the entire row.

Multi-GPU Implementation. At higher resolutions,
simulations run very slowly. We project that a simulation
would take around 17 hours on a single GPU for an input

Figure 2: North-south computation allows asyn-
chronous communication, thus hiding latency.

size of N=4K. Using 4 GPUs reduces the running time to
4 hours.

In a multiple-GPU implementation, we partition the
input mesh along the slowest varying dimension among
GPUs. One-dimensional partitioning allows us to transfer
contiguous memory locations during ghost cell exchange
without any data manipulation. We use MPI to manage
host processes. Each GPU updates its region and then ex-
changes ghost cells with the other two neighbors before
starting the next iteration. The only way for two GPUs to
communicate is through their host processes. As a result,
there are three communication links between two GPUs:
GPU-host, host-host and host-GPU. We use cudaMemcpy
between GPU-host and host-GPU communications and
MPI Isend-Irecv for the host-host communications. Since
CUDA kernel executions and memory copy calls are asyn-
chronous, we can completely hide all the communication
latencies as long as the communication time does not ex-
ceed the computation time.

For asynchronous communication, we divide the com-
putation on a single-GPU into two regions: north and south
computations as shown in Figure 2. While a GPU com-
putes the north region, its host asynchronously copies the
south ghost cells from the GPU, exchanges the ghost cells
with the south neighbor and copies back the updated ghost
cells to the GPU. Then, the GPU starts the computation on
the south region while the host exchanges the north ghost
cells. The disadvantage of doing north-south computation
is that we need to launch two separate kernels with half the
number of data blocks: one for north and one for south.
In order for this approach to work, there should be enough
thread blocks per kernel launch to occupy all the stream
multiprocessors. As a result, we recommend using the la-
tency hiding version for mesh sizes greater 4K.



Number of Total Time Communication Number of Speedup
N T GPUs (sec) Percentage Iterations over 1 GPU

1K 1000 1 276.12 - 231291 1
2K 1000 1 4102.64 - 893118 1
2K 1000 2 2224.30 4.1% 893118 1.84
4K 10* 1 647.65 - 35413 1
4K 10* 2 333.75 3.1% 35413 1.94
4K 1000 4 17172.50 4.4% 3541290 3.77

Table 1: Simulation running times for different mesh size in double precision for T=1000. To save time and energy consump-
tion we ran certain simuilations marked with an asterisk (*) until T=10.

Figure 3: Communication latencies on 4 GPUs.

3 Results
We measure the performance of our implementation on
a system with 4 nVIDIA Tesla C1060 devices with
4GB device memory in each GPU [4]. This de-
vice is 1.3 capable and ran under CUDA v2.3. De-
vice code was compiled with nvcc using compiler
options -compiler-options -fno-strict-aliasing
-O3 -arch Smylers 13. The host CPU is a quad-core
Intel Xeon processor based on the Nehalem architecture.
Host code was compiled with g++ 4.3.3 with using com-
piler options -O3 -fno-strict-aliasing.

We present the results for meshes of size 1K, 2K and
4K. Due to long execution times of some simulations, we
project running times based on the 1/100th of the actual
simulation time. Storage of the final numerical solutions
is of interest for visualization. We visualize data at a low
enough frequency that did not observe any significant over-
head in transferring data to the host, nor in the I/O time
needed to display it. Hence, the results presented in this
paper include both I/O and data transfer times.

Tab. 1 shows the simulation times for several mesh
sizes. 1 GPU versions use a single-GPU implementation,
others use the multiple-GPU implementation. In order to
see where the time is spent we measure the simulation
times with a synchronous version of the multiple-GPU im-

Figure 4: Comparison of simulation time w/o overlap-
ping of communication and computation.

plementation (no overlapping of communication and com-
putation). As seen in the table, communication constitutes
only a small portion of the execution time, around 3-4%.

Fig. 3 shows the breakdown of communication latencies
for the synchronous multi-GPU implementation. The total
communication includes data transfers between the host
and the device and message passing between two hosts.
On GPUs it is typically faster to transfer data from host
to device than the other way around, and we observe sim-
ilar behavior. The message passing time is higher for the
GPUs 1 and 2 because they exchange ghost cells with two
neighbors rather than one.

Fig. 4 compares the overlapping and non-overlapping
timings for a mesh size 4K x 4K. The total execution time
is reduced by less than 2%. Since communication is not
the bottleneck and constitutes 3-4% of the overall simula-
tion time, the benefit of latency hiding is not significant.
However, this is an artifact of our using a small number
of GPUs, and we expect that communication will become
more costly as we increase the number of GPUs. We will
report on results with more GPUs in the future.

4 Performance Analysis
We compare a CPU implementation a single-GPU per-
formance. Tab. 2 compares GFlop rates for the Aliev-
Panfilov method on the host and on the GPU for both sin-
gle and double precision. We ran with a 4K x 4K mesh



N=4K 1 CPU-only 1 GPU Speedup over CPU
Single 2.36 124.48 52.84
Double 2.01 25.69 12.81

N=16K 4 CPUs-only 4 GPUs Speedup over CPU
Single 7.79 454.47 58.32
Double 3.88 102.48 26.41

Table 2: GFlop/s rates for CPU-only and GPU

Double Precision, N=4K Using Div Replace(div, add)
Peak BW (GB/s) 102 102
Peak DP GFlop/s 78 78
Sustained BW (GB/s) 73 73
Achieved Bandwidth (GB/s) 30.3 51.3
Achieved GFlop/s 25.7 43.6
% of Sustained Bandwidth 41.5 % 70.3 %
% of Peak GFlop/s 32.9 % 55.8 %

Table 3: Performance results if the division operation
is replaced with an add operation in the kernel. BW:
bandwidth, DP: double precision.

and a single MPI process (results are similar for an 8K
x 8K mesh and a 16K x 16K device overflows memory).
The single precision kernel offers a speedup of 53 over
the host implementation. It nearly saturates the off-chip
bandwidth, utilizing 98% of the sustainable bandwidth for
Tesla (73 GB/sec), and achieving 124.48 GFlop/s, which
is only 13.3% of the single precision peak performance of
the Tesla C1060. This indicates the single precision ker-
nel is memory-bandwidth limited. Double precision per-
formance is not as high as single but it still outperforms
the CPU. It utilizes only 41.5% of the sustained bandwidth
and delivers 1/3 of the peak performance. This is true be-
cause each GPU vector core shares a single double preci-
sion arithmetic unit; hence the peak floating point rate in
double precision is only 1/8 of that in single precision. Not
surprisingly, this kernel is floating point bound (instruction
throughput) , rather than bandwidth limited.

Moreover double precision performance is severely
affected by the division operation in the ODE solver. In
order to observe the cost of division operation, we replace
the division operation with addition. Even though the
solution is numerically incorrect, the resulting program
behavior does not change the memory profile or floating
point operation count in the kernel. Tab. 3 shows the
GFlop/s rate after the replacement and compares it with
the use of division. The modified kernel achieves 55.8 %
of the double precision peak performance. We conclude
that our Aliev-Panfilov double precision performance
is acceptable, considering not all the operations are

multiply-and-add instructions, that achieve the highest
instruction throughput on the current nVIDIA GPUs. In
addition, due to the limitation on the number of registers
available, some of the operands are in shared memory
rather than in registers. Even though the performance
of our implementation is satisfactory, as a future work
we would like to close the gap and improve our double
precision results.

5 Conclusions
We have accelerated the Aliev-Panfilov cardiac model us-
ing the nVIDIA Tesla GPU. Our optimizations utilize
shared memory and registers to reduce the number of
global memory accesses to achieve higher performance.
Our single precision implementation runs at near device
memory bandwidth and double precision implementation
achieves one-third of the double precision peak perfor-
mance. Our multiple-GPU implementation reduces the
simulation time further and enables solutions on meshes
with high resolution. Finally, we compare our GPU im-
plementation with CPU-only implementation. We achieve
a speedup of about 50 in single precision and a some-
what smaller speedup in double precision, depending on
the problem size.

Acknowledgments
Computations on the NVidia Tesla system located
at UCSD were supported by NSF DMS/MRI Award
0821816.

References
[1] R. Aliev and A. V. Panfilov. A Simple two-variable model of

cardiac excitation. Chaos, Solions & Fractals, 7(3):293-301,
1996.

[2] N. Britton. Reaction-diffusion equations and their applica-
tions to biology. Harcourt Brace Janovich, Orlando, FL
32887-0405(USA), 1986, 288, 1986.

[3] M. Hanslien, R. Artebrant, A. Tveito, G. Lines, and X. Cai.
Stability of two time-integrators for the aliev-panfilov sys-
tem. 2010. Submitted for publication.

[4] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym.
NVIDIA Tesla: A Unified Graphics and Computing Archi-
tecture. Micro, IEEE, 28(2):39–55, March-April 2008.

[5] F. Lionetti, A. McCulloch, and S. B. Baden. Gpu accelerated
solvers for odes describing cardiac membrane equations. In
nVidia GPU Technology Conference, October 2009.

[6] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scal-
able parallel programming with CUDA. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 classes, pages 1–14, New York, NY,
USA, 2008. ACM.


	Introduction
	Implementation Details
	Results
	Performance Analysis
	Conclusions

