Adaptive Random Testing: An lllusion of Effectiveness

Andrea Arcuri Lionel Briand
Simula Research Laboratory Simula Research Laboratory and University of
P.O. Box 134, 1325 Lysaker, Norway Oslo
arcuri@simula.no P.O. Box 134, 1325 Lysaker, Norway

briand@simula.no

ABSTRACT Keywords

Adaptive Random Testing (ART) has been proposed as an enhancefaulty region, random testing, F-measure, P-measure, shape, dive
ment to random testing, based on assumptions on how failing testsity, similarity, distance.

cases are distributed in the input domain. The main assumption

is that failing test cases are usually grouped into contiguous re-1. |NTRODUCTION

gions. Many papers have been published in which ART has been Random testing does not exploit any information about the soft-

described as an effective alternative to random testing when US- are under test (SUT). Therefore, historically it was considered
ing the average number of test case executions needed to find a) ' y

failure (F-measure). But all the work in the literature is based ei- ;\i/ln:r“ﬁnti?gq%%r%fgg [t3h4"its'tsa:225“ erfgiitgie tt:::n fgré';'to[?etsefég]sgé
ther on simulations or case studies with unreasonably high failure ye X SP e N poore
) S . design] methodology is random input testing”. But this state-

rates. In this paper, we report on the largest empirical analysis of ment was not agreed upon by everyone. Thaseal. [41] for
ART in the literature, in whict8727 mutated programs and nearly 9 P y yone. afeal.]

e e example were favorable to random testing, recommending it as a
tentrillion test cases were used. Results show that ART is highly necessary final step of the testing activi
inefficient even on trivial problems when accounting for distance y P 9 Y-

calculations among test cases, to an extent that probably preventsOf Exaesr?nr:zgfsl i%av?/ﬁir(’:r? tﬂ:”g?g\’/\/gﬁ?; [r;:]] dgarlr:rlggti?]mcac)jﬁjnsz
its practical use in most situations. For example, on the infamous P y 9

Triangle Classification program, random testing finds failures in more effe?“"e. _than the commonly used partition testing. That was

-~ R - a counterintuitive result that opened the doors to a large body of
few milliseconds whereas ART execution time is prohibitive. Even literature on the proerties and benefits of random testing. Random
when assuming a small, fixed size test set and looking at the prob- prop 9:

ability of failure (P-measure), ART only fares slightly better than ts?)magrg?:s?eerinarfg?:\g r:gtl;enin\gir%/egﬁs:ullj;o;sl, |Itn V\fg: :r?r:SZIIOf
random testing, which is not sufficient to make it applicable in re- thought [17, 5] q ginally
alistic conditions. We provide precise explanations of this phe- Usgually i’n r:;mdom testing the test cases are sampled at random
nomenon based on rigorous empirical analyses. For the simplerfrom the i}]put domairD of the SUT with uniform probability. In
case of single-dimension input domains, we also perform formal other words. each test case is sampled with roba@ilﬁyl/é\
analyses to support our claim that ART is of little use in most sit- The motivation is that. if we do not pknow an ?hin about the 'SUT
uations, unless drastic enhancements are developed. Such analysefﬁen each test case i's as likely as the oth)érs tg be able to defect
help us explain some of the empirical results and identify the com- y

ponents of ART that need to be improved to make it a viable option failures. prvever, if the dlstrlput!on of fa'lllng test cases fol]ows
some specific patterns, then this information could be exploited to

In practice. give higher probability to sampling test cases that are more likely
)) . to detect faults.
Categories and Subject Descriptors One property that has been noticed in numerical applications is
D.2.5 [Software Engineering: Testing and Debugging; that.often failing test cases tend to clustecantiguous regiqnsf
1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, the input dom_alnD [42'_ 1,19, 38], refer_red to a‘a_ulty regions
and Search For example, in a function that takes as input two integeaiady,
if there is a fault inside a conditional statement such fagx>=0
&& y>=0 && x>=y), then we could have a contiguous region
General Terms of failing test cases in the positive sub-arez y.
Algorithms, Experimentation, Reliability, Theory Based on the above assumption, a modified version of random

testing has been proposed: Adaptive Random Testing (ART) [13,
12]. The fundamental idea behind ART is to reweikersityamong
sampled test cases. If a test case does not detect any failure, then in
presence of contiguous faulty regions it would be better to sample
test cases that afar from it. Thedistanceamong test cases in a
input domainD depends on the type of SUT. In case of humerical
inputs, the Euclidean distance can be used [13, 12].
Although the contiguous region hypothesis has been evaluated in
the literature [42, 1, 19, 38], the role that thieapesf these faulty
Simula Research Laboratory: Technical Report 2010-09,a/@ regions plays on ART's effectiveness has not received enough at-

tention. In fact, most work on ART has been mainly evaluated with Z={} _
simulations where no actual SUT was employed (e.g., [11, 27, 40]). add random test case #band execute it
In these simulations, a very limited number of types of shapes were ~ 'epeatuntil stopping criterion is satisfied

considered, with practically no empirical evaluation of how often sample setV’ of random test cases

these shapes appear in actual SUTs. When empirical analyses are for eachw of these|IV| test cases

carried out (e.g., [8, 9]), there is no attempt to correlate the shape of w.minD = min(dist(w,z € Z))

the faulty regions in these SUTs with the performance of ART in a execute and add t& thew with maximumminD

systematiavay. In fact, to gain precise knowledge of these shapes,
executing test cases on the entire input donfaiis required, and .
that would be particularly expensive. Knowing the properties of Figure 1. Pseudo-code of ART.
these shapes in real SUTs would be essential to develop new vari-
ants of ART that exploit such information.

To obtain more information on how shapes appear in actual SUT,
we carried out a large empirical analysis bnprograms. For each
program, a series ghutantswere generated to introduce faults in
these programs in a systematic way [2]. Faults generated throug
mutation allows us to generate a large number of faults, in an unbi-
ased and varied manner. We generat&2lr mutants and selected
the 780 of them with lower detection probabilities to carry out our
empirical analysis of faulty region shapes, following a selection
process further described later in the paper. éawhof the 3727
mutated programs, for practical reasons we limited their input do-

tic algorithm in the one-dimension domain, explain why that is the
case and, more importantly, conjecture that such a phenomenon is
wlikely to also occur in larger dimensions.

The paper is organized as follows. Section 2 gives a brief in-
troduction to ART. Section 3 presents new metrics to enable wide-
scale analysis of the shapes of faulty regions, for example based on
mutation analysis. Empirical analyses using these metrics on high
dimensional input domains can be found in Section 4, along with
comparisons of random testing and ART using the F-measure and

main to carry out an exhaustive analysisi67 million test cases. the P-measure. In an attempt to provide theoretical insights, a for-

To the best of our knowledge, this is the largest empirical analysis mal analy_5|s of t_he ong-dlmen5|on input dqmam fOHOW.S n Seonn
of ART to date. 5 along with a discussion of how results might generalize to higher

Sdimensions. The generalization of these empirical and theoretical

Because the number of failing test cases in the entire case study i Its is di din Section 6. Section 7 d ib | t K
very high, we designed novel metrics to automatically characterize F¢SU!'s IS GISCUSSEd IN SECUON b. Section 7 deSCribes relevant wor

the properties of the failing region shapes. We théed to carry in the literature in which ART has been used in other testing do-
out an empirical analysis on each of th&0 .mutants to compare mains than numerical applications. Finally, Section 8 concludes
ART with random testing. The novel metrics were used to assessthe paper.

the relationship between the faulty region shapes of these mutants

and the performance of ART in terms of the average number of 2. ADAPTIVE RANDOM TESTING
o) S e o ART a st propose by Chia 13 n 2004, ART vt
S P Y P ; . like random testing, with the difference that at each step #@5ef
testing, we found ART to be aextremely slowechnique. On triv- . . e
test cases is randomly sampled (a typical valug¥g = 10, see

ial problems that are solved by random testing in few milliseconds, [13]). Only the most diverse test caseliri is executed and added

Aﬁagesg:ressﬁvirsgmgﬁf: (c))fr K\E?Ch;nufelgielz?ﬁe d by simol to the current se of test cases. Diversity is calculated with all

lookin at)ilts cona Utational and memory com ngit Witl‘)llout aF::Y the test cases i@ executed so far, and the used distance measure
9 P y piexity, is problem dependent. The basic algorithm of ART is depicted in

tgally even needing to run any experjment. .The reason why this Figure 1. If ART stops after evaluatingtest cases, then the num-
simple fact has not been addressed in the literature has a contro-ber of di.s,tance calculations between test cas@f’fs?l Wi =
=1 -

versial explanation: All the analyses were using simulations based
” y 9 Wlp(p —1)/2 = ©(p%).

e ooy | OV the years, Seveal mprosements onth basi ART so-
Y » Oy prog rithm have been proposed. For example, there has been work to

manually injected faults were used. This led to very biased case reduce the number of distance calculations [11, 32, 26, 6], to im-

studies. Last but n_ot Iea}st, these analyses were only ConS'def'ngprove the sampling distribution of the test cases [8, 9], to better han-
the F-measure and ignoring the very heavy overhead of calculatlngdle higher dimensional input domains [27], to combine ART with

e meama e rovaniy o s ot e o e, cperaonl e 10, o cartne ART i evluionary g

when running a tést set of fixed size, though ART expectedly fares rithm:s [40], to ur]Qerstand thg role of faulty region shapes [38], to

better than random testing, the différence is not sufficient to have identify the conditions for which ART should_work b_etter than ran-
' dom testing [7], and to apply ART to integration testing [39]. These

a practical impact when considering realistic failure rates. A small K inl ical licati b
number of randomly selected test cases, relatively to the size of they Or<s mainly concentrate on numerical applications [12.]' UtART
' has recently started to be used in other testing domains, such as

input space, are unlikely to be close to each other, or at least closeunit testing in Object-Oriented software [15, 29], test case priori-

enough to make a difference. o -
. N . - tization [25, 44], model-based test case selection [24] and system
W;glEgi\élggrztiiﬁer;;ggte?2;?3:%??;’5{ OrfeA:z-;’ ;?];h'zspi?]pﬁl:_ testing of embedded systems [4]. Moreover, theoretical analyses to
y Y yreg P understand the limitations of ART have been performed [14].

reaia of the heoretoal analysis, we have deveiopee a determinis- ! e erature, fo compare the efectverness of ART with ran-

tic approach that is better than A’RT for fixed number of sampled dom testlng., thg F-measure is what is usually employed [12]. The

test cases. Our motivation is to use the performance of this algo- F-measure is simply the average number of test cases sampled by a
) testing technique before obtaining a test case that reveals a failure.

\r/:;[gZh?)?/vatrr]\z:tpﬁli'rrbc(;unnn%{ore?fS:—r.anaesae}(lj O;s?/vt:ﬁgrsegciti?ﬁﬁ': Given a failure raté, because random testing follows a geometric
P y distribution [18], then the F-measure of random testin/&. Re-

ported empirical work on ART shows that its F-measure can get as
close as to half the F-measure of random testing, i.e., on average
ART is no more than twice as fast as random testing. This has also
been formally proven under some conditions [14].

Notice that, besides ART, there are also other types of extension-
s/lenhancements of random testing, as for example Randoop [35]
and DART [20]. For reasons of space and because these techniques
are not based on maximizing diversity of the input data, which is
our focus here, we do not analyze them in this paper. A general
framework to analyze variants of random testing is an important
research objective that we leave for future work. The results pre-
sented in this paper are a further step toward such a direction.

3. FAULTY REGION SHAPE METRICS

There is empirical evidence that fault revealing test cases tend toa failing test case is followed by a valéefor which a failing test
cluster in contiguous regions [42, 1, 19, 38], in which some patterns case exists but # v + 1. For example, iz = 2 and thef failing
of shapes have been found. However, we are aware of only onetestcases arer = 1,y = 1), (z = 1,y = 3) and(z = 1,y = 4),
work in the literature that tries to analyze the faulty region shapes thenh(1) = 0 andh(2) = 1. It easily follows that:
in a systematic way [38]. Three programs were analyzed using .
image analysis and clustering techniques. FR 2 max(h(i)) +1.

In this paper, we propose two novel metrics to evaluate the faulty For the previous example, we ha#R > 2, which is correct,
region shapes that are relatively quick to compute. These metricsas there are only two distinct faulty regions in this case. We use
are meant to be used to analyze the performance of ART on differ- py2 — 1/ [T, (h(i) + 1). If there is only one faulty region, then
ent types of shapes. Because these analyses involve an exhaustige are certain thaf/2 = 1. If there are more than one faulty
evaluation of the input domain, particular care needs to be taken region, /72 may however wrongly suggest that there is one region
to achieve as low a computational complexity as possible. Since and can therefore be considered a higher bound. Howayeris
a metric is necessarily a compromise as it cannot fully describe a still useful in large scale empirical studies to identify the situations
particular shape without involving an impractical amount of com- \yhere we can be certain that there is more than one faulty region.

(a)M1 =1 () M1 =1/2 © M1 =172 (@M1 =1/3

(e)M1 =1/3 HM1 =1/4 (@M1 =1/8 (hyM1 =1/8

Figure 2: Examples of M1 measure on 2-dimensional domain
with four failing test cases.

putation, we discuss the limitations of our proposed metrics. Notice that it is possible to design metrics that calculate the exact
The first metric we introduce i8/1, and it is defined as: number of faulty regions, but with a much higher time complexity.
f The metricM 2 just needs to sort the values in the different domains
M1 = T, 9(d) + |g(i) — f1/n] and is therefore in the ord@(f log f). Metrics that require the
=t comparison of each failure revealing test case with all the other
where f is the total number of failing test cases, ay{d) is the ones would be in the ordeé(f?). When exhaustive analyses are

number of distinct values in the input dimensidthat appear at involved, moving from complexit(f log f) to ©(£2) could be
least once in a failing test case. For example, if in a two dimension infeasible for high values of.
domain (i.e.n = 2) we have(z = 1,y = 3) and(z = 4,y = 3) Finally, we can combind/1 andM2in M = M1 x M2. This
as the only failing test cases, thefil) = 2 andg(2) = 1. To metric yieldsl if there is only one single faulty regiod{2 = 1) of
calculateg(i) we just need to sort the failing test cases based on type R (M1 = 1), and otherwise a smaller positive number based
their values in theiith dimension, and then we can simply linearly on how many distinct faulty regions there are and on how different
scan these values to compyte). their shapes are fromR.

In several simulations (see [12]), it has been noticed that usu-
ally ART shows optimal performance when there is only one faulty
region, and that faulty region extends with identical length in all 4. CASE STUDY

the n dimensions (for example, i = 2 then the faulty region In this paper we consider 11 numerical programs for the empir-
shape is a square, and a cube:if= 3). Let us callR this type ical analysis. These programs include basic mathematical routines
of regular shape. The metrit/1 yields 1 if the faulty region ex- [16, 36] and most of the programs used previously in the ART lit-
tends with same length in all dimensions. Otherwise the further erature [38]. All the programs have been written or translated in
the faulty region from theR shape, the smalled/ 1, which re- Java.

mains strictly positive. IfR, it is easy to see thdf[;"_, g(i) = f. Though these programs are small, our goal is to compare our
BecauseR has to extend with identical length in all directions, results with those already published. Our study uses programs of
then all theg(¢) should be the same, gdi) = f/". Therefore, sizes comparable to existing studies and the expected impact of us-
M1(R) = f/(IT1g(:) + 0) = 1. For other types of shapes, Figure ing larger programs will be subsequently discussed. Table 1 sum-
2 shows some examples for= 2 and f = 4. marizes some of the programs’ properties.

The metricM 1 does not take into account the number of faulty .
regions in the input domain, which could be more than one. This 4.1 Case StUdy Des'Qn
might affect the performance of ART. We hence introduce a met- For each program, we used the tool muJava [30] to generate mu-
ric M2, with values between 0 and 1, that takes into account the tant versions. Mutation is an effective technique to inject a large
number of disconnected faulty regioffSR and that tells us with number of faults in a systematic and unbiased way [2]. All the
certainty that there are more than one faulty region when its value method level operators of muJava were used 3rlr mutants
is less than one. For each dimensipwe calculaté:(7) as follows: were generated.
sort thef failing test cases based on the values ofith@imension, As shown in Table 1, some of the programs take as input an
and then calculate the number of times a valder which there is array. In these cases, we used arrays of ledgttEach integer

failing region shapes. Results faf1 are summarized in Table 3,

Table 1: Properties of the case study. LOC stands for lines of ordered by failure rate ranges, those failure rates being computed

code. based on exhaustive testing.
.'F':?;?]ZI - "02% 17 LO%‘;S im’i'nrlﬁ;“tt 4.2 Faulty Region Shapes and F-measure Per-
Triangle2 41 10/0 int,int,int formance
Median 20 1/3 int[] We found out tha683 of the 780 mutants had/2 = 1, of which
Remainder 48 5/4 int,int only 16 mutants had/1 = 1, which are listed in the last row of Ta-
Bess;j 131 9/2 int,double ble 3. Note that only one test case triggers a failure in each of these
Variance 22 0/2 int] 16 mutants, hence explaining thaf1 = 1. Excluding thesd 6
BubbleSort 14 1/2 int[] cases, we have not found a single case in which a faulty region ex-
Encoder 65 21 byte[] tends with the same length in all dimensionsg1 values mostly lie
Expint 86 713 int,double within a [10™%,10~] range (see Table 3). Th&/2 results means
Fisher 71 6/2 int,int,double that only97 mutants (about 12 percent) have for sure more than one
Gammgq 89 9/3 double,double faulty region, thus confirming previous studies that have shown that
faulty test cases tend to cluster in contiguous regions of the input
domain.
We performed an empirical investigation to compare the perfor-
Table 2: Properties of the generated mutants. mance of ART, in terms of the F-measure, with random testing on
each of ther80 appropriate mutants. But we were not able to do it,
Name Total Equivalent Timeout Easy Appropriate since ART waxtremelyslow already on the first problem (i.e., the
Triangle 191 34 0 95 62 Triangle Classification). One of the mutants generated for Triangle
Triangle2 333 47 0 118 168 had a failure raté = 1.51-10~°. We ran ART and random testing
Median 89 6 11 72 0 onit, 30 times each using different random seeds. Executions were
Remainder 382 290 37 54 1 stopped when they found the first failure. The original program
Bessj 1007 111 15 560 321 was used as the oracle. We collected statistics about the number of
Variance 71 10 2 59 0 sampled test cases and the time required to run these algorithms.
BubbleSort 66 3 10 53 0 Table 4 summarizes these results. Differences in execution times
Encoder 283 123 0 160 0 are staggering, showing orders of magnitude differences between
Expint 432 46 14 188 184 random testing and ART, which are due to the overhead of distance
Fisher 615 0 16 599 0 computations. We also carried out Mann-Whitney U testsiafa
Gammq 258 0 1 213 44 significant level to test the statistical significance of the differences

in number of test cases and execution time (for all the statistical
tests in this paper we used the statistical tool R [37]). There is
no statistical difference for the number of sampled test cases (p-
input is constrained in the rand®2>*/™ — 1], wheren is the num- value =0.65), whereas, as expected, there is strong statistical dif-
ber of dimensions. For each of th&27 mutants, we exhaustively ~ ference in the execution time required by the algorithms (p-value =
generated and rag®* ~ 16.7 million test cases, leading up to 2:95- 10~ '"). Notice that the highest computational time for ran-
roughly 62 billion test case executions on a computer cluster. Be- dom testing (4.3 milliseconds) in Table 4 is lower than the lowest
cause some mutations could lead to programs that never halt, wevalue for ART ¢03 milliseconds). The machine used for these ex-
put a10 minute time limit on the experiments of each mutated pro- Periments was a MacBook Pro, 2.66 GHz, 4 giga-byte memory and

grams. In other words, the execution of tt&e7 million test cases 3 Meéga-byte L2 cache. S .
on a program would be stopped afte minutes if still running. We cannot excl_ude that there are fau_lts or !nef_n(:lent code in our
Fortunately, such cases were only a few in our empirical analysis. ART |mpleme_ntat|0n, but based on our investigations there are pre-
If a mutant is not killed by any test case, then the mutation might CiS€ explanations for the very bad performance of ART. Let us as-
have just created a semantically equivalent program. However, SUme that we have a SUT with failure r@teThe expected number
given the large number of such mutants, and though we run a large©f test cases sampled by random testing before triggering a failure
number of test cases, we cannot be completely sure that these muis 1/6. In the best conditions, according to the literature we would
tants are actually equivalent. We nevertheless use the expressioflave ART sample, on average, half the test cases of random test-
“equivalent” to indicate these cases. ing, thereforel /(20). The number of distance calculations would

To investigate the types of faulty region shapes, we only used abe|W| - 55 - (55 — 1)/2 = ©(gz). With a computational cost
subset of the3727 mutants. We excluded the equivalent mutants Of @(9%), ART has much higher asymptotic complexity than ran-
and the ones that led to computation timeouts. Furthermore, we dom testing with© (%) . Empirical analyses are required in order
excluded the mutants that were teasyto kill. The threshold was to study, under realistic conditions, the failure rate threshold above
arbitrarily set tod > 0.01. With such failure rates, since random which ART becomes better than random testing in terms of test
testing follows a geometric distribution [18], one would need on execution time. However, given the overhead of distance computa-

average less that00 random test cases to find the first failure. In tions, such a threshold is very likely to be unrealistically high.

our case study, generating and runniiog test cases only takes on Although techniques have been proposed to reduce the number
average less than a millisecond. This left us Wis0 “appropriate” of distance calculations [11, 26], their asymptotic complexity is
mutants, roughly a fifth of the original set. Table 2 summarizes the still ©(;z). The number of distance calculationds ;) in lattice-
types of these mutants for each of the 11 programs. based ART [32, 6], but that technique suffers of heavy memory
For each appropriate mutant, we calculated e and M2 consumption overhead. Notice the number of distance calculations

measures on their failing test cases to obtain information about theis independent from the chosen distance function (e.g., Euclidean

Table 3: M1 measure on the case study.

Failure Rate) Mutants M1
min median mean max standard deviation

[1073,107] 201 3.01-10"* 6.27-10* 1.00-10°7 1.52-1071 3.13-102
1071077 153 6.20-107° 7.87-1073 1.94-1072 2.36-107" 4.23-1072
[107°,1071] 22 2.01-107° 7.12-107° 7.70-1073 3.76 - 1072 1.25-1072
[1075,1077] 15 8.22-107¢ 8.22-107° 8.28-107° 8.36-107° 6.78-1078
[1077,107¢] 373 1.18-1071 3.99.1071 3.51-1071 5.83-107! 1.02-1071
[1078,1077] 16 1.00 1.00 1.00 1.00 0.00

Table 4: Comparison of ART with random testing on one mutant for the Triangle program.

Data Algorithm min median mean max standard deviation
Test Cases Random Testing 2,046 32,074 72,237 444,839 97,869

ART 1,075 46,545 56,382 224,815 57,475
Time Random Testing 0 ms 4.5ms 10.3ms 58 ms 14.3 ms

ART 403 ms 19.4 minutes 47.7 minutes 5.9 hours 82.3 minutes

distance).

properties of a (non-exhaustive) selection of widely referenced ART

In the case of Triangle Classification discussed in Table 4, we papers regarding numerical applications, in which ART was ap-

had® = 1.51 - 10~5. This means an expect&s,225 test cases

plied and compared against random testing. Given that the failure

for random testing, whereas in the optimal conditions (which de- rate can be estimated with the inverse of the F-measure for random

pend on the region shape) ART would requd® 112 test cases

testing, the main flaws in existing studies can be summarized as

on average. But the number of distance calculations would be follows:

5,482,022,719, which is a very high number compared to the num-
ber of sampled test cases. On this toy problem, random testing
needs on averagk) milliseconds to find the first failure, whereas
ART requirest7 minutes! It may be argued that in situations where
test case execution takes a long time, ART might be a viable option.
Using the above example further, even in optimal conditions where
ART leads to half the number of test cases obtained with random
testing, test execution time should be on averagé x 10° larger

than distance computation time for ART to pay off. For exam-
ple, assuming the distance calculation time is one millisecond, that
would entail roughly three minutes of test execution. We will return
to this discussion in Section 6.

The number of distance calculations is not the only problem. In
fact, we need to keep in mind the memory consumption of keeping
a data structure fa¥ (set of test cases in Figure 1). In some cases,
for Triangle we had = 5.96 - 10~%, which on average would lead
to Z containing up to roughly million test cases. Even if we ig-
nore the memory overhead of the chosen data structut® ferg.,

a linked list), we would still need x 3 bytes per test case (un-
less we use some compression algorithm). This leads to a memory
consumption that can be in the orde®6fmega-bytes, which is un-
likely to be stored on a first level cache. For each sampling of test
case, there would be a large number of page faults in memory that
would significantly increase the execution time of ART. In contrast,
random testing does not require any support data structure.

e The simulations were based on unrealistic assumptions, as
for example very high failure rates (sé&alues in Table 5).

e In the cases in which empirical analyses were carried out,
these included only a small number of programs. The faults
in these programs were manually introduced, in an unsys-
tematic way. This led to biased case studies in which only
high failure rates were present.

e All the comparisons between ART and random testing were
based on the F-measure, i.e., the average number of sampled
test cases. This does not account forekeemely high cost
of ART that is due to the distance calculations and its mem-
ory consumption.

e Empirical analyses on numerical applications using the F-
measure requires the presence of an automated oracle, be-
cause it is not reasonable to ask a software tester to manually
verify the output of (hundreds of) thousands of test cases.
But no work in Table 5 uses a case study in which an auto-
mated oracle is available.

One of the few reported systematic studies is reference [33], in

which different variants of ART were compared. Faults were auto-

In Table 3 we can see that more than half of the mutants show Matically injected with muJava. But no information of failure rates

failure rates lower than0~?, which means than on those mutants €an be inferred (the F-m_easure of random_ test_ing is not reported).
ART is not applicable because far too expensive compared to ran-Furthermore, the analysis of actual execution time was carried out
dom testing. Furthermore, the 11 problems used in the case studyPnly Up 02000 test cases, stopping before the first failure was
(Table 1), though representative of the reported ART studies, can found.

be consideredmall and not really comparable with real-world in- 4.3 ART Performance based on the P-measure

dustrial software. In real-world software we would hence expect . . i
lower failure rates, which would make ART even less applicable. Most of work in the literature considers the F-measure (expected

One important question is why the problems raised by our study number of test cases to find the first failure) instead of using the
were not raised in previous works. Table 5 summarizes relevant P-measure (probability of finding at least one failure given a set of
test cases) [12]. But in practical contexts, the use of the F-measure

Table 5: A selection of relevant papers in the literature of ART for numerical applications.
Year Venue Simulations Empirical Analyses Lowe@st Automated Oracle Reference

2004 Conf. No Yes 3.26-107 1 No [13]
2004 IST Yes No 5.00-107* No [11]
2005 Conf. Yes No 5.00 - 10~* No [32]
2006 Conf. Yes Yes Unspecified No [33]
2007 Work. No Yes 1.00-107* No [38]
2007 IJSEKE Yes Yes 5.00-107° No [7]
2008 SQJ Yes No 5.00-107* No [27]
2008 JSS Yes Yes 5.00-107° No [8]
2009 JSS Yes Yes 1.00-107° No [9]
2009 TR Yes No 5.00-107° No [10]
2009 TR Yes No 1.00-1073 No [40]
2009 Conf. Yes No 2.50-1073 No [26]
2009 Conf. Yes No 1.00-1073 No (6]
2010 Work. Yes No 1.00-1073 No [39]
2010 JSS No No - No [12]

can be misleading: running an algorithm until it finds the first fail-
ure is possible only if an automated oracle is available. Often, au- 3
tomated oracles are not available for numerical applications, apart
from checking whether the application does crash (e.g., a segmen-
tation fault). Though the issue is usually not discussed, in most 31
existing empirical analyses (Table 5) no realistic automated oracle
is used. Correctness of faulty programs is checked against atorrec
version of the program. Though we have done so as well in the ex-
periments in this paper, our objective was only to demonstrate the g4
overhead of ART, not to assess its applicability. o

If no automated oracle is available, it makes sense to evaluate A A A AL
ART on sets of test cases that would be manually evaluated and as-_, . i
suming a fixed size, driven in practice by test budgets. In other Figure 3: Odds ratios of random testing compared to ART on
words, given a budget ofic| test cases, what is the P-measure the 780 mutants and test sizes ranging frome to 50.
of ART compared to the one of random testing? To answer this
question, we ran another set of experiments. For each dfgbe
mutants discussed above, we considered set sizes rangin@from
to 10 (reasonable values of test suite sizes that can be evaluate
manually in practical conditions), and frob® to 50 by intervals
of 5 (only for sake of completeness, because for such short pro-
g;argig)_lv'?ﬁilg rt;ilzjl?ég?ll:;tg;ttzigggefz(r)anlgtna}; ;?;;%%s;;ﬁ\(;mate ikely to detect faults: In most of the cases the P-measure is lower
experiments. For each of these exfoeriments We7 ran both randomthan 0.01, Le., ART would have less than &% chance of find-
testing and ARTZO million times to get accura’te estimates of the ing failures. E.ven'for Iargg number of run test cases (1@, the

. . o performance is still unsatisfactory. Furthermore, such results are

P-measure. Repeating the experime&ttgnillion times was nec-

o . expected to be even worse on larger, more realistic software. In
essary considering the fault rate values in our case study (Table 3)'these cases, it could make more sense to use other testing strategies
In total, we had2 x 20m x 780 % >_.__. i = 9.7 trillion test A

. ; rather than ART, h h n stri ral cover .0.
case executions. Even with the use @ba node computer cluster, amer tha » such as those based on structural coverage (€.g.,

running these experiments took more thandays. branch coverage).
We calculated the effect size between the performance of random
testing and ART using thedds ratio[22]. Givena, the numberof 5. ANALYSIS OF THE ONE DIMENSION
times random testing finds a failure out of the= 20 millions DOMAIN
runs, and the same number for ART, the odds ratio is calculated

asy = (a/t —a)/(b/t — b), wherey) = 1 means there is no standing to help explain some of the empirical results presented

effect size difference. Boxplots of the odds ratio for #8260 - - ; L .
experiments are shown in Figure 3 grouped by test set size. Fisher" Section 4. We will show that maximizing the distance between

- ; S test cases, as performed by ART, may not necessarily, in all cases,
exact tests comparing andb proportions at 2.05 significance improve fault detection rates. Furthermore, we will explain wh
level show statistical significance ir2,530 out of the13,260 ex- pro - A ’ Xp y

; : : ART is unlikely to be optimal in most cases. Though in order for
periments. P-measure boxplots for ART (i.e/¢) are shown in ’ X
) . . . the mathematical proofs to be tractable we base our demonstrations
Figure 4, reporting the median, 25% and 75% percentiles, and pIOton simplifying assumptions (one dimension test input domain), we
whiskers extend out from the boxes to the most extreme data point P 9 P P '

e . . ; will discuss why the results are likely to generalize.
which is no more thari.5 times the interquartile range from the Let us consider an input domai in which each test data is an

(Pox (this is the default setting in R [37]).
Although the results in Figure 3 suggest that ART can be bet-
ter than random testing (the odds ratios are lower thann most
f cases), the results in Figure 4 show that ART is still very un-

This section aims at providing the necessary theoretical under-

04

Lismet, thems, ik = T4 To proveps,,x = |, we just need
to prove that, when Condition 1 is met, (A) each test cas¥ ire-
veals a failure in: programs inS; and that (B) these programs are
all different for each of thé(test cases (so a total gk |z different
failures are revealed).

Because from Condition 1,
man(dist(Tmin,21),dist (T k|, Tmax)) > 2,

03
I

0.2

:
:
8
.
o
g
2

----4{ omooc 0 cOmMO® ©O®

--4 omooomamm oo
---{ ommooo mm@ oo

8g 5T
Eh o : : E f - : P then each test case K finds failures inz programs, as the input
i H L i ber DDDD data are far from the edges by at least a distan® |F;| = z.
s i:i:::ﬂ:’\:’\jDDD This fulfills condition (A).
s34 se oo w wm @ Whenmin(dist(z;,zi+1)) > z, to demonstrate (B), we need to

prove that each program failure is triggered by exactly one test case.
This can be proven by contradiction. Assume thaandzx; (where

i < j) reveal failures in the same programhencex;,z; € Fs.
Becausd F,| < z, we have thatlist(z:,z;) = z; — x; < z,

but this is not possible considering that it shoulddbe(x;,z;) =
integer value in the rangmin,@ma.]. Each value in that range dist(ws,zip1) + Y021, | dist(az,x241) > dist(zi,ai1) but

Figure 4: P-measures of ART on ther80 mutants and test sizes
ranging from 2 to 50.

belongs to the input domain, therefdi®| = (maz — Tmin) + 1. dist(z;i,zi41) > 2, which contradicts Condition 1.
When there is one dimension (= 1), the Euclidean distance of
two integers is simplylist(z,y) = |z — y|. O

For SUTs in which the input data is a single numerical variable,
then the input domain would beliae. We have only one possible
type of faulty region shape: one or massegment®f total length
z = 0|D|, whered = z/|D| is the failure rate. For a fixed size
|D| of the input domain, there would be onlyD| — z) + 1 po-
sitions in which a contiguous segment of lengtisan be placed.
Let Si be the set of all possible SUTs in which a single integer is

From Theorem 1, we can conclude that the higher the failure rate
0, the higher the threshold beyond which increasing the distance
between test cases does not help increase fault detection. There are
two practical implications. First, maximizing the distance between
test cases may not always be effective, at least not beyond acerta
: . >) 8 point. Second, when running a small number of random test cases
given as input, and for which a single faulty region of lengtis in a large test input space, one is unlikely to violate the property
present. ItfollowgS:| = (| D| —2) + 1. Note that empirical results j, Theorem 1. Intuitively, considering the set of possible SUTs
[12] show that, for a constant failure rate, increasing the number of S1, Theorem 1 can be explained by the fact that when selecting a
faulty regions (i.e., segments in one dimension) leads to lower ART oy test case using ART, above a certain distance threshold from
detection rates compared to random testing.) , already selected test cases, the likelihood that this new test case

Existing empirical studies [42, 1, 19, 38] provide evidence on i jie in a segment where existing test cases are already present
the contiguity of faulty regions but not their positions in the input g minimized. This threshold increases as the failure rate increases
space. Therefore, we will assume in the absence of relevant infor- gjnce there are more test cases that can fall in a given segment. At
mation that all segments are equally likely. _ .. this stage we cannot mathematically prove that this holds for higher

Given K a set composed gf<| test cases, let us consider itin §inensions, but if this were to be confirmed in the more general
ascending order of input datg i.e.,z; < zi1 Wherez; ;11 € case, this could explain why the difference in P-measure between
K. For example, we could haw& = {2,5,7,13}. We can hence random testing and ART can be small.
prove the following theorem: Though according to Theorem 1, we would not expect much dif-

Theorem 1. For the set of programs;, assuming one faulty ~ ference between random testing and ART for small test set sizes,
region of sizez, a sufficient condition to maximize the probability ~the results of the experiments in Figure 3 do not support this re-
ps,.x that a setk of test cases detects a failure is when sult: there can be large differences even for test setsivieh odds

ratios around).5. There is an explanation for that. Theorem 1 as-
sumes that all the positions for the faulty regions have the same
min(dist(Tmin,o1),dist(Ti,2i41),dist (2| k|, Tmaz)) = 2 . (1) probability of occurrence, but the basic version of ART tends to
sample data from the edges of the input space [12]. The results
in Figure 3 can be hence explained if the faulty regions are more
likely to be at the edges. Therefore, future work will need to study
not only the shape of the faulty regions, but also their position in
the input domain.

Based on the result of Theorem 1, it is possible to defide-a
terministicalgorithmD7 to choosg K| test cases that maximize
the probability of detecting failures for programss$h. The Java
code for such an algorith®7 is shown if Figure 5. The main
motivation forD7 is not to devise a better solution than ART, as
numerical programs with one input domain represent a small frac-
tions of all programs, but rather to help compute an upper bound

PROOFR Givend = z/|D|and|S:| = (|D| — z) + 1, we start
from studying on how many programs$h a test data: can reveal
a failure. Letxs:qr+ be the point for which the faulty region for a
programs € S; starts, i.e. fors we have the faulty region in
Fs = [Tstart,Tstart + 2z — 1]. Atest data: reveals a failure i if
and only ifx € F.

Each program it has a different faulty regiod’, and this is
defined by th&|D| — z) + 1 positions in which the starting point
Tstart CAN be positioned. Therefore, a test datan reveal failures
in at mostz programs inS;. This is an upper bound, because on

_the edges of there WOUl.d be less faulty regions. For (_example, against which to compare ART in the one dimension caBg.
if x = xmin, then there is only one program By for which =

! . simply chooses test cases that are as far as possible from each other
detects a failure, and that is Whegar: = xmmz'|K| K]0 and from the borders.,i, andx,,... Given the range of values
An upper bound fops, .k would beps, x < Jg5 7 = =017 |D| = (Tmaz — Tmin) + 1, we choose test cases that are at least
To prove this theorem, it is sufficient to prove that, when Condition 6 = (|D| — 1)/(]K| + 1) from each other. Because the radids

public int[] getlDTestCases(int k, int min, int max){
int[] K= new int[k];
int range = (max— min);
int delta = (int)Math.floor ((double)range/(double)(k});
int r = range— deltax(k+1); R
K[0] = min + delta;
if (r>0){ K[O]++; r ——}
for(int i=1; i < K.length; i++){
K[i] = K[i —1]+delta;
if(r>0){ K[i]++; r ——}

Probability of Fault Detection

return K;

} 3

Figure 5: Java code of the deterministic algorithmD7 for the * * ‘ ‘ ‘ ‘ ‘
Set Sl . Number of Test Cases |K|

Figure 6: Comparison of ART with D7 and random testing on

not necessarily an integer value, the algorithm is designed to handleg; .
these situations. The optimality @7 is proven in the following
theorem. The proof is based on the Java code listed in Figure 5, but
it would apply on any equivalent implementation in other program-
ming languages. An integer arr#jis given as output. Notice that ~ domains would be questionable. HowevBX] requires that the
K[;j] represents the input daig 1 (this because Java arrays start number| K| of test cases to sample should be decided before start-
from index0). ing the algorithm. This is acceptable in many practical situations
when no automated oracle is available or test cases are expensive as
they are run, for example, on embedded software with actual hard-
ware. In such cases only a limited numbéf| of test cases can
be executed. Similarly, in regression testing [31], only a relatively

PROOF Given K test cases as output Bf7, if Condition 1 of small subset of regression test cases can be selected in many situa-
Theorem 1 holds, then this theorem is true as the probability of tions. On the other hand, in other situations than the ones described
fault detection is maximized. Condition 1 is however sufficient but above, it could make sense to run a testing technique until it detects
not necessary. When Condition 1 does not hold forithiest cases the first failure. DT is, however, optimal wheall the sampled test
sampled byDT, to prove Theorem 2, it is sufficient to prove that cases inK are executed. If the cost of running the test cases is high
ps,.x = 1, implying that the probability of detecting failures is and/orK is large, then it may be desirable to order their execution

Theorem 2. For the set of programs$; and any number of test
cases| K| to sample, the algorithr®7 produces a sef of test
cases that maximizes the probability of detecting failures;in

still maximized. using prioritization techniques [28].

In the code ofD T, we have the variablé = | (|D|—1)/(| K|+ We evaluated ART on the sé&h and compared it with random
1)]. For each test case, we have that> z;_i, becauser; is testing usingD7 as an upper bound. To do so, we carried out a
calculated by adding to ;1. In some cases, we havwg = simulation in which|D| = 10,000, # = 0.05 and where we con-
z;—1 + & + 1. Therefore, for the sampled test cases we lave sidered sets of test cases ranging fromo 30. Notice that, given
dist(xi,xit1) < 5+ 1. 0 = 0.05, then on average random testing would require to sample

Forx; we used the valug,.;. + d to which+1 can be added in 20 test cases to find a failure (this is a very high failure rate, used
some cases. Therefote, is at most + 1 values far from the edge ~ only for the sake of illustration). Figure 6 compares the fault de-
ZTonin, 1.€.0 < dist(Tmin,x1) < 5+ 1. tection capabilities of these three techniques. When a testing tech-

The distance of || from the edger..... needs some more steps. nique outputs a set dk test cases, we evaluate its fault detection
We haver x| = =1 + S (@ — 2;_1) to which can be added capability by running it orall the SUTs inS, for the given values
+1. This addition is based on the countewhich starts from the ~ Of || andf, so[S:| = (|D] —z) + 1 = 9,501. The probability of

valuer = (|D| — 1) — §(|K|+1). We hence have, x| = min + fault detection is estimated by dividing the number of programs in
S§|K|+ 7 = Tmin + |D| — 1 — 8. Thereforedist (x|, &maz) = S1 for which a failure is revealed by the total number of programs
Tmaz — Tmin — |D|+ 1+ 6 = 6. |S1]. SinceDT is a deterministic algorithm, we only needed to

If the conditions of Theorem 1 do not hold, this means that there €valuate it once on each programdn On the other hand, because
is at least one data input that is at least within a distaneefrom ART is randomized, we ran it on each programsin 1000 times,
another input data or from the edges of the input domain. Because@nd report the average in Figure 6. The fault detection probability
we have proven that minimum distance should be at l&asiten of random testing is simply calculated with the following formula:

K

> > §, otherwise the conditions of Theorem 1 would hold. From ?=1— (1—6)""[18].
z > § it simply follows thatz > § + 1. Because we have proven As we can see in Figure 6, ART seems better than random test-

that§ + 1 is the maximum distance between two consecutiye ~ INg, but it is far from the optimaDT. The difference between
andz;;1, and thatz; anda x| are within that distance from the these techniques increases as the number of test cases increases

edges, theii finds failures in each program . This is because ~ @nd is negligible for small test set sizes. This is explained by Theo-

2 > & + 1. Therefore, in these conditions we have x = 1. rem 1 as there is an increasing number of pairs of test cases whose
- ' distance is below the, the length of the segment (faulty region).
0 Is it possible to define a new variant of ART to get closer to the

performance o077 ? This would be useful in the cases in which
Considering that the algorith®7 is optimal (Theorem 2) and an automated oracle is available, because we could run ART until
deterministic, the application of ART on SUTs with one dimension it finds the first failure, instead of having to specjfy| as inD7 .

o L) @ 3testcases whereE[RT] = 1/6 is the expected number of test cases sam-
pled by random testingZ[ART| = 1/20 is the expected number

O—8—0—® -adding 1 test case of test cases sampled by ART (in the best case in which it only
requires to sample half test cases than random testag)' =
101 ; i i
®———8—8@—® other option to add 1 test case |W155 (55 — 1)/2is the number of distance calculations (red&ll

is the number of test cases sampled at each step of the ART algo-
rithm), ¢. is the time to execute a test case, dpds the time it
takes to compute a distance value. Notice that this inequality does
not take into account the memory overhead. This inequality yields:

@ @ @ @ 4testcases

Figure 7: Graphical example of test cases (circles) fof; (line).

> L1 - _ .
te B X(2 l)Xtd (2)

From Inequality 2, we can see that, for example using a failure
Unfortunately, this is not possible for techniques in which test cases rate ofg = 1075, test execution would need to take on average
are chosen one at the time (stepwise, greedy) as in ART. Figure 72 5 » 105 more time than a distance computation. If we consider
shows an example to illustrate this problem. Assume that we have 5 distance computation to take one millisecond, this will result in
three test cases that should be as diverse as possible. The optimahore than four minutes of execution per test case. What we can
allocation would be one in the centre and the other two on the edgesconclude from the above inequality and example, especially given
(notice that choosing test cases at the edges is not a good idea [8]that this is the best case scenario for ART, is that situations where
andD7T does not do it). If then we want to add one test case, we test case execution is long enough to warrant the use of ART are
have two options to where to allocate it if we want to maximize |ikely to be rare in practice. Furthermore, the above reasoning does
diversity. But in both cases, the allocation of these four test cases isnot account for memory consumption which, using the example
not the optimal one that maximizes diversity (as shown in the last gpove, would result in many megabytes of test case information.
row of Figure 7). Though extensions of the basic ART exist [11, 32, 26, 6], they

In antirandomtesting [43] diversity in the test cases is sought, in have never been empirically investigated in realistic scenarios (as
a similar way as in ART. But each time a new test case is sampled, discussed in more details in Section 4).

the choice is made deterministically. In contrasbt@, antirandom
testing is affected by the problem we discussed for Figure 7.

For higher dimensions, we cannot at the moment deriveaprecise7- ART IN OTHER TESTING DOMAINS
DT algorithm, as it depends on the many possible shapes of faulty In previous sections, we carried out theoretical and empirical
regions, and it is therefore impossible to compare ART with an op- analyses that investigated the effectiveness of ART in numerical
timal solution for more than one dimension at this point. But given applications and showed we were unlikely to find many situations
the reasons we have presented to explain why ART is suboptimal where it could be expected to be satisfactory. In this section, we an-
in the one dimensional case, we can conjecture that ART is likely alyze the published literature applying ART to other domains and
to be suboptimal in the general case as well. Itis very well possible conclude that existing results cast further doubts about its effective-
that if we manage to modify ART to better optimize diversity, we ness.
might obtain better empirical results than the ones presented in the Ciupaet al.[15] used ART for testing Object-Oriented software,

previous section. in which “contracts” (i.e., pre/post conditions in the tested meth-
ods) were used as automated oracles. The authors concluded that
6. GENERALIZATION ART was better than random testing since it needed to sample less

test cases before finding the first failure. However, ART was also
reported as taking on averagé times longerdue to the distance
calculations! As we argued above, when you have an automated
oracle, how many test cases you sample is simply irrelevant: the
time required to execute the test cases is the only important metric
in this case. The number of test cases would be important only if
the outputs of the test cases needed some form of manual checks.
nTherefore, in contrast to what it is claimed in [15] , the empirical
analysis in that paper actually shows that ART fares significantly
worse than random testing.

Lin et al.[29] also analyzed ART on Object-Oriented software
and compared results using execution time instead of the F-measure.
However, the faults in that work weraanuallyseeded, which led
to failure rates that were extremely high (in the ordet@f®). As
in our study earlier, it is important to consider a wide and realistic
range of failure rates, especially if the objective of the study is to
demonstrate applicability. Furthermore, in both [15] and [29] the

periments were repeated only five times and, as a result, no sta-
stical testing was used to assess whether differences in execution
time of F-measure were statistically significant. When randomized
algorithms are evaluated, since there can be high variance in the
performance at each run, using higher number of repeated experi-
E[ART] x t. + #DC x tq < E[RT] X t., ments and statistical tests is a necessity [3].

Though we only discussed ART for numerical applications (the
type of SUT that ART was originally designed for), the reasons
we identified to explain ART inefficiencies (e.g., distance computa-
tions and memory consumption) can be generalized to other types
of programs. In situations where one is testing until triggering a
failure, any situation in any domain when the execution time of
test cases is not high compared to distance computations, or whe
the failure rate is low, will lead to a low ART performance. Re-
ported applications of ART to non-numerical programs is further
discussed in the next section. Alternatively, when a fixed, small
size test set is used (e.g., due to manual oracles) then ART will still
be unlikely to detect faults in any situation, regardless of the do-
main, where the failure rate is low as the ART heuristic will not be
sufficiently effective to significantly improve over random testing,
as discussed in Section 4.3. More empirical studies are however
required to generalize our results with confidence.

The only case left where ART could be cost-effective is when
there is an automated oracle (so that the F-measure makes sensg.
and text execution time is on average extremely long compared to
distance computation time. Formalizing this trade-off with an in-
equality yields:

In our recent work with Igbal [4], we applied ART for system son for this is the calculation of distances among test cases, which
testing of a real industrial embedded system with real faults. This overshadow the reduction that ART could yield in terms of number
was a priori an ideal scenario for ART: computationally expensive of executed test cases, especially under the conditions mentioned
test cases (each one requigiseconds), automated oracles (pro- above. With small test suites of fixed size, ART improves over ran-
vided by the environment models), and high failure rate due to the dom testing but not sufficiently so to make a practical difference,
early testing stage of the studied industrial system. However, evenespecially when failure rates are realistic.
in such conditions, the results showed that there was no statistical The results above were unexpected if we consider the large amount
difference between the performance of ART and random testing. of research that has been carried out over the years on ART (Table

In our work with Hemmati [24], we applied ART to select sub- 5) and the claims that were made in these publications. However,
sets of test cases generated using state machine models of an indus closer look at the studies reported in the literature showed seri-
trial software. Our test strategy yield@d1 test cases in order to ous flaws, which are rooted in unclear and unrealistic assumptions
achieve adequate coverage of the state machine. Because runninfg.g., very high failure rates) and inadequate measurementKe.g.,

S0 many system test cases was infeasible due to the use of actuaineasure). The lack of cost-effectiveness of ART seems prelsent a
hardware and network infrastructure, the goal was to study strate-in the other testing domains in which ART has been applied.

gies for selecting significantly smaller subsets of test cases. Though On the other hand, in this paper we have also provided further
rewarding diversity in the selected subset of test cases (which canempirical evidence to support the contiguous faulty region hypoth-
be considered to be an optimization problem) led to better fault de- esis underlying the ART heuristic. We propose ways to automate
tection than random selection, ART was statistically worse than the its investigation in large scale studies by using metrics character-
other algorithms we investigated, such as Genetic Algorithms. izing the shape of faulty regions. Future work will be devoted to

Jianget al. [25] and Zhou [44] used ART for prioritizing test using the findings of this paper to design novel testing techniques
cases in regression testing. Rewarding diversity using ART led to that can more effectively exploit the faulty region hypothesis than
better results. However, in contrast to our previous work [24], the current versions of ART.
use of optimization algorithms (e.g., Genetic Algorithms) for re-
warding diversity was not investigated. We cannot claim that such Acknow|edgement3
algorithms would be better than ART in the case studies used in
[25] and [44], but we can make the following conjecture. ART
works as agreedy algorithmand rewarding diversity in a set of
test cases can be considered to be an optimization problem. In gen
eral, meta-heuristic techniques (e.g., Genetic Algorithms) tend to
yield better results than greedy algorithms for non-trivial problems
[21]. This was true in our case study in [24], and can be expected
to be so in many software engineering applications [23].

Notice that for the types of problem in [25, 44, 24] it is not pos- 9. REFERENCES
sible to use a deterministic algorithm such%. The reason is [1] P. E. Ammann and J. C. Knight. Data diversity: An approach
that, in contrast to numerical applications, in those cases we cannot 0 software fault toleranc¢éEEE Transations on Computers
in general directly produce test cases with a pre-defined distance ~ 37(4):418-425, 1988.
among them. We can only sample test cases and then, only after [2] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin.

We would like to thank Johannes Mayer for providing the Java
source code of his case study used in [38]. We also like to thanks
Tsong Chen and Lydie du Bousquet for useful comments on an
early draft of this paper. The work described in this paper was
supported by the Norwegian Research Council. This paper was
produced as part of the ITEA-2 project called VERDE.

they are created, measuring their distance becomes possible. Using mutation analysis for assessing and comparing testing
The above analysis of the literature applying ART to non-numerical ~ coverage criterid EEE Transactions on Software

applications confirms that ART is not a particularly effective test- Engineering (TSE)32(8):608-624, 2006.

ing technique in most cases. Diversity in test cases is an intuitive [3] A. Arcuri and L. Briand. A practical guide for using

heuristic, but ART may not be an advantageous option to achieve statistical tests to assess randomized algorithms in software

it. engineering. IACM/IEEE International Conference on

Software Engineering (ICSE2011.
8. CONCLUSION [4] A. Arcuri, M. Z. Igbal, and L. Briand. Black-box system

Adaptive Random Testing (ART) was proposed as an improve- testing of real-time embedded systems using random and

ment to random testing, with many studies carried out over the sear_ch-based testing. IRIP International Conference on
years. ART was first proposed for numerical applications [13], and Testing Software and Systems (ICT$8ges 95-110, 2010.
was more recently applied to other testing problems such as testing [3] A Arcuri, M. Z. Igbal, and L. Briand. Formal analysis of the

Object-Oriented classes [15]. Its underlying principle is intuitive effectiveness and predictability of random testingAbM

and appealing: maximizing test case diversity. International Symposium on Software Testing and Analysis
In this paper, we revisited the claims made in many ART studies (ISSTA) pages 219-229, 2010.

and we showed that, using similar programs in the numerical appli- [6] T.Y. Chen, D. Huang, F. Kuo, R. Merkel, and J. Mayer.

cation domain, ART does not work as well as expected. We further Enhanced lattice-based adaptive random testing. In

explain why ART does not work well in two practical and common Proceedings of the ACM symposium on Applied Computing

situations where oracles are automated and one tests until a fail- pages 422-429, 2009.

ure is triggered or when small test suites of fixed size are executed [7] T. Y. Chen, F. Kuo, and Z. Zhou. On favourable conditions

and the oracles manually checked. In the former &sR& does for adaptive random testin¢nternational Journal of

not even work on toy problems such as Triangle Classificatiga! Software Engineering and Knowledge Engineeying

identified precise reasons of this behavior, which are not specific 17(6):805-825, 2007.

to our case studies and are therefore likely to generalize to other [8] T.Y. Chen, F. C. Kuo, and H. Liu. Distributing test cases
domains under certain conditions: short test execution times rela- more evenly in adaptive random testidgurnal of Systems
tive to distance calculations and low failure rates. One major rea- and Software (JSS81(12):2146—2162, 2008.

[9] T.Y. Chen, F. C. Kuo, and H. Liu. Adaptive random testing
based on distribution metric3ournal of Systems and
Software (JSS)n Press:—, 2009.

[10] T.Y. Chen, F. C. Kuo, and H. Liu. Application of a failure
driven test profile in random testindEEE Transactions on
Reliability, 58(1):179-192, 2009.

[11] T.Y.Chen, F. C. Kuo, R. G. Merkel, and S. Ng. Mirror
adaptive random testingnformation and Software
Technology (IST)}46(15):1001-1010, 2004.

[12] T.Y. Chen, F. Kuoa, R. G. Merkela, and T. Tseb. Adaptive
random testing: The art of test case diversiurnal of
Systems and Software (JS&)10. (in press).

[13] T.Y. Chen, H. Leung, and I. K. Mak. Adaptive random
testing. InAdvances in Computer Sciengages 320-329,
2004.

[14] T.Y. Chen and R. Merkel. An upper bound on software
testing effectiveness. 17(3):1-27, 2008.

[15] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Artoo: adaptive
random testing for object-oriented software AGM/IEEE
International Conference on Software Engineering (IGSE)
pages 71-80, 2008.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to AlgorithmsMIT Press and McGraw-Hill,
second edition, 2001.

[17] J. W. Duran and S. C. Ntafos. An evaluation of random
testing.IEEE Transactions on Software Engineering (TSE)
10(4):438-444, 1984.

[18] W. Feller.An Introduction to Probability Theory and Its
Applications, Vol. 1Wiley, 3 edition, 1968.

[19] G. B. Finelli. Nasa software failure characterization
experimentsReliability Engineering & System Safety
32:155-169, 1991.

[20] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. ACM Conference on
Programming language design and implementation (PLDI)
pages 213-223, 2005.

[21] D. E. GoldbergGenetic Algorithms in Search and
Optimization Addison-wesley, 1989.

[22] R. Grissom and J. KinEffect sizes for research: A broad
practical approach Lawrence Erlbaum, 2005.

[23] M. Harman, S. A. Mansouri, and Y. Zhang. Search based

software engineering: A comprehensive analysis and review

of trends techniques and applications. Technical Report

TR-09-03, King's College, 2009.

H. Hemmati, A. Arcuri, and L. Briand. Reducing the cost of

model-based testing through test case diversitiFIR

International Conference on Testing Software and Systems

(ICTSS) 2010.

B. Jiang, Z. Zhang, W. Chan, and T. Tse. Adaptive random

test case prioritization. IEEE/ACM International

Conference on Automated Software Engineering (ASE)

pages 233-244, 2009.

F. C. Kuo. An indepth study of mirror adaptive random

testing. Ininternational Conference on Quality Software

pages 51-58, 2009.

F. C. Kuo, T. Y. Chen, H. Liu, and W. K. Chan. Enhancing

adaptive random testing for programs with high dimensional

input domains or failure-unrelated paramet&sftware

Quality Journal 16(3):303-327, 2008.

[28] Z.Li, M. Harman, and R. M. Hierons. Meta-heuristic search
algorithms for regression test case prioritizatidtEE

(24]

[25]

(26]

[27]

Transactions on Software Engineering (TSE)

33(4):225-237, 2007.

Y. Lin, X. Tang, Y. Chen, and J. Zhao. A divergence-oriented

approach to adaptive random testing of java programs. In

IEEE/ACM International Conference on Automated Software

Engineering (ASE)pages 221-232, 2009.

Y. S. Ma, J. Offutt, and Y. R. Kwon. Mujava: an automated

class mutation systerSoftware Testing, Verification and

Reliability, 15(2):97-133, 2005.

[31] N. Mansour, R. Bahsoon, and G. Baradhi. Empirical
comparison of regression test selection algorithiosrnal
of Systems and Softwaf7(1):79-90, 2001.

[32] J. Mayer. Lattice-based adaptive random testing. In
IEEE/ACM International Conference on Automated Software
Engineering (ASE)pages 333-336, 2005.

[33] J. Mayer and C. Schneckenburger. An empirical analysis and
comparison of random testing techniquesADM/IEEE
International symposium on Empirical Software
Engineering pages 105-114, 2006.

[34] G. Myers.The Art of Software TestingViley, New York,

1979.

[35] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generatiolA@M/IEEE
International Conference on Software Engineering (ICGSE)
pages 75-84, 2007.

[36] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
FlanneryNumerical recipes: the art of scientific computing
Cambridge University Press, 2007.

[37] R Development Core TearR: A Language and Environment
for Statistical ComputingR Foundation for Statistical
Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.

[38] C. Schneckenburger and J. Mayer. Towards the
determination of typical failure patterns. limternational
workshop on Software quality assuranpages 90-93, 2007.

[39] S. Shin, S. Park, K. Choi, and K. Jung. Normalized Adaptive
Random Test for Integration Tests.|EBEE International
Workshop on Software Test Automatiaf10.

[40] A. F. Tappenden and J. Miller. A novel evolutionary
approach for adaptive random testili§EE Transactions On
Reliability, 58(4):619—-633, 2009.

[41] T. A. Thayer, M. Lipow, and E. C. NelsoSoftware
Reliability. North Holland, Amsterdam, 1978.

[42] L. J. White and E. I. Cohen. A domain strategy for computer
program testinglEEE Transactions on Software
Engineering (TSE)6(3):247-257, 1980.

[43] S. H.Wu, S. Jandhyala., Y. K. Malaiya, and A. P.
Jayasumana. Antirandom testing: a distance-based approach.
VLSI Design10:1-9, 2008.

[44] Z. Zhou. Using Coverage Information to Guide Test Case
Selection in Adaptive Random Testing.|BEE
International Workshop on Software Test Automat2oil0.

[29]

[30]

