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ABSTRACT
Adaptive Random Testing (ART) has been proposed as an enhance-
ment to random testing, based on assumptions on how failing test
cases are distributed in the input domain. The main assumption
is that failing test cases are usually grouped into contiguous re-
gions. Many papers have been published in which ART has been
described as an effective alternative to random testing when us-
ing the average number of test case executions needed to find a
failure (F-measure). But all the work in the literature is based ei-
ther on simulations or case studies with unreasonably high failure
rates. In this paper, we report on the largest empirical analysis of
ART in the literature, in which3727 mutated programs and nearly
ten tr illion test cases were used. Results show that ART is highly
inefficient even on trivial problems when accounting for distance
calculations among test cases, to an extent that probably prevents
its practical use in most situations. For example, on the infamous
Triangle Classification program, random testing finds failures in
few milliseconds whereas ART execution time is prohibitive. Even
when assuming a small, fixed size test set and looking at the prob-
ability of failure (P-measure), ART only fares slightly better than
random testing, which is not sufficient to make it applicable in re-
alistic conditions. We provide precise explanations of this phe-
nomenon based on rigorous empirical analyses. For the simpler
case of single-dimension input domains, we also perform formal
analyses to support our claim that ART is of little use in most sit-
uations, unless drastic enhancements are developed. Such analyses
help us explain some of the empirical results and identify the com-
ponents of ART that need to be improved to make it a viable option
in practice.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
I.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods,
and Search

General Terms
Algorithms, Experimentation, Reliability, Theory
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Keywords
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1. INTRODUCTION
Random testing does not exploit any information about the soft-

ware under test (SUT). Therefore, historically it was considered
a naive testing strategy that is less effective than partition testing.
Myers in his 1979 book [34] states “probably the poorest [test case
design] methodology is random input testing. . .”. But this state-
ment was not agreed upon by everyone. Thayeret al. [41] for
example were favorable to random testing, recommending it as a
necessary final step of the testing activity.

In a seminal paper, Duran and Ntafos [17] carried out a series
of experiments in which they showed that random testing could be
more effective than the commonly used partition testing. That was
a counterintuitive result that opened the doors to a large body of
literature on the properties and benefits of random testing. Random
testing has been shown to be a very useful tool in the hands of
software testers and it is not a minor technique as it was originally
thought [17, 5].

Usually, in random testing the test cases are sampled at random
from the input domainD of the SUT with uniform probability. In
other words, each test case is sampled with probabilityp = 1/|D|.
The motivation is that, if we do not know anything about the SUT,
then each test case is as likely as the others to be able to detect
failures. However, if the distribution of failing test cases follows
some specific patterns, then this information could be exploited to
give higher probability to sampling test cases that are more likely
to detect faults.

One property that has been noticed in numerical applications is
that often failing test cases tend to cluster incontiguous regionsof
the input domainD [42, 1, 19, 38], referred to asfaulty regions.
For example, in a function that takes as input two integersx andy,
if there is a fault inside a conditional statement such asif(x>=0
&& y>=0 && x>=y), then we could have a contiguous region
of failing test cases in the positive sub-areax ≥ y.

Based on the above assumption, a modified version of random
testing has been proposed: Adaptive Random Testing (ART) [13,
12]. The fundamental idea behind ART is to rewarddiversityamong
sampled test cases. If a test case does not detect any failure, then in
presence of contiguous faulty regions it would be better to sample
test cases that arefar from it. Thedistanceamong test cases in a
input domainD depends on the type of SUT. In case of numerical
inputs, the Euclidean distance can be used [13, 12].

Although the contiguous region hypothesis has been evaluated in
the literature [42, 1, 19, 38], the role that theshapesof these faulty
regions plays on ART’s effectiveness has not received enough at-



tention. In fact, most work on ART has been mainly evaluated with
simulations where no actual SUT was employed (e.g., [11, 27, 40]).
In these simulations, a very limited number of types of shapes were
considered, with practically no empirical evaluation of how often
these shapes appear in actual SUTs. When empirical analyses are
carried out (e.g., [8, 9]), there is no attempt to correlate the shape of
the faulty regions in these SUTs with the performance of ART in a
systematicway. In fact, to gain precise knowledge of these shapes,
executing test cases on the entire input domainD is required, and
that would be particularly expensive. Knowing the properties of
these shapes in real SUTs would be essential to develop new vari-
ants of ART that exploit such information.

To obtain more information on how shapes appear in actual SUT,
we carried out a large empirical analysis on11 programs. For each
program, a series ofmutantswere generated to introduce faults in
these programs in a systematic way [2]. Faults generated through
mutation allows us to generate a large number of faults, in an unbi-
ased and varied manner. We generated3727 mutants and selected
the780 of them with lower detection probabilities to carry out our
empirical analysis of faulty region shapes, following a selection
process further described later in the paper. Foreachof the3727
mutated programs, for practical reasons we limited their input do-
main to carry out an exhaustive analysis of16.7 million test cases.
To the best of our knowledge, this is the largest empirical analysis
of ART to date.

Because the number of failing test cases in the entire case study is
very high, we designed novel metrics to automatically characterize
the properties of the failing region shapes. We thentried to carry
out an empirical analysis on each of the780 mutants to compare
ART with random testing. The novel metrics were used to assess
the relationship between the faulty region shapes of these mutants
and the performance of ART in terms of the average number of
executed test cases required to obtain a failure (F-measure). How-
ever, as soon as we tried to empirically compare ART with random
testing, we found ART to be anextremely slowtechnique. On triv-
ial problems that are solved by random testing in few milliseconds,
ART requires several minutes or even hours instead.

The very bad performance of ART can be explained by simply
looking at its computational and memory complexity, without ac-
tually even needing to run any experiment. The reason why this
simple fact has not been addressed in the literature has a contro-
versial explanation: All the analyses were using simulations based
on unrealistic assumptions. In the few cases in which empirical
analyses were carried out, only a limited number of programs with
manually injected faults were used. This led to very biased case
studies. Last but not least, these analyses were only considering
the F-measure and ignoring the very heavy overhead of calculating
distance values in ART. Even when considering the less frequently
used P-measure, the probability of triggering at least one failure
when running a test set of fixed size, though ART expectedly fares
better than random testing, the difference is not sufficient to have
a practical impact when considering realistic failure rates. A small
number of randomly selected test cases, relatively to the size of the
input space, are unlikely to be close to each other, or at least close
enough to make a difference.

To provide a better insight on the behavior of ART, in this paper
we also theoretically analyze the role of faulty region shapes in nu-
merical SUTs with one integer as input (i.e.,n = 1). Based on the
results of the theoretical analysis, we have developed a determinis-
tic approach that is better than ART for fixed number of sampled
test cases. Our motivation is to use the performance of this algo-
rithm as an upper bound for ART. Based on a theoretical analysis,
we show that ART cannot perform nearly as well as a determinis-

Z={}
add random test case toZ and execute it
repeatuntil stopping criterion is satisfied

sample setW of random test cases
for eachw of these|W | test cases

w.minD = min(dist(w,z ∈ Z))
execute and add toZ thew with maximumminD

Figure 1: Pseudo-code of ART.

tic algorithm in the one-dimension domain, explain why that is the
case and, more importantly, conjecture that such a phenomenon is
likely to also occur in larger dimensions.

The paper is organized as follows. Section 2 gives a brief in-
troduction to ART. Section 3 presents new metrics to enable wide-
scale analysis of the shapes of faulty regions, for example based on
mutation analysis. Empirical analyses using these metrics on high
dimensional input domains can be found in Section 4, along with
comparisons of random testing and ART using the F-measure and
the P-measure. In an attempt to provide theoretical insights, a for-
mal analysis of the one-dimension input domain follows in Section
5 along with a discussion of how results might generalize to higher
dimensions. The generalization of these empirical and theoretical
results is discussed in Section 6. Section 7 describes relevant work
in the literature in which ART has been used in other testing do-
mains than numerical applications. Finally, Section 8 concludes
the paper.

2. ADAPTIVE RANDOM TESTING
ART was first proposed by Chenet al. [13] in 2004. ART works

like random testing, with the difference that at each step a setW of
test cases is randomly sampled (a typical value is|W | = 10, see
[13]). Only the most diverse test case inW is executed and added
to the current setZ of test cases. Diversity is calculated with all
the test cases inZ executed so far, and the used distance measure
is problem dependent. The basic algorithm of ART is depicted in
Figure 1. If ART stops after evaluatingρ test cases, then the num-
ber of distance calculations between test cases is

∑ρ−1
i=1 |W |i =

|W |ρ(ρ− 1)/2 = Θ(ρ2).
Over the years, several improvements on the basic ART algo-

rithm have been proposed. For example, there has been work to
reduce the number of distance calculations [11, 32, 26, 6], to im-
prove the sampling distribution of the test cases [8, 9], to better han-
dle higher dimensional input domains [27], to combine ART with
operational profiles [10], to combine ART with evolutionary algo-
rithms [40], to understand the role of faulty region shapes [38], to
identify the conditions for which ART should work better than ran-
dom testing [7], and to apply ART to integration testing [39]. These
works mainly concentrate on numerical applications [12], but ART
has recently started to be used in other testing domains, such as
unit testing in Object-Oriented software [15, 29], test case priori-
tization [25, 44], model-based test case selection [24] and system
testing of embedded systems [4]. Moreover, theoretical analyses to
understand the limitations of ART have been performed [14].

In the literature, to compare the effectiveness of ART with ran-
dom testing, the F-measure is what is usually employed [12]. The
F-measure is simply the average number of test cases sampled by a
testing technique before obtaining a test case that reveals a failure.
Given a failure rateθ, because random testing follows a geometric
distribution [18], then the F-measure of random testing is1/θ. Re-



ported empirical work on ART shows that its F-measure can get as
close as to half the F-measure of random testing, i.e., on average
ART is no more than twice as fast as random testing. This has also
been formally proven under some conditions [14].

Notice that, besides ART, there are also other types of extension-
s/enhancements of random testing, as for example Randoop [35]
and DART [20]. For reasons of space and because these techniques
are not based on maximizing diversity of the input data, which is
our focus here, we do not analyze them in this paper. A general
framework to analyze variants of random testing is an important
research objective that we leave for future work. The results pre-
sented in this paper are a further step toward such a direction.

3. FAULTY REGION SHAPE METRICS
There is empirical evidence that fault revealing test cases tend to

cluster in contiguous regions [42, 1, 19, 38], in which some patterns
of shapes have been found. However, we are aware of only one
work in the literature that tries to analyze the faulty region shapes
in a systematic way [38]. Three programs were analyzed using
image analysis and clustering techniques.

In this paper, we propose two novel metrics to evaluate the faulty
region shapes that are relatively quick to compute. These metrics
are meant to be used to analyze the performance of ART on differ-
ent types of shapes. Because these analyses involve an exhaustive
evaluation of the input domain, particular care needs to be taken
to achieve as low a computational complexity as possible. Since
a metric is necessarily a compromise as it cannot fully describe a
particular shape without involving an impractical amount of com-
putation, we discuss the limitations of our proposed metrics.

The first metric we introduce isM1, and it is defined as:

M1 =
f

∏n
i=1 g(i) + |g(i)− f1/n|

,

wheref is the total number of failing test cases, andg(i) is the
number of distinct values in the input dimensioni that appear at
least once in a failing test case. For example, if in a two dimension
domain (i.e.,n = 2) we have(x = 1,y = 3) and(x = 4,y = 3)
as the only failing test cases, theng(1) = 2 andg(2) = 1. To
calculateg(i) we just need to sort the failing test cases based on
their values in theirith dimension, and then we can simply linearly
scan these values to computeg(i).

In several simulations (see [12]), it has been noticed that usu-
ally ART shows optimal performance when there is only one faulty
region, and that faulty region extends with identical length in all
the n dimensions (for example, ifn = 2 then the faulty region
shape is a square, and a cube ifn = 3). Let us callR this type
of regular shape. The metricM1 yields1 if the faulty region ex-
tends with same length in all dimensions. Otherwise the further
the faulty region from theR shape, the smallerM1, which re-
mains strictly positive. IfR, it is easy to see that

∏n
i=1 g(i) = f .

BecauseR has to extend with identical length in all directions,
then all theg(i) should be the same, sog(i) = f1/n. Therefore,
M1(R) = f/(

∏
g(i) + 0) = 1. For other types of shapes, Figure

2 shows some examples forn = 2 andf = 4.
The metricM1 does not take into account the number of faulty

regions in the input domain, which could be more than one. This
might affect the performance of ART. We hence introduce a met-
ric M2, with values between 0 and 1, that takes into account the
number of disconnected faulty regionsFR and that tells us with
certainty that there are more than one faulty region when its value
is less than one. For each dimensioni, we calculateh(i) as follows:
sort thef failing test cases based on the values of theith dimension,
and then calculate the number of times a valuev for which there is

(a) M1  = 1 (b) M1  = 1/2 (c) M1  = 1/2 (d) M1  = 1/3

(e) M1  = 1/3 (f) M1  = 1/4 (g) M1  = 1/8 (h) M1  = 1/8

Figure 2: Examples ofM1 measure on 2-dimensional domain
with four failing test cases.

a failing test case is followed by a valuek for which a failing test
case exists butk 6= v + 1. For example, ifn = 2 and thef failing
test cases are(x = 1,y = 1), (x = 1,y = 3) and(x = 1,y = 4),
thenh(1) = 0 andh(2) = 1. It easily follows that:

FR ≥ max(h(i)) + 1 .

For the previous example, we haveFR ≥ 2, which is correct,
as there are only two distinct faulty regions in this case. We use
M2 = 1/

∏n
i=1(h(i) + 1). If there is only one faulty region, then

we are certain thatM2 = 1. If there are more than one faulty
region,M2 may however wrongly suggest that there is one region
and can therefore be considered a higher bound. However,M2 is
still useful in large scale empirical studies to identify the situations
where we can be certain that there is more than one faulty region.

Notice that it is possible to design metrics that calculate the exact
number of faulty regions, but with a much higher time complexity.
The metricM2 just needs to sort the values in the different domains
and is therefore in the orderΘ(f log f). Metrics that require the
comparison of each failure revealing test case with all the other
ones would be in the orderΘ(f2). When exhaustive analyses are
involved, moving from complexityΘ(f log f) to Θ(f2) could be
infeasible for high values off .

Finally, we can combineM1 andM2 in M =M1×M2. This
metric yields1 if there is only one single faulty region (M2 = 1) of
typeR (M1 = 1), and otherwise a smaller positive number based
on how many distinct faulty regions there are and on how different
their shapes are fromR.

4. CASE STUDY
In this paper we consider 11 numerical programs for the empir-

ical analysis. These programs include basic mathematical routines
[16, 36] and most of the programs used previously in the ART lit-
erature [38]. All the programs have been written or translated in
Java.

Though these programs are small, our goal is to compare our
results with those already published. Our study uses programs of
sizes comparable to existing studies and the expected impact of us-
ing larger programs will be subsequently discussed. Table 1 sum-
marizes some of the programs’ properties.

4.1 Case Study Design
For each program, we used the tool muJava [30] to generate mu-

tant versions. Mutation is an effective technique to inject a large
number of faults in a systematic and unbiased way [2]. All the
method level operators of muJava were used and3727 mutants
were generated.

As shown in Table 1, some of the programs take as input an
array. In these cases, we used arrays of length4. Each integer



Table 1: Properties of the case study. LOC stands for lines of
code.

Name LOC If/Loops Input
Triangle 26 6/0 int,int,int
Triangle2 41 10/0 int,int,int
Median 20 1/3 int[]
Remainder 48 5/4 int,int
Bessj 131 9/2 int,double
Variance 22 0/2 int[]
BubbleSort 14 1/2 int[]
Encoder 65 2/1 byte[]
Expint 86 7/3 int,double
Fisher 71 6/2 int,int,double
Gammq 89 9/3 double,double

Table 2: Properties of the generated mutants.

Name Total Equivalent Timeout Easy Appropriate
Triangle 191 34 0 95 62
Triangle2 333 47 0 118 168
Median 89 6 11 72 0
Remainder 382 290 37 54 1
Bessj 1007 111 15 560 321
Variance 71 10 2 59 0
BubbleSort 66 3 10 53 0
Encoder 283 123 0 160 0
Expint 432 46 14 188 184
Fisher 615 0 16 599 0
Gammq 258 0 1 213 44

input is constrained in the range[0,224/n−1], wheren is the num-
ber of dimensions. For each of the3727 mutants, we exhaustively
generated and ran224 ≈ 16.7 million test cases, leading up to
roughly62 billion test case executions on a computer cluster. Be-
cause some mutations could lead to programs that never halt, we
put a10 minute time limit on the experiments of each mutated pro-
grams. In other words, the execution of the16.7 million test cases
on a program would be stopped after10 minutes if still running.
Fortunately, such cases were only a few in our empirical analysis.

If a mutant is not killed by any test case, then the mutation might
have just created a semantically equivalent program. However,
given the large number of such mutants, and though we run a large
number of test cases, we cannot be completely sure that these mu-
tants are actually equivalent. We nevertheless use the expression
“equivalent” to indicate these cases.

To investigate the types of faulty region shapes, we only used a
subset of the3727 mutants. We excluded the equivalent mutants
and the ones that led to computation timeouts. Furthermore, we
excluded the mutants that were tooeasyto kill. The threshold was
arbitrarily set toθ > 0.01. With such failure rates, since random
testing follows a geometric distribution [18], one would need on
average less than100 random test cases to find the first failure. In
our case study, generating and running100 test cases only takes on
average less than a millisecond. This left us with780 “appropriate”
mutants, roughly a fifth of the original set. Table 2 summarizes the
types of these mutants for each of the 11 programs.

For each appropriate mutant, we calculated theM1 andM2
measures on their failing test cases to obtain information about the

failing region shapes. Results forM1 are summarized in Table 3,
ordered by failure rate ranges, those failure rates being computed
based on exhaustive testing.

4.2 Faulty Region Shapes and F-measure Per-
formance

We found out that683 of the780 mutants hadM2 = 1, of which
only16 mutants hadM1 = 1, which are listed in the last row of Ta-
ble 3. Note that only one test case triggers a failure in each of these
16 mutants, hence explaining thatM1 = 1. Excluding these16
cases, we have not found a single case in which a faulty region ex-
tends with the same length in all dimensions.M1 values mostly lie
within a [10−4,10−1] range (see Table 3). TheM2 results means
that only97 mutants (about 12 percent) have for sure more than one
faulty region, thus confirming previous studies that have shown that
faulty test cases tend to cluster in contiguous regions of the input
domain.

We performed an empirical investigation to compare the perfor-
mance of ART, in terms of the F-measure, with random testing on
each of the780 appropriate mutants. But we were not able to do it,
since ART wasextremelyslow already on the first problem (i.e., the
Triangle Classification). One of the mutants generated for Triangle
had a failure rateθ = 1.51 ·10−5. We ran ART and random testing
on it,30 times each using different random seeds. Executions were
stopped when they found the first failure. The original program
was used as the oracle. We collected statistics about the number of
sampled test cases and the time required to run these algorithms.
Table 4 summarizes these results. Differences in execution times
are staggering, showing orders of magnitude differences between
random testing and ART, which are due to the overhead of distance
computations. We also carried out Mann-Whitney U tests at a0.05
significant level to test the statistical significance of the differences
in number of test cases and execution time (for all the statistical
tests in this paper we used the statistical tool R [37]). There is
no statistical difference for the number of sampled test cases (p-
value =0.65), whereas, as expected, there is strong statistical dif-
ference in the execution time required by the algorithms (p-value =
2.95 · 10−11). Notice that the highest computational time for ran-
dom testing (14.3 milliseconds) in Table 4 is lower than the lowest
value for ART (403 milliseconds). The machine used for these ex-
periments was a MacBook Pro, 2.66 GHz, 4 giga-byte memory and
3 mega-byte L2 cache.

We cannot exclude that there are faults or inefficient code in our
ART implementation, but based on our investigations there are pre-
cise explanations for the very bad performance of ART. Let us as-
sume that we have a SUT with failure rateθ. The expected number
of test cases sampled by random testing before triggering a failure
is 1/θ. In the best conditions, according to the literature we would
have ART sample, on average, half the test cases of random test-
ing, therefore1/(2θ). The number of distance calculations would
be |W | · 1

2θ
· ( 1

2θ
− 1)/2 = Θ( 1

θ2
). With a computational cost

of Θ( 1
θ2
), ART has much higher asymptotic complexity than ran-

dom testing withΘ( 1
θ
) . Empirical analyses are required in order

to study, under realistic conditions, the failure rate threshold above
which ART becomes better than random testing in terms of test
execution time. However, given the overhead of distance computa-
tions, such a threshold is very likely to be unrealistically high.

Although techniques have been proposed to reduce the number
of distance calculations [11, 26], their asymptotic complexity is
still Θ( 1

θ2
). The number of distance calculation isΘ( 1

θ
) in lattice-

based ART [32, 6], but that technique suffers of heavy memory
consumption overhead. Notice the number of distance calculations
is independent from the chosen distance function (e.g., Euclidean



Table 3: M1 measure on the case study.
Failure Rateθ Mutants M1

min median mean max standard deviation
[10−3,10−2] 201 3.01 · 10−4 6.27 · 10−4 1.00 · 10−2 1.52 · 10−1 3.13 · 10−2

[10−4,10−3] 153 6.20 · 10−5 7.87 · 10−3 1.94 · 10−2 2.36 · 10−1 4.23 · 10−2

[10−5,10−4] 22 2.01 · 10−6 7.12 · 10−6 7.70 · 10−3 3.76 · 10−2 1.25 · 10−2

[10−6,10−5] 15 8.22 · 10−6 8.22 · 10−6 8.28 · 10−6 8.36 · 10−6 6.78 · 10−8

[10−7,10−6] 373 1.18 · 10−1 3.99 · 10−1 3.51 · 10−1 5.83 · 10−1 1.02 · 10−1

[10−8,10−7] 16 1.00 1.00 1.00 1.00 0.00

Table 4: Comparison of ART with random testing on one mutant for the Triangle program.
Data Algorithm min median mean max standard deviation
Test Cases Random Testing 2,046 32,074 72,237 444,839 97,869

ART 1,075 46,545 56,382 224,815 57,475
Time Random Testing 0 ms 4.5 ms 10.3 ms 58 ms 14.3 ms

ART 403 ms 19.4 minutes 47.7 minutes 5.9 hours 82.3 minutes

distance).
In the case of Triangle Classification discussed in Table 4, we

hadθ = 1.51 · 10−5. This means an expected66,225 test cases
for random testing, whereas in the optimal conditions (which de-
pend on the region shape) ART would require33,112 test cases
on average. But the number of distance calculations would be
5,482,022,719, which is a very high number compared to the num-
ber of sampled test cases. On this toy problem, random testing
needs on average10 milliseconds to find the first failure, whereas
ART requires47 minutes! It may be argued that in situations where
test case execution takes a long time, ART might be a viable option.
Using the above example further, even in optimal conditions where
ART leads to half the number of test cases obtained with random
testing, test execution time should be on average1.65× 105 larger
than distance computation time for ART to pay off. For exam-
ple, assuming the distance calculation time is one millisecond, that
would entail roughly three minutes of test execution. We will return
to this discussion in Section 6.

The number of distance calculations is not the only problem. In
fact, we need to keep in mind the memory consumption of keeping
a data structure forZ (set of test cases in Figure 1). In some cases,
for Triangle we hadθ = 5.96 · 10−8, which on average would lead
to Z containing up to roughly8 million test cases. Even if we ig-
nore the memory overhead of the chosen data structure forZ (e.g.,
a linked list), we would still need4 × 3 bytes per test case (un-
less we use some compression algorithm). This leads to a memory
consumption that can be in the order of96 mega-bytes, which is un-
likely to be stored on a first level cache. For each sampling of test
case, there would be a large number of page faults in memory that
would significantly increase the execution time of ART. In contrast,
random testing does not require any support data structure.

In Table 3 we can see that more than half of the mutants show
failure rates lower than10−5, which means than on those mutants
ART is not applicable because far too expensive compared to ran-
dom testing. Furthermore, the 11 problems used in the case study
(Table 1), though representative of the reported ART studies, can
be consideredsmall, and not really comparable with real-world in-
dustrial software. In real-world software we would hence expect
lower failure rates, which would make ART even less applicable.

One important question is why the problems raised by our study
were not raised in previous works. Table 5 summarizes relevant

properties of a (non-exhaustive) selection of widely referenced ART
papers regarding numerical applications, in which ART was ap-
plied and compared against random testing. Given that the failure
rate can be estimated with the inverse of the F-measure for random
testing, the main flaws in existing studies can be summarized as
follows:

• The simulations were based on unrealistic assumptions, as
for example very high failure rates (seeθ values in Table 5).

• In the cases in which empirical analyses were carried out,
these included only a small number of programs. The faults
in these programs were manually introduced, in an unsys-
tematic way. This led to biased case studies in which only
high failure rates were present.

• All the comparisons between ART and random testing were
based on the F-measure, i.e., the average number of sampled
test cases. This does not account for theextremely high cost
of ART that is due to the distance calculations and its mem-
ory consumption.

• Empirical analyses on numerical applications using the F-
measure requires the presence of an automated oracle, be-
cause it is not reasonable to ask a software tester to manually
verify the output of (hundreds of) thousands of test cases.
But no work in Table 5 uses a case study in which an auto-
mated oracle is available.

One of the few reported systematic studies is reference [33], in
which different variants of ART were compared. Faults were auto-
matically injected with muJava. But no information of failure rates
can be inferred (the F-measure of random testing is not reported).
Furthermore, the analysis of actual execution time was carried out
only up to 2000 test cases, stopping before the first failure was
found.

4.3 ART Performance based on the P-measure
Most of work in the literature considers the F-measure (expected

number of test cases to find the first failure) instead of using the
P-measure (probability of finding at least one failure given a set of
test cases) [12]. But in practical contexts, the use of the F-measure



Table 5: A selection of relevant papers in the literature of ART for numerical applications.
Year Venue Simulations Empirical Analyses Lowestθ Automated Oracle Reference
2004 Conf. No Yes 3.26 · 10−4 No [13]
2004 IST Yes No 5.00 · 10−4 No [11]
2005 Conf. Yes No 5.00 · 10−4 No [32]
2006 Conf. Yes Yes Unspecified No [33]
2007 Work. No Yes 1.00 · 10−4 No [38]
2007 IJSEKE Yes Yes 5.00 · 10−5 No [7]
2008 SQJ Yes No 5.00 · 10−4 No [27]
2008 JSS Yes Yes 5.00 · 10−5 No [8]
2009 JSS Yes Yes 1.00 · 10−5 No [9]
2009 TR Yes No 5.00 · 10−5 No [10]
2009 TR Yes No 1.00 · 10−3 No [40]
2009 Conf. Yes No 2.50 · 10−3 No [26]
2009 Conf. Yes No 1.00 · 10−3 No [6]
2010 Work. Yes No 1.00 · 10−3 No [39]
2010 JSS No No - No [12]

can be misleading: running an algorithm until it finds the first fail-
ure is possible only if an automated oracle is available. Often, au-
tomated oracles are not available for numerical applications, apart
from checking whether the application does crash (e.g., a segmen-
tation fault). Though the issue is usually not discussed, in most
existing empirical analyses (Table 5) no realistic automated oracle
is used. Correctness of faulty programs is checked against a correct
version of the program. Though we have done so as well in the ex-
periments in this paper, our objective was only to demonstrate the
overhead of ART, not to assess its applicability.

If no automated oracle is available, it makes sense to evaluate
ART on sets of test cases that would be manually evaluated and as-
suming a fixed size, driven in practice by test budgets. In other
words, given a budget of|K| test cases, what is the P-measure
of ART compared to the one of random testing? To answer this
question, we ran another set of experiments. For each of the780
mutants discussed above, we considered set sizes ranging from2
to 10 (reasonable values of test suite sizes that can be evaluated
manually in practical conditions), and from15 to 50 by intervals
of 5 (only for sake of completeness, because for such short pro-
grams it would be unrealistic to have so many test cases evaluated
by hand). This resulted in17 set sizes, for a total of13,260 distinct
experiments. For each of these experiments, we ran both random
testing and ART20 million times to get accurate estimates of the
P-measure. Repeating the experiments20 million times was nec-
essary considering the fault rate values in our case study (Table 3).
In total, we had2 × 20m × 780 ∗

∑
i=size i ≈ 9.7 tr illion test

case executions. Even with the use of a200 node computer cluster,
running these experiments took more than10 days.

We calculated the effect size between the performance of random
testing and ART using theodds ratio[22]. Givena, the number of
times random testing finds a failure out of thet = 20 millions
runs, andb the same number for ART, the odds ratio is calculated
asψ = (a/t − a)/(b/t − b), whereψ = 1 means there is no
effect size difference. Boxplots of the odds ratio for the13,260
experiments are shown in Figure 3 grouped by test set size. Fisher
exact tests comparinga and b proportions at a0.05 significance
level show statistical significance in12,530 out of the13,260 ex-
periments. P-measure boxplots for ART (i.e.,b/t) are shown in
Figure 4, reporting the median, 25% and 75% percentiles, and plot
whiskers extend out from the boxes to the most extreme data point
which is no more than1.5 times the interquartile range from the
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Figure 3: Odds ratios of random testing compared to ART on
the 780 mutants and test sizes ranging from2 to 50.

box (this is the default setting in R [37]).
Although the results in Figure 3 suggest that ART can be bet-

ter than random testing (the odds ratios are lower than0.5 in most
of cases), the results in Figure 4 show that ART is still very un-
likely to detect faults: In most of the cases the P-measure is lower
than0.01, i.e., ART would have less than a1% chance of find-
ing failures. Even for large number of run test cases (i.e.,50), the
performance is still unsatisfactory. Furthermore, such results are
expected to be even worse on larger, more realistic software. In
these cases, it could make more sense to use other testing strategies
rather than ART, such as those based on structural coverage (e.g.,
branch coverage).

5. ANALYSIS OF THE ONE DIMENSION
DOMAIN

This section aims at providing the necessary theoretical under-
standing to help explain some of the empirical results presented
in Section 4. We will show that maximizing the distance between
test cases, as performed by ART, may not necessarily, in all cases,
improve fault detection rates. Furthermore, we will explain why
ART is unlikely to be optimal in most cases. Though in order for
the mathematical proofs to be tractable we base our demonstrations
on simplifying assumptions (one dimension test input domain), we
will discuss why the results are likely to generalize.

Let us consider an input domainD in which each test data is an
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Figure 4: P-measures of ART on the780 mutants and test sizes
ranging from 2 to 50.

integer value in the range[xmin,xmax]. Each value in that range
belongs to the input domain, therefore|D| = (xmax − xmin) + 1.
When there is one dimension (n = 1), the Euclidean distance of
two integers is simplydist(x,y) = |x− y|.

For SUTs in which the input data is a single numerical variable,
then the input domain would be aline. We have only one possible
type of faulty region shape: one or moresegmentsof total length
z = θ|D|, whereθ = z/|D| is the failure rate. For a fixed size
|D| of the input domain, there would be only(|D| − z) + 1 po-
sitions in which a contiguous segment of lengthz can be placed.
Let S1 be the set of all possible SUTs in which a single integer is
given as input, and for which a single faulty region of lengthz is
present. It follows|S1| = (|D|−z)+1. Note that empirical results
[12] show that, for a constant failure rate, increasing the number of
faulty regions (i.e., segments in one dimension) leads to lower ART
detection rates compared to random testing.

Existing empirical studies [42, 1, 19, 38] provide evidence on
the contiguity of faulty regions but not their positions in the input
space. Therefore, we will assume in the absence of relevant infor-
mation that all segments are equally likely.

GivenK a set composed of|K| test cases, let us consider it in
ascending order of input datax, i.e.,xi ≤ xi+1 wherexi,xi+1 ∈
K. For example, we could haveK = {2,5,7,13}. We can hence
prove the following theorem:

Theorem 1. For the set of programsS1, assuming one faulty
region of sizez, a sufficient condition to maximize the probability
pS1,K that a setK of test cases detects a failure is when

min(dist(xmin,x1),dist(xi,xi+1),dist(x|K|,xmax)) ≥ z . (1)

PROOF. Givenθ = z/|D| and|S1| = (|D| − z) + 1, we start
from studying on how many programs inS1 a test datax can reveal
a failure. Letxstart be the point for which the faulty region for a
programs ∈ S1 starts, i.e. fors we have the faulty region in
Fs = [xstart,xstart + z − 1]. A test datax reveals a failure ins if
and only ifx ∈ Fs.

Each program inS1 has a different faulty regionF , and this is
defined by the(|D| − z) + 1 positions in which the starting point
xstart can be positioned. Therefore, a test datax can reveal failures
in at mostz programs inS1. This is an upper bound, because on
the edges ofD there would be less faulty regions. For example,
if x = xmin, then there is only one program inS1 for which x
detects a failure, and that is whenxstart = xmin.

An upper bound forpS1,K would bepS1,K ≤ z|K|
|S1|

= |K|θ

(1−θ)+ 1

|D|

.

To prove this theorem, it is sufficient to prove that, when Condition

1 is met, thenpS1,K = z|K|
|S1|

. To provepS1,K = z|K|
|S1|

, we just need
to prove that, when Condition 1 is met, (A) each test case inK re-
veals a failure inz programs inSi and that (B) these programs are
all different for each of theK test cases (so a total of|K|z different
failures are revealed).

Because from Condition 1,
min(dist(xmin,x1),dist(x|K|,xmax)) ≥ z,
then each test case inK finds failures inz programs, as the input
data are far from the edges by at least a distancez, so |Fs| = z.
This fulfills condition (A).

Whenmin(dist(xi,xi+1)) ≥ z, to demonstrate (B), we need to
prove that each program failure is triggered by exactly one test case.
This can be proven by contradiction. Assume thatxi andxj (where
i < j) reveal failures in the same programs, hencexi,xj ∈ Fs.
Because|Fs| ≤ z, we have thatdist(xi,xj) = xj − xi < z,
but this is not possible considering that it should bedis(xi,xj) =

dist(xi,xi+1) +
∑j−1

z=i+1 dist(xz,xz+1) > dist(xi,xi+1) but
dist(xi,xi+1) ≥ z, which contradicts Condition 1.

From Theorem 1, we can conclude that the higher the failure rate
θ, the higher the thresholdz beyond which increasing the distance
between test cases does not help increase fault detection. There are
two practical implications. First, maximizing the distance between
test cases may not always be effective, at least not beyond a certain
point. Second, when running a small number of random test cases
in a large test input space, one is unlikely to violate the property
in Theorem 1. Intuitively, considering the set of possible SUTs
S1, Theorem 1 can be explained by the fact that when selecting a
new test case using ART, above a certain distance threshold from
already selected test cases, the likelihood that this new test case
will lie in a segment where existing test cases are already present
is minimized. This threshold increases as the failure rate increases
since there are more test cases that can fall in a given segment. At
this stage we cannot mathematically prove that this holds for higher
dimensions, but if this were to be confirmed in the more general
case, this could explain why the difference in P-measure between
random testing and ART can be small.

Though according to Theorem 1, we would not expect much dif-
ference between random testing and ART for small test set sizes,
the results of the experiments in Figure 3 do not support this re-
sult: there can be large differences even for test set size2 with odds
ratios around0.5. There is an explanation for that. Theorem 1 as-
sumes that all the positions for the faulty regions have the same
probability of occurrence, but the basic version of ART tends to
sample data from the edges of the input space [12]. The results
in Figure 3 can be hence explained if the faulty regions are more
likely to be at the edges. Therefore, future work will need to study
not only the shape of the faulty regions, but also their position in
the input domain.

Based on the result of Theorem 1, it is possible to define ade-
terministicalgorithmDT to choose|K| test cases that maximize
the probability of detecting failures for programs inS1. The Java
code for such an algorithmDT is shown if Figure 5. The main
motivation forDT is not to devise a better solution than ART, as
numerical programs with one input domain represent a small frac-
tions of all programs, but rather to help compute an upper bound
against which to compare ART in the one dimension case.DT
simply chooses test cases that are as far as possible from each other
and from the bordersxmin andxmax. Given the range of values
|D| = (xmax − xmin) + 1, we choose test cases that are at least
δ = (|D| − 1)/(|K| + 1) from each other. Because the ratioδ is



p u b l i c i n t [ ] ge t1DTes tCases ( i n t k , i n t min , i n t max ) {
i n t [ ] K = new i n t [ k ] ;
i n t range = ( max− min ) ;
i n t d e l t a = ( i n t ) Math . f l o o r ( ( doub le ) range / ( doub le ) ( k + 1) ) ;
i n t r = range− d e l t a∗( k + 1 ) ;
K[ 0 ] = min + d e l t a ;
i f ( r >0){ K[ 0 ] + + ; r −−;}
f o r ( i n t i =1; i < K. l e n g t h ; i ++){

K[ i ] = K[ i −1]+ d e l t a ;
i f ( r >0){ K[ i ]++ ; r −−;}

}
r e t u r n K;

}

Figure 5: Java code of the deterministic algorithmDT for the
setS1.

not necessarily an integer value, the algorithm is designed to handle
these situations. The optimality ofDT is proven in the following
theorem. The proof is based on the Java code listed in Figure 5, but
it would apply on any equivalent implementation in other program-
ming languages. An integer arrayK is given as output. Notice that
K[j] represents the input dataxj+1 (this because Java arrays start
from index0).

Theorem 2. For the set of programsS1 and any number of test
cases|K| to sample, the algorithmDT produces a setK of test
cases that maximizes the probability of detecting failures inS1.

PROOF. GivenK test cases as output ofDT , if Condition 1 of
Theorem 1 holds, then this theorem is true as the probability of
fault detection is maximized. Condition 1 is however sufficient but
not necessary. When Condition 1 does not hold for theK test cases
sampled byDT , to prove Theorem 2, it is sufficient to prove that
pS1,K = 1, implying that the probability of detecting failures is
still maximized.

In the code ofDT , we have the variableδ = ⌊(|D|−1)/(|K|+
1)⌋. For each test case, we have thatxi ≥ xi−1, becausexi is
calculated by addingδ to xi−1. In some cases, we havexi =
xi−1 + δ + 1. Therefore, for the sampled test cases we haveδ ≤
dist(xi,xi+1) ≤ δ + 1.

Forx1 we used the valuexmin + δ to which+1 can be added in
some cases. Therefore,x1 is at mostδ+1 values far from the edge
xmin, i.e. δ ≤ dist(xmin,x1) ≤ δ + 1.

The distance ofx|K| from the edgexmax needs some more steps.

We havex|K| = x1 +
∑|K|

i=2(xi − xi−1) to which can be added
+1. This addition is based on the counterr which starts from the
valuer = (|D|−1)− δ(|K|+1). We hence havex|K| = xmin+
δ|K|+ r = xmin + |D| − 1− δ. Therefore,dist(x|K|,xmax) =
xmax − xmin − |D|+ 1 + δ = δ.

If the conditions of Theorem 1 do not hold, this means that there
is at least one data inputxi that is at least within a distancez from
another input data or from the edges of the input domain. Because
we have proven that minimum distance should be at leastδ, then
z > δ, otherwise the conditions of Theorem 1 would hold. From
z > δ it simply follows thatz ≥ δ + 1. Because we have proven
that δ + 1 is the maximum distance between two consecutivexi
andxi+1, and thatx1 andx|K| are within that distance from the
edges, thenK finds failures in each program inS1. This is because
z ≥ δ + 1. Therefore, in these conditions we havepS1,K = 1.

Considering that the algorithmDT is optimal (Theorem 2) and
deterministic, the application of ART on SUTs with one dimension
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Figure 6: Comparison of ART with DT and random testing on
S1.

domains would be questionable. However,DT requires that the
number|K| of test cases to sample should be decided before start-
ing the algorithm. This is acceptable in many practical situations
when no automated oracle is available or test cases are expensive as
they are run, for example, on embedded software with actual hard-
ware. In such cases only a limited number|K| of test cases can
be executed. Similarly, in regression testing [31], only a relatively
small subset of regression test cases can be selected in many situa-
tions. On the other hand, in other situations than the ones described
above, it could make sense to run a testing technique until it detects
the first failure.DT is, however, optimal whenall the sampled test
cases inK are executed. If the cost of running the test cases is high
and/orK is large, then it may be desirable to order their execution
using prioritization techniques [28].

We evaluated ART on the setS1 and compared it with random
testing usingDT as an upper bound. To do so, we carried out a
simulation in which|D| = 10,000, θ = 0.05 and where we con-
sidered sets of test cases ranging from1 to 30. Notice that, given
θ = 0.05, then on average random testing would require to sample
20 test cases to find a failure (this is a very high failure rate, used
only for the sake of illustration). Figure 6 compares the fault de-
tection capabilities of these three techniques. When a testing tech-
nique outputs a set ofK test cases, we evaluate its fault detection
capability by running it onall the SUTs inS1 for the given values
of |D| andθ, so|S1| = (|D| − z)+ 1 = 9,501. The probability of
fault detection is estimated by dividing the number of programs in
S1 for which a failure is revealed by the total number of programs
|S1|. SinceDT is a deterministic algorithm, we only needed to
evaluate it once on each program inS1. On the other hand, because
ART is randomized, we ran it on each program inS1 1000 times,
and report the average in Figure 6. The fault detection probability
of random testing is simply calculated with the following formula:
p = 1− (1− θ)|K| [18].

As we can see in Figure 6, ART seems better than random test-
ing, but it is far from the optimalDT . The difference between
these techniques increases as the number of test cases increases
and is negligible for small test set sizes. This is explained by Theo-
rem 1 as there is an increasing number of pairs of test cases whose
distance is below thez, the length of the segment (faulty region).

Is it possible to define a new variant of ART to get closer to the
performance ofDT ? This would be useful in the cases in which
an automated oracle is available, because we could run ART until
it finds the first failure, instead of having to specify|K| as inDT .
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Figure 7: Graphical example of test cases (circles) forS1 (line).

Unfortunately, this is not possible for techniques in which test cases
are chosen one at the time (stepwise, greedy) as in ART. Figure 7
shows an example to illustrate this problem. Assume that we have
three test cases that should be as diverse as possible. The optimal
allocation would be one in the centre and the other two on the edges
(notice that choosing test cases at the edges is not a good idea [8],
andDT does not do it). If then we want to add one test case, we
have two options to where to allocate it if we want to maximize
diversity. But in both cases, the allocation of these four test cases is
not the optimal one that maximizes diversity (as shown in the last
row of Figure 7).

In antirandomtesting [43] diversity in the test cases is sought, in
a similar way as in ART. But each time a new test case is sampled,
the choice is made deterministically. In contrast toDT , antirandom
testing is affected by the problem we discussed for Figure 7.

For higher dimensions, we cannot at the moment derive a precise
DT algorithm, as it depends on the many possible shapes of faulty
regions, and it is therefore impossible to compare ART with an op-
timal solution for more than one dimension at this point. But given
the reasons we have presented to explain why ART is suboptimal
in the one dimensional case, we can conjecture that ART is likely
to be suboptimal in the general case as well. It is very well possible
that if we manage to modify ART to better optimize diversity, we
might obtain better empirical results than the ones presented in the
previous section.

6. GENERALIZATION
Though we only discussed ART for numerical applications (the

type of SUT that ART was originally designed for), the reasons
we identified to explain ART inefficiencies (e.g., distance computa-
tions and memory consumption) can be generalized to other types
of programs. In situations where one is testing until triggering a
failure, any situation in any domain when the execution time of
test cases is not high compared to distance computations, or when
the failure rate is low, will lead to a low ART performance. Re-
ported applications of ART to non-numerical programs is further
discussed in the next section. Alternatively, when a fixed, small
size test set is used (e.g., due to manual oracles) then ART will still
be unlikely to detect faults in any situation, regardless of the do-
main, where the failure rate is low as the ART heuristic will not be
sufficiently effective to significantly improve over random testing,
as discussed in Section 4.3. More empirical studies are however
required to generalize our results with confidence.

The only case left where ART could be cost-effective is when
there is an automated oracle (so that the F-measure makes sense)
and text execution time is on average extremely long compared to
distance computation time. Formalizing this trade-off with an in-
equality yields:

E[ART ]× tc +#DC × td ≤ E[RT ]× tc ,

whereE[RT ] = 1/θ is the expected number of test cases sam-
pled by random testing,E[ART ] = 1/2θ is the expected number
of test cases sampled by ART (in the best case in which it only
requires to sample half test cases than random testing),#DC =
|W | 1

2θ
( 1
2θ

− 1)/2 is the number of distance calculations (recallW
is the number of test cases sampled at each step of the ART algo-
rithm), tc is the time to execute a test case, andtd is the time it
takes to compute a distance value. Notice that this inequality does
not take into account the memory overhead. This inequality yields:

tc ≥
|W |

2
× (

1

2θ
− 1)× td . (2)

From Inequality 2, we can see that, for example using a failure
rate ofθ = 10−5, test execution would need to take on average
2.5 × 105 more time than a distance computation. If we consider
a distance computation to take one millisecond, this will result in
more than four minutes of execution per test case. What we can
conclude from the above inequality and example, especially given
that this is the best case scenario for ART, is that situations where
test case execution is long enough to warrant the use of ART are
likely to be rare in practice. Furthermore, the above reasoning does
not account for memory consumption which, using the example
above, would result in many megabytes of test case information.
Though extensions of the basic ART exist [11, 32, 26, 6], they
have never been empirically investigated in realistic scenarios (as
discussed in more details in Section 4).

7. ART IN OTHER TESTING DOMAINS
In previous sections, we carried out theoretical and empirical

analyses that investigated the effectiveness of ART in numerical
applications and showed we were unlikely to find many situations
where it could be expected to be satisfactory. In this section, we an-
alyze the published literature applying ART to other domains and
conclude that existing results cast further doubts about its effective-
ness.

Ciupaet al. [15] used ART for testing Object-Oriented software,
in which “contracts” (i.e., pre/post conditions in the tested meth-
ods) were used as automated oracles. The authors concluded that
ART was better than random testing since it needed to sample less
test cases before finding the first failure. However, ART was also
reported as taking on average1.6 times longerdue to the distance
calculations! As we argued above, when you have an automated
oracle, how many test cases you sample is simply irrelevant: the
time required to execute the test cases is the only important metric
in this case. The number of test cases would be important only if
the outputs of the test cases needed some form of manual checks.
Therefore, in contrast to what it is claimed in [15] , the empirical
analysis in that paper actually shows that ART fares significantly
worse than random testing.

Lin et al. [29] also analyzed ART on Object-Oriented software
and compared results using execution time instead of the F-measure.
However, the faults in that work weremanuallyseeded, which led
to failure rates that were extremely high (in the order of10−3). As
in our study earlier, it is important to consider a wide and realistic
range of failure rates, especially if the objective of the study is to
demonstrate applicability. Furthermore, in both [15] and [29] the
experiments were repeated only five times and, as a result, no sta-
tistical testing was used to assess whether differences in execution
time of F-measure were statistically significant. When randomized
algorithms are evaluated, since there can be high variance in the
performance at each run, using higher number of repeated experi-
ments and statistical tests is a necessity [3].



In our recent work with Iqbal [4], we applied ART for system
testing of a real industrial embedded system with real faults. This
was a priori an ideal scenario for ART: computationally expensive
test cases (each one required20 seconds), automated oracles (pro-
vided by the environment models), and high failure rate due to the
early testing stage of the studied industrial system. However, even
in such conditions, the results showed that there was no statistical
difference between the performance of ART and random testing.

In our work with Hemmati [24], we applied ART to select sub-
sets of test cases generated using state machine models of an indus-
trial software. Our test strategy yielded281 test cases in order to
achieve adequate coverage of the state machine. Because running
so many system test cases was infeasible due to the use of actual
hardware and network infrastructure, the goal was to study strate-
gies for selecting significantly smaller subsets of test cases. Though
rewarding diversity in the selected subset of test cases (which can
be considered to be an optimization problem) led to better fault de-
tection than random selection, ART was statistically worse than the
other algorithms we investigated, such as Genetic Algorithms.

Jianget al. [25] and Zhou [44] used ART for prioritizing test
cases in regression testing. Rewarding diversity using ART led to
better results. However, in contrast to our previous work [24], the
use of optimization algorithms (e.g., Genetic Algorithms) for re-
warding diversity was not investigated. We cannot claim that such
algorithms would be better than ART in the case studies used in
[25] and [44], but we can make the following conjecture. ART
works as agreedy algorithm, and rewarding diversity in a set of
test cases can be considered to be an optimization problem. In gen-
eral, meta-heuristic techniques (e.g., Genetic Algorithms) tend to
yield better results than greedy algorithms for non-trivial problems
[21]. This was true in our case study in [24], and can be expected
to be so in many software engineering applications [23].

Notice that for the types of problem in [25, 44, 24] it is not pos-
sible to use a deterministic algorithm such asDT . The reason is
that, in contrast to numerical applications, in those cases we cannot
in general directly produce test cases with a pre-defined distance
among them. We can only sample test cases and then, only after
they are created, measuring their distance becomes possible.

The above analysis of the literature applying ART to non-numerical
applications confirms that ART is not a particularly effective test-
ing technique in most cases. Diversity in test cases is an intuitive
heuristic, but ART may not be an advantageous option to achieve
it.

8. CONCLUSION
Adaptive Random Testing (ART) was proposed as an improve-

ment to random testing, with many studies carried out over the
years. ART was first proposed for numerical applications [13], and
was more recently applied to other testing problems such as testing
Object-Oriented classes [15]. Its underlying principle is intuitive
and appealing: maximizing test case diversity.

In this paper, we revisited the claims made in many ART studies
and we showed that, using similar programs in the numerical appli-
cation domain, ART does not work as well as expected. We further
explain why ART does not work well in two practical and common
situations where oracles are automated and one tests until a fail-
ure is triggered or when small test suites of fixed size are executed
and the oracles manually checked. In the former caseART does
not even work on toy problems such as Triangle Classification!We
identified precise reasons of this behavior, which are not specific
to our case studies and are therefore likely to generalize to other
domains under certain conditions: short test execution times rela-
tive to distance calculations and low failure rates. One major rea-

son for this is the calculation of distances among test cases, which
overshadow the reduction that ART could yield in terms of number
of executed test cases, especially under the conditions mentioned
above. With small test suites of fixed size, ART improves over ran-
dom testing but not sufficiently so to make a practical difference,
especially when failure rates are realistic.

The results above were unexpected if we consider the large amount
of research that has been carried out over the years on ART (Table
5) and the claims that were made in these publications. However,
a closer look at the studies reported in the literature showed seri-
ous flaws, which are rooted in unclear and unrealistic assumptions
(e.g., very high failure rates) and inadequate measurement (e.g.,F-
measure). The lack of cost-effectiveness of ART seems present also
in the other testing domains in which ART has been applied.

On the other hand, in this paper we have also provided further
empirical evidence to support the contiguous faulty region hypoth-
esis underlying the ART heuristic. We propose ways to automate
its investigation in large scale studies by using metrics character-
izing the shape of faulty regions. Future work will be devoted to
using the findings of this paper to design novel testing techniques
that can more effectively exploit the faulty region hypothesis than
current versions of ART.
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