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ABSTRACT 

Model-based robustness testing requires, precise and complete behavioral, robustness modeling. For example state 

machines can be used to model software behavior when hardware (e.g., sensors) breaks down and be fed to a tool to 

automate test case generation. But robustness behavior is a crosscutting behavior and, if modeled directly, often 

results in large, complex state machines. These in practice tend to be error-prone and difficult to read and 

understand. As a result, modeling robustness behavior in this way is not scalable for complex industrial systems. To 

overcome these problems, Aspect Oriented Modeling (AOM) can be employed to model robustness behavior as 

aspects in the form of state machines specifically designed to model robustness behavior. In this paper, we present a 

RobUstness Modeling Methodology (RUMM) that allows modeling robustness behavior as aspects. Our goal is to 

have a complete and practical methodology that covers all features of state machines and aspect concepts necessary 

for model-based robustness testing. At the core of RUMM is a UML profile (AspectSM) that allows modeling 

UML state machine aspects as UML state machines (aspect state machines). Such an approach, relying on a 

standard and using the target notation as the basis to model the aspects themselves, is expected to make the 

practical adoption of aspect modeling easier in industrial contexts. We have used AspectSM to model the 

crosscutting robustness behavior of a videoconferencing system and discuss the benefits of doing so in terms of 

reduced modeling effort and improved readability. 

Keywords: Aspect-oriented modeling, UML state machines, Robustness, UML profile, Crosscutting behavior, 

Robustness testing. 

1. INTRODUCTION 

Modeling software functional behavior has always been an important focus of the modeling community 

to support many development activities such as model-based testing (MBT) and automated code 

generation. Regarding model-based testing, which is the specific focus on this paper, much less attention 

has been given to modeling non-functional behavior such that the testing of non-functional properties 

(e.g., safety and robustness) can be automated. Though several UML profiles have been proposed to 
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address the modeling of non-functional properties (including the UML profile for QoS and Fault 

Tolerance [5], the MARTE profile [7], and UMLSec [8]), it is not yet clear whether they can fully 

support test automation.  

Our motivation here is to support model-based robustness testing. An IEEE Standard [10] defines 

robustness as “the degree to which a system or component can function correctly in the presence of 

invalid inputs or stressful environment conditions”. A system should be robust enough to handle the 

possible abnormal situations that can occur in its operating environment and invalid inputs. For example, 

using our industrial case study as an example, modeling such robustness behavior of a 

videoconferencing system (VCS) is to model its behavior in the presence of hostile environment 

conditions (regarding the network and other communicating VCSs), such as high percentage of packet 

loss and high percentage of corrupt packets. The VCS should not crash, halt, or restart in the presence of, 

for instance, a high percentage of packet loss. Furthermore, the VCS should continue to work in a 

degraded mode, such as continuing the videoconference with low audio and video quality. In the worst 

case, the VCS should return to the most recent safe state instead of bluntly stopping execution. Such 

behavior is very important for a commercial VCS and must be tested systematically and automatically to 

be scalable.  

To automate such systematic testing, one can model the system robustness behavior to such events and 

resort to model-based testing (MBT). However, robustness behavior is typically crosscutting many parts 

of the system functional model and, as a result, modeling such behavior directly within the functional 

models is not practical since it leads to many redundancies and hence results in large, cluttered models. 

To cope with this issue, we decided to adopt Aspect-Oriented Modeling (AOM) [11], which provides 

Separation of Concerns (SoC) during design modeling. Crosscutting concerns are modeled as aspect 

models and are woven into a primary model (base model), modeling non-crosscutting concerns. AOM 

can potentially offer several benefits such as: 1) enhanced modularization, 2) easier evolution of models, 

3) increased reusability, 4) reduced modeling effort, and 5) improved readability [11, 12]. 

Our goal in this paper is to provide a complete solution in terms of both aspect and state machine 

features necessary for model-based robustness testing. Furthermore, we want to minimize the effort 

involved in learning a new language over standard UML and enable automated, model-based testing. To 

achieve this, we present a RobUstness Modeling Methodology (RUMM) to model robustness behavior 
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using AOM and assess it on an industrial case study involving a commercial videoconferencing system. 

Such studies are very few in the research literature and are rarely run and reported in a satisfactory 

manner [13]. To the knowledge of the authors, only a few industrial applications of AOM have been 

reported to date [14-17] and had very different objectives than RUMM. An overview of RUMM is 

shown in Figure 1. The core of RUMM is the definition of a UML state machine profile for AOM: 

AspectSM (shown as a white artifact in Figure 1 in RobustnessModeling). We limited our profile to 

UML state machines as: 1) They are the main notation currently used for model-based test case 

generation [18] and are particularly useful in control and communication systems, 2) Like it is often the 

case, our industrial case study exhibits state-based behavior so that it is natural to initially provide 

support for UML state machines. The profile can, however, be extended to other UML diagrams in the 

future, following similar principles. We rely on developing a profile instead of developing a domain 

specific language since, in our case study context as in many others, minimizing extensions to UML is 

expected to ease practical adoption. More thorough discussions on this issue are presented in Section 7. 

Modelers of functional aspects of the system can be different from the ones specifying its robustness 

behavior. The latter make use of AspectSM to model aspect state machines. 

 

Another important part of the RUMM is another UML profile (RobustProfile) shown as a white 

artifact in Figure 1, based on the fault taxonomy defined by [20] and the IEEE standard classification for 

anomalies [21]. The profile is used by a robustness modeler to develop aspect state machines and is 

 

Figure 1 . An overview of RUMM 
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defined specifically to assist in defining test strategies for robustness testing. In addition, the profile 

helps generating test scripts based on classes of faults modeled using the profile. Once again, the profile 

is defined on UML state machines, as they are the main focus of this paper. We follow the widely 

accepted and used definitions in [20] for faults and failures. A fault is an incorrect state of a system or its 

environment in the presence of which the system cannot provide a correct service. Such deviation from 

the correct service is called a failure. A fault type is identified based on a fault taxonomy (white artifact 

in Figure 1) and the UML profile MARTE is used to model it in a UML class diagram (Aspect Class 

Diagram, dark grey artifact in Figure 1). In a subsequent step, aspect class diagrams are used to model 

actual faulty behavior as aspect state machines (AspectStatemachines) using both AspectSM and 

RobustProfile. Finally, robustness models comprising of aspect class diagrams and aspect state machines 

are woven into functional models once again composed of UML class diagrams and state machines. This 

is performed using our weaver implemented in Kermeta [22] and the woven state machines produced by 

the weaver can be used in turn by a model-based testing tool, for instance the TRUST tool [23] or 

QTronics [24], to generate executable test cases. In our case, test cases are generated in Python, which is 

used as a test script language by our industry partner (Cisco, Norway). Note that this paper addresses 

only robustness modeling and details on test case generation and execution are outside the scope of this 

paper.  

The contributions of the paper can be summarized as follows: 1) A RobUstness Modeling 

Methodology (RUMM) that enables the systematic modeling of robustness behavior in a practical and 

scalable way, 2) A UML 2.0 profile (RobustProfile), which is based on a fault taxonomy in [20] and the 

IEEE standard classification for anomalies [21], to model faults, recovery mechanisms, and failure 

states, 3) The application of the MARTE profile in conjunction with RobustProfile to model faulty 

environment conditions, 4) A UML 2.0 profile (AspectSM) to support comprehensive aspect modeling 

for UML 2.0 state machines and enable automated robustness testing. AspectSM supports modeling 

crosscutting on all features of UML 2.0 state machines and supports all basic features of AOSD such as 

pointcuts, introduction, joinpoints, and advice; 5) An empirical evaluation and discussion of the benefits 

of modeling robustness behavior of an industrial system using RUMM and AspectSM; 6) Tool support, 

based on model transformations in Kermeta [22], to automatically weave AspectSM aspects into base 

state machines (modeling the core functional behavior of a system). 
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The rest of the paper is organized as follows: Section 2 provides a case study and a running example 

that we use to explain various concepts in RUMM. Section 3 provides an overview of the RUMM 

methodology. Section 4 describes the terminology, techniques, and tools that are required to understand 

and apply RUMM, including a definition and justification of the AspectSM profile (Section 4.2) and 

details on its corresponding weaver (Section 4.7). Section 5 demonstrates the application of the profile 

using a very simplified version of our industrial case study. Section 6 discusses the benefits achieved 

when applying RUMM to one complete subsystem of our industrial case study. Section 7 discussed 

existing works that are directly related to the objectives of RUMM. Finally, Section 8 reports on future 

work and conclusions. 

2. CASE STUDY AND RUNNING EXAMPLE 

Our case study is part of a project aiming at supporting automated, model-based robustness testing of a 

core subsystem of a video conference system (VCS) called Saturn [23]. The core functionality to be 

modeled manages the sending and receiving of multimedia streams. Audio and video signals are sent 

through separate channels and there is also a possibility of transmitting presentations in parallel with 

audio and video. Presentations can be sent by only one conference participant at a time and all others 

receive it. In this paper, to demonstrate the applicability of RUMM, we focused on this particularly 

important subsystem (Saturn) and left out the other functionalities of the VCS. We selected this 

subsystem because robustness testing is concerned with testing the behavior of VCS in the presence of 

hostile environment situations, which can only be tested when the VCS is in a conference call with other 

systems, which is what Saturn manages. Saturn is complex enough to demonstrate the applicability and 

usefulness of RUMM while still remaining manageable in the context of a case study. To provide simple 

running examples in the next sections, we modeled a reduced version of Saturn where one can only 

establish calls and cannot start or stop presentations. From now onwards, we will refer to this simplified 

Saturn model as S-Saturn to differentiate it from the complete case study model used in Section 6 to 

discuss the benefits of RUMM. 

2.1 Functional models of S-Saturn 

The functional model of S-Saturn consists of a class diagram and a state machine. The class diagram of 

S-Saturn is shown in Figure 2 and is meant to capture information about APIs and system (state) 

variables, which are required to generate executable test cases and oracles in our application context. 

Saturn‟s API is modeled as a set of methods in the Saturn class such as dial() and callDisconnect(). In 
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our case, the parameters of these methods are either modeled as primitive data types (e.g., String) or as 

Enumeration types (e.g., CallProtocol).The state variables of the system are modeled as instance 

variables of classes in the conceptual model. For example, two system variables in the SystemUnit class 

are NumberOfActiveCalls and MaximumNumberOfCalls. NumberOfActiveCalls is an Integer which 

determines the number of VCS that are currently in a Saturn videoconference, whereas 

MaximumNumberOfCalls determines the maximum number of simultaneous calls supported by Saturn. 

 

The state machine modeling the nominal functionality of S-Saturn, referred to as a base state 

machine, is shown in Figure 3. It consists of four simple states. From the Idle state, invoking the dial() 

method of the Saturn class leads to the Connected_1 state, which represents the behavior of the system 

when there is a conference without any presentation with one endpoint. As long as there exists one 

 

Figure 2. Conceptual model of the S-Saturn subsystem 

 

 

Figure 3 . Base state machine for the Saturn subsystem 
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endpoint in the conference and no presentation is transmitting, S-Saturn stays in the Connected_1 state 

and when S-Saturn dials to more endpoints, it transitions to the NotFull state until it connects to the 

maximum number of endpoints it supports and transitions to the Full state. Each simple state has an 

associated state invariant based on the system variables modeled in the conceptual model. For instance, 

the Idle state has the following state invariant:  

self.systemUnit.NumberOfActiveCalls = 0 and self.conference.PresentationMode = 'off' 

2.2 Robustness behavior 

To explain various activities and concepts involved in defining the profiles, we will use a crosscutting 

robustness behavior named „MediaQualityRecovery‟. This behavior is related to the robustness behavior 

of a VCS in the case when media quality falls below an acceptable media quality level and tries to 

recover. The VCS should not crash when the media quality falls below this acceptable level and should 

rather keep on operating at a lower quality level and try to recover from this situation. In the worst case, 

the VCS should cleanup system resources and go back to the most recent safe state, in which the VCS 

was exhibiting normal behavior. In our current case study, an example of a safe state is the Idle state. 

Such a robust behavior is very important in a commercial VCS, as quality expectations are high 

regarding robustness to media quality faults. Recall that the models above are greatly simplified and that, 

in Section 6, we provide results from the complete case study and other important robustness aspects that 

we modeled for Saturn. 

3. ROBUSTNESS MODELING METHODOLOGY 

Our goal is to devise a solution to model robustness behavior, which (1) is complete in terms of aspect 

and state machine features, (2) minimizes the learning curve over standard modeling skills, and (3) 

enable automated, model-based testing. To achieve this, we defined a RobUstness Modeling 

Methodology (RUMM) to model robustness behavior using AOM. Recall from Section 1 that we follow 

the standard definition of robustness provided in the IEEE 610.12 standard [10]. Such robustness is 

considered very critical in many standards such as in the IEEE Standard Dictionary of Measures of the 

Software Aspects of Dependability[10], the ISO‟s Software Quality Characteristics standard [25], and 

the Software Assurance Standard [26] by NASA. The RUMM methodology (Figure 4) is suitable for 

systems, which implement substantial robustness behavior to deal with faulty situations in the 

environment such as communication and control systems. A1 and A2 activities are related to functional 
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modeling, whereas activities A3 to A6 are related to modeling robustness behavior. Activity A7 is 

automated and merges functional (base state machines) and robustness (aspects) models together into a 

complete model. Activities A1 to A6 are related to modeling functional and robustness behavior and are 

manual. In this section, we will explain very briefly each activity. Additional, detailed information will 

be provided in the next sections, followed by the application of RUMM in an industrial case study.  

The first activity (A1) involves developing a conceptual model [27] of a SUT using a UML 2.0 class 

diagram based on the domain analysis of the SUT. In this activity, we model different domain concepts 

of the SUT as classes and relationships between them, which are determined as the result of domain 

analysis. In addition, we model state variables of the SUT as attributes in the class diagram. We also 

model public operations of the SUT (API) and external events in the SUT environment as signal 

receptions. The conceptual model is then used in activity A2 for developing a behavioral model of the 

SUT as one or more UML state machines. Attributes defined in the conceptual model are used for 

various purposes such as defining state invariants and defining guards on transitions. The operations and 

signal receptions defined in the conceptual model are used as triggers on transitions of state machines. In 

model-based robustness testing, one of the most important tasks is the identification and modeling of 

faults, in the presence of which we must test the behavior of the SUT. To systematically identify these 

faults, the development of fault taxonomy is required (A3) and is provided in Section 4.1. The 

application of the fault taxonomy to an industrial system is reported in Section 5.3. Activity A4 requires 

modeling different properties of the system‟s environment, whose violations lead to the various types of 

faults identified from the fault taxonomy (A3). The guidelines for this process are defined in Section 5.4. 

Activity A5 requires modeling robustness behavior as aspect state machines. As described in Section 

4.4, this requires the use of the AspectSM profile. The profile definition is provided in Section 4.2. The 

control flow arrow from activity A5 to activity A4 depicts that multiple robustness aspects can be 

modeled one after another. Once all robustness aspects have been modeled, we may need to define the 

order in which the aspects should be woven into the base state machine developed in activity A2. 

Guidelines for modeling the ordering of aspect state machines as a weaving-directive state machine are 

presented in Section 4.6. Finally, activity A7 weaves aspect state machines with base state machines. For 

this activity, we developed a tool using Kermeta [22], a well-known model transformation environment. 

The details of the tool are presented in Section 4.7 and the weaving algorithm is detailed in Appendix B.  
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4. Concepts, Techniques, and Tools Required for RUMM 

This section describes the concepts, techniques and tools that are needed to apply RUMM. In addition, 

we provide further definitions of the terminology employed as needed. 

4.1 Definitions 

This section provides basic definitions required to understand the rest of the paper. 

4.1.1 Faults and Failures in the context of UML state machines 

While modeling robustness, we model faults in the behavior of the operating environment of a SUT. 

Such behavior of the environment may lead the SUT into abnormal situations. In UML state machines, 

we model faults in the environment as either signal events or change events, on one or more transitions 

in the state machine of the SUT. Firing such transitions may lead the SUT to a degraded state where the 

SUT tries to recover from the fault while still providing some of the required service in a degraded 

mode. If the SUT is successful in recovering from the fault, it then goes back to a normal mode of 

operation. Otherwise, it may go to a failure state or the initial state.    

 

Figure 4. Methodology for robustness modeling (RUMM) 
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4.1.2 Fault classification based on taxonomy 

Many fault taxonomies are proposed in the literature, however most of them are either specific to 

architectures, for instance Service-oriented Architecture (SOA) [28, 29] and Component-based Systems 

[30], or to application domains such as aeronautics and space [31]. We chose the widely-known and 

referenced fault taxonomy presented in [20] because it is very comprehensive and generic, and thus can 

be extended for specific needs as it was required in our case. For instance, we extended the taxonomy to 

accommodate for media quality faults, which are very important for a commercial VCS. The fault 

taxonomy for elementary fault classes provided in [20] is modeled in Figure 5 as a class diagram. Dark 

gray colored classes in Figure 5 show the fault classes we extended for our specific needs. The taxonomy 

states that a fault can be categorized based on different views/perspectives such as based on 

 

Figure 5. High level fault taxonomy 
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SystemBoundary or Dimension. Using SystemBoundary faults can be classified into either InternalFault 

or ExternalFault depending on where they occur. Details on classes of faults are provided in [20]. Given 

our goal, we extended some fault classes in the fault taxonomy to model faults which are specific to the 

VCS. For instance, to provide a support for modeling media-related faults, which are important for an 

industrial VCS, we introduced a view RequirementType (Figure 5) and defined two fault classes: 

FunctionalFault and NonFunctionalFault. We further classified NonFunctionalFault into MediaFault 

(Figure 5), with further subclasses Audio and Video. In addition, we extended ExternalFault, which 

comprises faults in networks and external systems, into NetworkFault and SystemFault subclasses. 

SystemFault corresponds to the faults in one or more VCS communicating with the SUT. Since in 

robustness testing the focus is always on modeling behavior of a SUT in the presence of faults in its 

environment, all fault classes in the taxonomy are valid from the perspective of other VCSs 

communicating with the SUT. For instance, a SoftwareFault in a VCS communicating with the SUT can 

have an effect on the latter‟s behavior. We provide an example use of the taxonomy in Section 5.3 for 

our case study.  

4.2 The AspectSM profile 

Using the AspectSM profile, we model each aspect as a UML state machine with stereotypes (aspect 

state machine). The modeling of aspect state machines is systematically derived from a fault taxonomy 

(Figure 5) categorizing different types of faults (incorrect states [20]) in a system and its environment 

(such as communication medium and other systems). Such a modeling approach models each type of 

robustness behavior separately from the state machines modeling nominal functionality (base state 

machine) and hence results in enhanced separation of concerns. Furthermore, our modeling approach 

models crosscutting behaviors as separate aspect state machines and hence reduce modeling effort when 

compared to modeling robustness directly in combination with nominal behavior. The readability of 

models is then improved as robustness behavior that tends to be redundant when modeled directly is 

clearly separated out and expressed once. Following the general ideas proposed in [32] [19], to model 

aspects using the same notations as the base model, we used UML state machines to model both aspect 

and base models, which is expected to facilitate practical adoption. In industrial applications of model-

based testing, it is always desirable to minimize the need to learn different notations to model different 

testing concerns (such as security and robustness concerns). Though profiles already exist in the 
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literature that allow modeling aspects as UML state machines [1-3, 12, 33], we decided to define our 

own profile to address the three following problems:  

1. Crosscutting behavior can exist on any modeling element in UML 2.0 state machines, but the 

existing profiles and approaches do not support all features, such as state invariants and guards [1, 12, 

33, 34]. These are however crucial in the context of model-based testing, and in particular for 

automated test case generation [35].  

2. Existing modeling approaches using profiles require, for modeling aspect features (such as pointcut 

and advice), to develop new diagrams that are not part of the UML 2.0 standard [3, 4], thus making 

adoption in practical contexts more difficult. Indeed, such profiles require developing specific tool 

support for new diagrams and entails training users on how to build them. As a result, in practice, the 

use of non-standard modeling languages is discouraged.  

3. Some of the existing approaches do not support all basic features of aspect orientation such as 

Introduction.  

More details and discussions on related work are provided in Section 7.2 

The AspectSM profile is the core component of RUMM because modeling robustness as aspect state 

machines is achieved through standard UML extension mechanisms. This profile was developed by 

augmenting many of the concepts in existing UML state machine profiles for AOM (Section 7) in order 

to achieve the specific goal of supporting automated, model-based robustness testing. Although the 

AspectSM profile is developed specifically for robustness testing, its application to other purposes such 

as for security testing should be investigated. In this section, we provide a detailed description of 

AspectSM.  

A UML profile enables the extension of UML for different domains and platforms, while avoiding 

any contradiction with UML semantics. In [36], two main approaches for profile creation are discussed. 

The first approach directly implements a profile by defining key concepts of a target domain, such as 

what was done to define SysML [37]. The second approach first creates a conceptual model outlining the 

key concepts of a target domain followed by creating a profile for the identified concepts. This latter 

approach has been used for defining profiles such as the UML profile for Schedulability, Performance, 

and Time specification (SPT) [38], the QoS and Fault Tolerance specifications [5], and the UML Testing 

Profile (UTP) [39].  
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We used the second approach to define the AspectSM profile since it is more systematic as it 

separates the profile creation process into two stages. In the first stage, we develop a conceptual model 

which helps identify domain concepts and their relationships. In the second stage, we identify the 

mapping between the main concepts and UML modeling elements and define corresponding stereotypes 

on UML metaclasses. Finally, the relationships between stereotypes are obtained from the relationships 

that were identified between the domain concepts in the first stage.  

4.2.1 Domain view of the profile 

The conceptual domain model for AspectSM is shown in Figure 6 as a MOF-based [40] metamodel. The 

conceptual domain model defines aspect-oriented modeling concepts. 

 

 

 

An aspect describes a crosscutting behavior, which in our context is the robustness behavior of a 

system, i.e., the behavior of the system in the presence of faults in its environment, such as packet loss 

and jitter for a network. Since a network can experience packet loss at any time, it is crosscutting the 

SUT functional behavior. Since in our case study, like in many systems with state-driven behavior, the 

behavior of the system is modeled as UML 2.0 state machines, we also model aspects as UML 2.0 state 

machines to facilitate adoption in practice. Robustness behavior, for example the behavior of a SUT in 

the presence of packet loss or corrupt packets, is modeled using one or more state machines.  

A joinpoint is a model element, which corresponds to a pointcut where an advice (additional 

behavior) can be applied [41]. All modeling elements in UML are possible joinpoints, where an advice 

 
Figure 6. Conceptual domain model of the profile 

 

Context Pointcut inv: 

      self.advice.oclIsKindOf(Before)->size()= 0 or  self.advice.oclIsKindOf(Before)->size()=1  

      and  self.advice.oclIsKindOf(Around)->size()=0 or  self.advice.oclIsKindOf(Around)->size()=1  

      and self.advice.oclIsKindOf(After)->size()=0 or  self.advice.oclIsKindOf(After)->size()=1 

 

 
Figure 7. Constraint on Pointcut  
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can be applied [11]. For UML state machines, some examples of joinpoints include a state or a 

transition.  

A pointcut selects one or more joinpoints with similar properties, where advices can be applied. A 

pointcut can have at most one before advice, one around advice or one after advice (Figure 6). All 

pointcuts are expressed with the OCL on the UML 2.0 metamodel. We decided to use the OCL to query 

joinpoints since it is the standard to write constraints on UML models and is also commonly used to 

query jointpoints (modeling elements such as states and transitions). Also, several OCL evaluators are 

currently available that can be used to evaluate OCL expressions such as the IBM OCL evaluator [42], 

OCLE 2.0 [43], and EyeOCL [44]. Furthermore, writing pointcuts as OCL expressions do not require a 

modeler to learn a notation that is not part of the UML standard. In the literature, several alternatives are 

proposed to write pointcuts [1-4, 12] but all of them either rely on languages (mostly based on wildcard 

characters to select joinpoints, for instance, „*‟ to select all joinpoints) or diagrammatic notations which 

are not standard, thus forcing modelers to learn and apply new notations or languages. Using the OCL, 

we can write precise pointcuts to select jointpoints with similar properties. We do so by selecting 

modeling elements (jointpoints) based on the properties of UML metaclasses. This further gives us the 

flexibility to specify pointcuts of varying complexities. For instance, we can specify a very complex 

pointcut based on all properties of a UML metaclass, e.g., a pointcut on the Transition metaclass, 

selecting a subset of transitions in a base state machine for which all properties of the Transition 

metaclass are the same. On the other hand, we can also specify a simple pointcut based on a small subset 

of properties of a UML metaclass. For example, a pointcut on the Transition metaclass selecting all 

those transitions from a base state machine, which have the same guards, though other properties such as 

triggers or effects can be different. In UML state machines, states and transitions are the most important 

modeling elements and all other elements are contained within them such as state invariants in states and 

guards and actions in transitions. Therefore, pointcuts are defined in the context of the UML metaclass 

Vertex, to query states and apply advices on states and its composing elements such as state invariants 

and do, entry, and exit activities. Similarly, pointcuts are also defined in the context of the UML 

metaclass Transition to query transitions and advices are applied on transitions and its containing 

elements such as Guard and Actions. The attributes for the Vertex and Transition metaclasses can be 

obtained from the UML specifications [45]. For example, a pointcut may select all transitions of a state 

machine which have triggers with signal events. This pointcut, defined in Figure 8, is written as an OCL 
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expression on attributes of the UML metaclass Transition and selects all transitions that have triggers 

with signal events on them. 

 

An advice is an additional behavior added at joinpoint(s) selected by a pointcut. This behavior can be 

added as OCL constraints or in the form of state machine modeling elements such as a guard or an 

effect. As most of the concepts in AOM are inspired from aspect-oriented programming (AOP) 

languages such as AspectJ [46], in a similar way in AOM, an advice can be of type before, after, or 

around. A before advice is applied before joinpoint(s), an after advice is applied after joinpoint(s), 

whereas an around advice replaces joinpoint(s). For example, introducing guards on all transitions of a 

state machine that have signal events as triggers is an example of a before advice on transitions. Table 1 

summarizes the semantics of each type of advice for each UML 2.0 state machine modeling element. 

Examples for advice on all UML 2.0 state machine modeling elements are provided in Appendix D. 

An introduction is similar to the inter-type declaration concept in AspectJ [46] and is used in many 

AOM approaches [4, 47-49] to introduce new modeling elements in a base model. In a similar fashion, 

we use introduction in our context to introduce new modeling elements in a UML state machine, e.g., a 

new state or a transition. In our context, we mostly use introduction to introduce transitions in a base 

Context uml::Transition  

       self->select(trigger|trigger.event.oclIsKindOf(SignalEvent)) 

Figure 8. A pointcut in OCL selecting all transitions with signal events  

 

Table 1. Definition of before, around, and after advice 

State machine 

modeling element 

Before advice Around advice After advice 

State  Adding an OCL constraint that will be 

evaluated before entry to one or more states 

selected by a pointcut  

Replacing one or more states selected 

by a pointcut with a new state 

Adding an OCL constraint that will 

be evaluated on leaving one or more 

states selected by a pointcut  

Transition Adding a guard to one or more transitions 

selected by a pointcut. If a guard already 

exists, the additional constraint is conjuncted 

to the existing guard 

Replacing one or more transitions 

selected by a pointcut with a new 

transition 

Adding an effect with one or more 

actions to one or more transitions 

selected by a pointcut  

Trigger Not applicable Replacing one or more triggers on 

transitions selected by a pointcut with 

new triggers  

Not applicable 

Effect Adding a new behavior to the effect  Replacing one or more effects on 

transitions selected by a pointcut with 

a new effect 

Same as Before advice 

Guard and state 

invariant 

Add an additional constraint (conjunct) to the 

guards (or state invariants) selected by a 

pointcut  

Replacing one or more guards on 

transitions (or state invariants) 

selected by a pointcut with a new 

guard (or a state invariant) 

Same as Before advice 

Do, entry, and exit 

activities of a state 

Adding a behavior to the activities selected by 

a pointcut 

Replacing one or more activities in 

states selected by a pointcut with a 

new activity 

Same as Before advice 
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state machine, which correspond to faults in the environment (Section 4.1.1). We also use introduction 

to introduce new states in a base state machine, which are related to a robustness behavior such as the 

state of a system which is operating with degraded performance (Section 4.1.1). 

4.2.2 UML representation 

In this section, we provide details on the AspectSM profile such as details on stereotypes and their 

attributes.  

Profile diagrams: Profile diagrams for AspectSM are presented in Figure 9, Figure 10, and Figure 11. 

Profile diagrams show extension relationships between stereotype classes (denoted <<stereotype>>) 

and UML metaclasses (denoted <<metaclass>>), i.e., relationships showing which stereotypes are 

applied to which UML metaclasses (extension relationship). For example, Figure 10 shows the 

Introduction stereotype applied to Transition, Behavior, Trigger, Constraint and State metaclasses. 

Table 2. Extensions, generalizations, and associations of each stereotype 

Stereotype Extensions Generalizations Associations 

(association name[Cardinality]: Target stereotype class) 

Aspect uml::StateMachine None None 

Pointcut uml::State, uml::Transition, uml::Trigger, 

uml::Constraint, uml::Behavior 

None beforeAdvice[0..1]:Before, afterAdvice[0..1]:After, 

aroundAdvice[0..1]:Around, introduction[0..*]:Introduction 

Advice Same as for Pointcut None pointcut[1]:Pointcut 

Before Same as for Advice Advice Same as for Advice 

After Same as for Advice Advice Same as for Advice 

Around Same as for Advice Advice Same as for Advice 

Introduction Same as for Advice None pointcut[1]:Pointcut 

Table 3. Attributes defined for the <<Pointcut>> stereotype 

Name Type Description 

name[1] String Name of the pointcut 

type[1] SelectionType SelectionType is an enumeration which has All, Subset, and One enumeration literals. The All literal 

means that all modeling elements of a particular type will be selected. For instance, if a pointcut of the 

type All is specified on a state in an aspect, this means that the pointcut will select all states of the base 

state machine. When the type of a pointcut is specified as All, there is no need to specify 

selectionConstraint. When the type of a pointcut is specified as One, the name of the modeling element is 

specified as selectionConstraint. In the case of a pointcut of type Subset, an OCL constraint is specified at 

the UML metamodel level to select a subset of modeling elements. 

selectionConstraint String An OCL constraint on the UML 2.0 metamodel level to select model elements. For instance, a pointcut 

may select all transitions of a state machine which have triggers with signal events. (See for Figure 8 an 

example) 

beforeAdvice[0..1] String A before advice associated with the pointcut. 

afterAdvice[0..1] String An after advice associated with the pointcut. 

aroundAdvice[0..1] String An around advice associated with the pointcut. 

Table 4. Attributes defined for the <<Aspect>> stereotype 

Name Type Description 

name[1] String Name of the aspect 

baseStateMachine[1..*] uml::StateMachine Base state machines on which an aspect is applied. 

Table 5. Attributes defined for the stereotypes related to advice 

Name Type Description 

name[1] String Name of the advice 

constraint[0..1] String A constraint in OCL at the model level as a before, after, or around advice.  
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These diagrams also show relationships between stereotype classes such as associations and 

generalizations. For instance, in Figure 11, Before, After, and Around metaclasses are inheriting from the 

Advice metaclass. To decrease the complexity of profile diagrams, we have not shown associations 

between stereotype classes. However, associations of stereotype classes are listed in Table 2. In addition, 

Table 2 provides information about extensions and generalizations. The extensions column in Table 2 

shows which UML metaclasses a particular stereotype is applied to. For example, the Aspect stereotype 

is applied to the uml::StateMachine metaclass in row 2 of Table 2. The generalizations column 

illustrates the inheritance relationship between stereotype classes. For example, in row 5 of Table 2, the 

Before stereotype is inherited from the Advice stereotype.    

Profile elements description: We now describe each profile element. Extensions, generalizations, 

associations are shown in Table 3. The extension relationship tells on which metaclasses of UML a 

stereotype is applied. For instance, in Table 2, the <<Aspect>> stereotype has an extension relationship 

with the UML metaclass StateMachine. This means that the <<Aspect>> stereotype can be applied to a 

UML state machine. All stereotypes except <<Aspect>> are applied to all modeling elements related to 

UML state machines, though in Table 3 we list only the key metaclasses of UML state machines.  

Attributes associated with the <<Aspect>> stereotype are shown in Table 4. Attributes associated 

with the <<Pointcut>>, <<Before>>, <<After>>, and <<Around>> stereotypes are shown in Table 3 

and Table 5. When applying these stereotypes, attributes must be supplied in accordance to the 

description in these tables. Examples are presented in Appendix D.  

4.2.3 Example of an application of AspectSM 

We present next a small example of the application of AspectSM. On the MediaQualityRecovery aspect 

state machine in Figure 12, the <<Aspect>> stereotype is described in a top-left note (labeled as “1”) in 

the upper left part of Figure 12. This aspect consists of one pointcut on a state: SelectedStates, which 

attribute values are described in the note labeled as “2”. The SelectStatesPointcut applied to the 

SelectedStates state selects all states of the base state machine (Figure 3) except for the Idle state. 

Whenever media quality (in this case, audioQuality) falls below the acceptable level in any of the states 

selected by the SelectStatesPointcut pointcut, the system goes to the RecoveryMode state, which is 

stereotyped as <<Introduction>> indicating that this state will be introduced in the base state machine 

(Figure 3). This is shown as a transition―with the << Introduction>> stereotypes indicating this 

transition will be introduced in the base state machine.  
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Figure 9.  <<Aspect>> stereotype applied to StateMachine metaclass (left) and <<Pointcut>> stereotype applied to various metaclasses (right)  

 

Figure 10. The <<Introduction>> stereotype applied to various metaclasses 

 

 

Figure 11. The <<Advice>> stereotype applied to various metaclasses 
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4.3 RobustProfile 

To help with the definition of robustness test strategies, we defined a UML profile RobustProfile to 

model faults and their properties. In addition, the profile supports the modeling of recovery mechanisms 

when a fault has occurred and the modeling of states a system can transition to when it has recovered. 

The profile has two sub-profiles: the first sub profile, FMProfile, deals with modeling faults and their 

attributes. The second sub-profile, FRProfile, deals with modeling recovery mechanisms and states of a 

system after recovery from a failure. Below, we provide details on the definition of these sub-profiles. 

We reused all the concepts presented in [20] and in addition added a few more concepts presented in 

Section 4.1.2. In addition, we reused all the concepts from the IEEE standard on the classification of 

software anomalies as defined in [21]. All these concepts from the IEEE standard were captured in a 

UML profile so that the standard can be used in combination with UML models. The newly introduced 

concepts are italicized in Table 6 and Table 7. 

4.3.1 Fault Modeling Profile (FMProfile)    

We used the same procedure to define FMProfile as that for AspectSM (Section 4.2). The domain view 

for FMProfile is the same as the fault taxonomy shown in Figure 5 [20]. Below, we provide a UML 

representation of FMProfile, which includes profile diagrams and details on stereotypes and their 

attributes.  

Figure 13 shows a part of the profile diagram for FMProfile that is related to the abstract <<Fault>> 

stereotype class, which corresponds to the Fault class in Figure 5. We show different attributes of 

<<Fault>> and also show its extension relationships to UML metaclasses. Additional information 

 

Figure 12. An example for the application of AspectSM 
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about FMProfile is summarized in Table 6. The <<Fault>> stereotype is applied to the metaclasses 

Transition, Trigger, and Event because each fault in our case occurs when an event associated to trigger 

on a transition is fired (see Section 4.1). Furthermore, according to UML semantics [45], a transition can 

have multiple triggers, and each trigger can model different faults belonging to the same super class. For 

instance, a transition can model multiple external faults (ExternalFault in Figure 5) and one trigger on 

the transition can model one fault from NetworkFault while the other trigger can model one fault from 

SystemFault. This is the reason that the <<Fault>> stereotype class has an extension relationship with 

the Trigger metaclass. The attributes of <<Fault>> are obtained from the IEEE Standard in [21] where 

more details can be found on each attribute. Based on the values of these attributes, test strategies can be 

devised. For instance, the transitions that are stereotyped with <<Fault>> or any of its sub-stereotype 

classes with value High for the severity attribute, could be given priority over other transitions modeling 

faults with lower severity. In addition, complex test strategies can be defined to test the robustness of a 

SUT in the combined presence of faults that belong to different fault classes. For example, a test strategy 

can be devised that can test the behavior of a SUT in the presence of one media fault and one network 

fault at the same time. We also defined stereotypes for all other classes shown in the taxonomy and 

provide detailed information about these stereotypes in Table 6. All stereotypes inherit attributes from 

<<Fault>>.  

This profile also assists in test script generation. For instance, different stereotypes can indicate for 

which entity (for instance, network or other systems) in the environment, test scripts are to be generated. 

For example, the <<NetworkFault>> stereotype indicates that test scripts will be generated for a 

network emulator and the test scripts will emulate a particular fault in the emulator. The 

<<MediaFault>> stereotype indicates that test scripts will be generated to introduce media faults in the 

VCS that is communicating with the SUT. It is important to distinguish between faults for different 

entities in the environment because different scripting languages are normally used to control these 

entities. In our case study, a proprietary scripting language is used for the SUT and other VCS 

communicating with it, whereas Python is used to control a proprietary network emulator used by our 

industry partner.         

4.3.2 Fault Recovery Profile (FRProfile) 

FRProfile deals with modeling recovery mechanisms associated with the occurrence of a fault. The 

domain view of FRProfile is shown in Figure 14. It consists of two main parts. The first part describes 
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recovery mechanisms such as Forward and Backward [20]. The second part deals with the state of the 

system after a recovery mechanism is executed, which could be Initial, Final, Failure, or a Degraded 

state [20].  

 

Figure 13. Profile diagram for FMProfile 

A part of the profile diagram for FRProfile is shown in Figure 15. Both recovery mechanisms and 

systems states refer to states in the SUT state machines and we therefore applied stereotypes 

<<RecoveryMechanism>> and <<SystemState>> on metaclass Vertex. In addition, we defined 

stereotypes for other classes shown in the domain view of the profile such as <<Forward>> and 

<<Degraded>>. These stereotypes inherit attributes from their corresponding super classes, 

e.g.,<<Degraded>> inherit attributes from <<SystemState>>. Details on stereotypes are shown in 

Table 7. 

 

Figure 14. Domain view of FRProfile 
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Figure 15. Profile diagram for FRProfile 

 

 

4.3.3 Example of an Application of RobustProfile 

This section provides a small example of the application of RobustProfile in Figure 16. A change 

event when (not self.audioQuality < audioQualityThreshold) is fired from SelectedStates (stereotyped as 

Table 7. Extensions and generalizations of each stereotype for FRProfile 

Stereotype Extensions Generalizations 

RecoveryMechanism uml::Vertex None 

Forward No Direct Extensions RecoveryMechanism 

Backward No Direct Extensions RecoveryMechanism 

SystemState uml::Vertex None 

Initial No Direct Extensions SystemState 

Final No Direct Extensions SystemState 

Error No Direct Extensions SystemState 

Degraded No Direct Extensions SystemState 

Normal No Direct Extensions SystemState 

 

Table 6.Extensions and generalizations of each stereotype for FMProfile 

Stereotype Extensions Generalizations 

Fault uml::Transition, uml::Trigger, uml::Event None 

DevelopmentFault No Direct Extensions Fault 
OperationalFault No Direct Extensions Fault 
InternalFault No Direct Extensions Fault 
ExternalFault No Direct Extensions Fault 
NaturalFault No Direct Extensions Fault 
HumanMadeFault No Direct Extensions Fault 
HardwareFault No Direct Extensions Fault 
SoftwareFault No Direct Extensions Fault 
MaliciousFault No Direct Extensions Fault 
Non-MaliciousFault No Direct Extensions Fault 
DeliberateFault No Direct Extensions Fault 
NonDeliberateFault No Direct Extensions Fault 
AccidentalFault No Direct Extensions Fault 
IncompetenceFault No Direct Extensions Fault 
PermanentFault No Direct Extensions Fault 
TransientFault No Direct Extensions Fault 
FunctionalFault No Direct Extensions Fault 

NonFunctionalFault No Direct Extensions Fault 

NetworkFault No Direct Extensions ExternalFault 

SystemFault No Direct Extensions ExternalFault 

MediaFault No Direct Extensions NonFunctionalFault 

AudioFault No Direct Extensions MediaFault 

VideoFault No Direct Extensions MediaFault 
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<<Normal>> from RobustProfile indicating that it is a normal state) when the audio quality in a 

videoconference becomes lower than the allowed threshold of audio quality. This change event is 

stereotyped as <<AudioFault>> indicating that it is an audio fault (see the comment labeled C1) and its 

attribute values are provided in the note labeled as “1”. For instance, the effect attribute has value 

Effect::Performance indicating that this fault affects the performance of the system. Recall that the effect 

attribute is defined based on the IEEE standard defined in [21]. The RecoveryMode state in Figure 16 is 

stereotyped as <<Degraded>> from RobustProfile indicating that in this state the system in functioning 

with degraded performance. 

 

4.4 Guidelines to model properties of an environment based on the fault taxonomy 

Figure 17 shows a set of guidelines to model properties of the operating environment of a SUT in a 

UML class diagram, violations of which lead to faults in the environment. These properties are modeled 

based on a fault taxonomy such as the one presented in Section 4.1.2. Faults related to the environment 

are mostly violations of non-functional properties (NFP) such as media properties and network 

properties. UML doesn‟t directly support modeling NFP, therefore we used part of the MARTE profile 

for modeling such properties [7]. The MARTE profile is an extension for UML 2.0 that allows modeling 

real time and embedded systems. MARTE provides a generic framework to model NFP on UML 

models. Moreover, MARTE provides a model library that provides NFP data types for defining various 

NFP properties and specific applications. MARTE also provides mechanisms to extend the model library 

to either extend the existing NFP data types or define entirely new NFP types. 

 

Figure 16. Application of RobustProfile 
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Now we present an example to use the above guidelines (Figure 17) to model a class diagram, which 

captures the properties of the environment. Figure 18 shows a partial class diagram of the 

MediaQualityRecovery robustness behavior (Section 2.2). For this robustness behavior, we identify that 

the Video fault class from the fault taxonomy (Figure 5) is relevant. For this fault class, video frame loss 

in incoming video streams to a VCS is important for robustness testing of the VCS. To model video 

frame loss, we model a property named videoFrameLoss in the MediaQualityRecovery class shown in 

Figure 18. The videoFrameLoss property is modeled as NFP_Percentage defined in MARTE. The 

property holds the percentage of video frame loss in incoming video streams to the VCS.       

 

4.5 Aspect state machine 

An aspect state machine is a standard UML state machine with stereotypes from the AspectSM profile. 

The complete definition of an aspect state machine follows the template shown in Figure 19. 

4.6 Template for Modeling Weaving-Directive state machine 

In this paper, a robustness behavior, such as the behavior of a SUT in the presence of network faults or 

faults in incoming media streams to the SUT, is modeled using one or more related aspects. Each of 

these aspects is modeled as a separate aspect state machine. Aspect state machines should be woven into 

a base state machine in a specific order to ensure that the woven state machine is complete and correct. 

To achieve this, an ordering must be defined by a modeler/tester who instructs the weaver about the 

ordering of aspect state machines. This is modeled as a state machine (denoted weaving-directive state 

machine), containing all aspect state machines as submachine states ordered using UML state machine‟s 

control structure features such as decision, join, and fork. If the ordering doesn‟t matter, then a 

 

Figure 18. An Example of Modeing a Property of Environment 

1. For each fault class indentified in the taxonomy, model one or more faults belonging to the class. 

2. For each fault of a fault class, define an attribute in the aspect class representing the property whose violation leads 

to the particular fault. The type of the property can be defined as: 

a. Using UML standard primitive data types such as Integer, Boolean, etc. 

b. Using the NFP_Types defined by MARTE such as NFP_Percentage 

c. Defining a new NFP_Type using the MARTE‟s extensibility mechanism to define new NFPs.   

 

Figure 17. Guidelines to model faults in aspect class diagram 
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modeler/tester is free to specify any order. The template for the complete definition of a weaving-

directive state machine is shown in Figure 20.  

 

Figure 19. Definition of an aspect state machine 

 

4.7 Weaver 

The aspect state machines are woven into the base state machine by a weaver, which reads the base state 

machine, aspect state machines, and a weaving-directive state machine and produces a woven state 

An aspect state machine A is a UML 2.0 state machine stereotyped as <<Aspect>> consisting of the following UML 2.0 

state machine elements: 

1. I: An initial state 

2. F: A set of one or more final states 

3. S: A set of states, each of one of the following types  

a. A state s in S can be a new state to be introduced in the base model (stereotyped as 

<<Introduction>>)  

b. A state s in S can be a pointcut selecting one, a subset, or all states of a base state machine 

(stereotyped as <<Pointcut>>) 

c. A state s in S without any stereotype can be a state that has one or more new elements introduced 

(stereotyped <<Introduction>>) or as pointcuts (stereotyped as <<Pointcut>>) of the type state 

invariant, do, entry, or exit activity 

4. T: A set of transitions connecting states in the set S, each transition of one of the following types  

a. A transition from an initial state to any type of state described in item 3, which doesn‟t have any 

trigger, guard, or effect 

b. A set of transitions from any state (except from the initial state) to the final state 

c. A transition t in T can be a new transition to be introduced in the base model (stereotyped as 

<<Introduction>>). This type of transition can exist on the following pairs of stereotyped states: 

i. Between a state stereotyped as <<Introduction>> and a state stereotyped as 

<<Pointcut>>  

ii. Between two states stereotyped as <<Introduction>> 

iii. Between two states stereotyped as <<Pointcut>> 

d. A transition t in T is a pointcut selecting one, a subset, or all transitions of a base state machine 

(stereotyped as <<Pointcut>>). This transition can exist on the following pairs of states: 

i. Between a state stereotyped as <<Introduction>> and a state stereotyped as 

<<Pointcut>>  

ii. Between two states stereotyped as <<Introduction>> 

iii. Between two states stereotyped as <<Pointcut>> 

e. A transition t in T can be the transition without any stereotype that has any contained element such as 

a guard, a set of triggers, and an effect as a new element introduced (stereotyped as 

<<Introduction>>) or as a pointcut stereotyped as <<Pointcut>>. This transition can only exist 

between a pair of states stereotyped as <<Pointcut>> 

 

A weaving directive state machine W is a UML 2.0 state machine having the following modeling elements: 

1. An initial state I 

2. A set of final states F 

3. A set of submachine states S, where each submachine state refers to an aspect state machine 

4. A set of transitions T that can be of any of the following types:   

a. A transition from an initial state to a submachine state, which doesn‟t have any trigger, guard, or effect, but can 

have a name. 

b. A set of transitions from submachine states (except from the initial state) to the final state.  

c. A set of transitions T connecting submachine states S using UML 2.0 state machine‟s features such as decision, 

join, and fork to show the order in which the submachine states (aspects) will be woven into the base state 

machine. For instance, in a very simple scenario, if there is an outgoing transition from submachine state S to S‟, 

then S will be woven before S‟. 

 

 Figure 20. Definition of a weaving directive state machine 
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machine. The weaving algorithm is shown in Figure 31 in Appendix B and is based on the same weaving 

approach advocated in [32]. We developed a weaver for AspectSM by using Kermeta [22], which is a 

metamodeling language [22] that allows manipulating models by defining transformation rules at the 

metamodel level. We do not implement any explicit model validation, but we rely on Kermeta‟s model 

validation, which partially prevents violations of UML semantics. Kermeta conforms to OMG‟s 

metamodeling language Essential Meta Object Facility (EMOF) and Ecore [40]. Figure 21 shows the 

architecture of the weaver by using transformations in Kermeta to weave one or more aspect state 

machines into a base state machine. The AspectSM profile is defined on the UML 2.0 metamodel. An 

aspect state machine is defined as a UML 2.0 state machine by applying the AspectSM profile. A base 

state machine is a standard UML 2.0 state machine. Transformations rules in Kermeta are defined on the 

UML 2.0 metamodel and the AspectSM profile. Finally, the Kermeta engine uses the transformation 

rules that read an aspect state machine and the base state machine and weaves the aspect state machine 

into the base state machine. The Kermeta engine then produces a woven state machine, which is again an 

instance of the UML 2.0 metamodel, since the woven state machine is a standard UML 2.0 state 

machine. The woven state machines can then be used as input for automated model-based testing tools 

such as Conformiq Qtronic [24] and Smartesting Test Designer [50]. The weaver is fully automated and 

does not require any additional inputs from the user apart from aspect state machines and a base state 

machine. 

The weaver is developed to support automated, model-based robustness testing, and thus aspect state 

machines are woven into the base state machine, which can be used for test case generation. Currently, 

our approach and its weaver do not support modeling and weaving interactions [12] that may occur 

between different aspects and may lead to conflicts between aspects during weaving. On the other hand, 

our weaver does support to a limited extent the handling of aspect conflicts. In [51], four classes of 

aspect conflicts are discussed: conflicts due to crosscutting specification, aspect-aspect conflicts, aspect-

base conflicts, and concern-concern conflicts. In our application context, i.e., robustness modeling and 

testing, the most relevant conflicts are aspect-aspect conflicts, which are related to handling conflicts 

between aspects. One of the most important aspect-aspect conflicts is the ordering conflict, which is 

related to the order in which aspect state machines should be woven into a base state machine. Ordering 

conflict is most relevant in our context since, for testing purposes, we focus on modeling, weaving, and 

testing one or more related aspects at a time. We specify the ordering between aspect state machines in a 
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UML state machine containing all aspect state machines as submachine states, ordered using state 

machine control structure features: decision, join, and fork.  

The algorithm implemented in the weaver is presented in Appendix B. For the current application, we 

don‟t foresee the need to define other interactions/conflicts, however, in the future we plan to apply 

RUMM to other case studies and as required we will further improve the process. For testing purposes, 

one first has to focus on testing one concern at a time, and may eventually at a later stage test several 

concerns together. For robustness testing, at this stage of the work, we weave faulty behavior of the 

environment (e.g., network) one concern at a time, as the goal is to test robustness behavior one concern 

at a time in order to facilitate debugging.   

 

5. APPLICATION OF RUMM TO OUR SIMPLIFIED INDUSTRIAL CASE STUDY 

In this section, we illustrate the different activities in RUMM using the simplified version of our 

industrial case study (S-Saturn).  

5.1 Activity A1: Develop a conceptual model of a system 

This activity involves developing a conceptual model [27] of a system using UML 2.0 class diagram 

based on the domain analysis of the system. As we discussed in Section 2, the Saturn subsystem deals 

with establishing video conferencing calls, disconnecting calls, and starting/stopping presentation. In 

Section 2, Figure 2 shows what we refer to as a „conceptual model‟ for the system being modeled, which 

is here S-Saturn.  

 

Figure 21. Aspect weaver implemented in Kermeta 
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5.2 Activity A2: Develop a behavioral model of the system as UML state machines 

This activity models the nominal system behavior using UML 2.0 state machines, as illustrated for S-

Saturn in Figure 3, Section 2. This behavioral model is referred to as the „base state machine‟ since all 

aspect state machines are woven into this state machine.  

5.3 Activity A3: Identify relevant faults from fault taxonomy 

A VCS should be robust against possible faults arising in its environment, which includes users, the 

network, and other video conferencing systems. A user interacts with the VCS and sends different 

commands such as starting a video conferencing, stopping a video conference and starting a 

presentation. All the interactions of the VCS with other VCSs take place through the network. Therefore 

the VCS should be robust against faults in the network and other VCSs communicating with it. 

In our case study, we modeled Media faults in the VCSs communicating with the SUT, which are the 

ones that are related to quality of media such as audio, video, and their synchronization. From Figure 5, 

we see sub-classes of Media faults which are Audio Faults and Video Faults. Table 8 provides 

description of Media faults that are relevant for our case study.  

In addition, network faults (NetworkFault, see Figure 5) are important for a VCS. Several types of 

faulty situations can happen in the network that must be dealt by the VCS. We show network faults that 

are relevant to our case study in Table 8.  

 

Table 8. Media faults and their description 

Fault Class Fault Instance Fault Description 

Audio Fault No audio This fault removes audio from a videoconference 

Loss of audio frames This fault introduces loss in audio frames 

Low audio quality This fault reduces audio quality in a videoconference 

Noise in audio This fault introduces noise in audio during a videoconference 

Echo in audio This fault introduces echo in audio 

Mixing of multiple audio This fault mixes multiple audio during a videoconference 

Video Fault No video This fault removes video from a videoconference 

Loss in video frames This fault introduces loss in video frames 

Low video quality This fault reduces video quality in a videoconference 

Media Fault Synchronization mismatch between 

audio and video 

This fault loses synchronization between audio and video in a 

videoconference 

Table 9. Network faults and their description 

Fault Description of the fault 

Packet Loss This fault introduces network packet loss during a videoconference  

Jitter This fault introduces delays in the packet during a videoconference 

Illegal H323 packet This fault introduces illegal/malformed H323 packets in a H323 videoconference  

Illegal SIP packet This fault introduces illegal/malformed SIP packets in a SIP videoconference  

No network connection This fault shut downs the network 

Low bandwidth This fault reduces the bandwidth of the network to less than the bandwidth required by a videoconference  
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5.4 Activity A4: Develop a class diagram for a robustness aspect 

As advocated by the aspect-oriented paradigm, crosscutting concerns (functional or non-functional) [3] 

must be modeled as aspects. Activities A3 and A4 model aspects of the robustness behavior of the 

system using aspect state machines and aspect class diagrams. To do so, we use the AspectSM profile 

using the existing UML state machine notation, as presented in Section 4.2.  

As an example, we demonstrate how to model two representative crosscutting behaviors on S-Saturn. 

The first one models the behavior that checks the quality of media (audio and video) during a 

videoconference and in case the quality falls below a threshold value, specific procedures try to recover 

an acceptable quality. This is achieved by modeling three aspects: 1) First aspect updates state invariants 

of all states with audio quality attributes, 2) The second aspect updates state invariants of all states with 

video quality attributes, 3) The third aspect models the behavior that checks the quality of media (audio 

and video) during a videoconference and in case the quality falls below the threshold value, triggers the 

above-mentioned recovery procedures (MediaRecoveryAspect). Such behavior is redundant in various 

states and hence is a crosscutting behavior. The second crosscutting behavior example factors out 

constraints on input parameters of a call event as an aspect, which are also scattered across many 

transitions in the base state machine. Details about the modeling of these two aspects are presented in 

Appendix A. 

 

Each aspect state machine has an associated class diagram (aspect class diagram), which is an 

augmentation of the conceptual model of the Saturn subsystem shown in Figure 2. This class diagram 

 

Figure 22. Class diagram for media quality attributes 
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models the information about different kinds of faults in the fault taxonomy, such as audio and video 

related faults. Guidelines for such modeling based on a fault taxonomy (Section 4.1.2) are presented in 

Section 4.4. The Audio class defines audio quality attributes based on which different audio faults can be 

introduced, as shown in Figure 22. For instance, the on attribute is a Boolean attribute that determines if 

the audio is present in a videoconference. The Perceptual Evaluation of Speech Quality (PESQ) [52] is a 

metric for measuring audio quality. The audioFrameLoss is an attribute that determines the current 

percentage of audio frames loss during a videoconference and is defined as the MARTE type 

NFP_Percentage. The noiseLevel attribute is defined as the Nfp type NoiseLevel (modeled with 

<<NfpType>> from MARTE), which has two attributes: value that holds current noise value and unit 

contains a unit to measure audio noise such as “decibel”.      

Similarly, the following video quality properties are defined in the class diagram: The on attribute 

determines if the video is present in a videoconference. The videoQuality attribute is a metric for 

measuring video quality and videoFrameLoss determines the current video frame loss during a 

videoconference modeled as MARTE‟s NFP_Percentage.  

5.5 Activity A5: Develop a state machine for the robustness aspect 

5.5.1 Modeling recovery from media faults 

Recall that each robustness aspect is modeled as a UML state machine with stereotypes from AspectSM 

(aspect state machine). Figure 23 shows the details of the MediaQualityRecovery aspect state machine. 

Attribute values of the various stereotypes are presented in Figure 23 in notes. The aspect state machine 

models the robust behavior of a VCS in the case when media quality falls below the acceptable level and 

tries to return to an acceptable media quality level. In the worst case, the VCS cleans up system 

resources and goes back to the most recent safe state (e.g., Idle in our industrial case study), in which the 

VCS was exhibiting normal behavior. Such a robust behavior is very important in a commercial VCS, as 

quality expectations are high regarding robustness to media quality faults.  

On the MediaQualityRecovery aspect state machine, the <<Aspect>> stereotype is described in a 

top-left note (labeled “1”) in the upper left part of Figure 23. This aspect state machine consists of two 

pointcuts on states: SelectedStates and Idle, whose attribute values are described in notes explicitly 

linked to each <<Pointcut>> note. Representing pointcuts as modeling elements of UML statemachines 

(for instance, state in this case) enables the modeling of aspect state machines using standard UML 

notation, while keeping in line with UML semantics. The SelectStatesPointcut (see note 3 for attribute 
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values) applied to the SelectedStates state selects all states of the base state machine (Figure 3) except 

for the Idle state. The SelectIdleState pointcut (see note 5 for attribute values) on the Idle state selects the 

Idle state of the base state machine (Figure 3). Whenever media quality (defined based on the quality 

attributes in Figure 22) falls below the acceptable level in any of the states selected by the 

SelectStatesPointcut pointcut, the system goes to the RecoveryMode state. This is shown as a 

transition―with the <<Introduction>>, <<MediaFault>>, and <<ExternalFault>> stereotypes 

(indicating this transition will be introduced in the base state machine and is modeling media faults 

which are external to S-Saturn) from the SelectedStates state to the RecoveryMode state with nine 

change events. Each change event is defined based on one media quality attribute and determines if this 

attribute falls below the acceptable level and is stereotyped as either <<AudioFault>>, 

<<VideoFault>>, or both . For example, the change event when(not self.audio.on) is fired from 

SelectedStates when the audio is turned off in a videoconference and is stereotyped as <<AudioFault>> 

indicating that it is an audio fault (see the comment labeled C1 and note “2” for attribute values—recall 

that these attributes are defined based on IEEE standard classification for anomalies [21]). If the system 

manages to return to acceptable media quality, it goes back to the normal state shown as a transition 

introduced from the RecoveryMode state to the SelectedStates state stereotyped as <<Normal>> 

(indicating that these states are normal states of S-Saturn) with again nine change events. For example, 

the change event when(self.audio.on) is fired from the RecoveryMode state when the audio is back in the 

videoconference. The state invariant of the RecoveryMode state ensures that S-Saturn remains in 

RecoveryMode as long as any of the faults in the environment exists. This state invariant is simply the 

logical disjunction of all change events modeling the faults (Figure 24). In the other case, if the system 

cannot recover within time time, it disconnects all connected VCS and goes to the Idle state. This is 

modeled as a transition introduced between the RecoveryMode state and the Idle state with a time event 

and an effect DisconnectAll with an opaque behavior, which is a type of behavior defined in UML to 

specify implementation specific semantics. In addition, the Idle state is stereotyped as <<Initial>>, 

which indicates the state of S-Saturn if it is not successful in recovering to an acceptable level of media 

quality. In our context DisconnectAll is a call to Saturn‟s API in a python-based proprietary test script 

language. This call disconnects all connected systems to a VCS.  
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Context Saturn::Media 

    not self.video.on  

    or self.video.videoFrameLoss.value >  self.video.videoFrameLossThreshold.value or self.video.videoQuality > self.video.videoQualityThreshold  

    or not self.audio.on   

    or self.audio.audioFrameLoss.value > self.audio.audioFrameLossThreshold.value or self.audio.noiseLevel.value and self.audio.noiseLevel.value <=   

    self.audio.noiseLevelThreshold.value   

    or self.audio.PESQ > self.audio.pesqThreshold or self.audio.mixingAudio or self.synchronizationMismatch.value >    

    self.synchronizationMismatchThreshold.value 

Figure 24. State invariant for RecoveryMode 

 

Figure 23. The MediaQualityRecovery aspect 
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5.5.2 Constraining input parameter values 

The second crosscutting behavior example we present is constraining parameters of events on 

transitions. Since many transitions in a state machine can have the same trigger and constraints on the 

associated event of the trigger may be the same, redundant constraints can exist in the model and hence 

can be factored out as an aspect. Such constraints can be used to generate test cases exercising the 

system robustness with illegal inputs [53]. The aspect state machine AddGuard shown in Figure 25 

models this crosscutting behavior. The associated class diagram for the aspect state machine is identical 

to Figure 2 as we do not need to model additional properties. This aspect state machine defines two 

pointcuts (SelectSourceStatesOfTransition, SelectTargetStatesOfTransition) on two states and one 

pointcut SelectTransitionsPointcut on the transition between the two states stereotyped as 

<<Pointcut>>. This aspect state machine selects all transitions which have a dial call event and applies 

a before advice AddGuardBeforeAdvice that adds an additional constraint “number.size()=4” to the 

existing guards on the selected transitions. This constraint ensures that the number parameter of the dial 

call event has exactly four digits.  

5.6 Activity A6: Define ordering of aspects using a state machine 

We begin with testing a related set of aspects modeling one robustness behavior. The related set of 

aspects is woven into a base model in a specific order to ensure that the woven model is complete and 

correct. To achieve this, an ordering must be defined between the aspect state machines (activity A5). 

This ordering is also modeled as a state machine (denoted as weaving-directive state machine), 

containing all aspect state machines as submachine states ordered using UML state machine‟s control 

structure features such as decision, join, and fork. The complete template for the definition of a weaving 

 

Figure 25. State machine for the AddGuard aspect 
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directive state machine is shown in Section 4.6.  

The weaving directive state machine for MediaQualityRecovery is shown in Figure 26. Using such 

state machine, we define the ordering of aspect state machines related to media quality. By weaving the 

aspect state machines in this order, the woven state machine will be correct for testing. The reason is that 

MediaQualityAspect introduces the DegradedMode state in the base state machine and the first two 

aspect state machines update audio and video quality constraints in state invariants of all states of the 

base state machine. These constraints should not be updated in DegradedMode because in this state the 

system is working with degraded performance and audio and video quality will not be as expected. If 

MediaQualityAspect is woven before AudioQualityAspect and VideoQualityAspect, the woven state 

machine will contain DegradedMode with wrong state invariants. In this paper, we aim to weave and 

test a set of related aspects (e.g., related to media quality) but not all aspects altogether. In the future, we 

will investigate how to test by weaving different aspects at the same time.   

5.7 Activity A7: Weave aspects with behavioral models 

Finally, the aspect state machines are woven into the base state machine by the weaver, which reads the 

base state machine, aspect state machine(s), and a weaving-directive state machine and produces a 

woven state machine. 

5.7.1 Modeling recovery from media faults 

The woven state machine resulting from applying MediaRecoveryAspect to the Saturn base state 

machine is not easily comprehensible, but it is only meant to be processed by model-based testing tools. 

An excerpt of the woven state machine is however shown in Figure 27 and details regarding the model 

 

Figure 26. A state machine describing ordering of aspects for weaving 
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complexity of woven state machines are summarized in Table 11. From all states except Idle and 

PresentingWithoutCall, transitions to RecoveryMode are added. Each of these transitions contains nine 

change events that can lead to the RecoveryMode state, such as the woven state machine in Figure 27 

which contains a new state RecoveryMode. From NotFull, a transition is added that contains nine change 

events that can lead to the RecoveryMode state such as change events “self.video.videoFrameLoss.value 

> videoFrameLossThreshold.value” and “not (self.audio.on)”. The first change event is triggered when, 

during a videoconference, video frame loss becomes greater than the allowed frame loss 

(videoFrameThreshold), whereas the second change event is triggered when audio disappears from a 

videoconference. These change events are defined in the context of the conceptual class diagrams shown 

in Figure 2 and the class diagram modeling media quality attributes in Figure 22. Recall from Section 

5.4 that both class diagrams are defined in the same package: Saturn. After weaving, the class diagram in 

Figure 22 is merged into the conceptual class diagram in Figure 2. Therefore, after weaving, the 

attributes defined in Figure 23 have the same context: the “Saturn” class in Figure 2. Similarly, six 

transitions from RecoveryMode to all states except Idle and PresentingWithoutCall have been woven 

into the base state machine. Each transition has nine change events that can lead the system back to the 

state it was in before RecoveryMode, e.g., in Figure 27, a transition with six change events is added that 

can lead the system back to the NotFull state. For instance, the VideoFrameLoss change event in Figure 

27 specifies that when video frame loss is within the allowed frame loss and the system was in the 

NotFull state, a VCS transitions from RecoveryMode to NotFull. The change event has two parts: the 

first part (self.video.videoFrameLoss.value  >= 0 and self.video.videoFrameLoss.value  <=  

videoFrameLossThreshold.value) checks if videoFrameLoss is within the allowed threshold. The second 

part is the state invariant of the NotFull state, which checks that active calls in a videoconference is more 

than one (self.systemUnit.NumberOfActiveCalls > 1 and self.systemUnit.NumberOfActiveCalls < 

self.systemUnit.MaximumNumberOfCalls) and S-Saturn is not sending a presentation 

(self.conference.PresentationMode = 'off'). In addition, it checks that S-Saturn is not sending a 

presentation and is not receiving a presentation (self.conference.calls->select(c:Call| 

c.outgoingPresentationChannel->asSequence()->last().Protocol = VideoProtocol::off)->size() = 0 and 

self.conference.calls->select(c:Call | c.incomingPresentationChannel->asSequence()->last().Protocol 

<> VideoProtocol::off)->size() = 0).   
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5.7.2 Constraining input parameter values 

An excerpt of the woven state machine is shown in Figure 28. On transitions with dial() trigger, where 

there were no guards, “number.size()=4” has been added, such as on the transition with the dial() trigger 

from Connected_1 to NotFull in Figure 28. For the transitions with the dial() trigger, where there were 

guards already present in the base state machine, “number.size()=4” has been conjuncted to the existing 

guards, such as the self transition on NotFull in Figure 28.  

 

Figure 27. An excerpt of woven state machine obtained after applying the MediaQualityRecovery aspect 

 

 

VideoFrameLoss =  when (self.video.videoFrameLoss.value  >= 0 and self.video.videoFrameLoss.value  <=  videoFrameLossThreshold.value)  and 

(self.systemUnit.NumberOfActiveCalls > 1 and self.systemUnit.NumberOfActiveCalls < self.systemUnit.MaximumNumberOfCalls) and self.conference.PresentationMode = 

'off' and self.conference.calls->select(c:Call| c.outgoingPresentationChannel->asSequence()->last().Protocol = VideoProtocol::off)->size() = 0 and self.conference.calls-

>select(c:Call | c.incomingPresentationChannel->asSequence()->last().Protocol <> VideoProtocol::off)->size() = 0 ) 

 

Figure 28. An excerpt of woven state machine obtained after applying the AddGuard aspect 
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6. RESULTS FROM THE COMPLETE INDUSTRIAL CASE STUDY 

In this section, we present results and discussions from the entire industrial case study. This is based on 

an augmented and complete version of the simplified case study presented in Section 5. Our goal is to 

assess whether RUMM addresses practical needs when modeling the robustness behavior of a realistic 

system and whether it has the potential to provide significant benefits in terms of reducing modeling 

effort and error-proneness. 

6.1 Behavioral models of Saturn 

Saturn consists of 20 subsystems. Each subsystem can work in parallel to the S-Saturn subsystem shown 

in Figure 3. For each subsystem, we modeled a class diagram to capture APIs and state variables. In 

addition, we modeled one or more state machines to model the behavior of each subsystem. Due to 

confidentiality restrictions, we do not provide names and details of the subsystems. For one subsystem 

(subsystem no 1), which is described in Section 2, we provided a conceptual model in Figure 2. The 

behavioral model of the subsystem number 1 in Table 10 consists of 15 states; four of them are modeled 

as submachine states to reduce model complexity. The state machines of this subsystem are presented in 

Appendix D. For other subsystems, we do not provide class diagrams and state machines, but their 

complexity is summarized in Table 10. It is important to note though the complexity of an individual 

subsystem may not look high in terms of number of states and transitions, all subsystems work in 

Table 10. Complexity of Saturn state machines 

Subsystem Number of states Number of transitions 

States Submachine states 

1 15 4 56 

2 6 0 20 

3 2 0 2 

4 2 0 5 

5 2 0 2 

6 22 7 63 

7 2 0 2 

8 5 0 2 

9 2 0 2 

10 2 0 2 

11 3 0 2 

12 4 0 7 

13 6 0 8 

14 2 0 3 

15 2 0 3 

16 2 0 2 

17 3 0 2 

18 4 0 10 

19 2 0 2 

20 4 0 20 
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parallel to each other and therefore the overall complexity is enormous after combining them. Saturn‟s 

implementation consists of more than three million lines of C code. 

6.2 Modeling robustness behavior 

We modeled three crosscutting behaviors on Saturn. The first two are the same as presented in Section 

5.4 and Section 5.5. In addition, we modeled the behavior of Saturn in the presence of different network 

communication faults (NetworkCommunication) such as packet loss, jitter, and illegal packets in 

videoconference protocols. The NetworkCommunication aspect is presented in Appendix C. 

6.3 Results and discussion 

In this section, drawing lessons learned from our case study, we discuss the benefits achieved by 

applying RUMM to model the robustness crosscutting behavior of Saturn. 

6.3.1 Reduced modeling effort  

Modeling effort can be measured in different ways. One way, which is part of our future research plans, 

is to conduct a controlled experiment that can compare the modeling effort of applying aspect state 

machines with standard UML state machines. An alternate, much less expensive way is to estimate 

modeling effort through a surrogate measure, the number of modeling elements required to be modeled. 

This number can then be compared in aspect state machines and standard UML state machines when 

modeling the same crosscutting behaviors. Table 11 summarizes the modeling tasks involved when 

using and not using aspect state machines for modeling the abovementioned crosscutting behaviors. The 

first two crosscutting concerns are related to updating audio and video constraints (Appendix A) in 86 

states of Saturn. Using our profile we need to model one state in the aspect state machine, whereas 86 

states of Saturn need to be changed if one is modeling this behavior directly. This means a reduction of 

approximately 99% of the number of elements involved in the change. 

The third crosscutting behavior is for modeling media quality recovery. When using AspectSM, we 

need to model three states and three transitions in the aspect state machine (Figure 23). Two transitions 

have nine triggers, each with change events, and one transition has one trigger with a time event. On the 

other hand, without aspect state machines we need to model one new state and 178 new transitions with 

1604 triggers (1603 with change events and one with a time event) in the base state machines of Saturn. 

This means that, assuming modeling effort is roughly proportional to the number of modeling elements, 

there is a 99% effort reduction in modeling triggers and a 98% effort reduction in modeling transitions. 

However, since using aspect state machines requires to model three extra states with the <<Pointcut>> 
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stereotype, there will only be a benefit if modeling 1604 triggers on a state machine is more time-

consuming than modeling three pointcuts. Though this seems to be likely, it would need to be confirmed 

via controlled experiments involving human designers to determine the actual percentage of modeling 

effort saved when using aspect state machines. Similar results were obtained for the Network 

Communication aspect. Results from the last crosscutting behavior in Table 11 (Add Guard) indicate 

that when using aspect state machines we need to model two states and one transition, whereas without 

aspect state machines we need to change 22 transitions in the base state machine of one of subsystems of 

Saturn. 

 

Overall, results on this industrial case study seem to suggest that the modeling effort can be 

significantly reduced when using aspect state machines for modeling crosscutting behavior using 

AspectSM. Such industrial case studies showing the practical advantage of aspect modeling are 

unfortunately still too rare in the research literature and we are therefore not in a position to make 

comparisons with previous works.  

6.3.2 Enhanced separation of concerns  

Modeling crosscutting behavior in UML state machines provides enhanced separation of concerns. For 

instance, the AddGuard aspect state machine models constraints on input parameters of the call event 

“dial” separately from the base state machine. In addition, the MediaQualityRecovery aspect state 

machine (Figure 23) models a complex media quality crosscutting behavior separately from the base 

state machines and other aspect state machines. This means that a modeler, or several of them with 

possibly different expertise, can focus on each crosscutting concern separately and therefore model them 

separately from the core functionality and other crosscutting concerns. This is very important for our 

industrial partner since they have separate groups for different kinds of testing activities including 

Table 11. Modeling tasks when using and not using AspectSM  

Crosscutting 

behavior 

Using aspects Without aspects Effort Saved (%) 

States 

(Added) 

Transition 

(Added) 

Trigger 

(Added) 

States 

(Modified/Added) 

Transitions 

(Modified/Ad

ded) 

Trigger 

(Added) 

States Transitions Trigger 

Updating audio 

constraints  

1 - - 86 (Modified) - - 99% - - 

Updating video 

constraints  

1 -  86 (Modified) - - 99% - - 

Media quality 

recovery  

3 3 19 20 (Added) 178 1604 - 98% 99% 

Network 

communication 

3 3 13 20 (Added) 178 1082 - 98% 99% 

Add Guard 2 1 - 0 22 (Modified) - - 95% - 
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functional testing, video testing, audio testing, and network testing. Using our methodology each group 

can model aspects which are related to their expertise and our tool can then be used to automatically 

weave these aspects with the behavioral base models (models developed by the functional testing group).   

6.3.3 Improved readability  

Modeling crosscutting behavior as aspect state machines keeps the base state machine less cluttered and 

hence easier to read. For instance, the woven state machine after applying MediaQualityRecovery on the 

Saturn base state machine results into a highly complex, cluttered state machine, which is difficult to 

read: Twenty states and 178 new transitions with 1604 triggers are added into the base state machines. 

Our experience is that modeling such complex state machines without aspect state machines is difficult 

to understand for practitioners and error-prone. Using aspect state machines, the base state machine and 

aspect state machines are separate and are less complex in isolation. To confirm this, we recently 

conducted a controlled experiment to measure the readability of aspect state machines using AspectSM 

[54]. Readability was measured based on the identification of defects seeded in state machines (modeled 

with and without AspectSM) and the score obtained when answering a comprehension questionnaire 

about the system behavior. The results of the experiment showed that readability with AspectSM is 

significantly better than that with both flat and hierarchical state machines measured in terms of 

inspecting models to identify seeded defect. In terms of the comprehension questionnaire, the AspectSM 

scores were better than flat state machines, but worse than hierarchical state machines. However, there 

were no significant differences between aspect and hierarchical state machines. In addition, no 

significant differences were observed in terms of the effort required to inspect models and detect defects.  

6.3.4 Easier model evolution  

Model evolution is also expected to be easier when using aspect state machines. For instance, 

AudioQualityAspect and VideoQualityAspect presented in Appendix A change the state invariants of 86 

states in the base state machines. In the future, more media quality measures will likely be introduced, 

and constraints specific to these measures will be required. Using our profile, they will be added only in 

the aspect state machines we defined. Otherwise, with regular state machine modeling, the new 

constraints would need to be added to all nine states of the base model. In systems with hundreds of 

states, changing the state invariants of all states is cumbersome and error prone, which makes model 

evolution difficult. This will be further investigated with controlled experiments in the future. 
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6.3.5 Systematic fault modeling  

Using RUMM, we can systematically identify possible classes of faults for a specific SUT based on the 

proposed fault taxonomy. Furthermore, we can then instantiate specific fault types from the identified 

classes which are considered critical in the SUT environment. We then model them using an aspect class 

diagram according to our guidelines (Section 5.4) and aspect state machines based on RobustProfile 

(Section 4.3). The entire process follows systematic steps to identify and model faults (Figure 4). 

6.4 Limitations 

RUMM is a modeling methodology specifically developed for modeling robustness behavior to facilitate 

automated model-based testing. While developing the methodology, we took into consideration only 

those issues which are relevant for modeling the behavior of a system in the presence of faulty situations 

in the environment. We have not investigated whether other non-functional crosscutting concerns such 

as security and dependability can be successfully modeled using RUMM or an adapted version of it. The 

reason is that RUMM starts with modeling faults based on fault taxonomy for the system environment, 

which may not be necessary, for instance, when modeling security concerns such as logging. In addition, 

since RUMM is developed for model-based testing, we only considered issues which are important to 

support automated testing. For instance, we focused on UML state machines, which are often used for 

the automated testing in control and communication systems which typically exhibit state-driven 

behavior. We also focused on modeling crosscutting behavior on those modeling elements of state 

machines that are mandatory to support test automation such as states (including state invariants, entry, 

exit, and do activities) and transitions (including guard, trigger, and effect). In AspectSM, we write 

pointcuts as OCL queries, and we have not yet empirically evaluated and compared their expressiveness 

when using other related languages and notations such as the one presented in [12]. We used OCL to 

write pointcuts as it is the only standard for writing constraints in UML models, an important advantage 

in industrial contexts. Last, our work for defining interactions and ordering between different aspect state 

machines still requires further investigation.  

7. RELATED WORK 

This section discusses existing works that are directly but often partially related to the objectives of 

RUMM. We analyze and compare published work on robustness modeling methodologies and AOM 

profiles for UML state machines, generic AOM weavers, and testing based on AOM.     
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7.1 Robustness modeling methodologies  

Most of the work related to robustness modeling does not make use of AOM and focus only on 

modeling the behavior of a system when invalid inputs are given to the system, or on modeling 

exceptions in the SUT in a similar fashion to programming languages. For instance, Pintér [55] reports 

on the modeling of exceptions in statecharts in a similar fashion to Java mechanisms for writing 

exceptions (try catch blocks). Exceptions are modeled as events on transitions in statecharts. Such 

statecharts are subsequently used for model checking. Jiang [56] proposed a generic framework to model 

self-healing software, i.e., software which try to recover from faults during their execution. The 

framework supports modeling faults (such as related to invalid inputs to a system), their detection, and 

their resolution with the help of different patterns defined for these purposes. Self-healing is modeled as 

a separate model which is then combined into the functional model. Lei [57] provides a methodology to 

check the robustness of component-based systems in the case of invalid inputs. Test cases are then 

generated for invalid inputs at various states and the robustness of the system is checked. Nebut [58] 

provides an automatic test generation approach based on use cases extended with contracts, after 

transforming them into a transition system. Their approach supports both functional and robustness test 

generation. Robustness test cases are generated by calling use cases when their preconditions are false. 

Entwisle [59] proposed a framework for modeling various domain specific exception types such as 

network exceptions, database exceptions, and web service exceptions using use cases. This approach 

generates exception policy configurations from application models using model transformation and 

finally generates code in Java for exceptions management, such as how to catch a particular exception. 

The work (RUMM) presented in this paper is different from the existing work in robustness modeling 

in one or more of the following ways: 1) It provides a robustness modeling methodology to model 

system robustness in the presence of faults in its environment; this aspect has received little attention in 

the literature. In contrast, most of the existing work focus only on modeling the behavior of a system 

when invalid inputs are given to them [55] [56] [57] [58]; 2) It is aimed at performing automated model-

based robustness testing based on the robustness models for industrial systems. In contrast to the work 

presented in [58], our work is based on UML state machines, which are the main notation currently used 

for model-based test case generation [18]; 3) It relies on modeling standards, in this case UML state 

machines and the MARTE profile [7], to model faulty situations of the environment; 4) It uses AOM to 

model robustness behavior separately from the core, functional behavior, hence decreasing modeling 
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effort by avoiding clutter in models, making them easier to read and decreasing chances of modeling 

errors; 5) We use standard UML extension mechanism, i.e., profile, to support robustness modeling as 

aspects using standard UML state machines, thus eliminating the need to adopt new notations and 

consequently facilitating the practical adoption of RUMM in industry; and 6) RUMM is driven by 

defining a fault taxonomy, thus leading to the more systematic modeling of robustness behavior. The 

process of defining the taxonomy helps in developing a clear and thorough understanding of the different 

kinds of faults that may occur in the environment against which system robustness must be tested.    

7.2 AOM profiles for UML state machines   

Several UML profiles for AOM have been proposed in the literature [60-63] for different UML 

diagrams. Since we defined a profile to define aspects on state machines, we only assess the existing 

AOM work focusing on state machines. We do so along three dimensions: 1) Features of UML state 

machines supported by a profile such as state, state invariant, do activity, entry activity, exit activity, 

transition, guard, trigger, and effect, 2) Features of aspect-orientation supported by a profile or a 

modeling approach such as pointcut, advice, and inter-type declaration (a programming construct in 

AspectJ [46] used to introduce new variables in a base class), 3) Representation used for the aspect-

orientation features. Based on the above selection criterion, we found five related works in the literature 

[1-4, 9]. Table 12 and Table 13 characterize these works with respect to their coverage of important 

UML state machine modeling elements including state, transition and their contained elements, e.g., 

state invariant in state and guard in transition. For instance, in Table 12 and Table 13, the approach 

presented in [1] only supports modeling crosscutting behavior in states and transitions (indicated by a + 

sign), but not in other modeling elements (indicated by a - sign). Certain features of UML state machines 

which are mandatory for performing automated, model-based testing are not supported by any of the 

existing works. This includes state invariants and guards which, as discussed above, are essential to 

generating automated oracles and generating automated test data, respectively.  

Table 14 assesses existing works with respect to the features of aspect-orientation they support such 

as types of advice. In light of these comparisons, one of our profile (AspectSM) contributions is that it 

supports all UML state machines and aspect-orientation features. Table 15 provides information on the 

notations used by each approach for modeling aspect-oriented features, whether UML diagrams or other 

non-standard notations. Table 15 suggests that no existing profile is exclusively based on standard UML 

notation and OCL, thus requiring the learning of additional, non-standard notations or languages, and 
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therefore making it difficult to reuse open source and commercial technology. This is, as discussed 

earlier, highly important in most industrial contexts and strongly affects the adoption of modeling 

technologies. In conclusion, based on the information provided in Table 12, Table 13, Table 14, and 

Table 15, we conclude that our approach supports all necessary features of UML state machines and 

aspect-orientation, which are all required for model-based robustness testing, and do so based 

exclusively on standard modeling notations. In addition, our profile is developed with minimum 

extensions to the UML standard and hence eases adoption by our industrial partner.  

7.3 Comparisons with Generic AOM weavers 

A generic weaver, GeKo, is presented in [19], but the current implementation of the weaver is not 

complete (e.g., it does not support state machines) and its use requires many manual steps such as 

specifying mappings from pointcuts to the base model. Metamodels for pointcut and advice are defined 

by relaxing the UML 2.0 metamodel and are generated automatically from it using a transformation. 

However, there is no support for modeling pointcuts and advice based on the generated metamodels. It 

Table 12. Comparison of supported modeling elements related to a state 

Reference State State Invariant Entry Activity Do Activity Exit Activity 

[1] + - - - - 

[2] + - - - - 

[3] + - - - - 

[4] [6] + - - - - 

[9] + - - - - 

Table 13. Comparison of supported modeling elements related to a transition 

Reference Transition Guard Trigger Effect 

[1] + - - - 

[2] + - - - 

[3] + + + - 

[4] [6] + - - - 

[9] + - + + 

Table 14. Comparison of supported features of aspect-orientation  

Reference Before Advice Around Advice After Advice Pointcut Introduction 

[1] + - + + - 

[2] + - + + - 

[3] + - + + + 

[4, 19] [6] + + + + + 

[9] - + - + - 

Table 15. Comparison of the representation of aspect-orientation features 

Reference Aspect Advice Pointcut Introduction 

[1] State machine State machine elements Non-Standard Not supported 

[2] State machine Non-Standard Non-Standard Not supported 

[3] State machine Non-Standard Non-Standard Non-Standard 

[4] [6] State machine Non-Standard Non-Standard Non-Standard 

[9] Class Activity diagram Non-Standard Not supported 

AspectSM State machine State machine elements and OCL OCL State machine elements 
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therefore requires developing a new diagrammatic support for these metamodels, which will not be 

standard, and consequently will not be supported by UML modeling tools, making the practical adoption 

of the weaver difficult. Another similar generic weaver, SmartAdapter, is presented in [64]. The only 

major difference between GeKo and SmartAdapter is that SmartAdapter requires manually writing 

composition rules for aspect and base models, whereas this is not required by GeKo.  

An aspect composition language (SDMATA/MATA) is presented in [12, 65], which allows modeling 

and composing aspects on UML state machines using patterns. The selection of modeling elements of a 

UML state machine (concept similar to pointcuts) is performed using state diagram patterns. Using state 

diagram patterns, modeling elements are selected using regular expressions defined on diagrammatic 

notations that „resemble‟ UML state machines (defined based on the extension of UML state machine 

metamodel). In AspectSM, we write pointcuts as OCL expressions to query modeling elements of a base 

state machine. To compare expressiveness of OCL expressions for writing pointcuts with regular 

expressions, a controlled experiment is required, which will be conducted in the future. The tool support 

for modeling patterns in SDMATA, however, is still under development. SDMATA requires defining 

composition operators (concept similar to advice) using a language based on graph transformations. As 

for other approaches in the literature, applying SDMATA to industrial contexts, requires learning 

additional, non-standard notations such as state diagram patterns. 

Kermeta [22] is a model-to-model transformation language, which provides the facility to write 

transformation code in aspect-oriented style. Using such facility, aspects can be introduced at runtime on 

metaclasses (e.g., UML Statemachine metaclass) for introducing new attributes and operations on 

metaclasses or for providing definitions of existing operations in metaclasses. However, applying 

Kermeta for our purpose in the industrial setting requires understanding not only details of the UML 

metamodel, but also requires learning a new language for writing aspects. Using AspectSM, we only 

need simple stereotypes with a few attributes, thus reducing the learning curve and improving 

applicability. In other words, achieving a similar objective in Kermeta may require writing hundreds of 

lines of complex transformation code. 

These generic weavers, being applicable to a wide range of modeling languages, are of course 

potentially usable in our context. On the other hand, such flexibility is possible only at the expense of 

additional, significant cost to provide modeling support for the defined AOM concepts. This mostly 

stems from the fact that no standard notation (e.g., UML) and metamodel can be used, as described 
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above. This is why, to facilitate adoption in practice, we decided to rely on a dedicated UML profile 

(AspectSM) to define aspect state machines, thus relying on standard modeling environments.  

7.4 Testing based on Aspect-Orientation Modeling 

There are also works in the literature that deal with testing aspect-oriented programs using UML-based 

models such as state machines [6, 66, 67]. The focus of our work is different since we do not focus on 

testing implementation, which is coded in an aspect-oriented programming (AOP) language such as 

AspectJ [46]. For instance, in our industrial system, we are targeting system level testing of an 

embedded software of a VCS developed by Cisco, Norway, which is implemented in a subset of C 

language. In addition a few approaches such as those presented in [68, 69] focus on testing components 

using AOM to specify their behavior as state machines. The aspects are also specified as state machines 

to be consistent with the notation of the core behaviors (components). The composition rules are 

specified in their own developed language (not following any standard), which specify how to weave 

aspects into the core behavior. These works focus on modeling and testing components when wrong 

inputs are provided to them by their users. Our purpose is also different from these approaches since we 

focus on modeling faulty environment (network and other VCSs) conditions of the system under test 

using aspect state machines and test the behavior of the VCS in the presence of these conditions.        

8. CONCLUSION 

Model-based testing, and in particular automated testing based on state machines, is a very popular 

approach to testing which is supported by an increasing number of open source and commercial tools. 

However, for such testing to be effective, one must not only model nominal behavior but also robustness 

behavior. For example, in control systems, one must model how the system should react to the 

breakdown of sensors or actuators. In communication systems, in a similar way, one must model how 

the system reacts to network problems. Modeling the robustness behavior of systems in state machines is 

often a major source of complexity, thus leading to very large, error-prone models.  

To systematically model robustness behavior for model-based testing and to alleviate its complexity, 

this paper presents a RobUstness Modeling Methodology (RUMM) that uses a UML 2.0 profile to 

support the modeling of robustness behavior as aspects in UML state machines (aspect state machines). 

This profile was developed by augmenting many of the concepts in existing UML state machine profiles 

for AOM in order to achieve the specific goal of supporting automated, model-based robustness testing. 

Furthermore, in order to make our approach more practical in industrial contexts, aspect state machines 
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and their features are modeled using the UML state machine notation and the Object Constraint 

Language (OCL), and therefore does not require that modelers learn new diagrammatic notations or 

languages.   

Another very important contribution of the paper is that we performed and report on an industrial case 

study that suggests that using our methodology and profile may result in significantly reduced modeling 

effort. Such case studies are indeed very rare and, to the knowledge of the authors, none is reported on 

aspect state machines. Results show that modeling crosscutting behavior as a separate model (aspect 

state machine) leads to the modeling of significantly less states, less transitions, and also less changes to 

constraints such as state invariants. Modeling both standard and crosscutting behavior—in our case 

robustness behavior—in one state machine would lead to many redundant modeling elements and yield 

cluttered models that are difficult to understand. As an example, for one of the aspect state machine in 

our case study, we avoided the modeling of 1586 extra triggers on 178 transitions (98% reduction) by 

using our profile. However, this came at the cost of modeling three pointcuts for that aspect state 

machine, which is clearly an additional overhead, but which should be minimized by the fact that they 

are modeled as a UML state machine. It is however expected that the modeling effort required to model 

three pointcuts is significantly less than modeling 1586 triggers. In addition, the results of a recent 

controlled experiment [54] showed that readability of aspect state machines is significantly better than 

standard UML state machines, though there was no significant difference in the effort to inspect both 

types of state machines. Readability was measured based on the identification of defects seeded in state 

machines (modeled with and without AspectSM) and the score obtained when answering a 

comprehension questionnaire about the system behavior.    

We also developed a weaver using the model transformation tool Kermeta [22] to automatically 

produce woven state machines. These can in turn be used for different applications, in our case model-

based testing using state machines in input based on technologies such as Conformiq QTronic [24] and 

SmartTesting Test Designer [50]. In the future, we are planning to integrate the woven state machines 

produced by our weaver with our model-based testing tool TRUST [23] to automatically generate 

robustness test cases. TRUST [23] has already been used for generating executable functional test cases 

at Cisco, Norway. In the future, we will investigate to which extent our profile is applicable for other 

types of crosscutting behaviors to be modeled as state machines. In addition, we need to investigate the 

effort required by developers and testers to learn and apply RUMM. A series of controlled experiments 
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and case studies are required for this purpose, which we are planning to conduct in the future. Our work 

on modeling interactions and ordering between various aspects still needs further investigation and 

evaluation.    
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11. APPENDIX A: ASPECTS FOR UPDATING STATE INVARIANTS 

In this section, we present the details of AudioQualityAspect and VideoQualityAspect. These aspects 

update state invariants in the base state machine (Figure 3) with audio and video quality constraints. 

11.1 Updating state invariants with audio quality attributes 

The aspect in Figure 29 updates state invariants for all simple states where the system is in a 

videoconference. In Figure 29, the <<Aspect>> stereotype is applied on the state machine, whose 

attributes show that this aspect is applied to the base state machine (Saturn::Saturn) in this case. A 

<<Pointcut>> stereotype is applied on the state invariant of the state 

UpdateStateInvariantsWithAudioQuality. This pointcut applies a before advice on all states selected by 

the pointcut and this results into adding an additional constraint (see note 3). The woven state machine 

looks the same as the base state machines except that the state invariants of the selected states are 

updated.  

11.2 Updating state invariants with video quality attributes 

The aspect in Figure 30 updates the state invariants of states selected in the base state machine by the 

<<Pointcut>> stereotype  applied on the state invariant of the state 

UpdateStateInvariantsWithVideoQuality in Figure 30 according to the before advice defined based on 

the video quality attributes modeled in Figure 26. The on attribute is a Boolean attribute that determines 

if the video is present in a videoconference. The videoQuality is a video quality metric for measuring 

 

Figure 29. State machine for AudioQualityAspect 
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video quality and is defined as an Integer. The videoFrameLoss is an Integer attribute that determines 

the current video frame loss during a videoconference.  

The <<Before>> stereotype applied on the state invariant of the state 

UpdateStateInvariantsWithVideoQuality in Figure 30 adds an additional conjunct to state invariants of 

all selected states (see note 3 for attribute values). The woven state machines looks exactly the same as 

the base state machines in as only state invariants changed in this case. 

 

 

 

  

 

Figure 30. State machine for the VideoQualityAspect 
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12. APPENDIX B:  WEAVER ALGORITHM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WeaveStateMahine (b: StateMachine, A: Set(StateMachine), w:StateMachine):StateMachine 

/* 

This algorithm takes in input a base state machine b, a set of aspect state machines, and a weaving-directive state 

machine and outputs a woven state machine. All inputs and the output are instances of UML 2.0 State machine 

metaclass.   

*/ 

Inputs: 

b: A base state machine, which is a UML 2.0 state machine.  

A:  A set of aspect state machines. Each aspect state machine is a UML 2.0 state machine. 

w: A weaving directive state machine, which consists of a set of submachine states A‟. Each submachine state a‟ 

in A‟ corresponds to the an aspect state machine in the set A. w is also a UML 2.0 state machine. 

Output: 

o: A woven state machine, which is a UML 2.0 state machine. 

Algorithm: 

1.  Traverse sub machines states (aspects) according to the order specified in w 

a. For each sub machine state a‟ in A‟ do  

i. Start with the initial state and go to the first state s in a‟ 

1. For each t in s.outgoing   /* For every outgoing transition of s */ 

a. If (s.stereotype = „<<Pointcut>>‟) 

i. Call WeavePointcut(s) 

b. Else If (s.stereotype = „<<Introduction>>‟) 

i. Call WeaveIntroduction(s) 

c. Else  

i. Call WeaveNoStereotype(s)  

Figure 31. Weaving algorithm 
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Function WeavePointcut(s:State) 

/* 

This function takes input a state with the stereotype <<Pointcut>> and queries the base state machine with the pointcut 

expression and calls other functions to apply advices on the base s   

 

*/ 

1. For each t in s.outgoing 

a. If t.target.stereotype = „<<Pointcut>>‟ 

i. If t.stereotype = „‟ 

1. Check which model elements (such as guard, trigger, or effect) related to the transition 

that has a stereotype (<<Introduction>> or <<Pointcut>>) 

2. If the model element has a stereotype  <<Pointcut>>  

a. Query the base model b with the selectionConstraint attribute of the pointcut  

b. Apply before, after, or around advice /introduction on the modeling elements 

selected by the pointcut 

c. Call RepeatComposition(t.target) 

ii. Else If t.stereotype  = „<<Pointcut>>‟ 

1. Call WeavePointcutOnState(s)  

2. Call WeavePointcutOnTransition(t)  

3. Call WeavePointcutOnState(t.target)  

4. Call RepeatComposition(t.target) 

iii. Else  

1. Call WeavePointcutOnState(s)  

2. Call WeavePointcutOnState(t.target) 

3. Add the new transition t as specified in the aspect between the states selected by above 

two steps  

4. Call RepeatComposition(t.target) 

b. Else If t.target.stereotype = „<<Introduction>>‟  

i. If t.stereotype = „‟ 

1. Not allowed 

ii. Else If t.stereotype=‟<<Introduction>>‟ 

1. Call WeavePointcutOnState(s)  

2. Call WeavePointcutOnTransition(t)  

3. Introduce the state t.target as specified in the aspect 

4. Call RepeatComposition(t.target) 

iii. Else  

1. Call WeavePointcutOnState(s)  

2. Introduce the state t.target as specified in the aspect  

3. Add the new transition t as specified in the aspect between the states selected by above 

two steps  

4. Call RepeatComposition(t.target) 

c. Else 

i. Not allowed 

 

 

 

Figure 32. The WeavePointcut() function 
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Function Introduction(s:State)   

/* 

This function takes input a state with the stereotype <<Introduction>> and introduces the new elements in the base model 

as specified by the <<Introduction>> stereotype. 

*/ 

1. For each t in s.outgoing 

a. If t.target.stereotype = „<<Pointcut>>‟ 

i. If t.stereotype = „‟ 

1. Not allowed 

ii. Else If t.stereotype  = „<<Pointcut>>‟ 

1. Introduce the state s as specified in the aspect 

2. Call WeavePointcutOnState(t.target) 

3. Call WeavePointcutOnTransition(t)  

4. Call RepeatComposition(t.target) 

iii. Else  

1. Introduce the state s as specified in the aspect 

2. Call WeavePointcutOnState(t.target) 

3. Add the new transition t as specified in the aspect between the states selected by above 

two steps  

4. Call RepeatComposition(t.target) 

b. Else If t.target.stereotype = „<<Introduction>>‟  

i. If t.stereotype = „‟ 

1. Not allowed 

ii. Else If t.stereotype=‟<<Introduction>>‟ 

1. Introduce the state s as specified in the aspect  

2. Introduce the state t.target as specified in the aspect  

3. Call WeavePointcutOnTransition(t) 

4. Call RepeatComposition(t.target) 

iii. Else  

1. Introduce the state s as specified in the aspect 

2. Introduce the state t.target as specified in the aspect   

3. Add the new transition t as specified in the aspect between the states selected by above 

two steps 

4. Call RepeatComposition(t.target) 

c. Else  

i. Not allowed 

 

 

 Figure 33. The Introduction() function 
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 Function WeaveNoStereotype(s:State) 

/* 

This function takes input a state without any stereotype from an aspect state machine and applies advice/introduction on the 

base state machine as specified in the modeling elements contained within the state.  

*/ 

1. For each t in s.outgoing  /* for each transition going out of s */ 

a. If t.target.stereotype = „<<Pointcut>>‟ 

i. Not allowed 

b. Else If t.target.stereotype =‟<<Introduction>>‟ 

i. Not allowed 

c. Else 

i. Check which model elements (such as state invariant, do, entry, or exit activity) related to the state s 

that has a stereotype (<<Introduction>> or <<pointcut>>) 

ii. If the model element has a stereotype  <<pointcut>>  

1. Query the base model b with the selectionConstraint attribute of the pointcut  

2. Apply before, after, or around advice /introduction on the modeling elements selected by 

the pointcut 

iii. Repeat steps i and ii for the state t.target  

iv. Call RepeatComposition(t.target) 

 

 

Figure 41 (a). The WeaveNoStereotype() function 

 
Function RepeatComposition(s:State) 

/* 

 This function traverses the aspect state machine and calls appropriate functions to evaluate pointcut and introduction 

*/ 

1. If (s.isFinal !=true) /* checks if s is a final state */ 

a. If s.stereotype = „<<Pointcut>>‟ 

i. Call WeavePointcut (s) 

b. Else If s.stereotype = „<<Introduction>>‟ 

i. Call WeaveIntroduction (s) 

c. Else  

i. Call WeaveNoStereotype (s) 

Figure 41 (b). The RepeatCompostion() function 

Function WeavePointcutOnState(s:State) 

/* 

This functions queries the base state machine according to the query expression specified in the pointcut and applies the 

advice as specified by the pointcut 

*/ 

1. Query the base model b according to the query specified in the selectionConstraint attribute of the pointcut on state s. 

2. Apply after, before, and/or around advices as specified on stereotypes <<After>>, <<Before>>, and <<Around >> to the 

model elements selected by the selectionConstraint in step 1. 

Figure 34 (c). The PointCutOnState() function 
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Function WeavePointcutOnTransition(t) 

/* 

This function queries the base model according to the query expression specified in the pointcut and applies the advice as 

specified by the pointcut 

*/ 

1. Query the base model b according to the query specified in the selectionConstraint attribute of the pointcut on state s. 

2. Apply after, before, and/or around advices as specified on stereotypes <<After>>, <<Before>>, and <<Around >> to the 

model elements selected by the selectionConstraint in step 1. 

Figure 35. The PointcutOnTransition() function 
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13. APPENDIX C: NETWORK COMMUNICATION ASPECT 

13.1 Description of the Aspect 

The purpose of this aspect is to model the behavior of a system in the presence of various network faults. 

A system is supposed to work even under the presence of faults and unwanted conditions (degraded 

mode). By degraded mode, we mean that the system should continue to behave as in the non-faulty 

situation, except that the quality (such as audio and video) or the performance is degraded such as slow 

speed of running applications on a videoconference system. The system must try to recover from the 

degraded mode and go back to normal mode of operation. In the worst case, the system must return to 

the safe state. 

13.2 Network Robustness (NR) Aspect (Aspect Class Diagram) 

Figure 36 shows a class diagram that models the robust behavior of the system in the presence of 

different network faults defined based on the fault taxonomy (Figure 5) such as jitter, packet loss, low 

bandwidth, illegal packets for videoconferencing protocols (SIP and H323), and in the case of no 

network connection. Six network properties are modeled in the class diagram that models different faulty 

situations. Five network properties are modeled as non-functional (NF) types using the MARTE profile 

[7]: packet loss, jitter, bandwidth, and percentage of illegal packets for H323 and SIP protocols. The 

network connection is modeled as a Boolean attribute.  

13.2.1 PacketLoss 

This property is defined to introduce packets loss during communication and is measured in terms of 

percentage. This property is defined to be of the MARTE type NFP_Percentage because packet loss is 

always measured in percentage and the NFP_Percentage is defined in the MARTE profile for this 

purpose.  

13.2.2 Jitter 

This property introduces delay between network packets. This delay is introduced in the unit of 

millisecond (ms) and checks robustness of a videoconferencing system in the presence of delayed 

network packets. This property has two attributes: value of type Integer and unit of the MARTE type 

TimeUnitKind. The type TimeUnitKind of the MARTE profile is used to define units for time values 

such as millisecond and microsecond. We chose this data type so that a modeler can chose appropriate 

unit to measure unit. We set the default value of the unit attribute to millisecond (ms).  
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13.2.3 Bandwidth 

This property is used to change the bandwidth of the network and is measured in terms of 

Kilobytespersecond (Kbps) and checks robustness of a videoconferencing system in the presence of low 

bandwidth than required by a videoconference. This property has two attributes: value of type Integer 

and rate of the MARTE type DataTxRateUnitKind. The type DataTxRateUnitKind is used to define units 

for data transmission such as KiloBytesPerSecond (Kbps) and MegaBytesPerSecond (Mbps). We chose 

this data type because it allows a modeler to change unit of data transmission as required. We set the 

default value of the rate attribute to KiloBytesPerSecond (Kbps).  

13.2.4 IllegalH323PacketPercent 

This property is used to add illegal packets for the H323 videoconferencing protocol during a 

videoconference to see how a VCS behaves. This property is of type NFP_Percentage.    

13.2.5 IllegalSIPPacketPercent 

This property is used to add illegal packets for the SIP videoconferencing protocol during a 

videoconference to see how a VCS behaves. This property is of type NFP_Percentage.   

 

Figure 36.  Class diagram for the NR aspect 

13.3 Aspect State Machine for NR 

The aspect state machine for the NR aspect is shown in Figure 37. The „NetworkCommunication‟ state 

machine is stereotyped as „Aspect‟ and the attributes associated with the stereotype are shown in the note 

labeled 1. The first attribute name specifies the name of the aspect, which is NetworkCommunication in 

this case. The second attribute baseStateMachine specifies the base state machine on which the aspect 

will be woven, which is Saturn (Figure 3) in this case.     
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Figure 37.  State machine for the ‘NetworkCommunication’ aspect 

A pointcut named „SelectStatesPointcut‟ on the state „SelectedStates‟ is shown in Figure 37 (see note 

3), which selects all states of the base state machine except for the Idle and PresentingWithoutCall 

states. New transitions modeling robust behavior of the system from all states selected by the 

„SelectStatesPointcut‟ pointcut to a new state „DegradedMode‟ stereotyped with the <<Introduction>> 

and <<ExternalFault>> stereotypes are introduced. These robustness transitions are modeled as UML 

change events and stereotyped with the <<NetworkFault>> stereotype, which indicates that this event is 

modeling a network fault. For instance, when „when (not self.networkConnection)‟ in any of the states 

selected by the pointcut, the system goes to the state „DegradedMode‟, which is stereotyped as 

<<Introduction>> indicating that this state will be introduced in the base state machine. In this state, 

the system tries to recover the network connection. If the system is successful in recovering the network 

connection, the transition with the change event „when( self.networkConnection)‟ takes the system back 

to the original state, which is one of the states selected by SelectedStates state stereotyped <<Normal>> 

to indicate that this state is a normal state of the system. If the system cannot recover within time t, then 

the system disconnects all the systems and goes to the „Idle‟ state stereotyped as <<Initial>> indicating 

that this is the initial state of the system. This is modeled as a new transition from the „DegradedMode‟ 

state to the „Idle‟ state, with a time event after(t), and a new effect „DisconnectAll‟ with an opaque action 

„disconnect‟, which disconnects all the connected systems to the system. 
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14. APPENDIX D: EXAMPLES 

In this section, we provide examples for advice on various UML state machine modeling elements such 

as states, transitions, and effects. All examples presented in this section are based on the state machine 

shown in Figure 3. 

14.1 Advice on states 

In this section, we present examples of before, after, and around advice on states. 

14.1.1 Before advice on state 

An example of a before and an after advice on states is shown in Figure 38. An aspect AdvicesOnStates 

is modeled that has one state SelectedStates with stereotypes Pointcut, Before, and After in Figure 38. 

This pointcut selects all simple states in all regions of a state machine excluding the states Idle and 

 

Figure 38. An example of before and after advice on a state 

 

Figure 39. An example around advice on a state 
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PresentingWithoutCall and applies CheckNumberOfCallsBeforeAdvice and 

CheckNumberOfCallsAfterAdvice advice on the selected states.  

14.1.2 Around advice on states  

An example of an around advice on a state is shown in Figure 39. A pointcut with the name 

SelectIdleStatePointcut is applied on state Initialized, which selects a simple state with the name Idle 

and applies an around advice ReplaceIdleStateAroundAdvice that replaces the Idle state with a new state 

named Initialized. This is achieved by modeling a new state Initialized and applying a pointcut and 

around advice on it. Details of the pointcut and the around advice are shown in Figure 39. 

14.2 Advice on transitions 

In this section, we present examples of advice on transitions. 

14.2.1 Before advice on transitions 

An example of a before advice on a transition is shown in Figure 40. Three pointcuts are defined in the 

aspect: two on states with name TriggerSourceStatesPointcut and TriggerTargetStatesPointcut to select 

source and target states of all transitions, which have a trigger with the event name dial, one pointcut on 

the transition (SelectTransitionsPointcut) that selects all transitions, which have a trigger with the event 

name dial and applies an around advice that adds a guard to the selected transitions. 

14.2.2 Around advice on transitions 

An example of an around advice on transitions is shown in Figure 41. Three pointcuts are same as in the 

previous example. In this case, an around advice is applied on all selected transitions by the 

SelectTransitionsPointcut pointcut, which replaces the dial call event with the EndpointConnect signal 

event. This is achieved by adding the EndpointConnect signal on the transition with the pointcut and the 

around advice as shown in Figure 41. 

14.2.3 After advice on transitions 

An example of an after advice on a transition is shown in Figure 42. Three pointcuts are same as in the 

previous example. In this case, an after advice is applied on all selected transitions by the 

SelectTransitionsPointcut pointcut, which adds a new effect IncrementNumberOfCalls. This is achieved 

by adding the effect on the transition with the pointcut and the around advice as shown in Figure 42.   
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14.3 Advice on triggers  

 

Figure 40. An example of a before advice on a transition 

 

Figure 41. An example of around advice on transitions 

 

Figure 42. An example of after advice on transitions 
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In this section, we present examples of advice on triggers.  

14.3.1 Around advice on triggers 

An example of an around advice on triggers is shown in Figure 43. The pointcuts on the states are same 

as in the previous example, however, in this example, <<Pointcut>> and <<Around>> stereotype are 

applied on trigger. In this case, an around advice is applied on all selected transitions by the 

SelectTransitionsPointcut pointcut on trigger, which replaces the dial call event with the 

EndpointConnect signal. This is achieved by adding the EndpointConnect signal on the transition with 

the pointcut and the around advice stereotypes.  

 

14.4 Advice on guards 

In this section, we present examples of advice on guards 

14.4.1 Before and after advice on guards.  

An example of a before/an after advice on guards is shown in Figure 44. The 

TriggerSourceStatesPointcut and TriggerTargetStatesPointcut pointcuts are same as in the previous 

examples, however, in this example, <<Pointcut>> and <<Before>> stereotypes are applied on guard. 

In this case, a before advice is applied on all selected transitions by the SelectTransitionsPointcut 

pointcut on guard that conjuncts an additional constraint to the existing guard as shown in Figure 44.  

 

Figure 43. An example of a before advice on a trigger 
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14.4.2 Around advice on guards 

An example of an around advice on guards is shown in Figure 45. The TriggerSourceStatePointcut and 

TriggerTargetStatePointcut pointcuts are same as in the previous examples, however, in this example, 

<<Pointcut>> and <<Around>> stereotypes are applied on guard. In this case, an around advice is 

applied on all selected transitions by the SelectTransitionsPointcut pointcut on guard that replaces the 

existing guard with a new guard.  

14.5 Advice on effects 

In this section, we present examples of advice on effects.  

 

 

Figure 44. An example of a before advice on guards 

 

Figure 45. An example of around advice on guards 
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14.5.1 Before advice on effects 

An example of a before advice on effects is shown in Figure 46. The TriggerSourceStatesPointcut and 

TriggerTargetStatesPointcut pointcuts are same as in the previous examples, however, in this example, 

<<Pointcut>> and <<Before>> stereotypes are applied on effect. In this case, a before advice is 

applied on all selected transitions by the SelectTransitionsPointcut pointcut on effect that adds the 

additional behavior to the existing behavior.  

14.5.2 Around advice on effects.  

An example of around advice on effects is shown in Figure 47. The TriggerSourceStatesPointcut and 

TriggerTargetStatePointcut pointcuts on states are same as in the previous examples, however, in this 

 

Figure 46. An example of a before advice on effect  

 

Figure 47. An example of around advice on effect 
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example, <<Pointcut>> and <<Around>> stereotypes are applied on effect. In this case, a before 

advice is applied on all selected transitions by the SelectTransitionsPointcut pointcut on effect that 

replaces the existing effect with an effect IncrementNumberOfActiveCalls as shown in Figure 47.  

 


