
Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

1

Modeling Robustness Behavior Using Aspect-Oriented

Modeling to Support Robustness Testing of Industrial

Systems

Shaukat Ali, Lionel C. Briand, Hadi Hemmati

Simula Research Laboratory

P.O.Box 134, 1325, Lysaker, Norway

Department of Informatics, University of Oslo, Oslo, Norway

{shaukat,briand,hemmati}@simula.no

ABSTRACT

Model-based robustness testing requires, precise and complete behavioral, robustness modeling. For example state

machines can be used to model software behavior when hardware (e.g., sensors) breaks down and be fed to a tool to

automate test case generation. But robustness behavior is a crosscutting behavior and, if modeled directly, often

results in large, complex state machines. These in practice tend to be error-prone and difficult to read and

understand. As a result, modeling robustness behavior in this way is not scalable for complex industrial systems. To

overcome these problems, Aspect Oriented Modeling (AOM) can be employed to model robustness behavior as

aspects in the form of state machines specifically designed to model robustness behavior. In this paper, we present a

RobUstness Modeling Methodology (RUMM) that allows modeling robustness behavior as aspects. Our goal is to

have a complete and practical methodology that covers all features of state machines and aspect concepts necessary

for model-based robustness testing. At the core of RUMM is a UML profile (AspectSM) that allows modeling

UML state machine aspects as UML state machines (aspect state machines). Such an approach, relying on a

standard and using the target notation as the basis to model the aspects themselves, is expected to make the

practical adoption of aspect modeling easier in industrial contexts. We have used AspectSM to model the

crosscutting robustness behavior of a videoconferencing system and discuss the benefits of doing so in terms of

reduced modeling effort and improved readability.

Keywords: Aspect-oriented modeling, UML state machines, Robustness, UML profile, Crosscutting behavior,

Robustness testing.

1. INTRODUCTION

Modeling software functional behavior has always been an important focus of the modeling community

to support many development activities such as model-based testing (MBT) and automated code

generation. Regarding model-based testing, which is the specific focus on this paper, much less attention

has been given to modeling non-functional behavior such that the testing of non-functional properties

(e.g., safety and robustness) can be automated. Though several UML profiles have been proposed to

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

2

address the modeling of non-functional properties (including the UML profile for QoS and Fault

Tolerance [5], the MARTE profile [7], and UMLSec [8]), it is not yet clear whether they can fully

support test automation.

Our motivation here is to support model-based robustness testing. An IEEE Standard [10] defines

robustness as “the degree to which a system or component can function correctly in the presence of

invalid inputs or stressful environment conditions”. A system should be robust enough to handle the

possible abnormal situations that can occur in its operating environment and invalid inputs. For example,

using our industrial case study as an example, modeling such robustness behavior of a

videoconferencing system (VCS) is to model its behavior in the presence of hostile environment

conditions (regarding the network and other communicating VCSs), such as high percentage of packet

loss and high percentage of corrupt packets. The VCS should not crash, halt, or restart in the presence of,

for instance, a high percentage of packet loss. Furthermore, the VCS should continue to work in a

degraded mode, such as continuing the videoconference with low audio and video quality. In the worst

case, the VCS should return to the most recent safe state instead of bluntly stopping execution. Such

behavior is very important for a commercial VCS and must be tested systematically and automatically to

be scalable.

To automate such systematic testing, one can model the system robustness behavior to such events and

resort to model-based testing (MBT). However, robustness behavior is typically crosscutting many parts

of the system functional model and, as a result, modeling such behavior directly within the functional

models is not practical since it leads to many redundancies and hence results in large, cluttered models.

To cope with this issue, we decided to adopt Aspect-Oriented Modeling (AOM) [11], which provides

Separation of Concerns (SoC) during design modeling. Crosscutting concerns are modeled as aspect

models and are woven into a primary model (base model), modeling non-crosscutting concerns. AOM

can potentially offer several benefits such as: 1) enhanced modularization, 2) easier evolution of models,

3) increased reusability, 4) reduced modeling effort, and 5) improved readability [11, 12].

Our goal in this paper is to provide a complete solution in terms of both aspect and state machine

features necessary for model-based robustness testing. Furthermore, we want to minimize the effort

involved in learning a new language over standard UML and enable automated, model-based testing. To

achieve this, we present a RobUstness Modeling Methodology (RUMM) to model robustness behavior

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

3

using AOM and assess it on an industrial case study involving a commercial videoconferencing system.

Such studies are very few in the research literature and are rarely run and reported in a satisfactory

manner [13]. To the knowledge of the authors, only a few industrial applications of AOM have been

reported to date [14-17] and had very different objectives than RUMM. An overview of RUMM is

shown in Figure 1. The core of RUMM is the definition of a UML state machine profile for AOM:

AspectSM (shown as a white artifact in Figure 1 in RobustnessModeling). We limited our profile to

UML state machines as: 1) They are the main notation currently used for model-based test case

generation [18] and are particularly useful in control and communication systems, 2) Like it is often the

case, our industrial case study exhibits state-based behavior so that it is natural to initially provide

support for UML state machines. The profile can, however, be extended to other UML diagrams in the

future, following similar principles. We rely on developing a profile instead of developing a domain

specific language since, in our case study context as in many others, minimizing extensions to UML is

expected to ease practical adoption. More thorough discussions on this issue are presented in Section 7.

Modelers of functional aspects of the system can be different from the ones specifying its robustness

behavior. The latter make use of AspectSM to model aspect state machines.

Another important part of the RUMM is another UML profile (RobustProfile) shown as a white

artifact in Figure 1, based on the fault taxonomy defined by [20] and the IEEE standard classification for

anomalies [21]. The profile is used by a robustness modeler to develop aspect state machines and is

Figure 1 . An overview of RUMM

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

4

defined specifically to assist in defining test strategies for robustness testing. In addition, the profile

helps generating test scripts based on classes of faults modeled using the profile. Once again, the profile

is defined on UML state machines, as they are the main focus of this paper. We follow the widely

accepted and used definitions in [20] for faults and failures. A fault is an incorrect state of a system or its

environment in the presence of which the system cannot provide a correct service. Such deviation from

the correct service is called a failure. A fault type is identified based on a fault taxonomy (white artifact

in Figure 1) and the UML profile MARTE is used to model it in a UML class diagram (Aspect Class

Diagram, dark grey artifact in Figure 1). In a subsequent step, aspect class diagrams are used to model

actual faulty behavior as aspect state machines (AspectStatemachines) using both AspectSM and

RobustProfile. Finally, robustness models comprising of aspect class diagrams and aspect state machines

are woven into functional models once again composed of UML class diagrams and state machines. This

is performed using our weaver implemented in Kermeta [22] and the woven state machines produced by

the weaver can be used in turn by a model-based testing tool, for instance the TRUST tool [23] or

QTronics [24], to generate executable test cases. In our case, test cases are generated in Python, which is

used as a test script language by our industry partner (Cisco, Norway). Note that this paper addresses

only robustness modeling and details on test case generation and execution are outside the scope of this

paper.

The contributions of the paper can be summarized as follows: 1) A RobUstness Modeling

Methodology (RUMM) that enables the systematic modeling of robustness behavior in a practical and

scalable way, 2) A UML 2.0 profile (RobustProfile), which is based on a fault taxonomy in [20] and the

IEEE standard classification for anomalies [21], to model faults, recovery mechanisms, and failure

states, 3) The application of the MARTE profile in conjunction with RobustProfile to model faulty

environment conditions, 4) A UML 2.0 profile (AspectSM) to support comprehensive aspect modeling

for UML 2.0 state machines and enable automated robustness testing. AspectSM supports modeling

crosscutting on all features of UML 2.0 state machines and supports all basic features of AOSD such as

pointcuts, introduction, joinpoints, and advice; 5) An empirical evaluation and discussion of the benefits

of modeling robustness behavior of an industrial system using RUMM and AspectSM; 6) Tool support,

based on model transformations in Kermeta [22], to automatically weave AspectSM aspects into base

state machines (modeling the core functional behavior of a system).

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

5

The rest of the paper is organized as follows: Section 2 provides a case study and a running example

that we use to explain various concepts in RUMM. Section 3 provides an overview of the RUMM

methodology. Section 4 describes the terminology, techniques, and tools that are required to understand

and apply RUMM, including a definition and justification of the AspectSM profile (Section 4.2) and

details on its corresponding weaver (Section 4.7). Section 5 demonstrates the application of the profile

using a very simplified version of our industrial case study. Section 6 discusses the benefits achieved

when applying RUMM to one complete subsystem of our industrial case study. Section 7 discussed

existing works that are directly related to the objectives of RUMM. Finally, Section 8 reports on future

work and conclusions.

2. CASE STUDY AND RUNNING EXAMPLE

Our case study is part of a project aiming at supporting automated, model-based robustness testing of a

core subsystem of a video conference system (VCS) called Saturn [23]. The core functionality to be

modeled manages the sending and receiving of multimedia streams. Audio and video signals are sent

through separate channels and there is also a possibility of transmitting presentations in parallel with

audio and video. Presentations can be sent by only one conference participant at a time and all others

receive it. In this paper, to demonstrate the applicability of RUMM, we focused on this particularly

important subsystem (Saturn) and left out the other functionalities of the VCS. We selected this

subsystem because robustness testing is concerned with testing the behavior of VCS in the presence of

hostile environment situations, which can only be tested when the VCS is in a conference call with other

systems, which is what Saturn manages. Saturn is complex enough to demonstrate the applicability and

usefulness of RUMM while still remaining manageable in the context of a case study. To provide simple

running examples in the next sections, we modeled a reduced version of Saturn where one can only

establish calls and cannot start or stop presentations. From now onwards, we will refer to this simplified

Saturn model as S-Saturn to differentiate it from the complete case study model used in Section 6 to

discuss the benefits of RUMM.

2.1 Functional models of S-Saturn

The functional model of S-Saturn consists of a class diagram and a state machine. The class diagram of

S-Saturn is shown in Figure 2 and is meant to capture information about APIs and system (state)

variables, which are required to generate executable test cases and oracles in our application context.

Saturn‟s API is modeled as a set of methods in the Saturn class such as dial() and callDisconnect(). In

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

6

our case, the parameters of these methods are either modeled as primitive data types (e.g., String) or as

Enumeration types (e.g., CallProtocol).The state variables of the system are modeled as instance

variables of classes in the conceptual model. For example, two system variables in the SystemUnit class

are NumberOfActiveCalls and MaximumNumberOfCalls. NumberOfActiveCalls is an Integer which

determines the number of VCS that are currently in a Saturn videoconference, whereas

MaximumNumberOfCalls determines the maximum number of simultaneous calls supported by Saturn.

The state machine modeling the nominal functionality of S-Saturn, referred to as a base state

machine, is shown in Figure 3. It consists of four simple states. From the Idle state, invoking the dial()

method of the Saturn class leads to the Connected_1 state, which represents the behavior of the system

when there is a conference without any presentation with one endpoint. As long as there exists one

Figure 2. Conceptual model of the S-Saturn subsystem

Figure 3 . Base state machine for the Saturn subsystem

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

7

endpoint in the conference and no presentation is transmitting, S-Saturn stays in the Connected_1 state

and when S-Saturn dials to more endpoints, it transitions to the NotFull state until it connects to the

maximum number of endpoints it supports and transitions to the Full state. Each simple state has an

associated state invariant based on the system variables modeled in the conceptual model. For instance,

the Idle state has the following state invariant:

self.systemUnit.NumberOfActiveCalls = 0 and self.conference.PresentationMode = 'off'

2.2 Robustness behavior

To explain various activities and concepts involved in defining the profiles, we will use a crosscutting

robustness behavior named „MediaQualityRecovery‟. This behavior is related to the robustness behavior

of a VCS in the case when media quality falls below an acceptable media quality level and tries to

recover. The VCS should not crash when the media quality falls below this acceptable level and should

rather keep on operating at a lower quality level and try to recover from this situation. In the worst case,

the VCS should cleanup system resources and go back to the most recent safe state, in which the VCS

was exhibiting normal behavior. In our current case study, an example of a safe state is the Idle state.

Such a robust behavior is very important in a commercial VCS, as quality expectations are high

regarding robustness to media quality faults. Recall that the models above are greatly simplified and that,

in Section 6, we provide results from the complete case study and other important robustness aspects that

we modeled for Saturn.

3. ROBUSTNESS MODELING METHODOLOGY

Our goal is to devise a solution to model robustness behavior, which (1) is complete in terms of aspect

and state machine features, (2) minimizes the learning curve over standard modeling skills, and (3)

enable automated, model-based testing. To achieve this, we defined a RobUstness Modeling

Methodology (RUMM) to model robustness behavior using AOM. Recall from Section 1 that we follow

the standard definition of robustness provided in the IEEE 610.12 standard [10]. Such robustness is

considered very critical in many standards such as in the IEEE Standard Dictionary of Measures of the

Software Aspects of Dependability[10], the ISO‟s Software Quality Characteristics standard [25], and

the Software Assurance Standard [26] by NASA. The RUMM methodology (Figure 4) is suitable for

systems, which implement substantial robustness behavior to deal with faulty situations in the

environment such as communication and control systems. A1 and A2 activities are related to functional

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

8

modeling, whereas activities A3 to A6 are related to modeling robustness behavior. Activity A7 is

automated and merges functional (base state machines) and robustness (aspects) models together into a

complete model. Activities A1 to A6 are related to modeling functional and robustness behavior and are

manual. In this section, we will explain very briefly each activity. Additional, detailed information will

be provided in the next sections, followed by the application of RUMM in an industrial case study.

The first activity (A1) involves developing a conceptual model [27] of a SUT using a UML 2.0 class

diagram based on the domain analysis of the SUT. In this activity, we model different domain concepts

of the SUT as classes and relationships between them, which are determined as the result of domain

analysis. In addition, we model state variables of the SUT as attributes in the class diagram. We also

model public operations of the SUT (API) and external events in the SUT environment as signal

receptions. The conceptual model is then used in activity A2 for developing a behavioral model of the

SUT as one or more UML state machines. Attributes defined in the conceptual model are used for

various purposes such as defining state invariants and defining guards on transitions. The operations and

signal receptions defined in the conceptual model are used as triggers on transitions of state machines. In

model-based robustness testing, one of the most important tasks is the identification and modeling of

faults, in the presence of which we must test the behavior of the SUT. To systematically identify these

faults, the development of fault taxonomy is required (A3) and is provided in Section 4.1. The

application of the fault taxonomy to an industrial system is reported in Section 5.3. Activity A4 requires

modeling different properties of the system‟s environment, whose violations lead to the various types of

faults identified from the fault taxonomy (A3). The guidelines for this process are defined in Section 5.4.

Activity A5 requires modeling robustness behavior as aspect state machines. As described in Section

4.4, this requires the use of the AspectSM profile. The profile definition is provided in Section 4.2. The

control flow arrow from activity A5 to activity A4 depicts that multiple robustness aspects can be

modeled one after another. Once all robustness aspects have been modeled, we may need to define the

order in which the aspects should be woven into the base state machine developed in activity A2.

Guidelines for modeling the ordering of aspect state machines as a weaving-directive state machine are

presented in Section 4.6. Finally, activity A7 weaves aspect state machines with base state machines. For

this activity, we developed a tool using Kermeta [22], a well-known model transformation environment.

The details of the tool are presented in Section 4.7 and the weaving algorithm is detailed in Appendix B.

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

9

4. Concepts, Techniques, and Tools Required for RUMM

This section describes the concepts, techniques and tools that are needed to apply RUMM. In addition,

we provide further definitions of the terminology employed as needed.

4.1 Definitions

This section provides basic definitions required to understand the rest of the paper.

4.1.1 Faults and Failures in the context of UML state machines

While modeling robustness, we model faults in the behavior of the operating environment of a SUT.

Such behavior of the environment may lead the SUT into abnormal situations. In UML state machines,

we model faults in the environment as either signal events or change events, on one or more transitions

in the state machine of the SUT. Firing such transitions may lead the SUT to a degraded state where the

SUT tries to recover from the fault while still providing some of the required service in a degraded

mode. If the SUT is successful in recovering from the fault, it then goes back to a normal mode of

operation. Otherwise, it may go to a failure state or the initial state.

Figure 4. Methodology for robustness modeling (RUMM)

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

10

4.1.2 Fault classification based on taxonomy

Many fault taxonomies are proposed in the literature, however most of them are either specific to

architectures, for instance Service-oriented Architecture (SOA) [28, 29] and Component-based Systems

[30], or to application domains such as aeronautics and space [31]. We chose the widely-known and

referenced fault taxonomy presented in [20] because it is very comprehensive and generic, and thus can

be extended for specific needs as it was required in our case. For instance, we extended the taxonomy to

accommodate for media quality faults, which are very important for a commercial VCS. The fault

taxonomy for elementary fault classes provided in [20] is modeled in Figure 5 as a class diagram. Dark

gray colored classes in Figure 5 show the fault classes we extended for our specific needs. The taxonomy

states that a fault can be categorized based on different views/perspectives such as based on

Figure 5. High level fault taxonomy

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

11

SystemBoundary or Dimension. Using SystemBoundary faults can be classified into either InternalFault

or ExternalFault depending on where they occur. Details on classes of faults are provided in [20]. Given

our goal, we extended some fault classes in the fault taxonomy to model faults which are specific to the

VCS. For instance, to provide a support for modeling media-related faults, which are important for an

industrial VCS, we introduced a view RequirementType (Figure 5) and defined two fault classes:

FunctionalFault and NonFunctionalFault. We further classified NonFunctionalFault into MediaFault

(Figure 5), with further subclasses Audio and Video. In addition, we extended ExternalFault, which

comprises faults in networks and external systems, into NetworkFault and SystemFault subclasses.

SystemFault corresponds to the faults in one or more VCS communicating with the SUT. Since in

robustness testing the focus is always on modeling behavior of a SUT in the presence of faults in its

environment, all fault classes in the taxonomy are valid from the perspective of other VCSs

communicating with the SUT. For instance, a SoftwareFault in a VCS communicating with the SUT can

have an effect on the latter‟s behavior. We provide an example use of the taxonomy in Section 5.3 for

our case study.

4.2 The AspectSM profile

Using the AspectSM profile, we model each aspect as a UML state machine with stereotypes (aspect

state machine). The modeling of aspect state machines is systematically derived from a fault taxonomy

(Figure 5) categorizing different types of faults (incorrect states [20]) in a system and its environment

(such as communication medium and other systems). Such a modeling approach models each type of

robustness behavior separately from the state machines modeling nominal functionality (base state

machine) and hence results in enhanced separation of concerns. Furthermore, our modeling approach

models crosscutting behaviors as separate aspect state machines and hence reduce modeling effort when

compared to modeling robustness directly in combination with nominal behavior. The readability of

models is then improved as robustness behavior that tends to be redundant when modeled directly is

clearly separated out and expressed once. Following the general ideas proposed in [32] [19], to model

aspects using the same notations as the base model, we used UML state machines to model both aspect

and base models, which is expected to facilitate practical adoption. In industrial applications of model-

based testing, it is always desirable to minimize the need to learn different notations to model different

testing concerns (such as security and robustness concerns). Though profiles already exist in the

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

12

literature that allow modeling aspects as UML state machines [1-3, 12, 33], we decided to define our

own profile to address the three following problems:

1. Crosscutting behavior can exist on any modeling element in UML 2.0 state machines, but the

existing profiles and approaches do not support all features, such as state invariants and guards [1, 12,

33, 34]. These are however crucial in the context of model-based testing, and in particular for

automated test case generation [35].

2. Existing modeling approaches using profiles require, for modeling aspect features (such as pointcut

and advice), to develop new diagrams that are not part of the UML 2.0 standard [3, 4], thus making

adoption in practical contexts more difficult. Indeed, such profiles require developing specific tool

support for new diagrams and entails training users on how to build them. As a result, in practice, the

use of non-standard modeling languages is discouraged.

3. Some of the existing approaches do not support all basic features of aspect orientation such as

Introduction.

More details and discussions on related work are provided in Section 7.2

The AspectSM profile is the core component of RUMM because modeling robustness as aspect state

machines is achieved through standard UML extension mechanisms. This profile was developed by

augmenting many of the concepts in existing UML state machine profiles for AOM (Section 7) in order

to achieve the specific goal of supporting automated, model-based robustness testing. Although the

AspectSM profile is developed specifically for robustness testing, its application to other purposes such

as for security testing should be investigated. In this section, we provide a detailed description of

AspectSM.

A UML profile enables the extension of UML for different domains and platforms, while avoiding

any contradiction with UML semantics. In [36], two main approaches for profile creation are discussed.

The first approach directly implements a profile by defining key concepts of a target domain, such as

what was done to define SysML [37]. The second approach first creates a conceptual model outlining the

key concepts of a target domain followed by creating a profile for the identified concepts. This latter

approach has been used for defining profiles such as the UML profile for Schedulability, Performance,

and Time specification (SPT) [38], the QoS and Fault Tolerance specifications [5], and the UML Testing

Profile (UTP) [39].

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

13

We used the second approach to define the AspectSM profile since it is more systematic as it

separates the profile creation process into two stages. In the first stage, we develop a conceptual model

which helps identify domain concepts and their relationships. In the second stage, we identify the

mapping between the main concepts and UML modeling elements and define corresponding stereotypes

on UML metaclasses. Finally, the relationships between stereotypes are obtained from the relationships

that were identified between the domain concepts in the first stage.

4.2.1 Domain view of the profile

The conceptual domain model for AspectSM is shown in Figure 6 as a MOF-based [40] metamodel. The

conceptual domain model defines aspect-oriented modeling concepts.

An aspect describes a crosscutting behavior, which in our context is the robustness behavior of a

system, i.e., the behavior of the system in the presence of faults in its environment, such as packet loss

and jitter for a network. Since a network can experience packet loss at any time, it is crosscutting the

SUT functional behavior. Since in our case study, like in many systems with state-driven behavior, the

behavior of the system is modeled as UML 2.0 state machines, we also model aspects as UML 2.0 state

machines to facilitate adoption in practice. Robustness behavior, for example the behavior of a SUT in

the presence of packet loss or corrupt packets, is modeled using one or more state machines.

A joinpoint is a model element, which corresponds to a pointcut where an advice (additional

behavior) can be applied [41]. All modeling elements in UML are possible joinpoints, where an advice

Figure 6. Conceptual domain model of the profile

Context Pointcut inv:

 self.advice.oclIsKindOf(Before)->size()= 0 or self.advice.oclIsKindOf(Before)->size()=1

 and self.advice.oclIsKindOf(Around)->size()=0 or self.advice.oclIsKindOf(Around)->size()=1

 and self.advice.oclIsKindOf(After)->size()=0 or self.advice.oclIsKindOf(After)->size()=1

Figure 7. Constraint on Pointcut

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

14

can be applied [11]. For UML state machines, some examples of joinpoints include a state or a

transition.

A pointcut selects one or more joinpoints with similar properties, where advices can be applied. A

pointcut can have at most one before advice, one around advice or one after advice (Figure 6). All

pointcuts are expressed with the OCL on the UML 2.0 metamodel. We decided to use the OCL to query

joinpoints since it is the standard to write constraints on UML models and is also commonly used to

query jointpoints (modeling elements such as states and transitions). Also, several OCL evaluators are

currently available that can be used to evaluate OCL expressions such as the IBM OCL evaluator [42],

OCLE 2.0 [43], and EyeOCL [44]. Furthermore, writing pointcuts as OCL expressions do not require a

modeler to learn a notation that is not part of the UML standard. In the literature, several alternatives are

proposed to write pointcuts [1-4, 12] but all of them either rely on languages (mostly based on wildcard

characters to select joinpoints, for instance, „*‟ to select all joinpoints) or diagrammatic notations which

are not standard, thus forcing modelers to learn and apply new notations or languages. Using the OCL,

we can write precise pointcuts to select jointpoints with similar properties. We do so by selecting

modeling elements (jointpoints) based on the properties of UML metaclasses. This further gives us the

flexibility to specify pointcuts of varying complexities. For instance, we can specify a very complex

pointcut based on all properties of a UML metaclass, e.g., a pointcut on the Transition metaclass,

selecting a subset of transitions in a base state machine for which all properties of the Transition

metaclass are the same. On the other hand, we can also specify a simple pointcut based on a small subset

of properties of a UML metaclass. For example, a pointcut on the Transition metaclass selecting all

those transitions from a base state machine, which have the same guards, though other properties such as

triggers or effects can be different. In UML state machines, states and transitions are the most important

modeling elements and all other elements are contained within them such as state invariants in states and

guards and actions in transitions. Therefore, pointcuts are defined in the context of the UML metaclass

Vertex, to query states and apply advices on states and its composing elements such as state invariants

and do, entry, and exit activities. Similarly, pointcuts are also defined in the context of the UML

metaclass Transition to query transitions and advices are applied on transitions and its containing

elements such as Guard and Actions. The attributes for the Vertex and Transition metaclasses can be

obtained from the UML specifications [45]. For example, a pointcut may select all transitions of a state

machine which have triggers with signal events. This pointcut, defined in Figure 8, is written as an OCL

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

15

expression on attributes of the UML metaclass Transition and selects all transitions that have triggers

with signal events on them.

An advice is an additional behavior added at joinpoint(s) selected by a pointcut. This behavior can be

added as OCL constraints or in the form of state machine modeling elements such as a guard or an

effect. As most of the concepts in AOM are inspired from aspect-oriented programming (AOP)

languages such as AspectJ [46], in a similar way in AOM, an advice can be of type before, after, or

around. A before advice is applied before joinpoint(s), an after advice is applied after joinpoint(s),

whereas an around advice replaces joinpoint(s). For example, introducing guards on all transitions of a

state machine that have signal events as triggers is an example of a before advice on transitions. Table 1

summarizes the semantics of each type of advice for each UML 2.0 state machine modeling element.

Examples for advice on all UML 2.0 state machine modeling elements are provided in Appendix D.

An introduction is similar to the inter-type declaration concept in AspectJ [46] and is used in many

AOM approaches [4, 47-49] to introduce new modeling elements in a base model. In a similar fashion,

we use introduction in our context to introduce new modeling elements in a UML state machine, e.g., a

new state or a transition. In our context, we mostly use introduction to introduce transitions in a base

Context uml::Transition

 self->select(trigger|trigger.event.oclIsKindOf(SignalEvent))

Figure 8. A pointcut in OCL selecting all transitions with signal events

Table 1. Definition of before, around, and after advice

State machine

modeling element

Before advice Around advice After advice

State Adding an OCL constraint that will be

evaluated before entry to one or more states

selected by a pointcut

Replacing one or more states selected

by a pointcut with a new state

Adding an OCL constraint that will

be evaluated on leaving one or more

states selected by a pointcut

Transition Adding a guard to one or more transitions

selected by a pointcut. If a guard already

exists, the additional constraint is conjuncted

to the existing guard

Replacing one or more transitions

selected by a pointcut with a new

transition

Adding an effect with one or more

actions to one or more transitions

selected by a pointcut

Trigger Not applicable Replacing one or more triggers on

transitions selected by a pointcut with

new triggers

Not applicable

Effect Adding a new behavior to the effect Replacing one or more effects on

transitions selected by a pointcut with

a new effect

Same as Before advice

Guard and state

invariant

Add an additional constraint (conjunct) to the

guards (or state invariants) selected by a

pointcut

Replacing one or more guards on

transitions (or state invariants)

selected by a pointcut with a new

guard (or a state invariant)

Same as Before advice

Do, entry, and exit

activities of a state

Adding a behavior to the activities selected by

a pointcut

Replacing one or more activities in

states selected by a pointcut with a

new activity

Same as Before advice

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

16

state machine, which correspond to faults in the environment (Section 4.1.1). We also use introduction

to introduce new states in a base state machine, which are related to a robustness behavior such as the

state of a system which is operating with degraded performance (Section 4.1.1).

4.2.2 UML representation

In this section, we provide details on the AspectSM profile such as details on stereotypes and their

attributes.

Profile diagrams: Profile diagrams for AspectSM are presented in Figure 9, Figure 10, and Figure 11.

Profile diagrams show extension relationships between stereotype classes (denoted <<stereotype>>)

and UML metaclasses (denoted <<metaclass>>), i.e., relationships showing which stereotypes are

applied to which UML metaclasses (extension relationship). For example, Figure 10 shows the

Introduction stereotype applied to Transition, Behavior, Trigger, Constraint and State metaclasses.

Table 2. Extensions, generalizations, and associations of each stereotype

Stereotype Extensions Generalizations Associations

(association name[Cardinality]: Target stereotype class)

Aspect uml::StateMachine None None

Pointcut uml::State, uml::Transition, uml::Trigger,

uml::Constraint, uml::Behavior

None beforeAdvice[0..1]:Before, afterAdvice[0..1]:After,

aroundAdvice[0..1]:Around, introduction[0..*]:Introduction

Advice Same as for Pointcut None pointcut[1]:Pointcut

Before Same as for Advice Advice Same as for Advice

After Same as for Advice Advice Same as for Advice

Around Same as for Advice Advice Same as for Advice

Introduction Same as for Advice None pointcut[1]:Pointcut

Table 3. Attributes defined for the <<Pointcut>> stereotype

Name Type Description

name[1] String Name of the pointcut

type[1] SelectionType SelectionType is an enumeration which has All, Subset, and One enumeration literals. The All literal

means that all modeling elements of a particular type will be selected. For instance, if a pointcut of the

type All is specified on a state in an aspect, this means that the pointcut will select all states of the base

state machine. When the type of a pointcut is specified as All, there is no need to specify

selectionConstraint. When the type of a pointcut is specified as One, the name of the modeling element is

specified as selectionConstraint. In the case of a pointcut of type Subset, an OCL constraint is specified at

the UML metamodel level to select a subset of modeling elements.

selectionConstraint String An OCL constraint on the UML 2.0 metamodel level to select model elements. For instance, a pointcut

may select all transitions of a state machine which have triggers with signal events. (See for Figure 8 an

example)

beforeAdvice[0..1] String A before advice associated with the pointcut.

afterAdvice[0..1] String An after advice associated with the pointcut.

aroundAdvice[0..1] String An around advice associated with the pointcut.

Table 4. Attributes defined for the <<Aspect>> stereotype

Name Type Description

name[1] String Name of the aspect

baseStateMachine[1..*] uml::StateMachine Base state machines on which an aspect is applied.

Table 5. Attributes defined for the stereotypes related to advice

Name Type Description

name[1] String Name of the advice

constraint[0..1] String A constraint in OCL at the model level as a before, after, or around advice.

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

17

These diagrams also show relationships between stereotype classes such as associations and

generalizations. For instance, in Figure 11, Before, After, and Around metaclasses are inheriting from the

Advice metaclass. To decrease the complexity of profile diagrams, we have not shown associations

between stereotype classes. However, associations of stereotype classes are listed in Table 2. In addition,

Table 2 provides information about extensions and generalizations. The extensions column in Table 2

shows which UML metaclasses a particular stereotype is applied to. For example, the Aspect stereotype

is applied to the uml::StateMachine metaclass in row 2 of Table 2. The generalizations column

illustrates the inheritance relationship between stereotype classes. For example, in row 5 of Table 2, the

Before stereotype is inherited from the Advice stereotype.

Profile elements description: We now describe each profile element. Extensions, generalizations,

associations are shown in Table 3. The extension relationship tells on which metaclasses of UML a

stereotype is applied. For instance, in Table 2, the <<Aspect>> stereotype has an extension relationship

with the UML metaclass StateMachine. This means that the <<Aspect>> stereotype can be applied to a

UML state machine. All stereotypes except <<Aspect>> are applied to all modeling elements related to

UML state machines, though in Table 3 we list only the key metaclasses of UML state machines.

Attributes associated with the <<Aspect>> stereotype are shown in Table 4. Attributes associated

with the <<Pointcut>>, <<Before>>, <<After>>, and <<Around>> stereotypes are shown in Table 3

and Table 5. When applying these stereotypes, attributes must be supplied in accordance to the

description in these tables. Examples are presented in Appendix D.

4.2.3 Example of an application of AspectSM

We present next a small example of the application of AspectSM. On the MediaQualityRecovery aspect

state machine in Figure 12, the <<Aspect>> stereotype is described in a top-left note (labeled as “1”) in

the upper left part of Figure 12. This aspect consists of one pointcut on a state: SelectedStates, which

attribute values are described in the note labeled as “2”. The SelectStatesPointcut applied to the

SelectedStates state selects all states of the base state machine (Figure 3) except for the Idle state.

Whenever media quality (in this case, audioQuality) falls below the acceptable level in any of the states

selected by the SelectStatesPointcut pointcut, the system goes to the RecoveryMode state, which is

stereotyped as <<Introduction>> indicating that this state will be introduced in the base state machine

(Figure 3). This is shown as a transition―with the << Introduction>> stereotypes indicating this

transition will be introduced in the base state machine.

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

18

Figure 9. <<Aspect>> stereotype applied to StateMachine metaclass (left) and <<Pointcut>> stereotype applied to various metaclasses (right)

Figure 10. The <<Introduction>> stereotype applied to various metaclasses

Figure 11. The <<Advice>> stereotype applied to various metaclasses

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

19

4.3 RobustProfile

To help with the definition of robustness test strategies, we defined a UML profile RobustProfile to

model faults and their properties. In addition, the profile supports the modeling of recovery mechanisms

when a fault has occurred and the modeling of states a system can transition to when it has recovered.

The profile has two sub-profiles: the first sub profile, FMProfile, deals with modeling faults and their

attributes. The second sub-profile, FRProfile, deals with modeling recovery mechanisms and states of a

system after recovery from a failure. Below, we provide details on the definition of these sub-profiles.

We reused all the concepts presented in [20] and in addition added a few more concepts presented in

Section 4.1.2. In addition, we reused all the concepts from the IEEE standard on the classification of

software anomalies as defined in [21]. All these concepts from the IEEE standard were captured in a

UML profile so that the standard can be used in combination with UML models. The newly introduced

concepts are italicized in Table 6 and Table 7.

4.3.1 Fault Modeling Profile (FMProfile)

We used the same procedure to define FMProfile as that for AspectSM (Section 4.2). The domain view

for FMProfile is the same as the fault taxonomy shown in Figure 5 [20]. Below, we provide a UML

representation of FMProfile, which includes profile diagrams and details on stereotypes and their

attributes.

Figure 13 shows a part of the profile diagram for FMProfile that is related to the abstract <<Fault>>

stereotype class, which corresponds to the Fault class in Figure 5. We show different attributes of

<<Fault>> and also show its extension relationships to UML metaclasses. Additional information

Figure 12. An example for the application of AspectSM

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

20

about FMProfile is summarized in Table 6. The <<Fault>> stereotype is applied to the metaclasses

Transition, Trigger, and Event because each fault in our case occurs when an event associated to trigger

on a transition is fired (see Section 4.1). Furthermore, according to UML semantics [45], a transition can

have multiple triggers, and each trigger can model different faults belonging to the same super class. For

instance, a transition can model multiple external faults (ExternalFault in Figure 5) and one trigger on

the transition can model one fault from NetworkFault while the other trigger can model one fault from

SystemFault. This is the reason that the <<Fault>> stereotype class has an extension relationship with

the Trigger metaclass. The attributes of <<Fault>> are obtained from the IEEE Standard in [21] where

more details can be found on each attribute. Based on the values of these attributes, test strategies can be

devised. For instance, the transitions that are stereotyped with <<Fault>> or any of its sub-stereotype

classes with value High for the severity attribute, could be given priority over other transitions modeling

faults with lower severity. In addition, complex test strategies can be defined to test the robustness of a

SUT in the combined presence of faults that belong to different fault classes. For example, a test strategy

can be devised that can test the behavior of a SUT in the presence of one media fault and one network

fault at the same time. We also defined stereotypes for all other classes shown in the taxonomy and

provide detailed information about these stereotypes in Table 6. All stereotypes inherit attributes from

<<Fault>>.

This profile also assists in test script generation. For instance, different stereotypes can indicate for

which entity (for instance, network or other systems) in the environment, test scripts are to be generated.

For example, the <<NetworkFault>> stereotype indicates that test scripts will be generated for a

network emulator and the test scripts will emulate a particular fault in the emulator. The

<<MediaFault>> stereotype indicates that test scripts will be generated to introduce media faults in the

VCS that is communicating with the SUT. It is important to distinguish between faults for different

entities in the environment because different scripting languages are normally used to control these

entities. In our case study, a proprietary scripting language is used for the SUT and other VCS

communicating with it, whereas Python is used to control a proprietary network emulator used by our

industry partner.

4.3.2 Fault Recovery Profile (FRProfile)

FRProfile deals with modeling recovery mechanisms associated with the occurrence of a fault. The

domain view of FRProfile is shown in Figure 14. It consists of two main parts. The first part describes

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

21

recovery mechanisms such as Forward and Backward [20]. The second part deals with the state of the

system after a recovery mechanism is executed, which could be Initial, Final, Failure, or a Degraded

state [20].

Figure 13. Profile diagram for FMProfile

A part of the profile diagram for FRProfile is shown in Figure 15. Both recovery mechanisms and

systems states refer to states in the SUT state machines and we therefore applied stereotypes

<<RecoveryMechanism>> and <<SystemState>> on metaclass Vertex. In addition, we defined

stereotypes for other classes shown in the domain view of the profile such as <<Forward>> and

<<Degraded>>. These stereotypes inherit attributes from their corresponding super classes,

e.g.,<<Degraded>> inherit attributes from <<SystemState>>. Details on stereotypes are shown in

Table 7.

Figure 14. Domain view of FRProfile

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

22

Figure 15. Profile diagram for FRProfile

4.3.3 Example of an Application of RobustProfile

This section provides a small example of the application of RobustProfile in Figure 16. A change

event when (not self.audioQuality < audioQualityThreshold) is fired from SelectedStates (stereotyped as

Table 7. Extensions and generalizations of each stereotype for FRProfile

Stereotype Extensions Generalizations

RecoveryMechanism uml::Vertex None

Forward No Direct Extensions RecoveryMechanism

Backward No Direct Extensions RecoveryMechanism

SystemState uml::Vertex None

Initial No Direct Extensions SystemState

Final No Direct Extensions SystemState

Error No Direct Extensions SystemState

Degraded No Direct Extensions SystemState

Normal No Direct Extensions SystemState

Table 6.Extensions and generalizations of each stereotype for FMProfile

Stereotype Extensions Generalizations

Fault uml::Transition, uml::Trigger, uml::Event None

DevelopmentFault No Direct Extensions Fault
OperationalFault No Direct Extensions Fault
InternalFault No Direct Extensions Fault
ExternalFault No Direct Extensions Fault
NaturalFault No Direct Extensions Fault
HumanMadeFault No Direct Extensions Fault
HardwareFault No Direct Extensions Fault
SoftwareFault No Direct Extensions Fault
MaliciousFault No Direct Extensions Fault
Non-MaliciousFault No Direct Extensions Fault
DeliberateFault No Direct Extensions Fault
NonDeliberateFault No Direct Extensions Fault
AccidentalFault No Direct Extensions Fault
IncompetenceFault No Direct Extensions Fault
PermanentFault No Direct Extensions Fault
TransientFault No Direct Extensions Fault
FunctionalFault No Direct Extensions Fault

NonFunctionalFault No Direct Extensions Fault

NetworkFault No Direct Extensions ExternalFault

SystemFault No Direct Extensions ExternalFault

MediaFault No Direct Extensions NonFunctionalFault

AudioFault No Direct Extensions MediaFault

VideoFault No Direct Extensions MediaFault

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

23

<<Normal>> from RobustProfile indicating that it is a normal state) when the audio quality in a

videoconference becomes lower than the allowed threshold of audio quality. This change event is

stereotyped as <<AudioFault>> indicating that it is an audio fault (see the comment labeled C1) and its

attribute values are provided in the note labeled as “1”. For instance, the effect attribute has value

Effect::Performance indicating that this fault affects the performance of the system. Recall that the effect

attribute is defined based on the IEEE standard defined in [21]. The RecoveryMode state in Figure 16 is

stereotyped as <<Degraded>> from RobustProfile indicating that in this state the system in functioning

with degraded performance.

4.4 Guidelines to model properties of an environment based on the fault taxonomy

Figure 17 shows a set of guidelines to model properties of the operating environment of a SUT in a

UML class diagram, violations of which lead to faults in the environment. These properties are modeled

based on a fault taxonomy such as the one presented in Section 4.1.2. Faults related to the environment

are mostly violations of non-functional properties (NFP) such as media properties and network

properties. UML doesn‟t directly support modeling NFP, therefore we used part of the MARTE profile

for modeling such properties [7]. The MARTE profile is an extension for UML 2.0 that allows modeling

real time and embedded systems. MARTE provides a generic framework to model NFP on UML

models. Moreover, MARTE provides a model library that provides NFP data types for defining various

NFP properties and specific applications. MARTE also provides mechanisms to extend the model library

to either extend the existing NFP data types or define entirely new NFP types.

Figure 16. Application of RobustProfile

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

24

Now we present an example to use the above guidelines (Figure 17) to model a class diagram, which

captures the properties of the environment. Figure 18 shows a partial class diagram of the

MediaQualityRecovery robustness behavior (Section 2.2). For this robustness behavior, we identify that

the Video fault class from the fault taxonomy (Figure 5) is relevant. For this fault class, video frame loss

in incoming video streams to a VCS is important for robustness testing of the VCS. To model video

frame loss, we model a property named videoFrameLoss in the MediaQualityRecovery class shown in

Figure 18. The videoFrameLoss property is modeled as NFP_Percentage defined in MARTE. The

property holds the percentage of video frame loss in incoming video streams to the VCS.

4.5 Aspect state machine

An aspect state machine is a standard UML state machine with stereotypes from the AspectSM profile.

The complete definition of an aspect state machine follows the template shown in Figure 19.

4.6 Template for Modeling Weaving-Directive state machine

In this paper, a robustness behavior, such as the behavior of a SUT in the presence of network faults or

faults in incoming media streams to the SUT, is modeled using one or more related aspects. Each of

these aspects is modeled as a separate aspect state machine. Aspect state machines should be woven into

a base state machine in a specific order to ensure that the woven state machine is complete and correct.

To achieve this, an ordering must be defined by a modeler/tester who instructs the weaver about the

ordering of aspect state machines. This is modeled as a state machine (denoted weaving-directive state

machine), containing all aspect state machines as submachine states ordered using UML state machine‟s

control structure features such as decision, join, and fork. If the ordering doesn‟t matter, then a

Figure 18. An Example of Modeing a Property of Environment

1. For each fault class indentified in the taxonomy, model one or more faults belonging to the class.

2. For each fault of a fault class, define an attribute in the aspect class representing the property whose violation leads

to the particular fault. The type of the property can be defined as:

a. Using UML standard primitive data types such as Integer, Boolean, etc.

b. Using the NFP_Types defined by MARTE such as NFP_Percentage

c. Defining a new NFP_Type using the MARTE‟s extensibility mechanism to define new NFPs.

Figure 17. Guidelines to model faults in aspect class diagram

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

25

modeler/tester is free to specify any order. The template for the complete definition of a weaving-

directive state machine is shown in Figure 20.

Figure 19. Definition of an aspect state machine

4.7 Weaver

The aspect state machines are woven into the base state machine by a weaver, which reads the base state

machine, aspect state machines, and a weaving-directive state machine and produces a woven state

An aspect state machine A is a UML 2.0 state machine stereotyped as <<Aspect>> consisting of the following UML 2.0

state machine elements:

1. I: An initial state

2. F: A set of one or more final states

3. S: A set of states, each of one of the following types

a. A state s in S can be a new state to be introduced in the base model (stereotyped as

<<Introduction>>)

b. A state s in S can be a pointcut selecting one, a subset, or all states of a base state machine

(stereotyped as <<Pointcut>>)

c. A state s in S without any stereotype can be a state that has one or more new elements introduced

(stereotyped <<Introduction>>) or as pointcuts (stereotyped as <<Pointcut>>) of the type state

invariant, do, entry, or exit activity

4. T: A set of transitions connecting states in the set S, each transition of one of the following types

a. A transition from an initial state to any type of state described in item 3, which doesn‟t have any

trigger, guard, or effect

b. A set of transitions from any state (except from the initial state) to the final state

c. A transition t in T can be a new transition to be introduced in the base model (stereotyped as

<<Introduction>>). This type of transition can exist on the following pairs of stereotyped states:

i. Between a state stereotyped as <<Introduction>> and a state stereotyped as

<<Pointcut>>

ii. Between two states stereotyped as <<Introduction>>

iii. Between two states stereotyped as <<Pointcut>>

d. A transition t in T is a pointcut selecting one, a subset, or all transitions of a base state machine

(stereotyped as <<Pointcut>>). This transition can exist on the following pairs of states:

i. Between a state stereotyped as <<Introduction>> and a state stereotyped as

<<Pointcut>>

ii. Between two states stereotyped as <<Introduction>>

iii. Between two states stereotyped as <<Pointcut>>

e. A transition t in T can be the transition without any stereotype that has any contained element such as

a guard, a set of triggers, and an effect as a new element introduced (stereotyped as

<<Introduction>>) or as a pointcut stereotyped as <<Pointcut>>. This transition can only exist

between a pair of states stereotyped as <<Pointcut>>

A weaving directive state machine W is a UML 2.0 state machine having the following modeling elements:

1. An initial state I

2. A set of final states F

3. A set of submachine states S, where each submachine state refers to an aspect state machine

4. A set of transitions T that can be of any of the following types:

a. A transition from an initial state to a submachine state, which doesn‟t have any trigger, guard, or effect, but can

have a name.

b. A set of transitions from submachine states (except from the initial state) to the final state.

c. A set of transitions T connecting submachine states S using UML 2.0 state machine‟s features such as decision,

join, and fork to show the order in which the submachine states (aspects) will be woven into the base state

machine. For instance, in a very simple scenario, if there is an outgoing transition from submachine state S to S‟,

then S will be woven before S‟.

 Figure 20. Definition of a weaving directive state machine

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

26

machine. The weaving algorithm is shown in Figure 31 in Appendix B and is based on the same weaving

approach advocated in [32]. We developed a weaver for AspectSM by using Kermeta [22], which is a

metamodeling language [22] that allows manipulating models by defining transformation rules at the

metamodel level. We do not implement any explicit model validation, but we rely on Kermeta‟s model

validation, which partially prevents violations of UML semantics. Kermeta conforms to OMG‟s

metamodeling language Essential Meta Object Facility (EMOF) and Ecore [40]. Figure 21 shows the

architecture of the weaver by using transformations in Kermeta to weave one or more aspect state

machines into a base state machine. The AspectSM profile is defined on the UML 2.0 metamodel. An

aspect state machine is defined as a UML 2.0 state machine by applying the AspectSM profile. A base

state machine is a standard UML 2.0 state machine. Transformations rules in Kermeta are defined on the

UML 2.0 metamodel and the AspectSM profile. Finally, the Kermeta engine uses the transformation

rules that read an aspect state machine and the base state machine and weaves the aspect state machine

into the base state machine. The Kermeta engine then produces a woven state machine, which is again an

instance of the UML 2.0 metamodel, since the woven state machine is a standard UML 2.0 state

machine. The woven state machines can then be used as input for automated model-based testing tools

such as Conformiq Qtronic [24] and Smartesting Test Designer [50]. The weaver is fully automated and

does not require any additional inputs from the user apart from aspect state machines and a base state

machine.

The weaver is developed to support automated, model-based robustness testing, and thus aspect state

machines are woven into the base state machine, which can be used for test case generation. Currently,

our approach and its weaver do not support modeling and weaving interactions [12] that may occur

between different aspects and may lead to conflicts between aspects during weaving. On the other hand,

our weaver does support to a limited extent the handling of aspect conflicts. In [51], four classes of

aspect conflicts are discussed: conflicts due to crosscutting specification, aspect-aspect conflicts, aspect-

base conflicts, and concern-concern conflicts. In our application context, i.e., robustness modeling and

testing, the most relevant conflicts are aspect-aspect conflicts, which are related to handling conflicts

between aspects. One of the most important aspect-aspect conflicts is the ordering conflict, which is

related to the order in which aspect state machines should be woven into a base state machine. Ordering

conflict is most relevant in our context since, for testing purposes, we focus on modeling, weaving, and

testing one or more related aspects at a time. We specify the ordering between aspect state machines in a

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

27

UML state machine containing all aspect state machines as submachine states, ordered using state

machine control structure features: decision, join, and fork.

The algorithm implemented in the weaver is presented in Appendix B. For the current application, we

don‟t foresee the need to define other interactions/conflicts, however, in the future we plan to apply

RUMM to other case studies and as required we will further improve the process. For testing purposes,

one first has to focus on testing one concern at a time, and may eventually at a later stage test several

concerns together. For robustness testing, at this stage of the work, we weave faulty behavior of the

environment (e.g., network) one concern at a time, as the goal is to test robustness behavior one concern

at a time in order to facilitate debugging.

5. APPLICATION OF RUMM TO OUR SIMPLIFIED INDUSTRIAL CASE STUDY

In this section, we illustrate the different activities in RUMM using the simplified version of our

industrial case study (S-Saturn).

5.1 Activity A1: Develop a conceptual model of a system

This activity involves developing a conceptual model [27] of a system using UML 2.0 class diagram

based on the domain analysis of the system. As we discussed in Section 2, the Saturn subsystem deals

with establishing video conferencing calls, disconnecting calls, and starting/stopping presentation. In

Section 2, Figure 2 shows what we refer to as a „conceptual model‟ for the system being modeled, which

is here S-Saturn.

Figure 21. Aspect weaver implemented in Kermeta

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

28

5.2 Activity A2: Develop a behavioral model of the system as UML state machines

This activity models the nominal system behavior using UML 2.0 state machines, as illustrated for S-

Saturn in Figure 3, Section 2. This behavioral model is referred to as the „base state machine‟ since all

aspect state machines are woven into this state machine.

5.3 Activity A3: Identify relevant faults from fault taxonomy

A VCS should be robust against possible faults arising in its environment, which includes users, the

network, and other video conferencing systems. A user interacts with the VCS and sends different

commands such as starting a video conferencing, stopping a video conference and starting a

presentation. All the interactions of the VCS with other VCSs take place through the network. Therefore

the VCS should be robust against faults in the network and other VCSs communicating with it.

In our case study, we modeled Media faults in the VCSs communicating with the SUT, which are the

ones that are related to quality of media such as audio, video, and their synchronization. From Figure 5,

we see sub-classes of Media faults which are Audio Faults and Video Faults. Table 8 provides

description of Media faults that are relevant for our case study.

In addition, network faults (NetworkFault, see Figure 5) are important for a VCS. Several types of

faulty situations can happen in the network that must be dealt by the VCS. We show network faults that

are relevant to our case study in Table 8.

Table 8. Media faults and their description

Fault Class Fault Instance Fault Description

Audio Fault No audio This fault removes audio from a videoconference

Loss of audio frames This fault introduces loss in audio frames

Low audio quality This fault reduces audio quality in a videoconference

Noise in audio This fault introduces noise in audio during a videoconference

Echo in audio This fault introduces echo in audio

Mixing of multiple audio This fault mixes multiple audio during a videoconference

Video Fault No video This fault removes video from a videoconference

Loss in video frames This fault introduces loss in video frames

Low video quality This fault reduces video quality in a videoconference

Media Fault Synchronization mismatch between

audio and video

This fault loses synchronization between audio and video in a

videoconference

Table 9. Network faults and their description

Fault Description of the fault

Packet Loss This fault introduces network packet loss during a videoconference

Jitter This fault introduces delays in the packet during a videoconference

Illegal H323 packet This fault introduces illegal/malformed H323 packets in a H323 videoconference

Illegal SIP packet This fault introduces illegal/malformed SIP packets in a SIP videoconference

No network connection This fault shut downs the network

Low bandwidth This fault reduces the bandwidth of the network to less than the bandwidth required by a videoconference

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

29

5.4 Activity A4: Develop a class diagram for a robustness aspect

As advocated by the aspect-oriented paradigm, crosscutting concerns (functional or non-functional) [3]

must be modeled as aspects. Activities A3 and A4 model aspects of the robustness behavior of the

system using aspect state machines and aspect class diagrams. To do so, we use the AspectSM profile

using the existing UML state machine notation, as presented in Section 4.2.

As an example, we demonstrate how to model two representative crosscutting behaviors on S-Saturn.

The first one models the behavior that checks the quality of media (audio and video) during a

videoconference and in case the quality falls below a threshold value, specific procedures try to recover

an acceptable quality. This is achieved by modeling three aspects: 1) First aspect updates state invariants

of all states with audio quality attributes, 2) The second aspect updates state invariants of all states with

video quality attributes, 3) The third aspect models the behavior that checks the quality of media (audio

and video) during a videoconference and in case the quality falls below the threshold value, triggers the

above-mentioned recovery procedures (MediaRecoveryAspect). Such behavior is redundant in various

states and hence is a crosscutting behavior. The second crosscutting behavior example factors out

constraints on input parameters of a call event as an aspect, which are also scattered across many

transitions in the base state machine. Details about the modeling of these two aspects are presented in

Appendix A.

Each aspect state machine has an associated class diagram (aspect class diagram), which is an

augmentation of the conceptual model of the Saturn subsystem shown in Figure 2. This class diagram

Figure 22. Class diagram for media quality attributes

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

30

models the information about different kinds of faults in the fault taxonomy, such as audio and video

related faults. Guidelines for such modeling based on a fault taxonomy (Section 4.1.2) are presented in

Section 4.4. The Audio class defines audio quality attributes based on which different audio faults can be

introduced, as shown in Figure 22. For instance, the on attribute is a Boolean attribute that determines if

the audio is present in a videoconference. The Perceptual Evaluation of Speech Quality (PESQ) [52] is a

metric for measuring audio quality. The audioFrameLoss is an attribute that determines the current

percentage of audio frames loss during a videoconference and is defined as the MARTE type

NFP_Percentage. The noiseLevel attribute is defined as the Nfp type NoiseLevel (modeled with

<<NfpType>> from MARTE), which has two attributes: value that holds current noise value and unit

contains a unit to measure audio noise such as “decibel”.

Similarly, the following video quality properties are defined in the class diagram: The on attribute

determines if the video is present in a videoconference. The videoQuality attribute is a metric for

measuring video quality and videoFrameLoss determines the current video frame loss during a

videoconference modeled as MARTE‟s NFP_Percentage.

5.5 Activity A5: Develop a state machine for the robustness aspect

5.5.1 Modeling recovery from media faults

Recall that each robustness aspect is modeled as a UML state machine with stereotypes from AspectSM

(aspect state machine). Figure 23 shows the details of the MediaQualityRecovery aspect state machine.

Attribute values of the various stereotypes are presented in Figure 23 in notes. The aspect state machine

models the robust behavior of a VCS in the case when media quality falls below the acceptable level and

tries to return to an acceptable media quality level. In the worst case, the VCS cleans up system

resources and goes back to the most recent safe state (e.g., Idle in our industrial case study), in which the

VCS was exhibiting normal behavior. Such a robust behavior is very important in a commercial VCS, as

quality expectations are high regarding robustness to media quality faults.

On the MediaQualityRecovery aspect state machine, the <<Aspect>> stereotype is described in a

top-left note (labeled “1”) in the upper left part of Figure 23. This aspect state machine consists of two

pointcuts on states: SelectedStates and Idle, whose attribute values are described in notes explicitly

linked to each <<Pointcut>> note. Representing pointcuts as modeling elements of UML statemachines

(for instance, state in this case) enables the modeling of aspect state machines using standard UML

notation, while keeping in line with UML semantics. The SelectStatesPointcut (see note 3 for attribute

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

31

values) applied to the SelectedStates state selects all states of the base state machine (Figure 3) except

for the Idle state. The SelectIdleState pointcut (see note 5 for attribute values) on the Idle state selects the

Idle state of the base state machine (Figure 3). Whenever media quality (defined based on the quality

attributes in Figure 22) falls below the acceptable level in any of the states selected by the

SelectStatesPointcut pointcut, the system goes to the RecoveryMode state. This is shown as a

transition―with the <<Introduction>>, <<MediaFault>>, and <<ExternalFault>> stereotypes

(indicating this transition will be introduced in the base state machine and is modeling media faults

which are external to S-Saturn) from the SelectedStates state to the RecoveryMode state with nine

change events. Each change event is defined based on one media quality attribute and determines if this

attribute falls below the acceptable level and is stereotyped as either <<AudioFault>>,

<<VideoFault>>, or both . For example, the change event when(not self.audio.on) is fired from

SelectedStates when the audio is turned off in a videoconference and is stereotyped as <<AudioFault>>

indicating that it is an audio fault (see the comment labeled C1 and note “2” for attribute values—recall

that these attributes are defined based on IEEE standard classification for anomalies [21]). If the system

manages to return to acceptable media quality, it goes back to the normal state shown as a transition

introduced from the RecoveryMode state to the SelectedStates state stereotyped as <<Normal>>

(indicating that these states are normal states of S-Saturn) with again nine change events. For example,

the change event when(self.audio.on) is fired from the RecoveryMode state when the audio is back in the

videoconference. The state invariant of the RecoveryMode state ensures that S-Saturn remains in

RecoveryMode as long as any of the faults in the environment exists. This state invariant is simply the

logical disjunction of all change events modeling the faults (Figure 24). In the other case, if the system

cannot recover within time time, it disconnects all connected VCS and goes to the Idle state. This is

modeled as a transition introduced between the RecoveryMode state and the Idle state with a time event

and an effect DisconnectAll with an opaque behavior, which is a type of behavior defined in UML to

specify implementation specific semantics. In addition, the Idle state is stereotyped as <<Initial>>,

which indicates the state of S-Saturn if it is not successful in recovering to an acceptable level of media

quality. In our context DisconnectAll is a call to Saturn‟s API in a python-based proprietary test script

language. This call disconnects all connected systems to a VCS.

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

32

Context Saturn::Media

 not self.video.on

 or self.video.videoFrameLoss.value > self.video.videoFrameLossThreshold.value or self.video.videoQuality > self.video.videoQualityThreshold

 or not self.audio.on

 or self.audio.audioFrameLoss.value > self.audio.audioFrameLossThreshold.value or self.audio.noiseLevel.value and self.audio.noiseLevel.value <=

 self.audio.noiseLevelThreshold.value

 or self.audio.PESQ > self.audio.pesqThreshold or self.audio.mixingAudio or self.synchronizationMismatch.value >

 self.synchronizationMismatchThreshold.value

Figure 24. State invariant for RecoveryMode

Figure 23. The MediaQualityRecovery aspect

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

33

5.5.2 Constraining input parameter values

The second crosscutting behavior example we present is constraining parameters of events on

transitions. Since many transitions in a state machine can have the same trigger and constraints on the

associated event of the trigger may be the same, redundant constraints can exist in the model and hence

can be factored out as an aspect. Such constraints can be used to generate test cases exercising the

system robustness with illegal inputs [53]. The aspect state machine AddGuard shown in Figure 25

models this crosscutting behavior. The associated class diagram for the aspect state machine is identical

to Figure 2 as we do not need to model additional properties. This aspect state machine defines two

pointcuts (SelectSourceStatesOfTransition, SelectTargetStatesOfTransition) on two states and one

pointcut SelectTransitionsPointcut on the transition between the two states stereotyped as

<<Pointcut>>. This aspect state machine selects all transitions which have a dial call event and applies

a before advice AddGuardBeforeAdvice that adds an additional constraint “number.size()=4” to the

existing guards on the selected transitions. This constraint ensures that the number parameter of the dial

call event has exactly four digits.

5.6 Activity A6: Define ordering of aspects using a state machine

We begin with testing a related set of aspects modeling one robustness behavior. The related set of

aspects is woven into a base model in a specific order to ensure that the woven model is complete and

correct. To achieve this, an ordering must be defined between the aspect state machines (activity A5).

This ordering is also modeled as a state machine (denoted as weaving-directive state machine),

containing all aspect state machines as submachine states ordered using UML state machine‟s control

structure features such as decision, join, and fork. The complete template for the definition of a weaving

Figure 25. State machine for the AddGuard aspect

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

34

directive state machine is shown in Section 4.6.

The weaving directive state machine for MediaQualityRecovery is shown in Figure 26. Using such

state machine, we define the ordering of aspect state machines related to media quality. By weaving the

aspect state machines in this order, the woven state machine will be correct for testing. The reason is that

MediaQualityAspect introduces the DegradedMode state in the base state machine and the first two

aspect state machines update audio and video quality constraints in state invariants of all states of the

base state machine. These constraints should not be updated in DegradedMode because in this state the

system is working with degraded performance and audio and video quality will not be as expected. If

MediaQualityAspect is woven before AudioQualityAspect and VideoQualityAspect, the woven state

machine will contain DegradedMode with wrong state invariants. In this paper, we aim to weave and

test a set of related aspects (e.g., related to media quality) but not all aspects altogether. In the future, we

will investigate how to test by weaving different aspects at the same time.

5.7 Activity A7: Weave aspects with behavioral models

Finally, the aspect state machines are woven into the base state machine by the weaver, which reads the

base state machine, aspect state machine(s), and a weaving-directive state machine and produces a

woven state machine.

5.7.1 Modeling recovery from media faults

The woven state machine resulting from applying MediaRecoveryAspect to the Saturn base state

machine is not easily comprehensible, but it is only meant to be processed by model-based testing tools.

An excerpt of the woven state machine is however shown in Figure 27 and details regarding the model

Figure 26. A state machine describing ordering of aspects for weaving

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

35

complexity of woven state machines are summarized in Table 11. From all states except Idle and

PresentingWithoutCall, transitions to RecoveryMode are added. Each of these transitions contains nine

change events that can lead to the RecoveryMode state, such as the woven state machine in Figure 27

which contains a new state RecoveryMode. From NotFull, a transition is added that contains nine change

events that can lead to the RecoveryMode state such as change events “self.video.videoFrameLoss.value

> videoFrameLossThreshold.value” and “not (self.audio.on)”. The first change event is triggered when,

during a videoconference, video frame loss becomes greater than the allowed frame loss

(videoFrameThreshold), whereas the second change event is triggered when audio disappears from a

videoconference. These change events are defined in the context of the conceptual class diagrams shown

in Figure 2 and the class diagram modeling media quality attributes in Figure 22. Recall from Section

5.4 that both class diagrams are defined in the same package: Saturn. After weaving, the class diagram in

Figure 22 is merged into the conceptual class diagram in Figure 2. Therefore, after weaving, the

attributes defined in Figure 23 have the same context: the “Saturn” class in Figure 2. Similarly, six

transitions from RecoveryMode to all states except Idle and PresentingWithoutCall have been woven

into the base state machine. Each transition has nine change events that can lead the system back to the

state it was in before RecoveryMode, e.g., in Figure 27, a transition with six change events is added that

can lead the system back to the NotFull state. For instance, the VideoFrameLoss change event in Figure

27 specifies that when video frame loss is within the allowed frame loss and the system was in the

NotFull state, a VCS transitions from RecoveryMode to NotFull. The change event has two parts: the

first part (self.video.videoFrameLoss.value >= 0 and self.video.videoFrameLoss.value <=

videoFrameLossThreshold.value) checks if videoFrameLoss is within the allowed threshold. The second

part is the state invariant of the NotFull state, which checks that active calls in a videoconference is more

than one (self.systemUnit.NumberOfActiveCalls > 1 and self.systemUnit.NumberOfActiveCalls <

self.systemUnit.MaximumNumberOfCalls) and S-Saturn is not sending a presentation

(self.conference.PresentationMode = 'off'). In addition, it checks that S-Saturn is not sending a

presentation and is not receiving a presentation (self.conference.calls->select(c:Call|

c.outgoingPresentationChannel->asSequence()->last().Protocol = VideoProtocol::off)->size() = 0 and

self.conference.calls->select(c:Call | c.incomingPresentationChannel->asSequence()->last().Protocol

<> VideoProtocol::off)->size() = 0).

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

36

5.7.2 Constraining input parameter values

An excerpt of the woven state machine is shown in Figure 28. On transitions with dial() trigger, where

there were no guards, “number.size()=4” has been added, such as on the transition with the dial() trigger

from Connected_1 to NotFull in Figure 28. For the transitions with the dial() trigger, where there were

guards already present in the base state machine, “number.size()=4” has been conjuncted to the existing

guards, such as the self transition on NotFull in Figure 28.

Figure 27. An excerpt of woven state machine obtained after applying the MediaQualityRecovery aspect

VideoFrameLoss = when (self.video.videoFrameLoss.value >= 0 and self.video.videoFrameLoss.value <= videoFrameLossThreshold.value) and

(self.systemUnit.NumberOfActiveCalls > 1 and self.systemUnit.NumberOfActiveCalls < self.systemUnit.MaximumNumberOfCalls) and self.conference.PresentationMode =

'off' and self.conference.calls->select(c:Call| c.outgoingPresentationChannel->asSequence()->last().Protocol = VideoProtocol::off)->size() = 0 and self.conference.calls-

>select(c:Call | c.incomingPresentationChannel->asSequence()->last().Protocol <> VideoProtocol::off)->size() = 0)

Figure 28. An excerpt of woven state machine obtained after applying the AddGuard aspect

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

37

6. RESULTS FROM THE COMPLETE INDUSTRIAL CASE STUDY

In this section, we present results and discussions from the entire industrial case study. This is based on

an augmented and complete version of the simplified case study presented in Section 5. Our goal is to

assess whether RUMM addresses practical needs when modeling the robustness behavior of a realistic

system and whether it has the potential to provide significant benefits in terms of reducing modeling

effort and error-proneness.

6.1 Behavioral models of Saturn

Saturn consists of 20 subsystems. Each subsystem can work in parallel to the S-Saturn subsystem shown

in Figure 3. For each subsystem, we modeled a class diagram to capture APIs and state variables. In

addition, we modeled one or more state machines to model the behavior of each subsystem. Due to

confidentiality restrictions, we do not provide names and details of the subsystems. For one subsystem

(subsystem no 1), which is described in Section 2, we provided a conceptual model in Figure 2. The

behavioral model of the subsystem number 1 in Table 10 consists of 15 states; four of them are modeled

as submachine states to reduce model complexity. The state machines of this subsystem are presented in

Appendix D. For other subsystems, we do not provide class diagrams and state machines, but their

complexity is summarized in Table 10. It is important to note though the complexity of an individual

subsystem may not look high in terms of number of states and transitions, all subsystems work in

Table 10. Complexity of Saturn state machines

Subsystem Number of states Number of transitions

States Submachine states

1 15 4 56

2 6 0 20

3 2 0 2

4 2 0 5

5 2 0 2

6 22 7 63

7 2 0 2

8 5 0 2

9 2 0 2

10 2 0 2

11 3 0 2

12 4 0 7

13 6 0 8

14 2 0 3

15 2 0 3

16 2 0 2

17 3 0 2

18 4 0 10

19 2 0 2

20 4 0 20

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

38

parallel to each other and therefore the overall complexity is enormous after combining them. Saturn‟s

implementation consists of more than three million lines of C code.

6.2 Modeling robustness behavior

We modeled three crosscutting behaviors on Saturn. The first two are the same as presented in Section

5.4 and Section 5.5. In addition, we modeled the behavior of Saturn in the presence of different network

communication faults (NetworkCommunication) such as packet loss, jitter, and illegal packets in

videoconference protocols. The NetworkCommunication aspect is presented in Appendix C.

6.3 Results and discussion

In this section, drawing lessons learned from our case study, we discuss the benefits achieved by

applying RUMM to model the robustness crosscutting behavior of Saturn.

6.3.1 Reduced modeling effort

Modeling effort can be measured in different ways. One way, which is part of our future research plans,

is to conduct a controlled experiment that can compare the modeling effort of applying aspect state

machines with standard UML state machines. An alternate, much less expensive way is to estimate

modeling effort through a surrogate measure, the number of modeling elements required to be modeled.

This number can then be compared in aspect state machines and standard UML state machines when

modeling the same crosscutting behaviors. Table 11 summarizes the modeling tasks involved when

using and not using aspect state machines for modeling the abovementioned crosscutting behaviors. The

first two crosscutting concerns are related to updating audio and video constraints (Appendix A) in 86

states of Saturn. Using our profile we need to model one state in the aspect state machine, whereas 86

states of Saturn need to be changed if one is modeling this behavior directly. This means a reduction of

approximately 99% of the number of elements involved in the change.

The third crosscutting behavior is for modeling media quality recovery. When using AspectSM, we

need to model three states and three transitions in the aspect state machine (Figure 23). Two transitions

have nine triggers, each with change events, and one transition has one trigger with a time event. On the

other hand, without aspect state machines we need to model one new state and 178 new transitions with

1604 triggers (1603 with change events and one with a time event) in the base state machines of Saturn.

This means that, assuming modeling effort is roughly proportional to the number of modeling elements,

there is a 99% effort reduction in modeling triggers and a 98% effort reduction in modeling transitions.

However, since using aspect state machines requires to model three extra states with the <<Pointcut>>

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

39

stereotype, there will only be a benefit if modeling 1604 triggers on a state machine is more time-

consuming than modeling three pointcuts. Though this seems to be likely, it would need to be confirmed

via controlled experiments involving human designers to determine the actual percentage of modeling

effort saved when using aspect state machines. Similar results were obtained for the Network

Communication aspect. Results from the last crosscutting behavior in Table 11 (Add Guard) indicate

that when using aspect state machines we need to model two states and one transition, whereas without

aspect state machines we need to change 22 transitions in the base state machine of one of subsystems of

Saturn.

Overall, results on this industrial case study seem to suggest that the modeling effort can be

significantly reduced when using aspect state machines for modeling crosscutting behavior using

AspectSM. Such industrial case studies showing the practical advantage of aspect modeling are

unfortunately still too rare in the research literature and we are therefore not in a position to make

comparisons with previous works.

6.3.2 Enhanced separation of concerns

Modeling crosscutting behavior in UML state machines provides enhanced separation of concerns. For

instance, the AddGuard aspect state machine models constraints on input parameters of the call event

“dial” separately from the base state machine. In addition, the MediaQualityRecovery aspect state

machine (Figure 23) models a complex media quality crosscutting behavior separately from the base

state machines and other aspect state machines. This means that a modeler, or several of them with

possibly different expertise, can focus on each crosscutting concern separately and therefore model them

separately from the core functionality and other crosscutting concerns. This is very important for our

industrial partner since they have separate groups for different kinds of testing activities including

Table 11. Modeling tasks when using and not using AspectSM

Crosscutting

behavior

Using aspects Without aspects Effort Saved (%)

States

(Added)

Transition

(Added)

Trigger

(Added)

States

(Modified/Added)

Transitions

(Modified/Ad

ded)

Trigger

(Added)

States Transitions Trigger

Updating audio

constraints

1 - - 86 (Modified) - - 99% - -

Updating video

constraints

1 - 86 (Modified) - - 99% - -

Media quality

recovery

3 3 19 20 (Added) 178 1604 - 98% 99%

Network

communication

3 3 13 20 (Added) 178 1082 - 98% 99%

Add Guard 2 1 - 0 22 (Modified) - - 95% -

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

40

functional testing, video testing, audio testing, and network testing. Using our methodology each group

can model aspects which are related to their expertise and our tool can then be used to automatically

weave these aspects with the behavioral base models (models developed by the functional testing group).

6.3.3 Improved readability

Modeling crosscutting behavior as aspect state machines keeps the base state machine less cluttered and

hence easier to read. For instance, the woven state machine after applying MediaQualityRecovery on the

Saturn base state machine results into a highly complex, cluttered state machine, which is difficult to

read: Twenty states and 178 new transitions with 1604 triggers are added into the base state machines.

Our experience is that modeling such complex state machines without aspect state machines is difficult

to understand for practitioners and error-prone. Using aspect state machines, the base state machine and

aspect state machines are separate and are less complex in isolation. To confirm this, we recently

conducted a controlled experiment to measure the readability of aspect state machines using AspectSM

[54]. Readability was measured based on the identification of defects seeded in state machines (modeled

with and without AspectSM) and the score obtained when answering a comprehension questionnaire

about the system behavior. The results of the experiment showed that readability with AspectSM is

significantly better than that with both flat and hierarchical state machines measured in terms of

inspecting models to identify seeded defect. In terms of the comprehension questionnaire, the AspectSM

scores were better than flat state machines, but worse than hierarchical state machines. However, there

were no significant differences between aspect and hierarchical state machines. In addition, no

significant differences were observed in terms of the effort required to inspect models and detect defects.

6.3.4 Easier model evolution

Model evolution is also expected to be easier when using aspect state machines. For instance,

AudioQualityAspect and VideoQualityAspect presented in Appendix A change the state invariants of 86

states in the base state machines. In the future, more media quality measures will likely be introduced,

and constraints specific to these measures will be required. Using our profile, they will be added only in

the aspect state machines we defined. Otherwise, with regular state machine modeling, the new

constraints would need to be added to all nine states of the base model. In systems with hundreds of

states, changing the state invariants of all states is cumbersome and error prone, which makes model

evolution difficult. This will be further investigated with controlled experiments in the future.

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

41

6.3.5 Systematic fault modeling

Using RUMM, we can systematically identify possible classes of faults for a specific SUT based on the

proposed fault taxonomy. Furthermore, we can then instantiate specific fault types from the identified

classes which are considered critical in the SUT environment. We then model them using an aspect class

diagram according to our guidelines (Section 5.4) and aspect state machines based on RobustProfile

(Section 4.3). The entire process follows systematic steps to identify and model faults (Figure 4).

6.4 Limitations

RUMM is a modeling methodology specifically developed for modeling robustness behavior to facilitate

automated model-based testing. While developing the methodology, we took into consideration only

those issues which are relevant for modeling the behavior of a system in the presence of faulty situations

in the environment. We have not investigated whether other non-functional crosscutting concerns such

as security and dependability can be successfully modeled using RUMM or an adapted version of it. The

reason is that RUMM starts with modeling faults based on fault taxonomy for the system environment,

which may not be necessary, for instance, when modeling security concerns such as logging. In addition,

since RUMM is developed for model-based testing, we only considered issues which are important to

support automated testing. For instance, we focused on UML state machines, which are often used for

the automated testing in control and communication systems which typically exhibit state-driven

behavior. We also focused on modeling crosscutting behavior on those modeling elements of state

machines that are mandatory to support test automation such as states (including state invariants, entry,

exit, and do activities) and transitions (including guard, trigger, and effect). In AspectSM, we write

pointcuts as OCL queries, and we have not yet empirically evaluated and compared their expressiveness

when using other related languages and notations such as the one presented in [12]. We used OCL to

write pointcuts as it is the only standard for writing constraints in UML models, an important advantage

in industrial contexts. Last, our work for defining interactions and ordering between different aspect state

machines still requires further investigation.

7. RELATED WORK

This section discusses existing works that are directly but often partially related to the objectives of

RUMM. We analyze and compare published work on robustness modeling methodologies and AOM

profiles for UML state machines, generic AOM weavers, and testing based on AOM.

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

42

7.1 Robustness modeling methodologies

Most of the work related to robustness modeling does not make use of AOM and focus only on

modeling the behavior of a system when invalid inputs are given to the system, or on modeling

exceptions in the SUT in a similar fashion to programming languages. For instance, Pintér [55] reports

on the modeling of exceptions in statecharts in a similar fashion to Java mechanisms for writing

exceptions (try catch blocks). Exceptions are modeled as events on transitions in statecharts. Such

statecharts are subsequently used for model checking. Jiang [56] proposed a generic framework to model

self-healing software, i.e., software which try to recover from faults during their execution. The

framework supports modeling faults (such as related to invalid inputs to a system), their detection, and

their resolution with the help of different patterns defined for these purposes. Self-healing is modeled as

a separate model which is then combined into the functional model. Lei [57] provides a methodology to

check the robustness of component-based systems in the case of invalid inputs. Test cases are then

generated for invalid inputs at various states and the robustness of the system is checked. Nebut [58]

provides an automatic test generation approach based on use cases extended with contracts, after

transforming them into a transition system. Their approach supports both functional and robustness test

generation. Robustness test cases are generated by calling use cases when their preconditions are false.

Entwisle [59] proposed a framework for modeling various domain specific exception types such as

network exceptions, database exceptions, and web service exceptions using use cases. This approach

generates exception policy configurations from application models using model transformation and

finally generates code in Java for exceptions management, such as how to catch a particular exception.

The work (RUMM) presented in this paper is different from the existing work in robustness modeling

in one or more of the following ways: 1) It provides a robustness modeling methodology to model

system robustness in the presence of faults in its environment; this aspect has received little attention in

the literature. In contrast, most of the existing work focus only on modeling the behavior of a system

when invalid inputs are given to them [55] [56] [57] [58]; 2) It is aimed at performing automated model-

based robustness testing based on the robustness models for industrial systems. In contrast to the work

presented in [58], our work is based on UML state machines, which are the main notation currently used

for model-based test case generation [18]; 3) It relies on modeling standards, in this case UML state

machines and the MARTE profile [7], to model faulty situations of the environment; 4) It uses AOM to

model robustness behavior separately from the core, functional behavior, hence decreasing modeling

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

43

effort by avoiding clutter in models, making them easier to read and decreasing chances of modeling

errors; 5) We use standard UML extension mechanism, i.e., profile, to support robustness modeling as

aspects using standard UML state machines, thus eliminating the need to adopt new notations and

consequently facilitating the practical adoption of RUMM in industry; and 6) RUMM is driven by

defining a fault taxonomy, thus leading to the more systematic modeling of robustness behavior. The

process of defining the taxonomy helps in developing a clear and thorough understanding of the different

kinds of faults that may occur in the environment against which system robustness must be tested.

7.2 AOM profiles for UML state machines

Several UML profiles for AOM have been proposed in the literature [60-63] for different UML

diagrams. Since we defined a profile to define aspects on state machines, we only assess the existing

AOM work focusing on state machines. We do so along three dimensions: 1) Features of UML state

machines supported by a profile such as state, state invariant, do activity, entry activity, exit activity,

transition, guard, trigger, and effect, 2) Features of aspect-orientation supported by a profile or a

modeling approach such as pointcut, advice, and inter-type declaration (a programming construct in

AspectJ [46] used to introduce new variables in a base class), 3) Representation used for the aspect-

orientation features. Based on the above selection criterion, we found five related works in the literature

[1-4, 9]. Table 12 and Table 13 characterize these works with respect to their coverage of important

UML state machine modeling elements including state, transition and their contained elements, e.g.,

state invariant in state and guard in transition. For instance, in Table 12 and Table 13, the approach

presented in [1] only supports modeling crosscutting behavior in states and transitions (indicated by a +

sign), but not in other modeling elements (indicated by a - sign). Certain features of UML state machines

which are mandatory for performing automated, model-based testing are not supported by any of the

existing works. This includes state invariants and guards which, as discussed above, are essential to

generating automated oracles and generating automated test data, respectively.

Table 14 assesses existing works with respect to the features of aspect-orientation they support such

as types of advice. In light of these comparisons, one of our profile (AspectSM) contributions is that it

supports all UML state machines and aspect-orientation features. Table 15 provides information on the

notations used by each approach for modeling aspect-oriented features, whether UML diagrams or other

non-standard notations. Table 15 suggests that no existing profile is exclusively based on standard UML

notation and OCL, thus requiring the learning of additional, non-standard notations or languages, and

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

44

therefore making it difficult to reuse open source and commercial technology. This is, as discussed

earlier, highly important in most industrial contexts and strongly affects the adoption of modeling

technologies. In conclusion, based on the information provided in Table 12, Table 13, Table 14, and

Table 15, we conclude that our approach supports all necessary features of UML state machines and

aspect-orientation, which are all required for model-based robustness testing, and do so based

exclusively on standard modeling notations. In addition, our profile is developed with minimum

extensions to the UML standard and hence eases adoption by our industrial partner.

7.3 Comparisons with Generic AOM weavers

A generic weaver, GeKo, is presented in [19], but the current implementation of the weaver is not

complete (e.g., it does not support state machines) and its use requires many manual steps such as

specifying mappings from pointcuts to the base model. Metamodels for pointcut and advice are defined

by relaxing the UML 2.0 metamodel and are generated automatically from it using a transformation.

However, there is no support for modeling pointcuts and advice based on the generated metamodels. It

Table 12. Comparison of supported modeling elements related to a state

Reference State State Invariant Entry Activity Do Activity Exit Activity

[1] + - - - -

[2] + - - - -

[3] + - - - -

[4] [6] + - - - -

[9] + - - - -

Table 13. Comparison of supported modeling elements related to a transition

Reference Transition Guard Trigger Effect

[1] + - - -

[2] + - - -

[3] + + + -

[4] [6] + - - -

[9] + - + +

Table 14. Comparison of supported features of aspect-orientation

Reference Before Advice Around Advice After Advice Pointcut Introduction

[1] + - + + -

[2] + - + + -

[3] + - + + +

[4, 19] [6] + + + + +

[9] - + - + -

Table 15. Comparison of the representation of aspect-orientation features

Reference Aspect Advice Pointcut Introduction

[1] State machine State machine elements Non-Standard Not supported

[2] State machine Non-Standard Non-Standard Not supported

[3] State machine Non-Standard Non-Standard Non-Standard

[4] [6] State machine Non-Standard Non-Standard Non-Standard

[9] Class Activity diagram Non-Standard Not supported

AspectSM State machine State machine elements and OCL OCL State machine elements

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

45

therefore requires developing a new diagrammatic support for these metamodels, which will not be

standard, and consequently will not be supported by UML modeling tools, making the practical adoption

of the weaver difficult. Another similar generic weaver, SmartAdapter, is presented in [64]. The only

major difference between GeKo and SmartAdapter is that SmartAdapter requires manually writing

composition rules for aspect and base models, whereas this is not required by GeKo.

An aspect composition language (SDMATA/MATA) is presented in [12, 65], which allows modeling

and composing aspects on UML state machines using patterns. The selection of modeling elements of a

UML state machine (concept similar to pointcuts) is performed using state diagram patterns. Using state

diagram patterns, modeling elements are selected using regular expressions defined on diagrammatic

notations that „resemble‟ UML state machines (defined based on the extension of UML state machine

metamodel). In AspectSM, we write pointcuts as OCL expressions to query modeling elements of a base

state machine. To compare expressiveness of OCL expressions for writing pointcuts with regular

expressions, a controlled experiment is required, which will be conducted in the future. The tool support

for modeling patterns in SDMATA, however, is still under development. SDMATA requires defining

composition operators (concept similar to advice) using a language based on graph transformations. As

for other approaches in the literature, applying SDMATA to industrial contexts, requires learning

additional, non-standard notations such as state diagram patterns.

Kermeta [22] is a model-to-model transformation language, which provides the facility to write

transformation code in aspect-oriented style. Using such facility, aspects can be introduced at runtime on

metaclasses (e.g., UML Statemachine metaclass) for introducing new attributes and operations on

metaclasses or for providing definitions of existing operations in metaclasses. However, applying

Kermeta for our purpose in the industrial setting requires understanding not only details of the UML

metamodel, but also requires learning a new language for writing aspects. Using AspectSM, we only

need simple stereotypes with a few attributes, thus reducing the learning curve and improving

applicability. In other words, achieving a similar objective in Kermeta may require writing hundreds of

lines of complex transformation code.

These generic weavers, being applicable to a wide range of modeling languages, are of course

potentially usable in our context. On the other hand, such flexibility is possible only at the expense of

additional, significant cost to provide modeling support for the defined AOM concepts. This mostly

stems from the fact that no standard notation (e.g., UML) and metamodel can be used, as described

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

46

above. This is why, to facilitate adoption in practice, we decided to rely on a dedicated UML profile

(AspectSM) to define aspect state machines, thus relying on standard modeling environments.

7.4 Testing based on Aspect-Orientation Modeling

There are also works in the literature that deal with testing aspect-oriented programs using UML-based

models such as state machines [6, 66, 67]. The focus of our work is different since we do not focus on

testing implementation, which is coded in an aspect-oriented programming (AOP) language such as

AspectJ [46]. For instance, in our industrial system, we are targeting system level testing of an

embedded software of a VCS developed by Cisco, Norway, which is implemented in a subset of C

language. In addition a few approaches such as those presented in [68, 69] focus on testing components

using AOM to specify their behavior as state machines. The aspects are also specified as state machines

to be consistent with the notation of the core behaviors (components). The composition rules are

specified in their own developed language (not following any standard), which specify how to weave

aspects into the core behavior. These works focus on modeling and testing components when wrong

inputs are provided to them by their users. Our purpose is also different from these approaches since we

focus on modeling faulty environment (network and other VCSs) conditions of the system under test

using aspect state machines and test the behavior of the VCS in the presence of these conditions.

8. CONCLUSION

Model-based testing, and in particular automated testing based on state machines, is a very popular

approach to testing which is supported by an increasing number of open source and commercial tools.

However, for such testing to be effective, one must not only model nominal behavior but also robustness

behavior. For example, in control systems, one must model how the system should react to the

breakdown of sensors or actuators. In communication systems, in a similar way, one must model how

the system reacts to network problems. Modeling the robustness behavior of systems in state machines is

often a major source of complexity, thus leading to very large, error-prone models.

To systematically model robustness behavior for model-based testing and to alleviate its complexity,

this paper presents a RobUstness Modeling Methodology (RUMM) that uses a UML 2.0 profile to

support the modeling of robustness behavior as aspects in UML state machines (aspect state machines).

This profile was developed by augmenting many of the concepts in existing UML state machine profiles

for AOM in order to achieve the specific goal of supporting automated, model-based robustness testing.

Furthermore, in order to make our approach more practical in industrial contexts, aspect state machines

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

47

and their features are modeled using the UML state machine notation and the Object Constraint

Language (OCL), and therefore does not require that modelers learn new diagrammatic notations or

languages.

Another very important contribution of the paper is that we performed and report on an industrial case

study that suggests that using our methodology and profile may result in significantly reduced modeling

effort. Such case studies are indeed very rare and, to the knowledge of the authors, none is reported on

aspect state machines. Results show that modeling crosscutting behavior as a separate model (aspect

state machine) leads to the modeling of significantly less states, less transitions, and also less changes to

constraints such as state invariants. Modeling both standard and crosscutting behavior—in our case

robustness behavior—in one state machine would lead to many redundant modeling elements and yield

cluttered models that are difficult to understand. As an example, for one of the aspect state machine in

our case study, we avoided the modeling of 1586 extra triggers on 178 transitions (98% reduction) by

using our profile. However, this came at the cost of modeling three pointcuts for that aspect state

machine, which is clearly an additional overhead, but which should be minimized by the fact that they

are modeled as a UML state machine. It is however expected that the modeling effort required to model

three pointcuts is significantly less than modeling 1586 triggers. In addition, the results of a recent

controlled experiment [54] showed that readability of aspect state machines is significantly better than

standard UML state machines, though there was no significant difference in the effort to inspect both

types of state machines. Readability was measured based on the identification of defects seeded in state

machines (modeled with and without AspectSM) and the score obtained when answering a

comprehension questionnaire about the system behavior.

We also developed a weaver using the model transformation tool Kermeta [22] to automatically

produce woven state machines. These can in turn be used for different applications, in our case model-

based testing using state machines in input based on technologies such as Conformiq QTronic [24] and

SmartTesting Test Designer [50]. In the future, we are planning to integrate the woven state machines

produced by our weaver with our model-based testing tool TRUST [23] to automatically generate

robustness test cases. TRUST [23] has already been used for generating executable functional test cases

at Cisco, Norway. In the future, we will investigate to which extent our profile is applicable for other

types of crosscutting behaviors to be modeled as state machines. In addition, we need to investigate the

effort required by developers and testers to learn and apply RUMM. A series of controlled experiments

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

48

and case studies are required for this purpose, which we are planning to conduct in the future. Our work

on modeling interactions and ordering between various aspects still needs further investigation and

evaluation.

9. ACKNOWLEDGEMENTS

We would like to thank Robert B. France and Jacques Klein for their insightful comments and feedback

on this paper.

10. REFERENCES

[1] Zhang, G. Towards Aspect-Oriented State Machines. In Proceedings of the In Proceedings of the

2nd Asian Workshop on Aspect-Oriented Software Development (AOASIA'06) (Tokyo, 2006).

[2] Zhang, G. and Hölzl, M. HiLA: High-Level Aspects for UML-State Machines. In Proceedings of the

In Proceedings of the 14th Workshop on Aspect-Oriented Modeling (AOM@MoDELS'09) (2009).

[3] Zhang, G., Hölzl, M. M. and Knapp, A. Enhancing UML State Machines with Aspects. 2007.

[4] Xu, D., Xu, W. and Nygard, K. A State-Based Approach to Testing Aspect-Oriented Programs. In

Proceedings of the In Proceedings of the 17th International Conference on Software Engineering and

Knowledge Engineering (Taiwan, 2005).

[5] UML Profile for Modeling QoS and Fault Tolerance Characteristics and Mechanisms,

http://www.omg.org/spec/QFTP/1.1/, 2010

[6] Xu, D. and Xu, W. State-based incremental testing of aspect-oriented programs. In Proceedings of

the Proceedings of the 5th international conference on Aspect-oriented software development (Bonn,

Germany, 2006). ACM.

[7] Modeling and Analysis of Real-time and Embedded systems (MARTE), http://www.omgmarte.org/,

2010

[8] Jürjens, J. UMLsec: Extending UML for Secure Systems Development. In Proceedings of the

Proceedings of the 5th International Conference on The Unified Modeling Language (2002). Springer-

Verlag.

[9] Zhang, J., Cottenier, T., Berg, A. V. D. and Gray, J. Aspect Composition in the Motorola Aspect-

Oriented Modeling Weaver. Journal of Object Technology, 6, 7I (2007).

[10] IEEE Standard Glossary of Software Engineering Terminology. IEEE, IEEE Std 610.12-1990,

1990.

[11] Yedduladoddi, R. Aspect Oriented Software Development: An Approach to Composing UML

Design Models. VDM Verlag Dr. Müller, 2009.

[12] Whittle, J., Moreira, A., Araújo, J., Jayaraman, P., Elkhodary, A. and Rabbi, R. An Expressive

Aspect Composition Language for UML State Diagrams. 2007.

[13] Runeson, H. and Höst, M. Guidelines for Conducting and Reporting Case Study Research in

Software Engineering. Empirical Software Engineering, 14, 2I (2009), 131-164.

[14] Aldini, A., Gorrieri, R., Martinelli, F. and Jürjens, J. Model-Based Security Engineering with UML.

Springer Berlin / Heidelberg, 2005.

[15] Péreza, J., Ali, N., Carsı´b, J. A., Ramosb, I., Álvarezc, B., Sanchezc, P. and Pastorc, J. A.

Integrating aspects in software architectures: PRISMA applied to robotic tele-operated systems.

Information and Software Technology, 50, 9-10I (2008), 969-990.

http://www.omg.org/spec/QFTP/1.1/
http://www.omgmarte.org/

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

49

[16] Cottenier, T., Berg, A. v. d. and Elrad, T. The Motorola WEAVR: Model Weaving in a Large

Industrial Context. In Proceedings of the Aspect Oriented Software Development (AOSD) (2007).

[17] Cottenier, T., Berg, A. v. d. and Elrad, T. Stateful Aspects: The Case for Aspect-Oriented

Modeling. In Proceedings of the Proceedings of the 10th international workshop on Aspect-oriented

modeling (Vancouver, Canada, 2007). ACM.

[18] Shafique, M. and Labiche, Y. A Systematic Review of Model Based Testing Tools. Carleton

University, Department of Systems and Computer Engineering, Technical Report (SCE-10-04), 2010.

[19] Kienzle, J., Abed, W. A. and Klein, J. Aspect-Oriented Multi-View Modeling. In Proceedings of

the In Proceedings of the 8th ACM International Conference on Aspect-Oriented Software Development

(Charlottesville, Virginia, USA, 2009). ACM.

[20] Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C. Basic Concepts and Taxonomy of

Dependable and Secure Computing. IEEE Transactions on Dependable and Secure Computing, 1, 1I

(2004), 11-33.

[21] IEEE Standard Classification for Software Anomalies. IEEE, IEEE Std 1044-2009, 2009.

[22] Kermeta - Breathe Life into Your Metamodels, IRISA and INRIA, http://www.kermeta.org/, 2010

[23] Ali, S., Hemmati, H., Holt, N. E., Arisholm, E. and Briand, L. C. Model Transformations as a

Strategy to Automate Model-Based Testing - A Tool and Industrial Case Studies. Simula Research

Laboratory, Technical Report (2010-01), 2010.

[24] QTRONIC, CONFORMIQ, http://www.conformiq.com/qtronic.php, 2010

[25] Standard for Software Quality Characteristics. International Organization for Standardization, ISO-

9126-3, 2003.

[26] Software Assurance Standard. NASA Technical Standard, NASA-STD-8739.8, 2005.

[27] Larman, C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design

and Iterative Development Prentice Hall PTR, 2004.

[28] Bruning, S., Weissleder, S. and Malek, M. A Fault Taxonomy for Service-Oriented Architecture. In

Proceedings of the Proceedings of the 10th IEEE High Assurance Systems Engineering Symposium

(2007). IEEE Computer Society.

[29] Chan, K. S., Bishop, J., Steyn, J., Baresi, L. and Guinea, S. A Fault Taxonomy for Web Service

Composition. Springer-Verlag, 2009.

[30] Mariani, L. A Fault Taxonomy for Component-Based Software. Electronic Notes in Theoretical

Computer Science, 82, 6I (2003), 55-65.

[31] Hayes, J. H. Building a Requirement Fault Taxonomy: Experiences from a NASA Verification and

Validation Research Project. In Proceedings of the Proceedings of the 14th International Symposium on

Software Reliability Engineering (2003). IEEE Computer Society.

[32] Ho, W.-M., Jézéquel, J.-M., Pennaneac'h, F. and Plouzeau, N. A toolkit for weaving aspect oriented

UML designs. In Proceedings of the Proceedings of the 1st international conference on Aspect-oriented

software development (Enschede, The Netherlands, 2002). ACM.

[33] Pazzi, L. Explicit Aspect Composition by Part-Whole State Charts. In Proceedings of the In

Proceedings of the Workshop on Object-Oriented Technology (1999). Springer-Verlag.

[34] France, R., Ray, I., Georg, G. and Ghosh, S. Aspect-oriented Approach to Early Design Modelling.

IEEE Software, 151, 4I (2004).

[35] Binder, R. V. Testing object-oriented systems: models, patterns, and tools. Addison-Wesley

Longman Publishing Co., Inc., 1999.

[36] Lagarde, F., Espinoza, H., Terrier, F., André, C. and Gérard, S. Leveraging Patterns on Domain

Models to Improve UML Profile Definition. 2008.

http://www.kermeta.org/
http://www.conformiq.com/qtronic.php

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

50

[37] Weilkiens, T. Systems Engineering with SysML/UML: Modeling, Analysis, Design. Tim Weilkiens,

2008.

[38] UML Profile for Schedulability, Performance and Time,

http://www.omg.org/technology/documents/profile_catalog.htm, 2010

[39] Baker, P., Dai, Z. R., Grabowski, J., Haugen, Ø., Schieferdecker, I. and Williams, C. Model-Driven

Testing: Using the UML Testing Profile. Springer, 2007.

[40] Steinberg, D., Budinsky, F., Paternostro, M. and Merks, E. EMF: Eclipse Modeling Framework.

Addison-Wesley Professional, 2008.

[41] Filman, R. E., Elrad, T., Clarke, S. and Aksit, M. Aspect-Oriented Software Development. Addison-

Wesley Professional, 2004.

[42] IBM OCL Parser, IBM, http://www-01.ibm.com/software/awdtools/library/standards/ocl-

download.html, 2010

[43] OCLE, http://lci.cs.ubbcluj.ro/ocle/, 2010

[44] EyeOCL Software, http://maude.sip.ucm.es/eos/, 2010

[45] Pender, T. UML Bible. Wiley, 2003.

[46] Laddad, R. AspectJ in Action: Practical Aspect-Oriented Programming. Manning Publications,

2003.

[47] Stein, D., Hanenberg, S. and Unland, R. A UML-based aspect-oriented design notation for AspectJ.

In Proceedings of the Proceedings of the 1st international conference on Aspect-oriented software

development (Enschede, The Netherlands, 2002). ACM.

[48] Clarke, S. and Walker, R. J. Composition patterns: an approach to designing reusable aspects. In

Proceedings of the Proceedings of the 23rd International Conference on Software Engineering

(Toronto, Ontario, Canada, 2001). IEEE Computer Society.

[49] Stein, D., Hanenberg, S. and Unland, R. Designing Aspect-Oriented Crosscutting in UML. In

Proceedings of the In AOSD-UML Workshop at AOSD ‟02 (2002).

[50] Utting, M. and Legeard, B. Practical Model-Based Testing: A Tools Approach. Morgan-Kaufmann,

2007.

[51] Tessier, F., Badri, L. and Badri, M. Towards a Formal Detection of Semantic Conflicts Between

Aspects: A Model-Based Approach. In Proceedings of the The 5th Aspect-Oriented Modeling Workshop

In Conjunction with UML 2004 (2004).

[52] Perceptual Evaluation of Speech Quality (PESQ), http://en.wikipedia.org/wiki/PESQ, 2010

[53] Ali, S., Iqbal, M. Z., Arcuri, A. and Briand, L. C. A Search-based OCL Constraint Solver for

Model-based Test Data Generation. In Proceedings of the Proceedings of the 11th International

Conference On Quality Software (QSIC 2011) (2011).

[54] Ali, S., Yue, T., Briand, L. C. and Malik, Z. I. Does Aspect-Oriented Modeling Help Improve the

Readability of UML State Machines? Simula Reserach Laboratory, Technical Report(2010-11), 2010.

[55] Pintér, G. and Majzik, I. Modeling and Analysis of Exception Handling by Using UML Statecharts.

2005.

[56] Jiang, M., Zhang, J., Raymer, D. and Strassner, J. A Modeling Framework for Self-Healing

Software Systems. In Proceedings of the Models@run.time In conjunction with MoDELS/UML (2007).

[57] Lei, B., Liu, Z., Morisset, C. and Li, X. State Based Robustness Testing for Components. Electron.

Notes Theor. Comput. Sci., 260, 173-188.

[58] Nebut, C., Fleurey, F., Traon, Y. L. and Jezequel, J.-M. Automatic Test Generation: A Use Case

Driven Approach. IEEE Trans. Softw. Eng., 32, 3I (2006), 140-155.

http://www.omg.org/technology/documents/profile_catalog.htm
http://www-01.ibm.com/software/awdtools/library/standards/ocl-download.html
http://www-01.ibm.com/software/awdtools/library/standards/ocl-download.html
http://lci.cs.ubbcluj.ro/ocle/
http://maude.sip.ucm.es/eos/
http://en.wikipedia.org/wiki/PESQ

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

51

[59] Entwisle, S., Schmidt, H., Peake, I. and Kendall, E. A Model Driven Exception Management

Framework for Developing Reliable Software Systems. In Proceedings of the Proceedings of the 10th

IEEE International Enterprise Distributed Object Computing Conference (2006). IEEE Computer

Society.

[60] Jingjun, Z. Modeling Aspect-Oriented Programming with UML Profile. 2009.

[61] Júnior, J. U., Camargo, V. V. and Chavez, C. V. F. UML-AOF: a profile for modeling aspect-

oriented frameworks. In Proceedings of the Proceedings of the 13th workshop on Aspect-oriented

modeling (Charlottesville, Virginia, USA, 2009). ACM.

[62] Aldawud, O., Elrad, T. and Bader, A. UML Profile for Aspect-Oriented Software Development. In

Proceedings of the The Third International Workshop on Aspect Oriented Modeling (2003).

[63] Evermann, J. A meta-level specification and profile for AspectJ in UML. In Proceedings of the

Proceedings of the 10th international workshop on Aspect-oriented modeling (Vancouver, Canada,

2007). ACM.

[64] Petriu, D., Rouquette, N., Haugen, Ø., Morin, B., Klein, J., Kienzle, J. and Jézéquel, J.-M. Flexible

Model Element Introduction Policies for Aspect-Oriented Modeling. Springer Berlin / Heidelberg.

[65] Whittle, J. and Jayaraman, P. MATA: A Tool for Aspect-Oriented Modeling Based on Graph

Transformation. Springer-Verlag, 2008.

[66] Xu, D., Xu, W. and Nygard, K. A State-Based Approach to Testing Aspect-Oriented Programs. In

Proceedings of the Proceedings of the 17th International Conference on Software Engineering and

Knowledge Engineering (2005).

[67] Xu, W. and Xu, D. A Model-Based Approach to Test Generation for Aspect-Oriented Programs. In

Proceedings of the First Workshop on Testing Aspect-Oriented Programs (2005).

[68] Bruel, J.-m., Araújo, J., Moreira, A. and Royer, A. Using Aspects to Develop Built-In Tests for

Components. In Proceedings of the In AOSD Modeling with UML Workshop, 6th International

Conference on the Unified Modeling Language (2003).

[69] Bruel, J. M., Moreira, A. and Araújo, J. Adding Behavior Description Support to COTS

Components through the Use of Aspects. In Proceedings of the 2nd Workshop on Models for Non-

functional Aspects of Component-Based Software (2005).

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

52

11. APPENDIX A: ASPECTS FOR UPDATING STATE INVARIANTS

In this section, we present the details of AudioQualityAspect and VideoQualityAspect. These aspects

update state invariants in the base state machine (Figure 3) with audio and video quality constraints.

11.1 Updating state invariants with audio quality attributes

The aspect in Figure 29 updates state invariants for all simple states where the system is in a

videoconference. In Figure 29, the <<Aspect>> stereotype is applied on the state machine, whose

attributes show that this aspect is applied to the base state machine (Saturn::Saturn) in this case. A

<<Pointcut>> stereotype is applied on the state invariant of the state

UpdateStateInvariantsWithAudioQuality. This pointcut applies a before advice on all states selected by

the pointcut and this results into adding an additional constraint (see note 3). The woven state machine

looks the same as the base state machines except that the state invariants of the selected states are

updated.

11.2 Updating state invariants with video quality attributes

The aspect in Figure 30 updates the state invariants of states selected in the base state machine by the

<<Pointcut>> stereotype applied on the state invariant of the state

UpdateStateInvariantsWithVideoQuality in Figure 30 according to the before advice defined based on

the video quality attributes modeled in Figure 26. The on attribute is a Boolean attribute that determines

if the video is present in a videoconference. The videoQuality is a video quality metric for measuring

Figure 29. State machine for AudioQualityAspect

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

53

video quality and is defined as an Integer. The videoFrameLoss is an Integer attribute that determines

the current video frame loss during a videoconference.

The <<Before>> stereotype applied on the state invariant of the state

UpdateStateInvariantsWithVideoQuality in Figure 30 adds an additional conjunct to state invariants of

all selected states (see note 3 for attribute values). The woven state machines looks exactly the same as

the base state machines in as only state invariants changed in this case.

Figure 30. State machine for the VideoQualityAspect

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

54

12. APPENDIX B: WEAVER ALGORITHM

WeaveStateMahine (b: StateMachine, A: Set(StateMachine), w:StateMachine):StateMachine

/*

This algorithm takes in input a base state machine b, a set of aspect state machines, and a weaving-directive state

machine and outputs a woven state machine. All inputs and the output are instances of UML 2.0 State machine

metaclass.

*/

Inputs:

b: A base state machine, which is a UML 2.0 state machine.

A: A set of aspect state machines. Each aspect state machine is a UML 2.0 state machine.

w: A weaving directive state machine, which consists of a set of submachine states A‟. Each submachine state a‟

in A‟ corresponds to the an aspect state machine in the set A. w is also a UML 2.0 state machine.

Output:

o: A woven state machine, which is a UML 2.0 state machine.

Algorithm:

1. Traverse sub machines states (aspects) according to the order specified in w

a. For each sub machine state a‟ in A‟ do

i. Start with the initial state and go to the first state s in a‟

1. For each t in s.outgoing /* For every outgoing transition of s */

a. If (s.stereotype = „<<Pointcut>>‟)

i. Call WeavePointcut(s)

b. Else If (s.stereotype = „<<Introduction>>‟)

i. Call WeaveIntroduction(s)

c. Else

i. Call WeaveNoStereotype(s)

Figure 31. Weaving algorithm

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

55

Function WeavePointcut(s:State)

/*

This function takes input a state with the stereotype <<Pointcut>> and queries the base state machine with the pointcut

expression and calls other functions to apply advices on the base s

*/

1. For each t in s.outgoing

a. If t.target.stereotype = „<<Pointcut>>‟

i. If t.stereotype = „‟

1. Check which model elements (such as guard, trigger, or effect) related to the transition

that has a stereotype (<<Introduction>> or <<Pointcut>>)

2. If the model element has a stereotype <<Pointcut>>

a. Query the base model b with the selectionConstraint attribute of the pointcut

b. Apply before, after, or around advice /introduction on the modeling elements

selected by the pointcut

c. Call RepeatComposition(t.target)

ii. Else If t.stereotype = „<<Pointcut>>‟

1. Call WeavePointcutOnState(s)

2. Call WeavePointcutOnTransition(t)

3. Call WeavePointcutOnState(t.target)

4. Call RepeatComposition(t.target)

iii. Else

1. Call WeavePointcutOnState(s)

2. Call WeavePointcutOnState(t.target)

3. Add the new transition t as specified in the aspect between the states selected by above

two steps

4. Call RepeatComposition(t.target)

b. Else If t.target.stereotype = „<<Introduction>>‟

i. If t.stereotype = „‟

1. Not allowed

ii. Else If t.stereotype=‟<<Introduction>>‟

1. Call WeavePointcutOnState(s)

2. Call WeavePointcutOnTransition(t)

3. Introduce the state t.target as specified in the aspect

4. Call RepeatComposition(t.target)

iii. Else

1. Call WeavePointcutOnState(s)

2. Introduce the state t.target as specified in the aspect

3. Add the new transition t as specified in the aspect between the states selected by above

two steps

4. Call RepeatComposition(t.target)

c. Else

i. Not allowed

Figure 32. The WeavePointcut() function

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

56

Function Introduction(s:State)

/*

This function takes input a state with the stereotype <<Introduction>> and introduces the new elements in the base model

as specified by the <<Introduction>> stereotype.

*/

1. For each t in s.outgoing

a. If t.target.stereotype = „<<Pointcut>>‟

i. If t.stereotype = „‟

1. Not allowed

ii. Else If t.stereotype = „<<Pointcut>>‟

1. Introduce the state s as specified in the aspect

2. Call WeavePointcutOnState(t.target)

3. Call WeavePointcutOnTransition(t)

4. Call RepeatComposition(t.target)

iii. Else

1. Introduce the state s as specified in the aspect

2. Call WeavePointcutOnState(t.target)

3. Add the new transition t as specified in the aspect between the states selected by above

two steps

4. Call RepeatComposition(t.target)

b. Else If t.target.stereotype = „<<Introduction>>‟

i. If t.stereotype = „‟

1. Not allowed

ii. Else If t.stereotype=‟<<Introduction>>‟

1. Introduce the state s as specified in the aspect

2. Introduce the state t.target as specified in the aspect

3. Call WeavePointcutOnTransition(t)

4. Call RepeatComposition(t.target)

iii. Else

1. Introduce the state s as specified in the aspect

2. Introduce the state t.target as specified in the aspect

3. Add the new transition t as specified in the aspect between the states selected by above

two steps

4. Call RepeatComposition(t.target)

c. Else

i. Not allowed

 Figure 33. The Introduction() function

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

57

 Function WeaveNoStereotype(s:State)

/*

This function takes input a state without any stereotype from an aspect state machine and applies advice/introduction on the

base state machine as specified in the modeling elements contained within the state.

*/

1. For each t in s.outgoing /* for each transition going out of s */

a. If t.target.stereotype = „<<Pointcut>>‟

i. Not allowed

b. Else If t.target.stereotype =‟<<Introduction>>‟

i. Not allowed

c. Else

i. Check which model elements (such as state invariant, do, entry, or exit activity) related to the state s

that has a stereotype (<<Introduction>> or <<pointcut>>)

ii. If the model element has a stereotype <<pointcut>>

1. Query the base model b with the selectionConstraint attribute of the pointcut

2. Apply before, after, or around advice /introduction on the modeling elements selected by

the pointcut

iii. Repeat steps i and ii for the state t.target

iv. Call RepeatComposition(t.target)

Figure 41 (a). The WeaveNoStereotype() function

Function RepeatComposition(s:State)

/*

 This function traverses the aspect state machine and calls appropriate functions to evaluate pointcut and introduction

*/

1. If (s.isFinal !=true) /* checks if s is a final state */

a. If s.stereotype = „<<Pointcut>>‟

i. Call WeavePointcut (s)

b. Else If s.stereotype = „<<Introduction>>‟

i. Call WeaveIntroduction (s)

c. Else

i. Call WeaveNoStereotype (s)

Figure 41 (b). The RepeatCompostion() function

Function WeavePointcutOnState(s:State)

/*

This functions queries the base state machine according to the query expression specified in the pointcut and applies the

advice as specified by the pointcut

*/

1. Query the base model b according to the query specified in the selectionConstraint attribute of the pointcut on state s.

2. Apply after, before, and/or around advices as specified on stereotypes <<After>>, <<Before>>, and <<Around >> to the

model elements selected by the selectionConstraint in step 1.

Figure 34 (c). The PointCutOnState() function

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

58

Function WeavePointcutOnTransition(t)

/*

This function queries the base model according to the query expression specified in the pointcut and applies the advice as

specified by the pointcut

*/

1. Query the base model b according to the query specified in the selectionConstraint attribute of the pointcut on state s.

2. Apply after, before, and/or around advices as specified on stereotypes <<After>>, <<Before>>, and <<Around >> to the

model elements selected by the selectionConstraint in step 1.

Figure 35. The PointcutOnTransition() function

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

59

13. APPENDIX C: NETWORK COMMUNICATION ASPECT

13.1 Description of the Aspect

The purpose of this aspect is to model the behavior of a system in the presence of various network faults.

A system is supposed to work even under the presence of faults and unwanted conditions (degraded

mode). By degraded mode, we mean that the system should continue to behave as in the non-faulty

situation, except that the quality (such as audio and video) or the performance is degraded such as slow

speed of running applications on a videoconference system. The system must try to recover from the

degraded mode and go back to normal mode of operation. In the worst case, the system must return to

the safe state.

13.2 Network Robustness (NR) Aspect (Aspect Class Diagram)

Figure 36 shows a class diagram that models the robust behavior of the system in the presence of

different network faults defined based on the fault taxonomy (Figure 5) such as jitter, packet loss, low

bandwidth, illegal packets for videoconferencing protocols (SIP and H323), and in the case of no

network connection. Six network properties are modeled in the class diagram that models different faulty

situations. Five network properties are modeled as non-functional (NF) types using the MARTE profile

[7]: packet loss, jitter, bandwidth, and percentage of illegal packets for H323 and SIP protocols. The

network connection is modeled as a Boolean attribute.

13.2.1 PacketLoss

This property is defined to introduce packets loss during communication and is measured in terms of

percentage. This property is defined to be of the MARTE type NFP_Percentage because packet loss is

always measured in percentage and the NFP_Percentage is defined in the MARTE profile for this

purpose.

13.2.2 Jitter

This property introduces delay between network packets. This delay is introduced in the unit of

millisecond (ms) and checks robustness of a videoconferencing system in the presence of delayed

network packets. This property has two attributes: value of type Integer and unit of the MARTE type

TimeUnitKind. The type TimeUnitKind of the MARTE profile is used to define units for time values

such as millisecond and microsecond. We chose this data type so that a modeler can chose appropriate

unit to measure unit. We set the default value of the unit attribute to millisecond (ms).

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

60

13.2.3 Bandwidth

This property is used to change the bandwidth of the network and is measured in terms of

Kilobytespersecond (Kbps) and checks robustness of a videoconferencing system in the presence of low

bandwidth than required by a videoconference. This property has two attributes: value of type Integer

and rate of the MARTE type DataTxRateUnitKind. The type DataTxRateUnitKind is used to define units

for data transmission such as KiloBytesPerSecond (Kbps) and MegaBytesPerSecond (Mbps). We chose

this data type because it allows a modeler to change unit of data transmission as required. We set the

default value of the rate attribute to KiloBytesPerSecond (Kbps).

13.2.4 IllegalH323PacketPercent

This property is used to add illegal packets for the H323 videoconferencing protocol during a

videoconference to see how a VCS behaves. This property is of type NFP_Percentage.

13.2.5 IllegalSIPPacketPercent

This property is used to add illegal packets for the SIP videoconferencing protocol during a

videoconference to see how a VCS behaves. This property is of type NFP_Percentage.

Figure 36. Class diagram for the NR aspect

13.3 Aspect State Machine for NR

The aspect state machine for the NR aspect is shown in Figure 37. The „NetworkCommunication‟ state

machine is stereotyped as „Aspect‟ and the attributes associated with the stereotype are shown in the note

labeled 1. The first attribute name specifies the name of the aspect, which is NetworkCommunication in

this case. The second attribute baseStateMachine specifies the base state machine on which the aspect

will be woven, which is Saturn (Figure 3) in this case.

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

61

Figure 37. State machine for the ‘NetworkCommunication’ aspect

A pointcut named „SelectStatesPointcut‟ on the state „SelectedStates‟ is shown in Figure 37 (see note

3), which selects all states of the base state machine except for the Idle and PresentingWithoutCall

states. New transitions modeling robust behavior of the system from all states selected by the

„SelectStatesPointcut‟ pointcut to a new state „DegradedMode‟ stereotyped with the <<Introduction>>

and <<ExternalFault>> stereotypes are introduced. These robustness transitions are modeled as UML

change events and stereotyped with the <<NetworkFault>> stereotype, which indicates that this event is

modeling a network fault. For instance, when „when (not self.networkConnection)‟ in any of the states

selected by the pointcut, the system goes to the state „DegradedMode‟, which is stereotyped as

<<Introduction>> indicating that this state will be introduced in the base state machine. In this state,

the system tries to recover the network connection. If the system is successful in recovering the network

connection, the transition with the change event „when(self.networkConnection)‟ takes the system back

to the original state, which is one of the states selected by SelectedStates state stereotyped <<Normal>>

to indicate that this state is a normal state of the system. If the system cannot recover within time t, then

the system disconnects all the systems and goes to the „Idle‟ state stereotyped as <<Initial>> indicating

that this is the initial state of the system. This is modeled as a new transition from the „DegradedMode‟

state to the „Idle‟ state, with a time event after(t), and a new effect „DisconnectAll‟ with an opaque action

„disconnect‟, which disconnects all the connected systems to the system.

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

62

14. APPENDIX D: EXAMPLES

In this section, we provide examples for advice on various UML state machine modeling elements such

as states, transitions, and effects. All examples presented in this section are based on the state machine

shown in Figure 3.

14.1 Advice on states

In this section, we present examples of before, after, and around advice on states.

14.1.1 Before advice on state

An example of a before and an after advice on states is shown in Figure 38. An aspect AdvicesOnStates

is modeled that has one state SelectedStates with stereotypes Pointcut, Before, and After in Figure 38.

This pointcut selects all simple states in all regions of a state machine excluding the states Idle and

Figure 38. An example of before and after advice on a state

Figure 39. An example around advice on a state

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

63

PresentingWithoutCall and applies CheckNumberOfCallsBeforeAdvice and

CheckNumberOfCallsAfterAdvice advice on the selected states.

14.1.2 Around advice on states

An example of an around advice on a state is shown in Figure 39. A pointcut with the name

SelectIdleStatePointcut is applied on state Initialized, which selects a simple state with the name Idle

and applies an around advice ReplaceIdleStateAroundAdvice that replaces the Idle state with a new state

named Initialized. This is achieved by modeling a new state Initialized and applying a pointcut and

around advice on it. Details of the pointcut and the around advice are shown in Figure 39.

14.2 Advice on transitions

In this section, we present examples of advice on transitions.

14.2.1 Before advice on transitions

An example of a before advice on a transition is shown in Figure 40. Three pointcuts are defined in the

aspect: two on states with name TriggerSourceStatesPointcut and TriggerTargetStatesPointcut to select

source and target states of all transitions, which have a trigger with the event name dial, one pointcut on

the transition (SelectTransitionsPointcut) that selects all transitions, which have a trigger with the event

name dial and applies an around advice that adds a guard to the selected transitions.

14.2.2 Around advice on transitions

An example of an around advice on transitions is shown in Figure 41. Three pointcuts are same as in the

previous example. In this case, an around advice is applied on all selected transitions by the

SelectTransitionsPointcut pointcut, which replaces the dial call event with the EndpointConnect signal

event. This is achieved by adding the EndpointConnect signal on the transition with the pointcut and the

around advice as shown in Figure 41.

14.2.3 After advice on transitions

An example of an after advice on a transition is shown in Figure 42. Three pointcuts are same as in the

previous example. In this case, an after advice is applied on all selected transitions by the

SelectTransitionsPointcut pointcut, which adds a new effect IncrementNumberOfCalls. This is achieved

by adding the effect on the transition with the pointcut and the around advice as shown in Figure 42.

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

64

14.3 Advice on triggers

Figure 40. An example of a before advice on a transition

Figure 41. An example of around advice on transitions

Figure 42. An example of after advice on transitions

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

65

In this section, we present examples of advice on triggers.

14.3.1 Around advice on triggers

An example of an around advice on triggers is shown in Figure 43. The pointcuts on the states are same

as in the previous example, however, in this example, <<Pointcut>> and <<Around>> stereotype are

applied on trigger. In this case, an around advice is applied on all selected transitions by the

SelectTransitionsPointcut pointcut on trigger, which replaces the dial call event with the

EndpointConnect signal. This is achieved by adding the EndpointConnect signal on the transition with

the pointcut and the around advice stereotypes.

14.4 Advice on guards

In this section, we present examples of advice on guards

14.4.1 Before and after advice on guards.

An example of a before/an after advice on guards is shown in Figure 44. The

TriggerSourceStatesPointcut and TriggerTargetStatesPointcut pointcuts are same as in the previous

examples, however, in this example, <<Pointcut>> and <<Before>> stereotypes are applied on guard.

In this case, a before advice is applied on all selected transitions by the SelectTransitionsPointcut

pointcut on guard that conjuncts an additional constraint to the existing guard as shown in Figure 44.

Figure 43. An example of a before advice on a trigger

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

66

14.4.2 Around advice on guards

An example of an around advice on guards is shown in Figure 45. The TriggerSourceStatePointcut and

TriggerTargetStatePointcut pointcuts are same as in the previous examples, however, in this example,

<<Pointcut>> and <<Around>> stereotypes are applied on guard. In this case, an around advice is

applied on all selected transitions by the SelectTransitionsPointcut pointcut on guard that replaces the

existing guard with a new guard.

14.5 Advice on effects

In this section, we present examples of advice on effects.

Figure 44. An example of a before advice on guards

Figure 45. An example of around advice on guards

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

67

14.5.1 Before advice on effects

An example of a before advice on effects is shown in Figure 46. The TriggerSourceStatesPointcut and

TriggerTargetStatesPointcut pointcuts are same as in the previous examples, however, in this example,

<<Pointcut>> and <<Before>> stereotypes are applied on effect. In this case, a before advice is

applied on all selected transitions by the SelectTransitionsPointcut pointcut on effect that adds the

additional behavior to the existing behavior.

14.5.2 Around advice on effects.

An example of around advice on effects is shown in Figure 47. The TriggerSourceStatesPointcut and

TriggerTargetStatePointcut pointcuts on states are same as in the previous examples, however, in this

Figure 46. An example of a before advice on effect

Figure 47. An example of around advice on effect

Simula Research Laboratory, Technical Report 2010-03, Version 3 April 2011

68

example, <<Pointcut>> and <<Around>> stereotypes are applied on effect. In this case, a before

advice is applied on all selected transitions by the SelectTransitionsPointcut pointcut on effect that

replaces the existing effect with an effect IncrementNumberOfActiveCalls as shown in Figure 47.

