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ABSTRACT

Model-based robustness testing requires, precise and complete behavioral, robustness modeling. For example state
machines can be used to model software behavior when hardware (e.g., sensors) breaks down and be fed to a tool to
automate test case generation. But robustness behavior is a crosscutting behavior and, if modeled directly, often
results in large, complex state machines. These in practice tend to be error-prone and difficult to read and
understand. As a result, modeling robustness behavior in this way is not scalable for complex industrial systems. To
overcome these problems, Aspect Oriented Modeling (AOM) can be employed to model robustness behavior as
aspects in the form of state machines specifically designed to model robustness behavior. In this paper, we present a
RobUstness Modeling Methodology (RUMM) that allows modeling robustness behavior as aspects. Our goal is to
have a complete and practical methodology that covers all features of state machines and aspect concepts necessary
for model-based robustness testing. At the core of RUMM is a UML profile (AspectSM) that allows modeling
UML state machine aspects as UML state machines (aspect state machines). Such an approach, relying on a
standard and using the target notation as the basis to model the aspects themselves, is expected to make the
practical adoption of aspect modeling easier in industrial contexts. We have used AspectSM to model the
crosscutting robustness behavior of a videoconferencing system and discuss the benefits of doing so in terms of
reduced modeling effort and improved readability.

Keywords: Aspect-oriented modeling, UML state machines, Robustness, UML profile, Crosscutting behavior,

Robustness testing.

1. INTRODUCTION

Modeling software functional behavior has always been an important focus of the modeling community
to support many development activities such as model-based testing (MBT) and automated code
generation. Regarding model-based testing, which is the specific focus on this paper, much less attention
has been given to modeling non-functional behavior such that the testing of non-functional properties

(e.g., safety and robustness) can be automated. Though several UML profiles have been proposed to
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address the modeling of non-functional properties (including the UML profile for QoS and Fault
Tolerance [5], the MARTE profile [7], and UMLSec [8]), it is not yet clear whether they can fully

support test automation.

Our motivation here is to support model-based robustness testing. An IEEE Standard [10] defines
robustness as “the degree to which a system or component can function correctly in the presence of
invalid inputs or stressful environment conditions”. A system should be robust enough to handle the
possible abnormal situations that can occur in its operating environment and invalid inputs. For example,
using our industrial case study as an example, modeling such robustness behavior of a
videoconferencing system (VCS) is to model its behavior in the presence of hostile environment
conditions (regarding the network and other communicating VCSs), such as high percentage of packet
loss and high percentage of corrupt packets. The VCS should not crash, halt, or restart in the presence of,
for instance, a high percentage of packet loss. Furthermore, the VCS should continue to work in a
degraded mode, such as continuing the videoconference with low audio and video quality. In the worst
case, the VCS should return to the most recent safe state instead of bluntly stopping execution. Such
behavior is very important for a commercial VCS and must be tested systematically and automatically to

be scalable.

To automate such systematic testing, one can model the system robustness behavior to such events and
resort to model-based testing (MBT). However, robustness behavior is typically crosscutting many parts
of the system functional model and, as a result, modeling such behavior directly within the functional
models is not practical since it leads to many redundancies and hence results in large, cluttered models.
To cope with this issue, we decided to adopt Aspect-Oriented Modeling (AOM) [11], which provides
Separation of Concerns (SoC) during design modeling. Crosscutting concerns are modeled as aspect
models and are woven into a primary model (base model), modeling non-crosscutting concerns. AOM
can potentially offer several benefits such as: 1) enhanced modularization, 2) easier evolution of models,

3) increased reusability, 4) reduced modeling effort, and 5) improved readability [11, 12].

Our goal in this paper is to provide a complete solution in terms of both aspect and state machine
features necessary for model-based robustness testing. Furthermore, we want to minimize the effort
involved in learning a new language over standard UML and enable automated, model-based testing. To

achieve this, we present a RobUstness Modeling Methodology (RUMM) to model robustness behavior
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using AOM and assess it on an industrial case study involving a commercial videoconferencing system.
Such studies are very few in the research literature and are rarely run and reported in a satisfactory
manner [13]. To the knowledge of the authors, only a few industrial applications of AOM have been
reported to date [14-17] and had very different objectives than RUMM. An overview of RUMM is
shown in Figure 1. The core of RUMM is the definition of a UML state machine profile for AOM:
AspectSM (shown as a white artifact in Figure 1 in RobustnessModeling). We limited our profile to
UML state machines as: 1) They are the main notation currently used for model-based test case
generation [18] and are particularly useful in control and communication systems, 2) Like it is often the
case, our industrial case study exhibits state-based behavior so that it is natural to initially provide
support for UML state machines. The profile can, however, be extended to other UML diagrams in the
future, following similar principles. We rely on developing a profile instead of developing a domain
specific language since, in our case study context as in many others, minimizing extensions to UML is
expected to ease practical adoption. More thorough discussions on this issue are presented in Section 7.
Modelers of functional aspects of the system can be different from the ones specifying its robustness

behavior. The latter make use of AspectSM to model aspect state machines.
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Figure 1. An overview of RUMM

Another important part of the RUMM is another UML profile (RobustProfile) shown as a white
artifact in Figure 1, based on the fault taxonomy defined by [20] and the IEEE standard classification for

anomalies [21]. The profile is used by a robustness modeler to develop aspect state machines and is
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defined specifically to assist in defining test strategies for robustness testing. In addition, the profile
helps generating test scripts based on classes of faults modeled using the profile. Once again, the profile
is defined on UML state machines, as they are the main focus of this paper. We follow the widely
accepted and used definitions in [20] for faults and failures. A fault is an incorrect state of a system or its
environment in the presence of which the system cannot provide a correct service. Such deviation from
the correct service is called a failure. A fault type is identified based on a fault taxonomy (white artifact
in Figure 1) and the UML profile MARTE is used to model it in a UML class diagram (Aspect Class
Diagram, dark grey artifact in Figure 1). In a subsequent step, aspect class diagrams are used to model
actual faulty behavior as aspect state machines (AspectStatemachines) using both AspectSM and
RobustProfile. Finally, robustness models comprising of aspect class diagrams and aspect state machines
are woven into functional models once again composed of UML class diagrams and state machines. This
is performed using our weaver implemented in Kermeta [22] and the woven state machines produced by
the weaver can be used in turn by a model-based testing tool, for instance the TRUST tool [23] or
QTronics [24], to generate executable test cases. In our case, test cases are generated in Python, which is
used as a test script language by our industry partner (Cisco, Norway). Note that this paper addresses
only robustness modeling and details on test case generation and execution are outside the scope of this
paper.

The contributions of the paper can be summarized as follows: 1) A RobUstness Modeling
Methodology (RUMM) that enables the systematic modeling of robustness behavior in a practical and
scalable way, 2) A UML 2.0 profile (RobustProfile), which is based on a fault taxonomy in [20] and the
IEEE standard classification for anomalies [21], to model faults, recovery mechanisms, and failure
states, 3) The application of the MARTE profile in conjunction with RobustProfile to model faulty
environment conditions, 4) A UML 2.0 profile (AspectSM) to support comprehensive aspect modeling
for UML 2.0 state machines and enable automated robustness testing. AspectSM supports modeling
crosscutting on all features of UML 2.0 state machines and supports all basic features of AOSD such as
pointcuts, introduction, joinpoints, and advice; 5) An empirical evaluation and discussion of the benefits
of modeling robustness behavior of an industrial system using RUMM and AspectSM; 6) Tool support,
based on model transformations in Kermeta [22], to automatically weave AspectSM aspects into base

state machines (modeling the core functional behavior of a system).
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The rest of the paper is organized as follows: Section 2 provides a case study and a running example
that we use to explain various concepts in RUMM. Section 3 provides an overview of the RUMM
methodology. Section 4 describes the terminology, techniques, and tools that are required to understand
and apply RUMM, including a definition and justification of the AspectSM profile (Section 4.2) and
details on its corresponding weaver (Section 4.7). Section 5 demonstrates the application of the profile
using a very simplified version of our industrial case study. Section 6 discusses the benefits achieved
when applying RUMM to one complete subsystem of our industrial case study. Section 7 discussed
existing works that are directly related to the objectives of RUMM. Finally, Section 8 reports on future

work and conclusions.

2. CASE STUDY AND RUNNING EXAMPLE

Our case study is part of a project aiming at supporting automated, model-based robustness testing of a
core subsystem of a video conference system (VCS) called Saturn [23]. The core functionality to be
modeled manages the sending and receiving of multimedia streams. Audio and video signals are sent
through separate channels and there is also a possibility of transmitting presentations in parallel with
audio and video. Presentations can be sent by only one conference participant at a time and all others
receive it. In this paper, to demonstrate the applicability of RUMM, we focused on this particularly
important subsystem (Saturn) and left out the other functionalities of the VCS. We selected this
subsystem because robustness testing is concerned with testing the behavior of VCS in the presence of
hostile environment situations, which can only be tested when the VCS is in a conference call with other
systems, which is what Saturn manages. Saturn is complex enough to demonstrate the applicability and
usefulness of RUMM while still remaining manageable in the context of a case study. To provide simple
running examples in the next sections, we modeled a reduced version of Saturn where one can only
establish calls and cannot start or stop presentations. From now onwards, we will refer to this simplified
Saturn model as S-Saturn to differentiate it from the complete case study model used in Section 6 to
discuss the benefits of RUMM.

2.1 Functional models of S-Saturn

The functional model of S-Saturn consists of a class diagram and a state machine. The class diagram of
S-Saturn is shown in Figure 2 and is meant to capture information about APIs and system (state)
variables, which are required to generate executable test cases and oracles in our application context.

Saturn’s API is modeled as a set of methods in the Saturn class such as dial() and callDisconnect(). In
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our case, the parameters of these methods are either modeled as primitive data types (e.g., String) or as
Enumeration types (e.g., CallProtocol).The state variables of the system are modeled as instance
variables of classes in the conceptual model. For example, two system variables in the SystemUnit class
are NumberOfActiveCalls and MaximumNumberOfCalls. NumberOfActiveCalls is an Integer which
determines the number of VCS that are currently in a Saturn videoconference, whereas
MaximumNumberOfCalls determines the maximum number of simultaneous calls supported by Saturn.

Q Saturn:SystemUnit

Eg NumberOfctiveCalls : Integer Q Saturn::IncomingPresentationChannel
=g MaximumNumberOfiCalls : Integer [Eg Protocol : VideoProtocol
0.1 - systemUnit - incomingPresentationChannel | 0..1

] saturn::Saturn

g dial () - conference

i3 powerOff () ] saturn::Conference -calls  [=Isaturnzcall
4, callDisconnect () E PresentationMode : String g callltem : Integer
{2 presentationStart () 0..1 |EgPresenterld : Integer 1..3 | Egnumber : String

2 presentationStop ()

gﬁ Eﬂg::g?:;ﬁ:::l( d) O - outgoingPresentationChannel 0.1
(=]

& resetPresenterld ( ) ] saturn::0utgoingPresentationChannel
[Eg Protocol : VideoProtocol

Figure 2. Conceptual model of the S-Saturn subsystem

The state machine modeling the nominal functionality of S-Saturn, referred to as a base state
machine, is shown in Figure 3. It consists of four simple states. From the Idle state, invoking the dial()
method of the Saturn class leads to the Connected_1 state, which represents the behavior of the system
when there is a conference without any presentation with one endpoint. As long as there exists one

(* Saturn
“dle % dial () © Connected 1

%% callDisconnect ()

[NumberOfActiveCalls = % dial () [NumberOfActiveCalls = 2]
MaximumNumberOfCalls - 1] % callDisconnect ()
B dial [)

SO Full 9 NotFull

% callDisconnect ()

[NumberOfActiveCalls = MaximumNumberOfCalls >1
and NumberOfActiveCalls < MaximumNumberOfCalls -1]
@ dial ()
% callDisconnect ()

Figure 3 . Base state machine for the Saturn subsystem
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endpoint in the conference and no presentation is transmitting, S-Saturn stays in the Connected_1 state
and when S-Saturn dials to more endpoints, it transitions to the NotFull state until it connects to the
maximum number of endpoints it supports and transitions to the Full state. Each simple state has an
associated state invariant based on the system variables modeled in the conceptual model. For instance,

the ldle state has the following state invariant:

self.systemUnit.NumberOfActiveCalls = 0 and self.conference.PresentationMode = 'off'

2.2 Robustness behavior

To explain various activities and concepts involved in defining the profiles, we will use a crosscutting
robustness behavior named ‘MediaQualityRecovery’. This behavior is related to the robustness behavior
of a VCS in the case when media quality falls below an acceptable media quality level and tries to
recover. The VCS should not crash when the media quality falls below this acceptable level and should
rather keep on operating at a lower quality level and try to recover from this situation. In the worst case,
the VCS should cleanup system resources and go back to the most recent safe state, in which the VCS
was exhibiting normal behavior. In our current case study, an example of a safe state is the Idle state.
Such a robust behavior is very important in a commercial VCS, as quality expectations are high
regarding robustness to media quality faults. Recall that the models above are greatly simplified and that,
in Section 6, we provide results from the complete case study and other important robustness aspects that

we modeled for Saturn.
3. ROBUSTNESS MODELING METHODOLOGY

Our goal is to devise a solution to model robustness behavior, which (1) is complete in terms of aspect
and state machine features, (2) minimizes the learning curve over standard modeling skills, and (3)
enable automated, model-based testing. To achieve this, we defined a RobUstness Modeling
Methodology (RUMM) to model robustness behavior using AOM. Recall from Section 1 that we follow
the standard definition of robustness provided in the IEEE 610.12 standard [10]. Such robustness is
considered very critical in many standards such as in the IEEE Standard Dictionary of Measures of the
Software Aspects of Dependability[10], the ISO’s Software Quality Characteristics standard [25], and
the Software Assurance Standard [26] by NASA. The RUMM methodology (Figure 4) is suitable for
systems, which implement substantial robustness behavior to deal with faulty situations in the

environment such as communication and control systems. A1 and A2 activities are related to functional
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modeling, whereas activities A3 to A6 are related to modeling robustness behavior. Activity A7 is
automated and merges functional (base state machines) and robustness (aspects) models together into a
complete model. Activities Al to A6 are related to modeling functional and robustness behavior and are
manual. In this section, we will explain very briefly each activity. Additional, detailed information will
be provided in the next sections, followed by the application of RUMM in an industrial case study.

The first activity (Al) involves developing a conceptual model [27] of a SUT using a UML 2.0 class
diagram based on the domain analysis of the SUT. In this activity, we model different domain concepts
of the SUT as classes and relationships between them, which are determined as the result of domain
analysis. In addition, we model state variables of the SUT as attributes in the class diagram. We also
model public operations of the SUT (API) and external events in the SUT environment as signal
receptions. The conceptual model is then used in activity A2 for developing a behavioral model of the
SUT as one or more UML state machines. Attributes defined in the conceptual model are used for
various purposes such as defining state invariants and defining guards on transitions. The operations and
signal receptions defined in the conceptual model are used as triggers on transitions of state machines. In
model-based robustness testing, one of the most important tasks is the identification and modeling of
faults, in the presence of which we must test the behavior of the SUT. To systematically identify these
faults, the development of fault taxonomy is required (A3) and is provided in Section 4.1. The
application of the fault taxonomy to an industrial system is reported in Section 5.3. Activity A4 requires
modeling different properties of the system’s environment, whose violations lead to the various types of
faults identified from the fault taxonomy (A3). The guidelines for this process are defined in Section 5.4.
Activity A5 requires modeling robustness behavior as aspect state machines. As described in Section
4.4, this requires the use of the AspectSM profile. The profile definition is provided in Section 4.2. The
control flow arrow from activity A5 to activity A4 depicts that multiple robustness aspects can be
modeled one after another. Once all robustness aspects have been modeled, we may need to define the
order in which the aspects should be woven into the base state machine developed in activity A2.
Guidelines for modeling the ordering of aspect state machines as a weaving-directive state machine are
presented in Section 4.6. Finally, activity A7 weaves aspect state machines with base state machines. For
this activity, we developed a tool using Kermeta [22], a well-known model transformation environment.

The details of the tool are presented in Section 4.7 and the weaving algorithm is detailed in Appendix B.
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Figure 4. Methodology for robustness modeling (RUMM)
4. Concepts, Techniques, and Tools Required for RUMM

This section describes the concepts, techniques and tools that are needed to apply RUMM. In addition,
we provide further definitions of the terminology employed as needed.

4.1 Definitions

This section provides basic definitions required to understand the rest of the paper.

4.1.1 Faults and Failures in the context of UML state machines

While modeling robustness, we model faults in the behavior of the operating environment of a SUT.
Such behavior of the environment may lead the SUT into abnormal situations. In UML state machines,
we model faults in the environment as either signal events or change events, on one or more transitions
in the state machine of the SUT. Firing such transitions may lead the SUT to a degraded state where the
SUT tries to recover from the fault while still providing some of the required service in a degraded
mode. If the SUT is successful in recovering from the fault, it then goes back to a normal mode of

operation. Otherwise, it may go to a failure state or the initial state.
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4.1.2 Fault classification based on taxonomy

Many fault taxonomies are proposed in the literature, however most of them are either specific to
architectures, for instance Service-oriented Architecture (SOA) [28, 29] and Component-based Systems
[30], or to application domains such as aeronautics and space [31]. We chose the widely-known and
referenced fault taxonomy presented in [20] because it is very comprehensive and generic, and thus can
be extended for specific needs as it was required in our case. For instance, we extended the taxonomy to
accommodate for media quality faults, which are very important for a commercial VCS. The fault
taxonomy for elementary fault classes provided in [20] is modeled in Figure 5 as a class diagram. Dark
gray colored classes in Figure 5 show the fault classes we extended for our specific needs. The taxonomy

states that a fault can be categorized based on different views/perspectives such as based on

= DevelopmentFault

Q Phase
Q OperationalFault
Q Q InternalFault
5 Bound.
ystemBoundary Q NetworkFault
Q ExternalFault
Q SystemFault
Q MaturalFault
= en henomenologicalCause
Q Hum anMadeFault
Q HardwareFault
Q Dimension
- view Q SoftwareFault
Q Fault Q View
1> Q MaliciousFault
H objective
Q MonMaliciousFault
Q DeliberateFault
Q Intent
Q MonDeliberateFault
Q AccidentalFault
Q Capacity
Q MonAccidentalFault
Q PermanentFault
Q Persistence
Q TransientFault
= Audio
Q FunctionalFault
L RequirementType = MediaFault
Q NonFunctionalFault Q Video

Figure 5. High level fault taxonomy
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SystemBoundary or Dimension. Using SystemBoundary faults can be classified into either InternalFault
or ExternalFault depending on where they occur. Details on classes of faults are provided in [20]. Given
our goal, we extended some fault classes in the fault taxonomy to model faults which are specific to the
VCS. For instance, to provide a support for modeling media-related faults, which are important for an
industrial VCS, we introduced a view RequirementType (Figure 5) and defined two fault classes:
FunctionalFault and NonFunctionalFault. We further classified NonFunctionalFault into MediaFault
(Figure 5), with further subclasses Audio and Video. In addition, we extended ExternalFault, which
comprises faults in networks and external systems, into NetworkFault and SystemFault subclasses.
SystemFault corresponds to the faults in one or more VCS communicating with the SUT. Since in
robustness testing the focus is always on modeling behavior of a SUT in the presence of faults in its
environment, all fault classes in the taxonomy are valid from the perspective of other VCSs
communicating with the SUT. For instance, a SoftwareFault in a VCS communicating with the SUT can
have an effect on the latter’s behavior. We provide an example use of the taxonomy in Section 5.3 for

our case study.

4.2 The AspectSM profile

Using the AspectSM profile, we model each aspect as a UML state machine with stereotypes (aspect
state machine). The modeling of aspect state machines is systematically derived from a fault taxonomy
(Figure 5) categorizing different types of faults (incorrect states [20]) in a system and its environment
(such as communication medium and other systems). Such a modeling approach models each type of
robustness behavior separately from the state machines modeling nominal functionality (base state
machine) and hence results in enhanced separation of concerns. Furthermore, our modeling approach
models crosscutting behaviors as separate aspect state machines and hence reduce modeling effort when
compared to modeling robustness directly in combination with nominal behavior. The readability of
models is then improved as robustness behavior that tends to be redundant when modeled directly is
clearly separated out and expressed once. Following the general ideas proposed in [32] [19], to model
aspects using the same notations as the base model, we used UML state machines to model both aspect
and base models, which is expected to facilitate practical adoption. In industrial applications of model-
based testing, it is always desirable to minimize the need to learn different notations to model different

testing concerns (such as security and robustness concerns). Though profiles already exist in the
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literature that allow modeling aspects as UML state machines [1-3, 12, 33], we decided to define our

own profile to address the three following problems:
1. Crosscutting behavior can exist on any modeling element in UML 2.0 state machines, but the
existing profiles and approaches do not support all features, such as state invariants and guards [1, 12,
33, 34]. These are however crucial in the context of model-based testing, and in particular for
automated test case generation [35].
2. Existing modeling approaches using profiles require, for modeling aspect features (such as pointcut
and advice), to develop new diagrams that are not part of the UML 2.0 standard [3, 4], thus making
adoption in practical contexts more difficult. Indeed, such profiles require developing specific tool
support for new diagrams and entails training users on how to build them. As a result, in practice, the
use of non-standard modeling languages is discouraged.
3. Some of the existing approaches do not support all basic features of aspect orientation such as
Introduction.

More details and discussions on related work are provided in Section 7.2

The AspectSM profile is the core component of RUMM because modeling robustness as aspect state
machines is achieved through standard UML extension mechanisms. This profile was developed by
augmenting many of the concepts in existing UML state machine profiles for AOM (Section 7) in order
to achieve the specific goal of supporting automated, model-based robustness testing. Although the
AspectSM profile is developed specifically for robustness testing, its application to other purposes such
as for security testing should be investigated. In this section, we provide a detailed description of
AspectSM.

A UML profile enables the extension of UML for different domains and platforms, while avoiding
any contradiction with UML semantics. In [36], two main approaches for profile creation are discussed.
The first approach directly implements a profile by defining key concepts of a target domain, such as
what was done to define SysML [37]. The second approach first creates a conceptual model outlining the
key concepts of a target domain followed by creating a profile for the identified concepts. This latter
approach has been used for defining profiles such as the UML profile for Schedulability, Performance,
and Time specification (SPT) [38], the QoS and Fault Tolerance specifications [5], and the UML Testing
Profile (UTP) [39].

12
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We used the second approach to define the AspectSM profile since it is more systematic as it
separates the profile creation process into two stages. In the first stage, we develop a conceptual model
which helps identify domain concepts and their relationships. In the second stage, we identify the
mapping between the main concepts and UML modeling elements and define corresponding stereotypes
on UML metaclasses. Finally, the relationships between stereotypes are obtained from the relationships

that were identified between the domain concepts in the first stage.

4.2.1 Domain view of the profile
The conceptual domain model for AspectSM is shown in Figure 6 as a MOF-based [40] metamodel. The

conceptual domain model defines aspect-oriented modeling concepts.

= Aspect

1." |, - pointcuts .
- advice

Q Joinpoint selects Q Pointcut Q Advice
- joinpoints 0.3
0.1, -introduction
Q Introduction Q Before Q After Q Around

Figure 6. Conceptual domain model of the profile

Context Pointcut inv:
self.advice.ocllsKindOf(Before)->size()= 0 or self.advice.ocllsKindOf(Before)->size()=1
and self.advice.ocllsKindOf(Around)->size()=0 or self.advice.ocllsKindOf(Around)->size()=1
and self.advice.oclIsKindOf(After)->size()=0 or self.advice.ocllsKindOf(After)->size()=1

Figure 7. Constraint on Pointcut

An aspect describes a crosscutting behavior, which in our context is the robustness behavior of a
system, i.e., the behavior of the system in the presence of faults in its environment, such as packet loss
and jitter for a network. Since a network can experience packet loss at any time, it is crosscutting the
SUT functional behavior. Since in our case study, like in many systems with state-driven behavior, the
behavior of the system is modeled as UML 2.0 state machines, we also model aspects as UML 2.0 state
machines to facilitate adoption in practice. Robustness behavior, for example the behavior of a SUT in
the presence of packet loss or corrupt packets, is modeled using one or more state machines.

A joinpoint is a model element, which corresponds to a pointcut where an advice (additional

behavior) can be applied [41]. All modeling elements in UML are possible joinpoints, where an advice
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can be applied [11]. For UML state machines, some examples of joinpoints include a state or a

transition.

A pointcut selects one or more joinpoints with similar properties, where advices can be applied. A
pointcut can have at most one before advice, one around advice or one after advice (Figure 6). All
pointcuts are expressed with the OCL on the UML 2.0 metamodel. We decided to use the OCL to query
joinpoints since it is the standard to write constraints on UML models and is also commonly used to
query jointpoints (modeling elements such as states and transitions). Also, several OCL evaluators are
currently available that can be used to evaluate OCL expressions such as the IBM OCL evaluator [42],
OCLE 2.0 [43], and EyeOCL [44]. Furthermore, writing pointcuts as OCL expressions do not require a
modeler to learn a notation that is not part of the UML standard. In the literature, several alternatives are
proposed to write pointcuts [1-4, 12] but all of them either rely on languages (mostly based on wildcard
characters to select joinpoints, for instance, ‘*’ to select all joinpoints) or diagrammatic notations which
are not standard, thus forcing modelers to learn and apply new notations or languages. Using the OCL,
we can write precise pointcuts to select jointpoints with similar properties. We do so by selecting
modeling elements (jointpoints) based on the properties of UML metaclasses. This further gives us the
flexibility to specify pointcuts of varying complexities. For instance, we can specify a very complex
pointcut based on all properties of a UML metaclass, e.g., a pointcut on the Transition metaclass,
selecting a subset of transitions in a base state machine for which all properties of the Transition
metaclass are the same. On the other hand, we can also specify a simple pointcut based on a small subset
of properties of a UML metaclass. For example, a pointcut on the Transition metaclass selecting all
those transitions from a base state machine, which have the same guards, though other properties such as
triggers or effects can be different. In UML state machines, states and transitions are the most important
modeling elements and all other elements are contained within them such as state invariants in states and
guards and actions in transitions. Therefore, pointcuts are defined in the context of the UML metaclass
Vertex, to query states and apply advices on states and its composing elements such as state invariants
and do, entry, and exit activities. Similarly, pointcuts are also defined in the context of the UML
metaclass Transition to query transitions and advices are applied on transitions and its containing
elements such as Guard and Actions. The attributes for the Vertex and Transition metaclasses can be
obtained from the UML specifications [45]. For example, a pointcut may select all transitions of a state

machine which have triggers with signal events. This pointcut, defined in Figure 8, is written as an OCL
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expression on attributes of the UML metaclass Transition and selects all transitions that have triggers

with signal events on them.

Context uml::Transition

self->select(trigger|trigger.event.oclIsKindOf(SignalEvent))

Figure 8. A pointcut in OCL selecting all transitions with signal events

An advice is an additional behavior added at joinpoint(s) selected by a pointcut. This behavior can be
added as OCL constraints or in the form of state machine modeling elements such as a guard or an
effect. As most of the concepts in AOM are inspired from aspect-oriented programming (AOP)
languages such as Aspect] [46], in a similar way in AOM, an advice can be of type before, after, or
around. A before advice is applied before joinpoint(s), an after advice is applied after joinpoint(s),
whereas an around advice replaces joinpoint(s). For example, introducing guards on all transitions of a
state machine that have signal events as triggers is an example of a before advice on transitions. Table 1
summarizes the semantics of each type of advice for each UML 2.0 state machine modeling element.
Examples for advice on all UML 2.0 state machine modeling elements are provided in Appendix D.

An introduction is similar to the inter-type declaration concept in Aspect] [46] and is used in many
AOM approaches [4, 47-49] to introduce new modeling elements in a base model. In a similar fashion,
we use introduction in our context to introduce new modeling elements in a UML state machine, e.g., a

new state or a transition. In our context, we mostly use introduction to introduce transitions in a base

Table 1. Definition of before, around, and after advice

State machine
modeling element

Before advice

Around advice

After advice

transitions selected by a pointcut with
a new effect

State Adding an OCL constraint that will be Replacing one or more states selected | Adding an OCL constraint that will
evaluated before entry to one or more states by a pointcut with a new state be evaluated on leaving one or more
selected by a pointcut states selected by a pointcut

Transition Adding a guard to one or more transitions Replacing one or more transitions Adding an effect with one or more
selected by a pointcut. If a guard already selected by a pointcut with a new actions to one or more transitions
exists, the additional constraint is conjuncted transition selected by a pointcut
to the existing guard

Trigger Not applicable Replacing one or more triggers on Not applicable

transitions selected by a pointcut with
new triggers
Effect Adding a new behavior to the effect Replacing one or more effects on Same as Before advice

Guard and state
invariant

Add an additional constraint (conjunct) to the
guards (or state invariants) selected by a
pointcut

Replacing one or more guards on
transitions (or state invariants)
selected by a pointcut with a new
guard (or a state invariant)

Same as Before advice

Do, entry, and exit
activities of a state

Adding a behavior to the activities selected by
a pointcut

Replacing one or more activities in
states selected by a pointcut with a
new activity

Same as Before advice
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state machine, which correspond to faults in the environment (Section 4.1.1). We also use introduction
to introduce new states in a base state machine, which are related to a robustness behavior such as the
state of a system which is operating with degraded performance (Section 4.1.1).

4.2.2 UML representation

In this section, we provide details on the AspectSM profile such as details on stereotypes and their
attributes.

Profile diagrams: Profile diagrams for AspectSM are presented in Figure 9, Figure 10, and Figure 11.
Profile diagrams show extension relationships between stereotype classes (denoted <<stereotype>>)
and UML metaclasses (denoted <<metaclass>>), i.e., relationships showing which stereotypes are
applied to which UML metaclasses (extension relationship). For example, Figure 10 shows the

Introduction stereotype applied to Transition, Behavior, Trigger, Constraint and State metaclasses.

Table 2. Extensions, generalizations, and associations of each stereotype

Stereotype Extensions Generalizations Associations
(association name[Cardinality]: Target stereotype class)
Aspect uml::StateMachine None None
Pointcut uml::State, uml::Transition, uml::Trigger, None beforeAdvice[0..1]:Before, afterAdvice[0..1]: After,
uml::Constraint, uml::Behavior aroundAdvice[0..1]:Around, introduction[0..*]:Introduction
Advice Same as for Pointcut None pointcut[1]:Pointcut
Before Same as for Advice Advice Same as for Advice
After Same as for Advice Advice Same as for Advice
Around Same as for Advice Advice Same as for Advice
Introduction Same as for Advice None pointcut[1]:Pointcut
Table 3. Attributes defined for the <<Pointcut>> stereotype
Name Type Description
name[1] String Name of the pointcut
type[1] SelectionType | SelectionType is an enumeration which has All, Subset, and One enumeration literals. The All literal

means that all modeling elements of a particular type will be selected. For instance, if a pointcut of the
type All is specified on a state in an aspect, this means that the pointcut will select all states of the base
state machine. When the type of a pointcut is specified as All, there is no need to specify
selectionConstraint. When the type of a pointcut is specified as One, the name of the modeling element is
specified as selectionConstraint. In the case of a pointcut of type Subset, an OCL constraint is specified at
the UML metamodel level to select a subset of modeling elements.

selectionConstraint | String An OCL constraint on the UML 2.0 metamodel level to select model elements. For instance, a pointcut
may select all transitions of a state machine which have triggers with signal events. (See for Figure 8 an
example)

beforeAdvice[0..1] String A before advice associated with the pointcut.

afterAdvice[0..1] String An after advice associated with the pointcut.

aroundAdvice[0..1] | String An around advice associated with the pointcut.

Table 4. Attributes defined for the <<Aspect>> stereotype

Name Type Description
name[1] String Name of the aspect
baseStateMachine[1..*] uml::StateMachine Base state machines on which an aspect is applied.

Table 5. Attributes defined for the stereotypes related to advice
Name Type Description
name[1] String Name of the advice
constraint[0..1] | String A constraint in OCL at the model level as a before, after, or around advice.
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These diagrams also show relationships between stereotype classes such as associations and
generalizations. For instance, in Figure 11, Before, After, and Around metaclasses are inheriting from the
Advice metaclass. To decrease the complexity of profile diagrams, we have not shown associations
between stereotype classes. However, associations of stereotype classes are listed in Table 2. In addition,
Table 2 provides information about extensions and generalizations. The extensions column in Table 2
shows which UML metaclasses a particular stereotype is applied to. For example, the Aspect stereotype
is applied to the uml::StateMachine metaclass in row 2 of Table 2. The generalizations column
illustrates the inheritance relationship between stereotype classes. For example, in row 5 of Table 2, the
Before stereotype is inherited from the Advice stereotype.
Profile elements description: We now describe each profile element. Extensions, generalizations,
associations are shown in Table 3. The extension relationship tells on which metaclasses of UML a
stereotype is applied. For instance, in Table 2, the <<Aspect>> stereotype has an extension relationship
with the UML metaclass StateMachine. This means that the <<Aspect>> stereotype can be applied to a
UML state machine. All stereotypes except <<Aspect>> are applied to all modeling elements related to
UML state machines, though in Table 3 we list only the key metaclasses of UML state machines.
Attributes associated with the <<Aspect>> stereotype are shown in Table 4. Attributes associated
with the <<Pointcut>>, <<Before>>, <<After>>, and <<Around>> stereotypes are shown in Table 3
and Table 5. When applying these stereotypes, attributes must be supplied in accordance to the
description in these tables. Examples are presented in Appendix D.
4.2.3 Example of an application of AspectSM
We present next a small example of the application of AspectSM. On the MediaQualityRecovery aspect
state machine in Figure 12, the <<Aspect>> stereotype is described in a top-left note (labeled as “1”) in
the upper left part of Figure 12. This aspect consists of one pointcut on a state: SelectedStates, which
attribute values are described in the note labeled as “2”. The SelectStatesPointcut applied to the
SelectedStates state selects all states of the base state machine (Figure 3) except for the Idle state.
Whenever media quality (in this case, audioQuality) falls below the acceptable level in any of the states
selected by the SelectStatesPointcut pointcut, the system goes to the RecoveryMode state, which is
stereotyped as <<Introduction>> indicating that this state will be introduced in the base state machine
(Figure 3). This is shown as a transition—with the << Introduction>> stereotypes indicating this

transition will be introduced in the base state machine.
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[* < <Aspect>> MediaQualityRecovery

1: <<Aspect>> 2: <<Pointcut>>
name = "MediaQuality", name = "SelectStatesPointcut”, type = SelectionType::Subset,
baseStateMachine = "Saturn” selectionConstraint = "Context uml::Vertex

self.name <> 'Idle’
or self.name <> ‘PresentingWithoutCall’ "

«Introductions
'@ when (self.audioQuality < audioQualityThreshold)

«Pointcut» «Introductions»
&9 SelectedStates 3: <<Introduction>> &9 RecoveryMode
name = "RecoveryMode”

Figure 12. An example for the application of AspectSM

4.3 RobustProfile

To help with the definition of robustness test strategies, we defined a UML profile RobustProfile to
model faults and their properties. In addition, the profile supports the modeling of recovery mechanisms
when a fault has occurred and the modeling of states a system can transition to when it has recovered.
The profile has two sub-profiles: the first sub profile, FMProfile, deals with modeling faults and their
attributes. The second sub-profile, FRProfile, deals with modeling recovery mechanisms and states of a
system after recovery from a failure. Below, we provide details on the definition of these sub-profiles.
We reused all the concepts presented in [20] and in addition added a few more concepts presented in
Section 4.1.2. In addition, we reused all the concepts from the IEEE standard on the classification of
software anomalies as defined in [21]. All these concepts from the IEEE standard were captured in a
UML profile so that the standard can be used in combination with UML models. The newly introduced

concepts are italicized in Table 6 and Table 7.

4.3.1 Fault Modeling Profile (FMProfile)
We used the same procedure to define FMProfile as that for AspectSM (Section 4.2). The domain view
for FMProfile is the same as the fault taxonomy shown in Figure 5 [20]. Below, we provide a UML
representation of FMProfile, which includes profile diagrams and details on stereotypes and their
attributes.

Figure 13 shows a part of the profile diagram for FMProfile that is related to the abstract <<Fault>>
stereotype class, which corresponds to the Fault class in Figure 5. We show different attributes of

<<Fault>> and also show its extension relationships to UML metaclasses. Additional information
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about FMProfile is summarized in Table 6. The <<Fault>> stereotype is applied to the metaclasses
Transition, Trigger, and Event because each fault in our case occurs when an event associated to trigger
on a transition is fired (see Section 4.1). Furthermore, according to UML semantics [45], a transition can
have multiple triggers, and each trigger can model different faults belonging to the same super class. For
instance, a transition can model multiple external faults (ExternalFault in Figure 5) and one trigger on
the transition can model one fault from NetworkFault while the other trigger can model one fault from
SystemFault. This is the reason that the <<Fault>> stereotype class has an extension relationship with
the Trigger metaclass. The attributes of <<Fault>> are obtained from the IEEE Standard in [21] where
more details can be found on each attribute. Based on the values of these attributes, test strategies can be
devised. For instance, the transitions that are stereotyped with <<Fault>> or any of its sub-stereotype
classes with value High for the severity attribute, could be given priority over other transitions modeling
faults with lower severity. In addition, complex test strategies can be defined to test the robustness of a
SUT in the combined presence of faults that belong to different fault classes. For example, a test strategy
can be devised that can test the behavior of a SUT in the presence of one media fault and one network
fault at the same time. We also defined stereotypes for all other classes shown in the taxonomy and
provide detailed information about these stereotypes in Table 6. All stereotypes inherit attributes from
<<Fault>>.

This profile also assists in test script generation. For instance, different stereotypes can indicate for
which entity (for instance, network or other systems) in the environment, test scripts are to be generated.
For example, the <<NetworkFault>> stereotype indicates that test scripts will be generated for a
network emulator and the test scripts will emulate a particular fault in the emulator. The
<<MediaFault>> stereotype indicates that test scripts will be generated to introduce media faults in the
VCS that is communicating with the SUT. It is important to distinguish between faults for different
entities in the environment because different scripting languages are normally used to control these
entities. In our case study, a proprietary scripting language is used for the SUT and other VCS
communicating with it, whereas Python is used to control a proprietary network emulator used by our
industry partner.

4.3.2 Fault Recovery Profile (FRProfile)
FRProfile deals with modeling recovery mechanisms associated with the occurrence of a fault. The

domain view of FRProfile is shown in Figure 14. It consists of two main parts. The first part describes
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recovery mechanisms such as Forward and Backward [20]. The second part deals with the state of the

system after a recovery mechanism is executed, which could be Initial, Final, Failure, or a Degraded

state [20].
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Figure 13. Profile diagram for FMProfile
A part of the profile diagram for FRProfile is shown in Figure 15. Both recovery mechanisms and

systems states refer to states in the SUT state machines and we therefore applied stereotypes
<<RecoveryMechanism>> and <<SystemState>> on metaclass Vertex. In addition, we defined
stereotypes for other classes shown in the domain view of the profile such as <<Forward>> and
<<Degraded>>. These stereotypes inherit attributes from their corresponding super classes,
e.g.,<<Degraded>> inherit attributes from <<SystemState>>. Details on stereotypes are shown in
Table 7.

- systemState
- recoveryMechanism

H SystemState H FaultRecovery H RecoveryMechanism

| Degraded H Initial E Final H Failure = Normal

Q Forward Q Backward

Figure 14. Domain view of FRProfile
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Table 6.Extensions and generalizations of each stereotype for FMProfile
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B «metaclass:
= Vertex

Stereotype Extensions Generalizations
Fault uml::Transition, uml::Trigger, uml::Event None
DevelopmentFault No Direct Extensions Fault
OperationalFault No Direct Extensions Fault
InternalFault No Direct Extensions Fault
ExternalFault No Direct Extensions Fault
NaturalFault No Direct Extensions Fault
HumanMadeFault No Direct Extensions Fault
HardwareFault No Direct Extensions Fault
SoftwareFault No Direct Extensions Fault
MaliciousFault No Direct Extensions Fault
Non-MaliciousFault No Direct Extensions Fault
DeliberateFault No Direct Extensions Fault
NonDeliberateFault No Direct Extensions Fault
AccidentalFault No Direct Extensions Fault
IncompetenceFault No Direct Extensions Fault
PermanentFault No Direct Extensions Fault
TransientFault No Direct Extensions Fault
FunctionalFault No Direct Extensions Fault
NonFunctional Fault No Direct Extensions Fault

NetworkFault

No Direct Extensions

ExternalFault

SystemFault

No Direct Extensions

ExternalFault

MediaFault No Direct Extensions NonFunctionalFault
AudioFault No Direct Extensions MediaFault
VideoFault No Direct Extensions MediaFault

Table 7. Extensions and generalizations of each stereotype for FRProfile
Stereotype Extensions Generalizations
RecoveryMechanism uml::Vertex None

Forward

No Direct Extensions

RecoveryMechanism

Backward No Direct Extensions RecoveryMechanism
SystemState uml::Vertex None

Initial No Direct Extensions SystemState

Final No Direct Extensions SystemState

Error No Direct Extensions SystemState
Degraded No Direct Extensions SystemState

Normal No Direct Extensions SystemState

4.3.3 Example of an Application of RobustProfile
This section provides a small example of the application of RobustProfile in Figure 16. A change

event when (not self.audioQuality < audioQualityThreshold) is fired from SelectedStates (stereotyped as
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<<Normal>> from RobustProfile indicating that it is a normal state) when the audio quality in a
videoconference becomes lower than the allowed threshold of audio quality. This change event is
stereotyped as <<AudioFault>> indicating that it is an audio fault (see the comment labeled C1) and its
attribute values are provided in the note labeled as “1”. For instance, the effect attribute has value
Effect::Performance indicating that this fault affects the performance of the system. Recall that the effect
attribute is defined based on the IEEE standard defined in [21]. The RecoveryMode state in Figure 16 is
stereotyped as <<Degraded>> from RobustProfile indicating that in this state the system in functioning

with degraded performance.

* <<Aspect>>MediaQualityRecovery

= 1: <<AudioFault>>
Cl: <<AudioFault>> corresponds to AudioFault class in the effect = Effect::Performance, severity = Severity::Minor
taxonamy shown in Figure 1 priorityRanking = Priority::Medium

<Introduction, Media, External->
% <<AudioFault> > when (self.audioQuality < audioQualityThreshold)

«Painteut, Normal- «Introduction, Degraded:
&9 Selected States &9 RecoveryMode

Figure 16. Application of RobustProfile

4.4 Guidelines to model properties of an environment based on the fault taxonomy

Figure 17 shows a set of guidelines to model properties of the operating environment of a SUT in a
UML class diagram, violations of which lead to faults in the environment. These properties are modeled
based on a fault taxonomy such as the one presented in Section 4.1.2. Faults related to the environment
are mostly violations of non-functional properties (NFP) such as media properties and network
properties. UML doesn’t directly support modeling NFP, therefore we used part of the MARTE profile
for modeling such properties [7]. The MARTE profile is an extension for UML 2.0 that allows modeling
real time and embedded systems. MARTE provides a generic framework to model NFP on UML
models. Moreover, MARTE provides a model library that provides NFP data types for defining various
NFP properties and specific applications. MARTE also provides mechanisms to extend the model library

to either extend the existing NFP data types or define entirely new NFP types.
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1. For each fault class indentified in the taxonomy, model one or more faults belonging to the class.
2. For each fault of a fault class, define an attribute in the aspect class representing the property whose violation leads
to the particular fault. The type of the property can be defined as:
a. Using UML standard primitive data types such as Integer, Boolean, etc.
b. Using the NFP_Types defined by MARTE such as NFP_Percentage
C. Defining a new NFP_Type using the MARTE’s extensibility mechanism to define new NFPs.

Figure 17. Guidelines to model faults in aspect class diagram

Now we present an example to use the above guidelines (Figure 17) to model a class diagram, which
captures the properties of the environment. Figure 18 shows a partial class diagram of the
MediaQualityRecovery robustness behavior (Section 2.2). For this robustness behavior, we identify that
the Video fault class from the fault taxonomy (Figure 5) is relevant. For this fault class, video frame loss
in incoming video streams to a VCS is important for robustness testing of the VCS. To model video
frame loss, we model a property named videoFrameLoss in the MediaQualityRecovery class shown in
Figure 18. The videoFrameLoss property is modeled as NFP_Percentage defined in MARTE. The

property holds the percentage of video frame loss in incoming video streams to the VCS.

= MediaQualityRecovery
EgvideoFrameloss | NFP_Percentage

Figure 18. An Example of Modeing a Property of Environment

4.5 Aspect state machine

An aspect state machine is a standard UML state machine with stereotypes from the AspectSM profile.
The complete definition of an aspect state machine follows the template shown in Figure 19.

4.6 Template for Modeling Weaving-Directive state machine

In this paper, a robustness behavior, such as the behavior of a SUT in the presence of network faults or
faults in incoming media streams to the SUT, is modeled using one or more related aspects. Each of
these aspects is modeled as a separate aspect state machine. Aspect state machines should be woven into
a base state machine in a specific order to ensure that the woven state machine is complete and correct.
To achieve this, an ordering must be defined by a modeler/tester who instructs the weaver about the
ordering of aspect state machines. This is modeled as a state machine (denoted weaving-directive state
machine), containing all aspect state machines as submachine states ordered using UML state machine’s

control structure features such as decision, join, and fork. If the ordering doesn’t matter, then a
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modeler/tester is free to specify any order. The template for the complete definition of a weaving-

directive state machine is shown in Figure 20.

An aspect state machine A is a UML 2.0 state machine stereotyped as <<Aspect>> consisting of the following UML 2.0
state machine elements:

1. I: Aninitial state
2. F: Aset of one or more final states
3. S: Aset of states, each of one of the following types

a. Astate sin S can be a new state to be introduced in the base model (stereotyped as
<<Introduction>>)

b.  Astate sin S can be a pointcut selecting one, a subset, or all states of a base state machine
(stereotyped as <<Pointcut>>)

c. Astate s in S without any stereotype can be a state that has one or more new elements introduced
(stereotyped <<Introduction>>) or as pointcuts (stereotyped as <<Pointcut>>) of the type state
invariant, do, entry, or exit activity

4. T:Asetof transitions connecting states in the set S, each transition of one of the following types

a.  Atransition from an initial state to any type of state described in item 3, which doesn’t have any

trigger, guard, or effect
. Aset of transitions from any state (except from the initial state) to the final state
c. Atransition tin T can be a new transition to be introduced in the base model (stereotyped as
<<lIntroduction>>). This type of transition can exist on the following pairs of stereotyped states:
i. Between a state stereotyped as <<Introduction>> and a state stereotyped as
<<Pointcut>>
ii. Between two states stereotyped as <<Introduction>>
iii. Between two states stereotyped as <<Pointcut>>

d. Atransition tin T is a pointcut selecting one, a subset, or all transitions of a base state machine

(stereotyped as <<Pointcut>>). This transition can exist on the following pairs of states:
i. Between a state stereotyped as <<Introduction>> and a state stereotyped as
<<Pointcut>>
ii. Between two states stereotyped as <<Introduction>>
iii. Between two states stereotyped as <<Pointcut>>

e. Atransition tin T can be the transition without any stereotype that has any contained element such as
a guard, a set of triggers, and an effect as a new element introduced (stereotyped as
<<Introduction>>) or as a pointcut stereotyped as <<Pointcut>>. This transition can only exist
between a pair of states stereotyped as <<Pointcut>>

Figure 19. Definition of an aspect state machine

A weaving directive state machine W is a UML 2.0 state machine having the following modeling elements:
1. Aninitial state |
2. Asetof final states F
3. Aset of submachine states S, where each submachine state refers to an aspect state machine
4. Aset of transitions T that can be of any of the following types:
a. A transition from an initial state to a submachine state, which doesn’t have any trigger, guard, or effect, but can
have a name.
b. A setof transitions from submachine states (except from the initial state) to the final state.
c. Asetof transitions T connecting submachine states S using UML 2.0 state machine’s features such as decision,
join, and fork to show the order in which the submachine states (aspects) will be woven into the base state
machine. For instance, in a very simple scenario, if there is an outgoing transition from submachine state S to S’,
then S will be woven before S”.
Figure 20. Definition of a weaving directive state machine
4.7 Weaver

The aspect state machines are woven into the base state machine by a weaver, which reads the base state

machine, aspect state machines, and a weaving-directive state machine and produces a woven state
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machine. The weaving algorithm is shown in Figure 31 in Appendix B and is based on the same weaving
approach advocated in [32]. We developed a weaver for AspectSM by using Kermeta [22], which is a
metamodeling language [22] that allows manipulating models by defining transformation rules at the
metamodel level. We do not implement any explicit model validation, but we rely on Kermeta’s model
validation, which partially prevents violations of UML semantics. Kermeta conforms to OMG’s
metamodeling language Essential Meta Object Facility (EMOF) and Ecore [40]. Figure 21 shows the
architecture of the weaver by using transformations in Kermeta to weave one or more aspect state
machines into a base state machine. The AspectSM profile is defined on the UML 2.0 metamodel. An
aspect state machine is defined as a UML 2.0 state machine by applying the AspectSM profile. A base
state machine is a standard UML 2.0 state machine. Transformations rules in Kermeta are defined on the
UML 2.0 metamodel and the AspectSM profile. Finally, the Kermeta engine uses the transformation
rules that read an aspect state machine and the base state machine and weaves the aspect state machine
into the base state machine. The Kermeta engine then produces a woven state machine, which is again an
instance of the UML 2.0 metamodel, since the woven state machine is a standard UML 2.0 state
machine. The woven state machines can then be used as input for automated model-based testing tools
such as Conformiq Qtronic [24] and Smartesting Test Designer [50]. The weaver is fully automated and
does not require any additional inputs from the user apart from aspect state machines and a base state
machine.

The weaver is developed to support automated, model-based robustness testing, and thus aspect state
machines are woven into the base state machine, which can be used for test case generation. Currently,
our approach and its weaver do not support modeling and weaving interactions [12] that may occur
between different aspects and may lead to conflicts between aspects during weaving. On the other hand,
our weaver does support to a limited extent the handling of aspect conflicts. In [51], four classes of
aspect conflicts are discussed: conflicts due to crosscutting specification, aspect-aspect conflicts, aspect-
base conflicts, and concern-concern conflicts. In our application context, i.e., robustness modeling and
testing, the most relevant conflicts are aspect-aspect conflicts, which are related to handling conflicts
between aspects. One of the most important aspect-aspect conflicts is the ordering conflict, which is
related to the order in which aspect state machines should be woven into a base state machine. Ordering
conflict is most relevant in our context since, for testing purposes, we focus on modeling, weaving, and

testing one or more related aspects at a time. We specify the ordering between aspect state machines in a
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UML state machine containing all aspect state machines as submachine states, ordered using state
machine control structure features: decision, join, and fork.

The algorithm implemented in the weaver is presented in Appendix B. For the current application, we
don’t foresee the need to define other interactions/conflicts, however, in the future we plan to apply
RUMM to other case studies and as required we will further improve the process. For testing purposes,
one first has to focus on testing one concern at a time, and may eventually at a later stage test several
concerns together. For robustness testing, at this stage of the work, we weave faulty behavior of the
environment (e.g., network) one concern at a time, as the goal is to test robustness behavior one concern

at a time in order to facilitate debugging.

i Kermeta transformation rules  :

| AspectSM > UML 2.0 UML 2.0
metamodel metamodel
f 1
Aspect state Base State Weaving- :V> Woven State
machine machine directive State machine
Kermeta engine
Uses: > Defined on: 5

Instance of: ——————  Applied on: —_—

Figure 21. Aspect weaver implemented in Kermeta

5. APPLICATION OF RUMM TO OUR SIMPLIFIED INDUSTRIAL CASE STUDY
In this section, we illustrate the different activities in RUMM using the simplified version of our

industrial case study (S-Saturn).

5.1 Activity Al: Develop a conceptual model of a system

This activity involves developing a conceptual model [27] of a system using UML 2.0 class diagram
based on the domain analysis of the system. As we discussed in Section 2, the Saturn subsystem deals
with establishing video conferencing calls, disconnecting calls, and starting/stopping presentation. In
Section 2, Figure 2 shows what we refer to as a ‘conceptual model’ for the system being modeled, which

is here S-Saturn.
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5.2 Activity A2: Develop a behavioral model of the system as UML state machines

This activity models the nominal system behavior using UML 2.0 state machines, as illustrated for S-
Saturn in Figure 3, Section 2. This behavioral model is referred to as the ‘base state machine’ since all
aspect state machines are woven into this state machine.

5.3 Activity A3: Identify relevant faults from fault taxonomy

A VCS should be robust against possible faults arising in its environment, which includes users, the
network, and other video conferencing systems. A user interacts with the VCS and sends different
commands such as starting a video conferencing, stopping a video conference and starting a
presentation. All the interactions of the VCS with other VCSs take place through the network. Therefore
the VCS should be robust against faults in the network and other VCSs communicating with it.

In our case study, we modeled Media faults in the VCSs communicating with the SUT, which are the
ones that are related to quality of media such as audio, video, and their synchronization. From Figure 5,
we see sub-classes of Media faults which are Audio Faults and Video Faults. Table 8 provides
description of Media faults that are relevant for our case study.

In addition, network faults (NetworkFault, see Figure 5) are important for a VCS. Several types of
faulty situations can happen in the network that must be dealt by the VCS. We show network faults that
are relevant to our case study in Table 8.

Table 8. Media faults and their description

Fault Class Fault Instance Fault Description
Audio Fault No audio This fault removes audio from a videoconference
Loss of audio frames This fault introduces loss in audio frames
Low audio quality This fault reduces audio quality in a videoconference
Noise in audio This fault introduces noise in audio during a videoconference
Echo in audio This fault introduces echo in audio
Mixing of multiple audio This fault mixes multiple audio during a videoconference
Video Fault No video This fault removes video from a videoconference
Loss in video frames This fault introduces loss in video frames
Low video quality This fault reduces video quality in a videoconference
Media Fault Synchronization mismatch between | This fault loses synchronization between audio and video in a
audio and video videoconference

Table 9. Network faults and their description

Fault Description of the fault

Packet Loss This fault introduces network packet loss during a videoconference

Jitter This fault introduces delays in the packet during a videoconference

Illegal H323 packet This fault introduces illegal/malformed H323 packets in a H323 videoconference

Illegal SIP packet This fault introduces illegal/malformed SIP packets in a SIP videoconference

No network connection This fault shut downs the network

Low bandwidth This fault reduces the bandwidth of the network to less than the bandwidth required by a videoconference
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5.4 Activity A4: Develop a class diagram for a robustness aspect

As advocated by the aspect-oriented paradigm, crosscutting concerns (functional or non-functional) [3]
must be modeled as aspects. Activities A3 and A4 model aspects of the robustness behavior of the
system using aspect state machines and aspect class diagrams. To do so, we use the AspectSM profile
using the existing UML state machine notation, as presented in Section 4.2.

As an example, we demonstrate how to model two representative crosscutting behaviors on S-Saturn.
The first one models the behavior that checks the quality of media (audio and video) during a
videoconference and in case the quality falls below a threshold value, specific procedures try to recover
an acceptable quality. This is achieved by modeling three aspects: 1) First aspect updates state invariants
of all states with audio quality attributes, 2) The second aspect updates state invariants of all states with
video quality attributes, 3) The third aspect models the behavior that checks the quality of media (audio
and video) during a videoconference and in case the quality falls below the threshold value, triggers the
above-mentioned recovery procedures (MediaRecoveryAspect). Such behavior is redundant in various
states and hence is a crosscutting behavior. The second crosscutting behavior example factors out
constraints on input parameters of a call event as an aspect, which are also scattered across many
transitions in the base state machine. Details about the modeling of these two aspects are presented in

Appendix A.

Q Saturn:Media
[Eg on : Boolean
[Eg synchronizationMis match : Saturn:SynchronizationMismatchLength
[Eg synchronizationMis matchThreshold : Saturnz:SynchronizationMism atchLength

1 | - video 1 | - audio
Q Saturn:Video Q Saturn:Audio
[Eg videoFrameloss : NFP_Percentage [Eg audioFrameloss : NFP_Percentage
[Eg videoQuality : Integer Egnoiselevel : Saturn::MoiselLevel
[Eg videoFramelossThreshold : NFP_Percentage EZPESQ : Integer
[Eg videoQuality Threshold : Integer [Eg audioFrameLossThreshold : NFP_Percentage

Egnoisel evelThreshold : Saturnz::NoiselLevel
EgpesqThreshold : Integer

«NfpTypes L .
Saturn:Noiselevel Eg mixingAudio : Boolean
[Eg value : Integer «NfpTypen
[Eg unit : Saturnz:NoiseUnit Saturn::SynchronizationMismatchLength

Egvalue : Integer

wenumerationn [Egunit : TimeUnitKind

[5] Saturn::NoiseUnit
= Decibel

Figure 22. Class diagram for media quality attributes

Each aspect state machine has an associated class diagram (aspect class diagram), which is an

augmentation of the conceptual model of the Saturn subsystem shown in Figure 2. This class diagram
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models the information about different kinds of faults in the fault taxonomy, such as audio and video
related faults. Guidelines for such modeling based on a fault taxonomy (Section 4.1.2) are presented in
Section 4.4. The Audio class defines audio quality attributes based on which different audio faults can be
introduced, as shown in Figure 22. For instance, the on attribute is a Boolean attribute that determines if
the audio is present in a videoconference. The Perceptual Evaluation of Speech Quality (PESQ) [52] is a
metric for measuring audio quality. The audioFrameLoss is an attribute that determines the current
percentage of audio frames loss during a videoconference and is defined as the MARTE type
NFP_Percentage. The noiseLevel attribute is defined as the Nfp type NoiseLevel (modeled with
<<NfpType>> from MARTE), which has two attributes: value that holds current noise value and unit
contains a unit to measure audio noise such as “decibel”.

Similarly, the following video quality properties are defined in the class diagram: The on attribute
determines if the video is present in a videoconference. The videoQuality attribute is a metric for
measuring video quality and videoFramelLoss determines the current video frame loss during a
videoconference modeled as MARTE’s NFP_Percentage.

5.5 Activity A5: Develop a state machine for the robustness aspect

5.5.1 Modeling recovery from media faults

Recall that each robustness aspect is modeled as a UML state machine with stereotypes from AspectSM
(aspect state machine). Figure 23 shows the details of the MediaQualityRecovery aspect state machine.
Attribute values of the various stereotypes are presented in Figure 23 in notes. The aspect state machine
models the robust behavior of a VCS in the case when media quality falls below the acceptable level and
tries to return to an acceptable media quality level. In the worst case, the VCS cleans up system
resources and goes back to the most recent safe state (e.g., Idle in our industrial case study), in which the
VCS was exhibiting normal behavior. Such a robust behavior is very important in a commercial VCS, as
quality expectations are high regarding robustness to media quality faults.

On the MediaQualityRecovery aspect state machine, the <<Aspect>> stereotype is described in a
top-left note (labeled “1”) in the upper left part of Figure 23. This aspect state machine consists of two
pointcuts on states: SelectedStates and Idle, whose attribute values are described in notes explicitly
linked to each <<Pointcut>> note. Representing pointcuts as modeling elements of UML statemachines
(for instance, state in this case) enables the modeling of aspect state machines using standard UML

notation, while keeping in line with UML semantics. The SelectStatesPointcut (see note 3 for attribute
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values) applied to the SelectedStates state selects all states of the base state machine (Figure 3) except
for the Idle state. The SelectldleState pointcut (see note 5 for attribute values) on the Idle state selects the
Idle state of the base state machine (Figure 3). Whenever media quality (defined based on the quality
attributes in Figure 22) falls below the acceptable level in any of the states selected by the
SelectStatesPointcut pointcut, the system goes to the RecoveryMode state. This is shown as a
transition—with the <<Introduction>>, <<MediaFault>>, and <<ExternalFault>> stereotypes
(indicating this transition will be introduced in the base state machine and is modeling media faults
which are external to S-Saturn) from the SelectedStates state to the RecoveryMode state with nine
change events. Each change event is defined based on one media quality attribute and determines if this
attribute falls below the acceptable level and is stereotyped as either <<AudioFault>>,
<<VideoFault>>, or both . For example, the change event when(not self.audio.on) is fired from
SelectedStates when the audio is turned off in a videoconference and is stereotyped as <<AudioFault>>
indicating that it is an audio fault (see the comment labeled C1 and note “2” for attribute values—recall
that these attributes are defined based on IEEE standard classification for anomalies [21]). If the system
manages to return to acceptable media quality, it goes back to the normal state shown as a transition
introduced from the RecoveryMode state to the SelectedStates state stereotyped as <<Normal>>
(indicating that these states are normal states of S-Saturn) with again nine change events. For example,
the change event when(self.audio.on) is fired from the RecoveryMode state when the audio is back in the
videoconference. The state invariant of the RecoveryMode state ensures that S-Saturn remains in
RecoveryMode as long as any of the faults in the environment exists. This state invariant is simply the
logical disjunction of all change events modeling the faults (Figure 24). In the other case, if the system
cannot recover within time time, it disconnects all connected VCS and goes to the Idle state. This is
modeled as a transition introduced between the RecoveryMode state and the Idle state with a time event
and an effect DisconnectAll with an opaque behavior, which is a type of behavior defined in UML to
specify implementation specific semantics. In addition, the Idle state is stereotyped as <<lInitial>>,
which indicates the state of S-Saturn if it is not successful in recovering to an acceptable level of media
quality. In our context DisconnectAll is a call to Saturn’s API in a python-based proprietary test script

language. This call disconnects all connected systems to a VCS.
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& < <Aspect> > MediaQualityRecovery

1: <<Aspect>>
name = "MediaQuality",
baseStateMachine = "Saturn” i
‘&é <<\VideoFault>> C1
% <<VideoFault>> C2

W
o
= '@ < <VideoFault>> C3 2: <<Introduction> >
‘% < <AudioFaults > C4 name = "SelectedStatesToDegradedMode"”

C1: < <AudioFault> > corr ds to . i
< ! P i %2 ¢ eAudioFault>> C5 < <AudioFault>>
AudioFault class in the taxonomy shown in L iorau effect = Effect:Performance, severity = Severity:Minor

' Bl .
Figure 1 % < <AudioFault>> C6 priorityRanking = Priority:Medium

<<AudioFault>> C7
@ <AudioFault>> C8
'@ < <AudioFault>> <<VideoFault>> €9

gl

alntroduction, MediaFault, ExternaiFaults

«Pointcut, Normal- «Introductions «Pointecut, Initial-

Introduction:
@ SelectedStates “‘%Clu n &9 RecoveryMode Jdisconnect Sdle

i Yutl ‘%{a)ﬂer [time?n ;
B isconnect.
(12 4 <<Introduction>>

. P
3: <<Pointcut>> ;3_?(313 name = "DegradedModeToSelectedStates" .
name = "SelectStatesPointcut”, = C14 5: <<Pointcut>>

type = SelectionType:Subset, 15 name = "SelectIdleStatePointcut”,
selectionConstraint = % C16 type = SelectionType:One,
"Context uml:Vertex ez selectionConstraint =

self.name <> 'Idle’ "5 C18 "Context uml:Vertex

or self.name <> ‘PresentingWithoutCall’ self.name = 'Idle’ "

and not self.ocllsTypeOf(Pseudostate)”

C1: when (not self.video.on)

C2: when (self.video.videoFrameloss.value > self.video.videoFramelossThreshold.value)

C3: when (self.video.videoQuality > self.video.videoQuality Threshold)

C4: when (not self.audio.on)

C5: when (self.audio.audioFrameloss.value > self.audio.audioFramelossThreshold.value)

C6: when (self.audio.noiseLevel.value and self.audio.noiseLevel.value <= self.audio.noiselevelThreshold.value)
C7: when (self.audio.PESQ > self.audio.pesqThreshold)

C8: when (self.audio.mixingAudio)

C9: when (self.synchronizationMism atch.value > self. synchronizationMism atchThreshold.value)

C10: when (self.video.on)

(11: when (self.video.videoFrameloss.value >= 0 and self.video.videoFrameloss.value <= self.video.videoFrameLossThreshold.value)

(12: when (self.video.videoQuality >= 0 and self.video.videoQuality <= self.video.videoQuality Threshold)

(13: when (self.audio.on)

C14: when (self.audio.audioFrameloss.value > 0 and self.audio.audioFrameloss.value <= self.audio.audioFrameLossThreshold.value)

(15: when (self.audio.noiseLevel.value > 0 and self.audio.noiseLevel.value <= self.audio.noiseLevelThreshold.value)

(16: when (self.audio.PESQ > = 0 and self.audio.PESQ <= self.audio.pesqThreshold)

(17: when (not self.audio.mixingAudio)

(18: when (self.synchronizationMismatch.value > = 0 and self. synchronizationMismatch.value <= self. synchronizationMism atchThreshold.value)

Figure 23. The MediaQualityRecovery aspect

Context Saturn::Media
not self.video.on
or self.video.videoFrameLoss.value > self.video.videoFrameLossThreshold.value or self.video.videoQuality > self.video.videoQuality Threshold
or not self.audio.on
or self.audio.audioFrameLoss.value > self.audio.audioFrameLossThreshold.value or self.audio.noiseLevel.value and self.audio.noiseLevel.value <=
self.audio.noiseLevelThreshold.value
or self.audio.PESQ > self.audio.pesqThreshold or self.audio.mixingAudio or self.synchronizationMismatch.value >
self.synchronizationMismatchThreshold.value

Figure 24. State invariant for RecoveryMode
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5.5.2 Constraining input parameter values

The second crosscutting behavior example we present is constraining parameters of events on
transitions. Since many transitions in a state machine can have the same trigger and constraints on the
associated event of the trigger may be the same, redundant constraints can exist in the model and hence
can be factored out as an aspect. Such constraints can be used to generate test cases exercising the
system robustness with illegal inputs [53]. The aspect state machine AddGuard shown in Figure 25
models this crosscutting behavior. The associated class diagram for the aspect state machine is identical
to Figure 2 as we do not need to model additional properties. This aspect state machine defines two
pointcuts (SelectSourceStatesOfTransition, SelectTargetStatesOfTransition) on two states and one
pointcut SelectTransitionsPointcut on the transition between the two states stereotyped as
<<Pointcut>>. This aspect state machine selects all transitions which have a dial call event and applies
a before advice AddGuardBeforeAdvice that adds an additional constraint “number.size()=4" to the
existing guards on the selected transitions. This constraint ensures that the number parameter of the dial
call event has exactly four digits.

5.6 Activity A6: Define ordering of aspects using a state machine

We begin with testing a related set of aspects modeling one robustness behavior. The related set of
aspects is woven into a base model in a specific order to ensure that the woven model is complete and
correct. To achieve this, an ordering must be defined between the aspect state machines (activity A5).
This ordering is also modeled as a state machine (denoted as weaving-directive state machine),
containing all aspect state machines as submachine states ordered using UML state machine’s control

structure features such as decision, join, and fork. The complete template for the definition of a weaving

C* << Aspect> >AddGuard

1: 2:

name = 'AddGuardAspect’, <<Before>>

baseS Aachine = 'Saturn:Saturn ' name = ‘AddGuardBeforeAdvice’,

constraint = ‘GuardOnTransition’
«Pointcut, Beforen
) [number.sizel)=4] )
aPointcutn aPointcutn
&2 SelectSourceStatesOfTransition &9 SelectTargetStatesOf Transition
3: 4 5:

< <Pointcut>>

name = ‘SelectTransitionsPointcut’,

type = SelectionType:Subset,
selectionConstraint = ‘Context umlkTransition
self.trigger-> collect(event|event.name="dial')',
beforeAdvice = ‘AddGuardBeforeAdvice’

name = ‘TriggerTargetStatesPointcut’,
type = SelectionType:Subset,
selectionConstraint = ‘Context uml:Vertex
self.incoming-> collect(trigger|
trigger.event.name="dial’)’

name = 'SelectSourceStatesOfTransition’,
type = SelectionType:Subset,
selectionConstraint = ‘Context uml:Vertex
self.outgoing->collect(trigger|
trigger.event.name="dial’)’

Figure 25. State machine for the AddGuard aspect
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directive state machine is shown in Section 4.6.

The weaving directive state machine for MediaQualityRecovery is shown in Figure 26. Using such
state machine, we define the ordering of aspect state machines related to media quality. By weaving the
aspect state machines in this order, the woven state machine will be correct for testing. The reason is that
MediaQualityAspect introduces the DegradedMode state in the base state machine and the first two
aspect state machines update audio and video quality constraints in state invariants of all states of the
base state machine. These constraints should not be updated in DegradedMode because in this state the
system is working with degraded performance and audio and video quality will not be as expected. If

MediaQualityAspect is woven before AudioQualityAspect and VideoQualityAspect, the woven state

[+ AspectOrderingStatemachine

(S audioQualityAs pect: AudioQualityAs pect

(@] videoQualityAspect:VideoQualityAspect

[Z) mediaQualityRecovery:MediaQualityRecovery

Figure 26. A state machine describing ordering of aspects for weaving

machine will contain DegradedMode with wrong state invariants. In this paper, we aim to weave and
test a set of related aspects (e.g., related to media quality) but not all aspects altogether. In the future, we
will investigate how to test by weaving different aspects at the same time.

5.7 Activity A7: Weave aspects with behavioral models

Finally, the aspect state machines are woven into the base state machine by the weaver, which reads the
base state machine, aspect state machine(s), and a weaving-directive state machine and produces a

woven state machine.

5.7.1 Modeling recovery from media faults
The woven state machine resulting from applying MediaRecoveryAspect to the Saturn base state
machine is not easily comprehensible, but it is only meant to be processed by model-based testing tools.

An excerpt of the woven state machine is however shown in Figure 27 and details regarding the model
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complexity of woven state machines are summarized in Table 11. From all states except Idle and
PresentingWithoutCall, transitions to RecoveryMode are added. Each of these transitions contains nine
change events that can lead to the RecoveryMode state, such as the woven state machine in Figure 27
which contains a new state RecoveryMode. From NotFull, a transition is added that contains nine change
events that can lead to the RecoveryMode state such as change events “self.video.videoFrameLoss.value
> videoFrameLossThreshold.value ” and “rot (self.audio.on)”. The first change event is triggered when,
during a videoconference, video frame loss becomes greater than the allowed frame loss
(videoFrameThreshold), whereas the second change event is triggered when audio disappears from a
videoconference. These change events are defined in the context of the conceptual class diagrams shown
in Figure 2 and the class diagram modeling media quality attributes in Figure 22. Recall from Section
5.4 that both class diagrams are defined in the same package: Saturn. After weaving, the class diagram in
Figure 22 is merged into the conceptual class diagram in Figure 2. Therefore, after weaving, the
attributes defined in Figure 23 have the same context: the “Safurn” class in Figure 2. Similarly, six
transitions from RecoveryMode to all states except Idle and PresentingWithoutCall have been woven
into the base state machine. Each transition has nine change events that can lead the system back to the
state it was in before RecoveryMode, e.g., in Figure 27, a transition with six change events is added that
can lead the system back to the NotFull state. For instance, the VideoFrameLoss change event in Figure
27 specifies that when video frame loss is within the allowed frame loss and the system was in the
NotFull state, a VCS transitions from RecoveryMode to NotFull. The change event has two parts: the
first part (self.video.videoFrameLoss.value >= 0 and self.video.videoFrameLoss.value <=
videoFrameLossThreshold.value) checks if videoFrameLoss is within the allowed threshold. The second
part is the state invariant of the NotFull state, which checks that active calls in a videoconference is more
than one (self.systemUnit.NumberOfActiveCalls > 1 and self.systemUnit.NumberOfActiveCalls <
self.systemUnit.MaximumNumberOfCalls) and S-Saturn is not sending a presentation
(self.conference.PresentationMode = 'off'). In addition, it checks that S-Saturn is not sending a
presentation and is not receiving a presentation  (self.conference.calls->select(c:Call|
c.outgoingPresentationChannel->asSequence()->last().Protocol = VideoProtocol::off)->size() = 0 and
self.conference.calls->select(c:Call | c.incomingPresentationChannel->asSequence()->last().Protocol

<> VideoProtocol::off)->size() = 0).
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%% when (not self.video.on)

% when (self.video.videoFrameloss.value > self.video.videoFrameLossThreshold .value

"% when (self.video.videoQuality > self.video.videoQualityThreshold)

% when (not self.audio.on)

‘i’?ﬁ:when (self.audio.audioFrameloss.value > self.audio.audioFramelossThreshold.value)

% when (self.audio.PESQ > self.audio.pesqThreshold)

% when (self.audio.mixingAudio)

"% when (self.synchronizationMismatch.value > self.synchronizationMismatchLength.value)
"?ﬁ:when (self.audio.noiselLevel.value > self.audio.noiseLevelThreshold.value)

&5 NotFull
&9 RecoveryMode
% AudicOn
% VideoFrameloss
% VideoQuality
% AudioOn
'ﬁ- AudioFrameloss
‘{:Ep AudioQuality
% MixingAudio
5y SynchronizationMismatch
B AL
@ NoiselLevel

VideoFrameLoss = when (self.video.videoFrameLoss.value >= 0 and self.video.videoFrameLoss.value <= videoFrameLossThreshold.value) and
(self.systemUnit.NumberOfActiveCalls > 1 and self.systemUnit.NumberOfActiveCalls < self.systemUnit.MaximumNumberOfCalls) and self.conference.PresentationMode =
'off and self.conference.calls->select(c:Call| c.outgoingPresentationChannel->asSequence()->last().Protocol = VideoProtocol::off)->size() = 0 and self.conference.calls-

>select(c:Call | c.incomingPresentationChannel->asSequence()->last().Protocol <> VideoProtocol::off)->size() = 0 )

Figure 27. An excerpt of woven state machine obtained after applying the MediaQualityRecovery aspect

5.7.2 Constraining input parameter values

An excerpt of the woven state machine is shown in Figure 28. On transitions with dial() trigger, where
there were no guards, “number.size()=4" has been added, such as on the transition with the dial() trigger
from Connected 1 to NotFull in Figure 28. For the transitions with the dial() trigger, where there were
guards already present in the base state machine, “number.size()=4" has been conjuncted to the existing

guards, such as the self transition on NotFull in Figure 28.

S Connected 1
[number.size() = 4] [NumberOfActiveCalls = 2]
" dial0 % callDisconnect0
&I NotFull

[NumberOfActiveCalls > 1 and
NumberOfActiveCalls <
MaximumNumberOfCalls -1 and
number.size) = 4]

@ dial0

Figure 28. An excerpt of woven state machine obtained after applying the AddGuard aspect
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6. RESULTS FROM THE COMPLETE INDUSTRIAL CASE STUDY

In this section, we present results and discussions from the entire industrial case study. This is based on
an augmented and complete version of the simplified case study presented in Section 5. Our goal is to
assess whether RUMM addresses practical needs when modeling the robustness behavior of a realistic
system and whether it has the potential to provide significant benefits in terms of reducing modeling
effort and error-proneness.

6.1 Behavioral models of Saturn

Saturn consists of 20 subsystems. Each subsystem can work in parallel to the S-Saturn subsystem shown
in Figure 3. For each subsystem, we modeled a class diagram to capture APIs and state variables. In
addition, we modeled one or more state machines to model the behavior of each subsystem. Due to
confidentiality restrictions, we do not provide names and details of the subsystems. For one subsystem
(subsystem no 1), which is described in Section 2, we provided a conceptual model in Figure 2. The
behavioral model of the subsystem number 1 in Table 10 consists of 15 states; four of them are modeled
as submachine states to reduce model complexity. The state machines of this subsystem are presented in
Appendix D. For other subsystems, we do not provide class diagrams and state machines, but their
complexity is summarized in Table 10. It is important to note though the complexity of an individual

subsystem may not look high in terms of number of states and transitions, all subsystems work in

Table 10. Complexity of Saturn state machines

Subsystem Number of states Number of transitions
States Submachine states
1 15 4
2
3
4
5
6
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parallel to each other and therefore the overall complexity is enormous after combining them. Saturn’s
implementation consists of more than three million lines of C code.

6.2 Modeling robustness behavior

We modeled three crosscutting behaviors on Saturn. The first two are the same as presented in Section
5.4 and Section 5.5. In addition, we modeled the behavior of Saturn in the presence of different network
communication faults (NetworkCommunication) such as packet loss, jitter, and illegal packets in
videoconference protocols. The NetworkCommunication aspect is presented in Appendix C.

6.3 Results and discussion

In this section, drawing lessons learned from our case study, we discuss the benefits achieved by

applying RUMM to model the robustness crosscutting behavior of Saturn.

6.3.1 Reduced modeling effort

Modeling effort can be measured in different ways. One way, which is part of our future research plans,
is to conduct a controlled experiment that can compare the modeling effort of applying aspect state
machines with standard UML state machines. An alternate, much less expensive way is to estimate
modeling effort through a surrogate measure, the number of modeling elements required to be modeled.
This number can then be compared in aspect state machines and standard UML state machines when
modeling the same crosscutting behaviors. Table 11 summarizes the modeling tasks involved when
using and not using aspect state machines for modeling the abovementioned crosscutting behaviors. The
first two crosscutting concerns are related to updating audio and video constraints (Appendix A) in 86
states of Saturn. Using our profile we need to model one state in the aspect state machine, whereas 86
states of Saturn need to be changed if one is modeling this behavior directly. This means a reduction of
approximately 99% of the number of elements involved in the change.

The third crosscutting behavior is for modeling media quality recovery. When using AspectSM, we
need to model three states and three transitions in the aspect state machine (Figure 23). Two transitions
have nine triggers, each with change events, and one transition has one trigger with a time event. On the
other hand, without aspect state machines we need to model one new state and 178 new transitions with
1604 triggers (1603 with change events and one with a time event) in the base state machines of Saturn.
This means that, assuming modeling effort is roughly proportional to the number of modeling elements,
there is a 99% effort reduction in modeling triggers and a 98% effort reduction in modeling transitions.

However, since using aspect state machines requires to model three extra states with the <<Pointcut>>
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stereotype, there will only be a benefit if modeling 1604 triggers on a state machine is more time-
consuming than modeling three pointcuts. Though this seems to be likely, it would need to be confirmed
via controlled experiments involving human designers to determine the actual percentage of modeling
effort saved when using aspect state machines. Similar results were obtained for the Network
Communication aspect. Results from the last crosscutting behavior in Table 11 (Add Guard) indicate
that when using aspect state machines we need to model two states and one transition, whereas without

aspect state machines we need to change 22 transitions in the base state machine of one of subsystems of

Saturn.
Table 11. Modeling tasks when using and not using AspectSM
Crosscutting Using aspects Without aspects Effort Saved (%)
behavior States Transition Trigger States Transitions Trigger States Transitions | Trigger
(Added) (Added) (Added) (Modified/Added) | (Modified/Ad | (Added)
ded)
Updating audio 1 - - 86 (Modified) - - 99%
constraints
Updating video 1 - 86 (Modified) - - 99%
constraints
Media quality 3 3 19 20 (Added) 178 1604 - 98% 99%
recovery
Network 3 3 13 20 (Added) 178 1082 - 98% 99%
communication
Add Guard 2 1 - 0 22 (Modified) - - 95%

Overall, results on this industrial case study seem to suggest that the modeling effort can be
significantly reduced when using aspect state machines for modeling crosscutting behavior using
AspectSM. Such industrial case studies showing the practical advantage of aspect modeling are
unfortunately still too rare in the research literature and we are therefore not in a position to make

comparisons with previous works.

6.3.2 Enhanced separation of concerns

Modeling crosscutting behavior in UML state machines provides enhanced separation of concerns. For
instance, the AddGuard aspect state machine models constraints on input parameters of the call event
“dial” separately from the base state machine. In addition, the MediaQualityRecovery aspect state
machine (Figure 23) models a complex media quality crosscutting behavior separately from the base
state machines and other aspect state machines. This means that a modeler, or several of them with
possibly different expertise, can focus on each crosscutting concern separately and therefore model them
separately from the core functionality and other crosscutting concerns. This is very important for our

industrial partner since they have separate groups for different kinds of testing activities including
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functional testing, video testing, audio testing, and network testing. Using our methodology each group
can model aspects which are related to their expertise and our tool can then be used to automatically

weave these aspects with the behavioral base models (models developed by the functional testing group).

6.3.3 Improved readability

Modeling crosscutting behavior as aspect state machines keeps the base state machine less cluttered and
hence easier to read. For instance, the woven state machine after applying MediaQualityRecovery on the
Saturn base state machine results into a highly complex, cluttered state machine, which is difficult to
read: Twenty states and 178 new transitions with 1604 triggers are added into the base state machines.
Our experience is that modeling such complex state machines without aspect state machines is difficult
to understand for practitioners and error-prone. Using aspect state machines, the base state machine and
aspect state machines are separate and are less complex in isolation. To confirm this, we recently
conducted a controlled experiment to measure the readability of aspect state machines using AspectSM
[54]. Readability was measured based on the identification of defects seeded in state machines (modeled
with and without AspectSM) and the score obtained when answering a comprehension questionnaire
about the system behavior. The results of the experiment showed that readability with AspectSM is
significantly better than that with both flat and hierarchical state machines measured in terms of
inspecting models to identify seeded defect. In terms of the comprehension questionnaire, the AspectSM
scores were better than flat state machines, but worse than hierarchical state machines. However, there
were no significant differences between aspect and hierarchical state machines. In addition, no

significant differences were observed in terms of the effort required to inspect models and detect defects.

6.3.4 Easier model evolution

Model evolution is also expected to be easier when using aspect state machines. For instance,
AudioQualityAspect and VideoQualityAspect presented in Appendix A change the state invariants of 86
states in the base state machines. In the future, more media quality measures will likely be introduced,
and constraints specific to these measures will be required. Using our profile, they will be added only in
the aspect state machines we defined. Otherwise, with regular state machine modeling, the new
constraints would need to be added to all nine states of the base model. In systems with hundreds of
states, changing the state invariants of all states is cumbersome and error prone, which makes model

evolution difficult. This will be further investigated with controlled experiments in the future.

40



Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

6.3.5 Systematic fault modeling

Using RUMM, we can systematically identify possible classes of faults for a specific SUT based on the
proposed fault taxonomy. Furthermore, we can then instantiate specific fault types from the identified
classes which are considered critical in the SUT environment. We then model them using an aspect class
diagram according to our guidelines (Section 5.4) and aspect state machines based on RobustProfile
(Section 4.3). The entire process follows systematic steps to identify and model faults (Figure 4).

6.4 Limitations

RUMM is a modeling methodology specifically developed for modeling robustness behavior to facilitate
automated model-based testing. While developing the methodology, we took into consideration only
those issues which are relevant for modeling the behavior of a system in the presence of faulty situations
in the environment. We have not investigated whether other non-functional crosscutting concerns such
as security and dependability can be successfully modeled using RUMM or an adapted version of it. The
reason is that RUMM starts with modeling faults based on fault taxonomy for the system environment,
which may not be necessary, for instance, when modeling security concerns such as logging. In addition,
since RUMM is developed for model-based testing, we only considered issues which are important to
support automated testing. For instance, we focused on UML state machines, which are often used for
the automated testing in control and communication systems which typically exhibit state-driven
behavior. We also focused on modeling crosscutting behavior on those modeling elements of state
machines that are mandatory to support test automation such as states (including state invariants, entry,
exit, and do activities) and transitions (including guard, trigger, and effect). In AspectSM, we write
pointcuts as OCL queries, and we have not yet empirically evaluated and compared their expressiveness
when using other related languages and notations such as the one presented in [12]. We used OCL to
write pointcuts as it is the only standard for writing constraints in UML models, an important advantage
in industrial contexts. Last, our work for defining interactions and ordering between different aspect state

machines still requires further investigation.
7. RELATED WORK

This section discusses existing works that are directly but often partially related to the objectives of
RUMM. We analyze and compare published work on robustness modeling methodologies and AOM

profiles for UML state machines, generic AOM weavers, and testing based on AOM.
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7.1 Robustness modeling methodologies
Most of the work related to robustness modeling does not make use of AOM and focus only on
modeling the behavior of a system when invalid inputs are given to the system, or on modeling
exceptions in the SUT in a similar fashion to programming languages. For instance, Pintér [55] reports
on the modeling of exceptions in statecharts in a similar fashion to Java mechanisms for writing
exceptions (try catch blocks). Exceptions are modeled as events on transitions in statecharts. Such
statecharts are subsequently used for model checking. Jiang [56] proposed a generic framework to model
self-healing software, i.e., software which try to recover from faults during their execution. The
framework supports modeling faults (such as related to invalid inputs to a system), their detection, and
their resolution with the help of different patterns defined for these purposes. Self-healing is modeled as
a separate model which is then combined into the functional model. Lei [57] provides a methodology to
check the robustness of component-based systems in the case of invalid inputs. Test cases are then
generated for invalid inputs at various states and the robustness of the system is checked. Nebut [58]
provides an automatic test generation approach based on use cases extended with contracts, after
transforming them into a transition system. Their approach supports both functional and robustness test
generation. Robustness test cases are generated by calling use cases when their preconditions are false.
Entwisle [59] proposed a framework for modeling various domain specific exception types such as
network exceptions, database exceptions, and web service exceptions using use cases. This approach
generates exception policy configurations from application models using model transformation and
finally generates code in Java for exceptions management, such as how to catch a particular exception.
The work (RUMM) presented in this paper is different from the existing work in robustness modeling
in one or more of the following ways: 1) It provides a robustness modeling methodology to model
system robustness in the presence of faults in its environment; this aspect has received little attention in
the literature. In contrast, most of the existing work focus only on modeling the behavior of a system
when invalid inputs are given to them [55] [56] [57] [58]; 2) It is aimed at performing automated model-
based robustness testing based on the robustness models for industrial systems. In contrast to the work
presented in [58], our work is based on UML state machines, which are the main notation currently used
for model-based test case generation [18]; 3) It relies on modeling standards, in this case UML state
machines and the MARTE profile [7], to model faulty situations of the environment; 4) It uses AOM to

model robustness behavior separately from the core, functional behavior, hence decreasing modeling
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effort by avoiding clutter in models, making them easier to read and decreasing chances of modeling
errors; 5) We use standard UML extension mechanism, i.e., profile, to support robustness modeling as
aspects using standard UML state machines, thus eliminating the need to adopt new notations and
consequently facilitating the practical adoption of RUMM in industry; and 6) RUMM is driven by
defining a fault taxonomy, thus leading to the more systematic modeling of robustness behavior. The
process of defining the taxonomy helps in developing a clear and thorough understanding of the different
kinds of faults that may occur in the environment against which system robustness must be tested.

7.2 AOM profiles for UML state machines

Several UML profiles for AOM have been proposed in the literature [60-63] for different UML
diagrams. Since we defined a profile to define aspects on state machines, we only assess the existing
AOM work focusing on state machines. We do so along three dimensions: 1) Features of UML state
machines supported by a profile such as state, state invariant, do activity, entry activity, exit activity,
transition, guard, trigger, and effect, 2) Features of aspect-orientation supported by a profile or a
modeling approach such as pointcut, advice, and inter-type declaration (a programming construct in
Aspect] [46] used to introduce new variables in a base class), 3) Representation used for the aspect-
orientation features. Based on the above selection criterion, we found five related works in the literature
[1-4, 9]. Table 12 and Table 13 characterize these works with respect to their coverage of important
UML state machine modeling elements including state, transition and their contained elements, e.g.,
state invariant in state and guard in transition. For instance, in Table 12 and Table 13, the approach
presented in [1] only supports modeling crosscutting behavior in states and transitions (indicated by a +
sign), but not in other modeling elements (indicated by a - sign). Certain features of UML state machines
which are mandatory for performing automated, model-based testing are not supported by any of the
existing works. This includes state invariants and guards which, as discussed above, are essential to
generating automated oracles and generating automated test data, respectively.

Table 14 assesses existing works with respect to the features of aspect-orientation they support such
as types of advice. In light of these comparisons, one of our profile (AspectSM) contributions is that it
supports all UML state machines and aspect-orientation features. Table 15 provides information on the
notations used by each approach for modeling aspect-oriented features, whether UML diagrams or other
non-standard notations. Table 15 suggests that no existing profile is exclusively based on standard UML

notation and OCL, thus requiring the learning of additional, non-standard notations or languages, and
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therefore making it difficult to reuse open source and commercial technology. This is, as discussed
earlier, highly important in most industrial contexts and strongly affects the adoption of modeling
technologies. In conclusion, based on the information provided in Table 12, Table 13, Table 14, and
Table 15, we conclude that our approach supports all necessary features of UML state machines and
aspect-orientation, which are all required for model-based robustness testing, and do so based
exclusively on standard modeling notations. In addition, our profile is developed with minimum
extensions to the UML standard and hence eases adoption by our industrial partner.

7.3 Comparisons with Generic AOM weavers

A generic weaver, GeKo, is presented in [19], but the current implementation of the weaver is not
complete (e.g., it does not support state machines) and its use requires many manual steps such as
specifying mappings from pointcuts to the base model. Metamodels for pointcut and advice are defined
by relaxing the UML 2.0 metamodel and are generated automatically from it using a transformation.

However, there is no support for modeling pointcuts and advice based on the generated metamodels. It

Table 12. Comparison of supported modeling elements related to a state

Reference State | State Invariant | Entry Activity | Do Activity Exit Activity
[1] + - - - -
[2] * - - -
[3] * - -
[4] [6] + - -
[ + - -
Table 13. Comparison of supported modeling elements related to a transition
Reference | Transition | Guard Trigger | Effect
[1] + - - -
[2] + - -
[3] + + +
[4116] + - -
[9] + + +
Table 14. Comparison of supported features of aspect-orientation
Reference Before Advice Around Advice | After Advice | Pointcut Introduction
[1] + - + + -
[2] + + + -
[3] + + + +
[4,19][6] | + + + + +
[9] - + - + -

Table 15. Comparison of the representation of aspect-orientation features

Reference | Aspect Advice Pointcut Introduction

[1] State machine | State machine elements Non-Standard | Not supported

[2] State machine | Non-Standard Non-Standard | Not supported

[3] State machine | Non-Standard Non-Standard | Non-Standard

[4] [6] State machine | Non-Standard Non-Standard | Non-Standard

[9] Class Activity diagram Non-Standard | Not supported
AspectSM | State machine | State machine elements and OCL | OCL State machine elements
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therefore requires developing a new diagrammatic support for these metamodels, which will not be
standard, and consequently will not be supported by UML modeling tools, making the practical adoption
of the weaver difficult. Another similar generic weaver, SmartAdapter, is presented in [64]. The only
major difference between GeKo and SmartAdapter is that SmartAdapter requires manually writing
composition rules for aspect and base models, whereas this is not required by GeKo.

An aspect composition language (SDMATA/MATA) is presented in [12, 65], which allows modeling
and composing aspects on UML state machines using patterns. The selection of modeling elements of a
UML state machine (concept similar to pointcuts) is performed using state diagram patterns. Using state
diagram patterns, modeling elements are selected using regular expressions defined on diagrammatic
notations that ‘resemble’ UML state machines (defined based on the extension of UML state machine
metamodel). In AspectSM, we write pointcuts as OCL expressions to query modeling elements of a base
state machine. To compare expressiveness of OCL expressions for writing pointcuts with regular
expressions, a controlled experiment is required, which will be conducted in the future. The tool support
for modeling patterns in SDMATA, however, is still under development. SDMATA requires defining
composition operators (concept similar to advice) using a language based on graph transformations. As
for other approaches in the literature, applying SDMATA to industrial contexts, requires learning
additional, non-standard notations such as state diagram patterns.

Kermeta [22] is a model-to-model transformation language, which provides the facility to write
transformation code in aspect-oriented style. Using such facility, aspects can be introduced at runtime on
metaclasses (e.g., UML Statemachine metaclass) for introducing new attributes and operations on
metaclasses or for providing definitions of existing operations in metaclasses. However, applying
Kermeta for our purpose in the industrial setting requires understanding not only details of the UML
metamodel, but also requires learning a new language for writing aspects. Using AspectSM, we only
need simple stereotypes with a few attributes, thus reducing the learning curve and improving
applicability. In other words, achieving a similar objective in Kermeta may require writing hundreds of
lines of complex transformation code.

These generic weavers, being applicable to a wide range of modeling languages, are of course
potentially usable in our context. On the other hand, such flexibility is possible only at the expense of
additional, significant cost to provide modeling support for the defined AOM concepts. This mostly

stems from the fact that no standard notation (e.g., UML) and metamodel can be used, as described
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above. This is why, to facilitate adoption in practice, we decided to rely on a dedicated UML profile
(AspectSM) to define aspect state machines, thus relying on standard modeling environments.

7.4 Testing based on Aspect-Orientation Modeling

There are also works in the literature that deal with testing aspect-oriented programs using UML-based
models such as state machines [6, 66, 67]. The focus of our work is different since we do not focus on
testing implementation, which is coded in an aspect-oriented programming (AOP) language such as
Aspect) [46]. For instance, in our industrial system, we are targeting system level testing of an
embedded software of a VCS developed by Cisco, Norway, which is implemented in a subset of C
language. In addition a few approaches such as those presented in [68, 69] focus on testing components
using AOM to specify their behavior as state machines. The aspects are also specified as state machines
to be consistent with the notation of the core behaviors (components). The composition rules are
specified in their own developed language (not following any standard), which specify how to weave
aspects into the core behavior. These works focus on modeling and testing components when wrong
inputs are provided to them by their users. Our purpose is also different from these approaches since we
focus on modeling faulty environment (network and other VCSs) conditions of the system under test

using aspect state machines and test the behavior of the VCS in the presence of these conditions.

8. CONCLUSION

Model-based testing, and in particular automated testing based on state machines, is a very popular
approach to testing which is supported by an increasing number of open source and commercial tools.
However, for such testing to be effective, one must not only model nominal behavior but also robustness
behavior. For example, in control systems, one must model how the system should react to the
breakdown of sensors or actuators. In communication systems, in a similar way, one must model how
the system reacts to network problems. Modeling the robustness behavior of systems in state machines is
often a major source of complexity, thus leading to very large, error-prone models.

To systematically model robustness behavior for model-based testing and to alleviate its complexity,
this paper presents a RobUstness Modeling Methodology (RUMM) that uses a UML 2.0 profile to
support the modeling of robustness behavior as aspects in UML state machines (aspect state machines).
This profile was developed by augmenting many of the concepts in existing UML state machine profiles
for AOM in order to achieve the specific goal of supporting automated, model-based robustness testing.

Furthermore, in order to make our approach more practical in industrial contexts, aspect state machines
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and their features are modeled using the UML state machine notation and the Object Constraint
Language (OCL), and therefore does not require that modelers learn new diagrammatic notations or
languages.

Another very important contribution of the paper is that we performed and report on an industrial case
study that suggests that using our methodology and profile may result in significantly reduced modeling
effort. Such case studies are indeed very rare and, to the knowledge of the authors, none is reported on
aspect state machines. Results show that modeling crosscutting behavior as a separate model (aspect
state machine) leads to the modeling of significantly less states, less transitions, and also less changes to
constraints such as state invariants. Modeling both standard and crosscutting behavior—in our case
robustness behavior—in one state machine would lead to many redundant modeling elements and yield
cluttered models that are difficult to understand. As an example, for one of the aspect state machine in
our case study, we avoided the modeling of 1586 extra triggers on 178 transitions (98% reduction) by
using our profile. However, this came at the cost of modeling three pointcuts for that aspect state
machine, which is clearly an additional overhead, but which should be minimized by the fact that they
are modeled as a UML state machine. It is however expected that the modeling effort required to model
three pointcuts is significantly less than modeling 1586 triggers. In addition, the results of a recent
controlled experiment [54] showed that readability of aspect state machines is significantly better than
standard UML state machines, though there was no significant difference in the effort to inspect both
types of state machines. Readability was measured based on the identification of defects seeded in state
machines (modeled with and without AspectSM) and the score obtained when answering a
comprehension questionnaire about the system behavior.

We also developed a weaver using the model transformation tool Kermeta [22] to automatically
produce woven state machines. These can in turn be used for different applications, in our case model-
based testing using state machines in input based on technologies such as Conformig QTronic [24] and
SmartTesting Test Designer [50]. In the future, we are planning to integrate the woven state machines
produced by our weaver with our model-based testing tool TRUST [23] to automatically generate
robustness test cases. TRUST [23] has already been used for generating executable functional test cases
at Cisco, Norway. In the future, we will investigate to which extent our profile is applicable for other
types of crosscutting behaviors to be modeled as state machines. In addition, we need to investigate the

effort required by developers and testers to learn and apply RUMM. A series of controlled experiments

47



Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

and case studies are required for this purpose, which we are planning to conduct in the future. Our work
on modeling interactions and ordering between various aspects still needs further investigation and

evaluation.
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11. APPENDIX A: ASPECTS FOR UPDATING STATE INVARIANTS

In this section, we present the details of AudioQualityAspect and VideoQualityAspect. These aspects
update state invariants in the base state machine (Figure 3) with audio and video quality constraints.

11.1 Updating state invariants with audio quality attributes

The aspect in Figure 29 updates state invariants for all simple states where the system is in a
videoconference. In Figure 29, the <<Aspect>> stereotype is applied on the state machine, whose
attributes show that this aspect is applied to the base state machine (Saturn::Saturn) in this case. A
<<Pointcut>>  stereotype is applied on the state invariant of the state
UpdateStatelnvariantsWithAudioQuality. This pointcut applies a before advice on all states selected by
the pointcut and this results into adding an additional constraint (see note 3). The woven state machine
looks the same as the base state machines except that the state invariants of the selected states are
updated.

11.2 Updating state invariants with video quality attributes

The aspect in Figure 30 updates the state invariants of states selected in the base state machine by the
<<Pointcut>>  stereotype applied on the state invariant of the  state
UpdateStatelnvariantsWithVideoQuality in Figure 30 according to the before advice defined based on
the video quality attributes modeled in Figure 26. The on attribute is a Boolean attribute that determines

if the video is present in a videoconference. The videoQuality is a video quality metric for measuring

* <<Aspect> > UpdateAudioStateInvariant

1:
name = "UpdateAudioStateInvariant”,

baseStateMachine = "Connected, SaturnPr ing, EndpointPr
wPointcut, Beforen
&3 UpdateAudioStateInvariant
2: 3
<<Pointcut>> {name = "UpdateAudioStateInvariant”, <<Before>> {name = "UpdateAudioStateInvariantBeforeAdvice"
type = SelectionType:Subset, constraint =
selectionConstraint = "Context Saturn:Media
"Context umkVertex self.audioFrameloss.value == 0 and self.audioFrameloss.value <= self.audioFrameLossThreshhold.value
self.name <> 'Idle’ and self.audio.noiseLevel.value > = 0 and self.audio.noiseLevel.value <= noiseLevelThreshhold.value
and not self.ocllsTypeOf(Pseudostate) and self.audio.on
and self.oclAsType(Statel.isSimple =true”, and self.audio.PESQ > = 0 and self.audio.PSEQ <= self.audio.pesqThreshold.value

beforeAdvice = "Upd iantBeforeAdvice"} and not self.audio. mixingAudio
and synchronizationMis match.value >= 0 and synchronizationMismatch.value <= synchronizationMismatchThreshhold.value" }

Figure 29. State machine for AudioQualityAspect
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video quality and is defined as an Integer. The videoFrameLoss is an Integer attribute that determines
the current video frame loss during a videoconference.

The  <<Before>>  stereotype applied on the state invariant of the state
UpdateStatelnvariantsWithVideoQuality in Figure 30 adds an additional conjunct to state invariants of
all selected states (see note 3 for attribute values). The woven state machines looks exactly the same as

the base state machines in as only state invariants changed in this case.

T <<Aspect>> UpdateVideoStateInvariant

1:
name = "UpdateVideoStateInvariant”,
baseStateMachine = "Connected, SaturnPresenting, EndpointPresenting”

wPointcut, Beforen
&9 UpdateVideoStatelnvariant

2 3:

<<Pointcut>> {name = "UpdateVideoStatelnvariant", <<Before> > {name = "UpdateVideoStatelnvariantBeforeAdvice",

type = SelectionType:Subset, constraint=

selectionConstraint = "Context Saturn:Media

"Context umkVertex self.video.videoFrameloss.value > = 0 and self.video.videoFrameloss.value <= self.video.videoFramelossThreshhold.value
self.name <> 'Idle’' and self.video.videoFrameloss.value > = 0 and self.video.videoFrameloss.value <=

and not self.ocllsTypeOf(Pseudostate) self.video.videoFramelossThreshhold.value

and self.odAsType(State).isSimple =true", and self.video.on =true"}

beforeAdvice = "UpdateVideoStatelnvariantBeforeAdvice"}

Figure 30. State machine for the VideoQualityAspect
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12. APPENDIX B: WEAVER ALGORITHM

WeaveStateMahine (b: StateMachine, A: Set(StateMachine), w:StateMachine):StateMachine
/*
This algorithm takes in input a base state machine b, a set of aspect state machines, and a weaving-directive state

machine and outputs a woven state machine. All inputs and the output are instances of UML 2.0 State machine

metaclass.
*/
Inputs:
b: A base state machine, which is a UML 2.0 state machine.
A: A set of aspect state machines. Each aspect state machine is a UML 2.0 state machine.
w: A weaving directive state machine, which consists of a set of submachine states 4. Each submachine state a’
in 4’ corresponds to the an aspect state machine in the set A. w is also a UML 2.0 state machine.
Output:
o0: A woven state machine, which is a UML 2.0 state machine.
Algorithm:

1. Traverse sub machines states (aspects) according to the order specified in w
a.  For each sub machine state a”in 4’ do
i. Start with the initial state and go to the first state sin a’
1. Foreachtins.outgoing /* For every outgoing transition of s */
a.  If (s.stereotype = ‘<<Pointcut>>")
i. Call WeavePointcut(s)
b.  Else If (s.stereotype = ‘<<Introduction>>")
i. Call Weavelntroduction(s)
c. Else
i. Call WeaveNoStereotype(s)

Figure 31. Weaving algorithm
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Function WeavePointcut(s:State)

/*
This function takes input a state with the stereotype <<Pointcut>> and queries the base state machine with the pointcut
expression and calls other functions to apply advices on the base s

*/
1.  Foreach tin s.outgoing
a.  If t.target.stereotype = ‘<<Pointcut>>’
i. If t.stereotype =
1. Check which model elements (such as guard, trigger, or effect) related to the transition
that has a stereotype (<<Introduction>> or <<Pointcut>>)
2. If the model element has a stereotype <<Pointcut>>
a.  Query the base model b with the selectionConstraint attribute of the pointcut
b.  Apply before, after, or around advice /introduction on the modeling elements
selected by the pointcut
c.  Call RepeatComposition(t.target)
ii. Else If t.stereotype = ‘<<Pointcut>>’
1.  Call WeavePointcutOnState(s)
2. Call WeavePointcutOnTransition(t)
3. Call WeavePointcutOnState(t.target)
4.  Call RepeatComposition(t.target)
iii. Else
1.  Call WeavePointcutOnState(s)
2. Call WeavePointcutOnState(t.target)
3. Add the new transition t as specified in the aspect between the states selected by above
two steps
4.  Call RepeatComposition(t.target)
b.  Else If t.target.stereotype = ‘<<Introduction>>’
i. If t.stereotype =
1. Not allowed
ii. Else If t.stereotype="<<Introduction>>’
1. Call WeavePointcutOnState(s)
2. Call WeavePointcutOnTransition(t)
3. Introduce the state t.target as specified in the aspect
4.  Call RepeatComposition(t.target)

iii. Else
1. Call WeavePointcutOnState(s)
2. Introduce the state t.target as specified in the aspect
3. Add the new transition t as specified in the aspect between the states selected by above
two steps
4.  Call RepeatComposition(t.target)
c. Else
i. Not allowed

Figure 32. The WeavePointcut() function
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/*

*/

Function Introduction(s:State)

This function takes input a state with the stereotype <<Introduction>> and introduces the new elements in the base model

as specified by the <<Introduction>> stereotype.

For each t in s.outgoing
a.  If t.target.stereotype = ‘<<Pointcut>>’
i. If t.stereotype =’
1. Not allowed
ii. Else If t.stereotype = ‘<<Pointcut>>’
1. Introduce the state s as specified in the aspect
2. Call WeavePointcutOnState(t.target)
3. Call WeavePointcutOnTransition(t)
4.  Call RepeatComposition(t.target)
iii. Else
1. Introduce the state s as specified in the aspect
Call WeavePointcutOnState(t.target)
3. Add the new transition t as specified in the aspect between the states selected by above
two steps
4.  Call RepeatComposition(t.target)
b.  Else If t.target.stereotype = ‘<<Introduction>>’
i. If t.stereotype =
1. Not allowed
ii. Else If t.stereotype="<<Introduction>>"
1. Introduce the state s as specified in the aspect
2. Introduce the state t.target as specified in the aspect
3. Call WeavePointcutOnTransition(t)
4.  Call RepeatComposition(t.target)

N

iii. Else
1. Introduce the state s as specified in the aspect
2. Introduce the state t.target as specified in the aspect
3. Add the new transition t as specified in the aspect between the states selected by above
two steps
4.  Call RepeatComposition(t.target)
c. Else
i. Not allowed

Figure 33. The Introduction() function
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Function WeaveNoStereotype(s:State)

/*
This function takes input a state without any stereotype from an aspect state machine and applies advice/introduction on the
base state machine as specified in the modeling elements contained within the state.
*/
1. Foreachtins.outgoing /* for each transition going out of s */
a.  If t.target.stereotype = ‘<<Pointcut>>’
i. Not allowed
b.  Else If t.target.stereotype =’<<Introduction>>’
i. Not allowed
c. Else

i. Check which model elements (such as state invariant, do, entry, or exit activity) related to the state s
that has a stereotype (<<lIntroduction>> or <<pointcut>>)

ii.  If the model element has a stereotype <<pointcut>>
1. Query the base model b with the selectionConstraint attribute of the pointcut
2. Apply before, after, or around advice /introduction on the modeling elements selected by

the pointcut
ili. Repeat steps i and ii for the state t.target
iv. Call RepeatComposition(t.target)

Figure 41 (a). The WeaveNoStereotype() function

Function RepeatComposition(s:State)
/*
This function traverses the aspect state machine and calls appropriate functions to evaluate pointcut and introduction
*/
1. If (s.isFinal !=true) /* checks if s is a final state */
a. If s.stereotype = ‘<<Pointcut>>’
i. Call WeavePointcut (s)
b.  Else If s.stereotype = ‘<<Introduction>>’
i. Call Weavelntroduction (s)

c. Else
i. Call WeaveNoStereotype (s)

Figure 41 (b). The RepeatCompostion() function

Function WeavePointcutOnState(s:State)

/*
This functions queries the base state machine according to the query expression specified in the pointcut and applies the
advice as specified by the pointcut

*/

1. Query the base model b according to the query specified in the selectionConstraint attribute of the pointcut on state s.
2. Apply after, before, and/or around advices as specified on stereotypes <<After>>, <<Before>>, and <<Around >> to the
model elements selected by the selectionConstraint in step 1.

Figure 34 (c). The PointCutOnState() function

57



Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

Function WeavePointcutOnTransition(t)
*
This function queries the base model according to the query expression specified in the pointcut and applies the advice as
specified by the pointcut
*/
1. Query the base model b according to the query specified in the selectionConstraint attribute of the pointcut on state s.

2. Apply after, before, and/or around advices as specified on stereotypes <<After>>, <<Before>>, and <<Around >> to the
model elements selected by the selectionConstraint in step 1.

Figure 35. The PointcutOnTransition() function
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13. APPENDIX C: NETWORK COMMUNICATION ASPECT

13.1 Description of the Aspect
The purpose of this aspect is to model the behavior of a system in the presence of various network faults.

A system is supposed to work even under the presence of faults and unwanted conditions (degraded
mode). By degraded mode, we mean that the system should continue to behave as in the non-faulty
situation, except that the quality (such as audio and video) or the performance is degraded such as slow
speed of running applications on a videoconference system. The system must try to recover from the
degraded mode and go back to normal mode of operation. In the worst case, the system must return to

the safe state.

13.2 Network Robustness (NR) Aspect (Aspect Class Diagram)
Figure 36 shows a class diagram that models the robust behavior of the system in the presence of

different network faults defined based on the fault taxonomy (Figure 5) such as jitter, packet loss, low
bandwidth, illegal packets for videoconferencing protocols (SIP and H323), and in the case of no
network connection. Six network properties are modeled in the class diagram that models different faulty
situations. Five network properties are modeled as non-functional (NF) types using the MARTE profile
[7]: packet loss, jitter, bandwidth, and percentage of illegal packets for H323 and SIP protocols. The
network connection is modeled as a Boolean attribute.

13.2.1 PacketLoss
This property is defined to introduce packets loss during communication and is measured in terms of

percentage. This property is defined to be of the MARTE type NFP_Percentage because packet loss is
always measured in percentage and the NFP_Percentage is defined in the MARTE profile for this
purpose.

13.2.2 Jitter
This property introduces delay between network packets. This delay is introduced in the unit of

millisecond (ms) and checks robustness of a videoconferencing system in the presence of delayed
network packets. This property has two attributes: value of type Integer and unit of the MARTE type
TimeUnitKind. The type TimeUnitKind of the MARTE profile is used to define units for time values
such as millisecond and microsecond. We chose this data type so that a modeler can chose appropriate

unit to measure unit. We set the default value of the unit attribute to millisecond (ms).
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13.2.3 Bandwidth

This property is used to change the bandwidth of the network and is measured in terms of
Kilobytespersecond (Kbps) and checks robustness of a videoconferencing system in the presence of low
bandwidth than required by a videoconference. This property has two attributes: value of type Integer
and rate of the MARTE type DataTxRateUnitKind. The type DataTxRateUnitKind is used to define units
for data transmission such as KiloBytesPerSecond (Kbps) and MegaBytesPerSecond (Mbps). We chose
this data type because it allows a modeler to change unit of data transmission as required. We set the
default value of the rate attribute to KiloBytesPerSecond (Kbps).

13.2.4 lllegalH323PacketPercent

This property is used to add illegal packets for the H323 videoconferencing protocol during a
videoconference to see how a VCS behaves. This property is of type NFP_Percentage.

13.2.5 lllegalSIPPacketPercent

This property is used to add illegal packets for the SIP videoconferencing protocol during a

videoconference to see how a VCS behaves. This property is of type NFP_Percentage.

Q Saturn:NetworkCom munication

[Eg callBandwidth : Saturn:Bandwidth

[Eg bandwidth : Bandwidth

[Eg packetLoss : NFP_Percentage

[Cgjitter : Saturn:Jitter

[Eg networkConnection : Boolean

[Eg illegalH323PacketPercentage : NFP_Percentage
[Cg illegalSIPPacketPercentage : NFP_Percentage
[Cg packetLossThreshold : NFP_Percentage
EgjitterThreshold : Saturn::Jitter
CgillegalH323PacketThreshold : NFP_Percentage
[Eg illegalSIPPacketThreshold : NFP_Percentage

ulNfpTypen ulNfpTypen
Saturn::Jitter Saturn::Bandwidth
[Eg value : Integer [Eg value : Integer

Eg unit : TimeUnitKind || Cg rate : DataTxRateUnitKind

Figure 36. Class diagram for the NR aspect

13.3 Aspect State Machine for NR

The aspect state machine for the NR aspect is shown in Figure 37. The ‘NetworkCommunication’ State
machine is stereotyped as ‘Aspect’ and the attributes associated with the stereotype are shown in the note
labeled 1. The first attribute name specifies the name of the aspect, which is NetworkCommunication in
this case. The second attribute baseStateMachine specifies the base state machine on which the aspect

will be woven, which is Saturn (Figure 3) in this case.
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(C* < <Aspect> > NetworkCom munication

1: < <Aspect>> 2: <<Introductions>
name = "NetworkCom munication”, name = "SelectedStatesToDegradedMode"
baseStateMachine = "Saturn”
wIntroductionn
{:ﬁwhen [self.callBandwidth.value > =0 and self.callBandwidth.value <= self.bandwidth.value)
{;ﬁwhen [seli.packetloss.value > = 0 and self.packetloss.value <= self.packetlossThreshold.value)
wwhen [selt jitter.value > = 0 and self jitter.value <= self jitterThreshold.value)
{:ﬁwhen [self.networkConnection)
wwhen [sell.illegalH323PacketPercentage.value > = 0 and self.illegalH323PacketPercentage.value <= self iliegalH323PacketThreshold.value)
"% when [self. illegalSIPPacketPercentage.value > = 0 and self.illegalSIPPacketPercentage.value <= self.illegalSIPPacketThreshold.value)

6: < <Introduction> >
name = "DegradedMode”

uPointcut, Normaln wintroductionn wPointcut, Initiabe

&9 SelectedStates &9 DegradedMode fd 4 o Idle
isconnec

% after (time)

wintroduction, ExternalFaultn con
& DisconnectAll

ﬂﬁ <<NetworkFault>>when [self.callBandwidth.value > self.bandwidth.value)

w <<NetworkFault>> when (self packetloss.value > self packetlossThreshold.value)

w <<NetworkFault> > when [self jitter.value > self jitterThreshold.value)

ﬂﬁ <<NetworkFault>> when [not seif.networkConnection)

{}ﬁ <<NetworkFault>> when [selfillegalH323PacketPercentage.value > self.illegalH323Packet.value)

w <<MNetworkFault>> when [self.illegalSIPPacketPercentage.value > self.illegalSIPPacket.value) Ao tcut S

name = "SelectIdleStatePointcut”,
type = SelectionType::One,
selectionConstraint =

4 < <Introductions > "Context uml:Vertex
self.name = 'Idle’ "

3: <<Pointcuts>
name = "SelectStatesPointcut”,

type = SelectionType::Subset,
selectionConstraint = name = "DegradedModeToSelectedStates”

"Context uml:Vertex

self.name <> 'Idle’

or self. name <> ‘PresentingWithoutCall’
and not self.ocllsTypeOf(Pseudostate)”

Figure 37. State machine for the ‘NetworkCommunication’ aspect

A pointcut named ‘SelectStatesPointcut’ on the state ‘SelectedStates’ is shown in Figure 37 (see note
3), which selects all states of the base state machine except for the Idle and PresentingWithoutCall
states. New transitions modeling robust behavior of the system from all states selected by the
‘SelectStatesPointcut’ pointcut to a new state ‘DegradedMode’ stereotyped with the <<Introduction>>
and <<ExternalFault>> stereotypes are introduced. These robustness transitions are modeled as UML
change events and stereotyped with the <<NetworkFault>> stereotype, which indicates that this event is
modeling a network fault. For instance, when ‘when (not self.networkConnection)’ in any of the states
selected by the pointcut, the system goes to the state ‘DegradedMode’, which is stereotyped as
<<Introduction>> indicating that this state will be introduced in the base state machine. In this state,
the system tries to recover the network connection. If the system is successful in recovering the network
connection, the transition with the change event ‘when( self.networkConnection)’ takes the system back
to the original state, which is one of the states selected by SelectedStates state stereotyped <<Normal>>
to indicate that this state is a normal state of the system. If the system cannot recover within time t, then
the system disconnects all the systems and goes to the ‘Idle’ state stereotyped as <<lInitial>> indicating
that this is the initial state of the system. This is modeled as a new transition from the ‘DegradedMode’
state to the ‘Idle’ state, with a time event after(t), and a new effect ‘DisconnectAll’ with an opaque action

‘disconnect’, which disconnects all the connected systems to the system.
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14. APPENDIX D: EXAMPLES

In this section, we provide examples for advice on various UML state machine modeling elements such
as states, transitions, and effects. All examples presented in this section are based on the state machine
shown in Figure 3.

14.1 Advice on states

In this section, we present examples of before, after, and around advice on states.

14.1.1 Before advice on state
An example of a before and an after advice on states is shown in Figure 38. An aspect AdvicesOnStates
is modeled that has one state SelectedStates with stereotypes Pointcut, Before, and After in Figure 38.

This pointcut selects all simple states in all regions of a state machine excluding the states ldle and

% < <Aspect> > AdvicesOnState

<<After>> {name = 'CheckNumberOfCallsAfterAdvice',
{name = 'AdviceOnStates’, constraint =
b hine = 'SaturnzSaturn’} ‘Context Saturn inv:
self.systemUnit. NumberOfActiveCalls > 0"}

Start
End
whfter, Before, Pointcutn
JSelectedStates

<<Pointcut>> {name: ‘SelectStates’,
type = SelectionType:Subset, <<Before>> { name = ‘CheckNumberOfCallsBeforeAdvice’,
selectionConstraint = constraint =
‘Context uml:Vertex ‘Context Saturninv:

self.name <> ‘PresentingWithoutCall’ self.systemUnit. NumberOfActiveCalls > 0

or self.name <> 'Idle’ and self.systemUnit.NumberOfActiveCalls <=

and not self.ocsTypeOf(Pseudostate))’, self.systemUnit.Maxi NumberOfCalls }

beforeAdvice = ‘CheckNumberOfCallsBeforeAdvice
afterAdvice: ‘CheckNumberOfCallsAfterAdvice' }

Figure 38. An example of before and after advice on a state

C* < 2Aspect> > AroundAdvicesOnState

{name = 'AdviceOnStates’,
baseS fMachine = 'Saturn::Saturn'}

Start

End
wAround, Pointcuts
&9 Initialized
<<Pointcut> > { name = ‘SelectIdleStatePointcut’, <<Around >> {name = ‘ReplaceldleStateAroundAdvice’
type = SelectionType:One, constraint = ‘Initialized’}

selectionConstraint = ‘Idle’,
aroundAdvice = ‘ReplaceldleStateAroundAdvice’ }

Figure 39. An example around advice on a state
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PresentingWithoutCall and applies CheckNumberOfCallsBeforeAdvice and

CheckNumberOfCallsAfterAdvice advice on the selected states.

14.1.2 Around advice on states

An example of an around advice on a state is shown in Figure 39. A pointcut with the name
SelectldleStatePointcut is applied on state Initialized, which selects a simple state with the name Idle
and applies an around advice ReplaceldleStateAroundAdvice that replaces the Idle state with a new state
named Initialized. This is achieved by modeling a new state Initialized and applying a pointcut and
around advice on it. Details of the pointcut and the around advice are shown in Figure 39.

14.2 Advice on transitions

In this section, we present examples of advice on transitions.
14.2.1 Before advice on transitions

An example of a before advice on a transition is shown in Figure 40. Three pointcuts are defined in the
aspect: two on states with name TriggerSourceStatesPointcut and TriggerTargetStatesPointcut to select
source and target states of all transitions, which have a trigger with the event name dial, one pointcut on
the transition (SelectTransitionsPointcut) that selects all transitions, which have a trigger with the event

name dial and applies an around advice that adds a guard to the selected transitions.

14.2.2 Around advice on transitions

An example of an around advice on transitions is shown in Figure 41. Three pointcuts are same as in the
previous example. In this case, an around advice is applied on all selected transitions by the
SelectTransitionsPointcut pointcut, which replaces the dial call event with the EndpointConnect signal
event. This is achieved by adding the EndpointConnect signal on the transition with the pointcut and the

around advice as shown in Figure 41.

14.2.3 After advice on transitions

An example of an after advice on a transition is shown in Figure 42. Three pointcuts are same as in the
previous example. In this case, an after advice is applied on all selected transitions by the
SelectTransitionsPointcut pointcut, which adds a new effect IncrementNumberOfCalls. This is achieved

by adding the effect on the transition with the pointcut and the around advice as shown in Figure 42.
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* <<Aspect>>TransitionBeforeAdviceExample

{name = 'AdviceOnStates’,
baseStateMachine = 'Saturn:Saturn'}

Start

{ name = ‘SelectSourceStatesOfTransition’.
type = SelectionTypezSubset,
selectionConstraint =
‘Context umk:Vertex
self.outgoing-> collect(
trigger.event.name="di

* <<Aspect> >TransitionAroundAdviceExample

{name = 'AdviceOnStates',
baseStateMachine = 'Saturn:Saturn'}

Start
wPointcuts

<<Before>> {name = ‘AddGuardBeforeAdvice’,

constraint = ‘GuardOnTransition'}

wPointcuts
EI TriggerSourceStates

wBefore, Pointcutn
[number.sizel) = 4]

<<Pointcut>> {name =
‘SelectTransitionsPointcut’,

type = SelectionType:Subset,
selectionConstraint =

‘Context uml:Transition
self.trigger->collect(event|
event.name="dial')",

beforeAdvice: ‘AddGuardBeforeAdvice}

wPointcuts Final

&3 TriggerTargetStates

{name = ‘TriggerTargetStatesPointcut’,
type = SelectionType::Subset,
selectionConstraint =

‘Context uml:Vertex

self.incoming-> collectltrigger|
trigger.event.name="dial’)' }

Figure 40. An example of a before advice on a transition

<<Around>> {name = ‘ChangeTriggerAroundAdvice',

constraint = ‘EndPointConnect’}

N «Pointcut, Aroundx»
"% EndpointConnect(number, protocol, callRate]

&3 TriggerSourceStates

{ name = 'SelectSourceStatesOfTransition’,
type = SelectionType::Subset,
selectionConstraint =

‘Context uml:Vertex
self.outgoing->collect(trigger|
trigger.event.name="dial’)’ }

(* < <Aspect> >TransitionAtterAdviceExample

{name = 'AdviceOnStates'.
baseStateMachine = 'SaturnzSaturn'}

Start
wPointcuts

&2 TriggerSourceStates

{ name = ‘SelectSourceStatesOfTransition’,
type = SelectionType:Subset,
selectionConstraint =

‘Context uml=zVertex
self.outgoing->collect(trigger|
trigger.event.name="dial’)’ }

14.3 Advice on triggers

<<Pointcuts> {name =
‘SelectTransitionsPointcut’,

type = SelectionType:Subset,
selectionConstraint =

‘Context uml:Transition
self.trigger->collect(event|
event.name="dial')",

aroundAdvice: ‘ChangeTriggerAroundAdvice'}

<< After> > {name = ‘AddEffectAfterAdvice’,

constraint = 'IncrementNumberOfCalls'}

Final
wPointcuts
&I TriggerTargetStates

{name = 'TriggerTargetStatesPointcut’,
type = SelectionType::Subset,
selectionConstraint =

‘Context uml:Vertex
self.incoming->collect(trigger|
trigger.event.name="dial’)" }

Figure 41. An example of around advice on transitions

wPointcut, Afters
Iself.systemUnit.MumberOfActiv...

@ IncrementNumberOfCalls

<<Pointcut>> {name =
‘SelectTransitionsPointcut’,

type = SelectionType:Subset,
selectionConstraint =

‘Context umkTransition
self.trigger->collect{event|
event.name="dial'},

afterAdvice: ‘AddEffectAfterAdvice'}

Final
uPointcutn
&9 TriggerTargetStates

{name = 'TriggerTargetStatesPointcut’,
type = SelectionType:Subset,
selectionConstraint =

‘Context uml:Vertex
self.incoming->collect(trigger|
trigger.event.name="dial’]" }

Figure 42. An example of after advice on transitions
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In this section, we present examples of advice on triggers.

14.3.1 Around advice on triggers

An example of an around advice on triggers is shown in Figure 43. The pointcuts on the states are same
as in the previous example, however, in this example, <<Pointcut>> and <<Around>> stereotype are
applied on trigger. In this case, an around advice is applied on all selected transitions by the
SelectTransitionsPointcut pointcut on trigger, which replaces the dial call event with the
EndpointConnect signal. This is achieved by adding the EndpointConnect signal on the transition with

the pointcut and the around advice stereotypes.
(3 <<Aspect> > TriggerAroundAdviceExample

{name = 'AdviceOnStates', <<Around>> {name =
b hine = 'Satur turn'} ‘ReplaceTriggerAroundAdvice’
constraint = ‘EndpointConnect’ }

«Pointcut, Arounds

s "% EndpointConnect{number, protocol, callRate) Final
tart
wPointcutn wPointcutn

&3 TriggerSourceStates 2 TriggerTargetStates

{ name = ‘SelectSourceStatesOfTransition’, <<Pointcut>> {name = {name = ‘TriggerTargetStatesPointcut’,
type = SelectionType:Subset, ‘SelectTransitionsPointcut’, type = SelectionType::Subset,
selectionConstraint = type = SelectionType:Subset, selectionConstraint =
‘Context uml:Vertex selectionConstraint = ‘Context uml:Vertex
self.outgoing-> collectitrigger| ‘Context uml:Transition self.incoming-> collect(trigger|
trigger.event.name="dial’)’ } self.trigger-> collectlevent| trigger.event.name="dial’)' }
event.name="dial’)",
aroundAdvice = ‘ReplaceTriggerAroundAdvice'}

Figure 43. An example of a before advice on a trigger

14.4 Advice on guards

In this section, we present examples of advice on guards

14.4.1 Before and after advice on guards.

An example of a before/an after advice on guards is shown in Figure 44. The
TriggerSourceStatesPointcut and TriggerTargetStatesPointcut pointcuts are same as in the previous
examples, however, in this example, <<Pointcut>> and <<Before>> stereotypes are applied on guard.
In this case, a before advice is applied on all selected transitions by the SelectTransitionsPointcut

pointcut on guard that conjuncts an additional constraint to the existing guard as shown in Figure 44.
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14.4.2 Around advice on guards

An example of an around advice on guards is shown in Figure 45. The TriggerSourceStatePointcut and
TriggerTargetStatePointcut pointcuts are same as in the previous examples, however, in this example,
<<Pointcut>> and <<Around>> stereotypes are applied on guard. In this case, an around advice is
applied on all selected transitions by the SelectTransitionsPointcut pointcut on guard that replaces the
existing guard with a new guard.

14.5 Advice on effects

In this section, we present examples of advice on effects.

(C* <<Aspect> >GuardBeforeAfterAdviceExample

{name = 'AdviceOnStates',

baseStateMachine = 'Saturn:Saturn'}
<<Before>> {name =
‘AddConstraintBeforeAdvice'
constraint = ‘EndpointConnect’ }

Start
wPointcutn

&2 TriggerSourceStates

{ name = "SelectSourceStatesOfTransition’,
type = SelectionType:Subset,
selectionConstraint =

‘Context uml=Vertex

self.outgoing-> collect(trigger|
trigger.event.name="dial']" }

Final

wPointcutn
O TriggerTargetStates

«Pointcut, Beforen
[protocol = CallProtocol::SIP or protocol = CallProtocol:H323]

<<Pointcut>> {name =
‘SelectTransitionsPointcut’,

type = SelectionType:Subset,
selectionConstraint =

‘Context uml:Transition
self.trigger->collect{event|

event.name="dial’l’,

beforeAdvice = 'AddConstraintBeforeAdvice’ s}

{name = ‘TriggerTargetStatesPointcut’,
type = SelectionType:Subset,
selectionConstraint =

‘Context umk:Vertex
self.incoming->collect{trigger|
trigger.event.name="dial')’ }

Figure 44. An example of a before advice on guards

* < <Aspect>>GuardAroundAdviceExample

{name = 'AdviceOnStates',
Nachine = 'Satur

Saturn'}

Start
«Pointcutn

&9 TriggerSourceStates

{ name = ‘SelectSourceStatesOfTransition',
type = SelectionType:Subset,
selectionConstraint =

‘Context uml:Vertex
self.outgoing->collect{trigger|
trigger.event.name="dial’)’ }

<<Around>> { name =
‘ChangeGuardAroundAdvice’,
constraint = ‘CheckNumberSize' }

Final

wPointcutn
&9 TriggerTargetStates

«Pointcut, Arounds
[number-ssizell=4]

<<Pointcut> > {name = ‘SelectTransitionsPointcut’,
type = SelectionType:Subset,

selectionConstraint =

‘Context uml:Transition
self.trigger->collect{event|

event.name="dial')’,

aroundAdvice = ‘ChangeGuardAroundAdvice’}

{name = ‘TriggerTargetStatesPointcut’,
type = SelectionType:Subset,
selectionConstraint =

‘Context uml:Vertex
self.incoming->collect{trigger|
trigger.event.name="dial’)’ }

Figure 45. An example of around advice on guards
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14.5.1 Before advice on effects
An example of a before advice on effects is shown in Figure 46. The TriggerSourceStatesPointcut and

TriggerTargetStatesPointcut pointcuts are same as in the previous examples, however, in this example,

(* < <Aspect> >EffectBeforeAdviceExample

{name = 'AdviceOnStates’, <<Before>> { name
baseS Machine = 'SaturnzSaturn'} ='AddConstraintBeforeAdvice',
constraint = ‘IncrementNumberOfActiveCalls’ }

Final
Start
uPointcutn aPointcutn
&3 TriggerSourceStates &9 TriggerTargetStates
«Pointcut, Befores
Iself.systemUnit.NumberOfActiv...
# IncrementNumberOfActiveCalls
{name = ‘SelectSourceStatesOf Transition’, < <Pointcut>> {name = ‘SelectTransitionsPointcut’, {name - ‘TriggerTargetStatesPointcut’,
type = SelectionType:Subset, type = SelectionType:Subset, type = SelectionType:Subset,
‘selectlonCnnstralnt = selectionConstraint = selectionConstraint =
Context u.ml::\l'erlex i ‘Context uml:Transition ‘Context umk:Vertex
se.lf.outgolng—>collecl[.tngger| self.trigger->collect(event| self.incoming->collect{trigger|
trigger.event.name="dial’)’ } event.name="dial’)", trigger.event.name="dial')’ }
beforeAdvice = ‘AddConstraintBeforeAdvice'}
Figure 46. An example of a before advice on effect
* < <Aspect> >EffectAroundAdviceExample
{name = 'AdviceOnStates', <<Around>> { name
b hine = 'Satur turn'} ="AddConstraintAroundAdvice’,
constraint = ‘IncrementNumberOfActiveCalls’ }
Final
Start
wPointcuts wPointcuts
&2 TriggerSourceState &2 TriggerTargetState
«Pointcut, Arounds
Iself.systemUnit.NumberOfActiv...
@ IncrementNumberOfCalls
{name = 'Sel?clSclurceStalesOfTransition'. <<Pointcuts > {name = ‘SelectTransitionsPointcut’, {name = 'TriggerTargetStatesPointcut’,
type = Selecllon'_l'ype::Subsel. type = SelectionType::Subset, type = SelectionType:Subset,
selectionConstraint = selectionConstraint = selectionConstraint =
Context u_ml::\l"erlex i ‘Context uml:Transition ‘Context uml:Vertex
sellf.oulgnlng—Bcollecl[.trlgger\ self.trigger-> collect(event| self.incoming-= collect(trigger|
trigger.event.name="dial')' } event.name="dial’}’, trigger.event.name="dial’)’ }

aroundAdvice = ‘AddConstraintAroundAdvice'}

Figure 47. An example of around advice on effect

<<Pointcut>> and <<Before>> stereotypes are applied on effect. In this case, a before advice is
applied on all selected transitions by the SelectTransitionsPointcut pointcut on effect that adds the

additional behavior to the existing behavior.
14.5.2 Around advice on effects.

An example of around advice on effects is shown in Figure 47. The TriggerSourceStatesPointcut and
TriggerTargetStatePointcut pointcuts on states are same as in the previous examples, however, in this
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example, <<Pointcut>> and <<Around>> stereotypes are applied on effect. In this case, a before
advice is applied on all selected transitions by the SelectTransitionsPointcut pointcut on effect that

replaces the existing effect with an effect IncrementNumberOfActiveCalls as shown in Figure 47.
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