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ABSTRACT 1. INTRODUCTION

Randomized algorithms have been used to successfully address manyMany problems in software engineering can be alleviated through
different types of software engineering problems. This type of al- automated support. For example, automated techniques exist to
gorithms employ a degree of randomness as part of their logic. generate test cases that satisfy some desired coverage criteria on
Randomized algorithms are useful for difficult problems where a the system under test, such as for example branch [27] and path
precise solution cannot be derived in a deterministic way within coverage [22]. Because often these problems are undecidable, de-
reasonable time. However, randomized algorithms produce differ- terministic algorithms that are able to provide optimal solutions in
ent results on every run when applied to the same problem instancereasonable time do not exist. The use of randomized algorithms
Itis hence important to assess the effectiveness of randomized algo{45] is hence necessary to address this type of problems.

rithms by collecting data from a large enough number of runs. The ~ The most well-known example of randomized algorithm in soft-
use of rigorous statistical tests is then essential to provide supportware engineering is perhapandom testing13, 6]. Techniques

to the conclusions derived by analyzing such data. In this paper, wethat use random testing are of course randomized, as for example
provide a systematic review of the use of randomized algorithms in DART [22] (which combines random testing with symbolic execu-
selected software engineering venues in 2009. Its goal is not to per-tion). Furthermore, there is a large body of work on the application
form a complete survey but to get a representative snapshot of cur-0f search algorithmsn software engineering [26], as for example
rent practice in software engineering research. We show that ran-Genetic Algorithms. Since practically all search algorithms are ran-
domized algorithms are used in a significant percentage of papersdomized and numerous software engineering problems can be ad-
but that, in most cases, randomness is not properly accounted fordressed with search algorithms, randomized algorithms therefore
This casts doubts on the validity of most empirical results assess-play an increasingly important role. Applications of search algo-
ing randomized algorihtms. There are numerous statistical tests, fithms include software testing [42], requirement engineering [8],
based on different assumptions, and it is not always clear when andproject planning and cost estimation [2], bug fixing [7], automated
how to use these tests. We hence provide practical guidelines tomaintenance [44], service-oriented software engineering [9], com-
support empirical research on randomized algorithms in software piler optimisation [11] and quality assessment [33].

engineering. A randomized algorithm may be strongly affected by chance. It
may find an optimal solution in a very short time or may never

Categories and Subject Descriptors converge tovyards an acceptal_ale solution. Running a ran_domi_zed
algorithm twice on the same instance of a software engineering

D.2.0 [Software Engineering: General; problem usually produces different results. Hence, researchers in

1.2.8 [AI’tIfICIaI |nte”igence ]: Problem SOlVing, Control MethOdS, software engineering that deve|0p novel techniques based on ran-

and Search domized algorithms face the problem of how to properly evaluate
the effectiveness of these techniques.

General Terms To analyze the effectiveness of a randomized algorithm, it is im-

portant to study therobability distributionof its output or various
performance metrics [45]. For example, a practitioner might want
to know what is the execution time of those algorithonsaverage
Keywords But randomized algorithms can yield very complex and high vari-
Statistical difference, effect size, parametric test, non-parametric ance probability distributions, and hence looking only at average
test, confidence interval, Bonferroni adjustment, systematic review, values can be misleading, as we will discuss in more details in this
survey. paper.

The probability distribution of a randomized algorithm can be
analyzed by running such an algorithm several times in an indepen-
dent way, and then collecting appropriate data about its results and
performance. For example, consider the case in which we want to
find failures in a software by using random testing (assuming that
an automated oracle is provided). As a way to assess its perfor-
mance, we can sample test cases at random until the first failure is
detected. In the first experiment, we might find a failure after sam-
pling 24 test cases (for example). We hence repeat this experiment
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a second time (if a pseudo-random generator is employed, we need Notice that Aliet al.[3] have recently carried out a systematic re-
to use a different seed for it) and then, for example, trigger the first view of search-based software testing which includes some limited
failure when executing the second random test case. If in a third ex- guidelines on the use of statistical testing. This paper builds upon
periment we obtain the first failure after generatityg test cases, that work by: (1) analyzing software engineering as whole and not
the meanvalue of these three experiments would 198. Using just software testing, (2) considering all types of randomized algo-
such a mean to characterize the performance of random testing orrithms and not just search algorithms, and (3) giving precise, prac-
a set of programs would clearly be misleading given the extent of tical, and complete suggestions on many aspects that were either
its variation. not discussed or just briefly mentioned in [3] .

Since such randomness might hinder the reliability of conclu-  The main contributions of this paper can be summarized as fol-
sions when performing the empirical analysis of randomized algo- lows:
rithms, researchers hence face two problems: (1) how many ex-
periments should be run to obtain reliable results, and (2) how to
assess in a rigorous way whether such results are indeed reliable.
The answer to these questions lies in the ussaifstical test$53].
There are many books on various aspects of statistics (e.g., [53, 10,

e We provide a systematic review of the current state of prac-
tice of the use of statistical testing to analyze randomized
algorithms in software engineering. The review shows that
randomness is not properly taken into account in the research

37, 25, 62]), and that research field is still growing [62]. Notice literature.

that though statistical testing is used in most if not all scientific e We provide practical guidelines on the use of statistical test-
domains (e.g., medicine and behavioral science), each field has its ing that are tailored to randomized algorithms in software

own set of constraints to work with. Even within a field like soft- engineering applications and the specific properties and con-
ware engineering the application context of statistical testing can straints they entalil.

vary significantly. When human resources and factors introduce
randomness (e.g., [15, 29]) in the phenomena under study, the use The paper is organized as follows. Section 2 presents the system-
of statistical tests is also required but the constraints we work with atic review we carried out. Section 3 presents the concept of sta-
are quite different from those of randomized algorithms, such as tistical difference in the context of randomized algorithms. Section
for example the size of data samples and the types of distributions4 compares two kinds of statistical tests and discussed their impli-
we deal with. cations in our context. The problem of censored data and how it
Because of the widely varying situations across domains and the applies to randomized algorithms is discussed in Section 5. How to
overwhelming number of statistical tests, each one with its own measure effect sizes and therefore the practical impact of random-
characteristics and assumptions, many practical guidelines have beéred algorithms is presented in Section 6. Section 7 investigates the
provided targeting different scientific domains, such biology [47] question of how many times randomized algorithms should be run.
and medicine [30]. In this paper, we intend to do the same for ran- The problems associated with multiple tests is discussed in Section
domized algorithms in software engineering, as they entail specific 8. Practical guidelines on how to use statistical tests in our context
properties and the application of statistical testing is far from easy, are summarized in Section 9. The threats to validity of our work are
as we will see. discussed in Section 10. Finally, Section 11 concludes the paper.
To assess whether the results obtained with randomized algo-

rithms are properly analyzed in software engineering research, and2, SYSTEMATIC REVIEW
therefore whether prgcise _guideline_s are required, we carried out a Systematic reviews are used to gather, in a unbiased and compre-
small scale systematic review. We limited our analyses to the year hensive way, published research on a specific subject and analyze it

2009 as our goal was not to perform an exhaustive systematic re- [31]. Systematic reviews are a useful tool to assess general trends

view but to obtain a representative, recent sample on which to drawin ublished research. and thev are becoming increasinaly common
conclusions. We focused on research venues that deal with all the. - ' 4 9 gy

i . . in software engineering [36, 15, 29].
aspects of software engineering, such as IEEE Transactions of Soft- In our review we want to analyze: (RQ1) how often random-

wgig Eggi’:g:ﬂgg ((I-lc—:SSEE)) LErEEInItr:renrgt?ct)lr?glalsCrgnz)esriirrl?eor?ns(f::& ized algorithms are used in software engineering, (RQ2) how many
Y g (% . ymp runs were used to collect data, and (RQ3) which types of statistical
Based Software Engineering (SSBSE). The review shows that sta- | d | h d
tistical analyses are either missing, inadequate, or incomplete For2Nayses were use to analyze those data. .
! ' ) To answer RQ1, we selected two of the main venues that deal

example, though journal guidelines in medicine require a manda- ... ° aspects of software engineering: |IEEE Transactions of

iﬁ(rayeL;'fS:ctOfoﬁ?::terlrzgIrft?ﬁvsgthsall\z/gnneoﬁghenrge:tssin[2|5e] (t:(;gg?nnt;vf%ich Software Engineering (TSE) and IEEE International Conference
this was used to measu’re the relative effectivenesgs ofarandomized)n Software Engineering (ICSE). We also considered the Inter-
hational Symposium on Search-Based Software Engineering (SS-

algorithm. F_urthermor_e, in half of the surveyed empirical analy- SE), which is a specialized venue devoted to search algorithms.
ses, randomized algorithms were evaluated based on the results o - . L
ecause our goal is not to perform an exhaustive survey of existing

only one run and all the empirical analyses in TSE were based on aworks, but simply to get an up-to-date snapshot of current practice

ng(ilvn;l:]rr(;grf g\ljfvreur’];-results we hence found necessary to deViseregarding the application of randomized algorithms in software en-
y ’ 4 gineering research, we only considered 2009 publications.

pracnca_l gwdehne_s for _the use of stat|_st|cal_ testmg_ IN assessing = e only retained full length research papers and, as a r@sult,
randomized algorithms in software engineering applications. Note h ICSE and eiaht at SSBSE luded. A |
that though guidelines have been provided for other scientific do- short papers at and €lg t a_t were excluded. tota
mains [47, 30] and for other types of empirical analyses in software of 104 papers were considereds in TSE, 50 in ICSE and nine

' yp P Y in SSBSE. These papers were manually checked to verify whether

teenxgglg;e?:r?o?o[r%]isz' :f]élthsr){tﬁ;?snoézf%?:gt?\%?E?::gfggr;ng;i;ﬁ?{ in their empirical analyses randomized algorithms were used. This
9 . ! left a total of16 papers using randomized algorithms: three in TSE

fqrthe.specific.prqperties of randomized algorithms in software en- (6.25% of the total48), four in ICSE % of the total50) and all
gineering applications. the nine papers in SSBSEN0%).



Notice that we excluded papers in which it was not clear whether
randomized algorithms were used. For example, the techniques de-
scribed in [28, 58] use external SAT solvers, and those might be

Table 1: Results of systematic review.
Reference Venue  Repetitions Statistical Tests

based on randomized algorithms, though we cannot say for sure. (1] TSE 1/5 U-test
Furthermore, even if a paper focused on presenting a deterministic, [41] TSE 1 None
novel technique, we included it when randomized algorithms were (48] TSE 1 None
used for comparison purposes (e.g., fuzz testing [18]). Tablent su [43] ICSE 100 t-test, U-test
marizes the results of this systematic review for the final selection [61] ICSE 100 None
of 16 papers. The first thing that results clear is that randomized al- (18] ICSE 1 None
gorithms are widely used in software engineering (RQ1): We found [34] ICSE 1 . NO”?
them in6% — 8% of the articles in TSE and ICSE. (4] SSBSE 1000 Linear regression
To answer RQ2, the data in Table 1 show the number of times a [21] SSBSE 30/500 None
technique was run to collect data regarding its performance on each [14] SSBSE 100 U-test
artifact in the case study. Most of the time, data are collected from [20] SSBSE S0 . NOUe
only one run of the randomized algorithms. Only six cases out of [38] SSBSE 10 Linear regression
16 show at leasB0 runs. (32] SSBSE 10 None
Regarding RQ3, onl§ out of 16 articles include empirical anal- [40] SSBSE 1 None
yses supported by some kind of statistical testing. More specifi- [35] SSBSE 1 None
[57] SSBSE 1 None

cally, we can seétests and U-tests for when algorithms are com-
pared, and linear regressions when prediction models are built. How-
ever, no standardizesffect sizeneasures (Section 6) are reported

in any of these articles to quantify the relative effectiveness of al-

gorithms in an interpretable form. 3. STATISTICAL DIFFERENCE

. tr?n?:ualltrse 'gnﬁglee; c(:al;arilzcj]c;vxatlhzte’zs\,\ilseslf?\?/lvgdrgn:rfeicrjw e"’g%ﬂ' When a novel randomized algorithrhis developed to address a
ployed, P Y 9 9 software engineering problem, it is common practice to compare it

do not properly account for their random nature. Many of the novel against existing techniques, in particular simpler alternatives. For

roposed techniques may indeed be useful, but the results in Table 2 " . . . : ;
Ecgst serious d(()qubts on ¥he validity of most existing results. simplicity, let us consider just one alternative randomized algo-

Notice that some of empirical analyses in Table 1 do not use sta- rithm, and let us call i, For examples can be random testing,
L ; P Y - and.A can be a search algorithm such as Genetic Algorithms or an
tistical tests since they do not perform any comparison of the tech- hvbri : : . : :
- . . . ybrid technique that combines symbolic execution with random
nique they propose with alternatives. For example, in the award

A - X . testing (e.g., DART [22]).
ergrr:Eﬁnpa;r\)/szragjlsiiiﬁgc\)/\?é:rseargrﬁlzlsggrzlt:g:r?.aer-t’ifggtnii“tzgro- To compareA versusB, we first need to decide which criteria
gase stu<§J [61]. However this algorithm was not compared against are used in the comparisons. Many different measuvesdan be

; Y : 9 P g selected depending on the problem at hand and contextual assump-
simpler alternatives or even random search. If we look more closely . d R di
at the reported results in order to assess the implications of that Iacktlons‘ €9, source code coverage, exejcu'tlon time. .Depen ing on

. ) .~ ~"our choice, we may want to either minimize or maximikg for
of comparison, we see that the total number of fithess evaluations

: . Lo . example maximize coverage and minimize execution time.
was400_(a popula_tlo_n size ol individuals that is evolved fot0 To enable statistical analysis, we should run bdthnds a large
generations). This is an extremely low number (for example, for

o . nough numberr() of times, in an in ndent way, t llect in-
test data generation in branch coverage it is often the case of us—nougn nu ber() o es, in an independe ay, fo cotiec

; . . formation on the probability distribution a¥/ for each algorithm.
ing 100,000 fitness e_valuathns_ foeachbranch .[27]) and we can A statistical testshould then be used to assess whether there is
conclude that there is very limited search taking place, which im-

plies that a random search would have likely yielded similar results enough empirical evidence to claim a difference between the two
This is directly confirmed in the reported results in [61], in which algorithms (€.g,, the novel technique s better than the current

in half of the case study the average number of fithess evaluationsState of the art’j_‘). A n_uII hypothesisty is typically Qeflned to
. . ; - state that there is no difference betweémnd5. A statistical test
per run is at most1, thus implying that, on average, appropriate

patches are found in the random initialization of the first population Is used to verify whether we should _rgjecF th_e m.J” hypothéf:ds
. . However, what aspect of the probability distributionidfis being
before the actual evolutionary search even starts. This should not

be surprising as the search operators were tailored to the specific compared depends on the used statistical test. For examtdiesta
small spet of gu s of the case s?ud which then led to an eas F;earc ‘compares the mean values of two distributions whereas others tests
g Y Y r}ocus on the median or proportions, as discussed in Section 4.

problem. As d|_scussed in [3], a search algc_mthm should always be There are two possible types of error when performing statistical
compared.agalnst. at least random search in order to check that th%esting: (I) we reject the null hypothesis when it is true (we are
algorithm is not simply successful because the search problem ISclaiming that there is a difference between two algorithms when

eaé?/ﬁce comparisons with simpler alternatives (at a very minimum gctua!ly there is none), anq (Il) we acceps yvhen itis false (t.here

; is a difference but we claim the two algorithms to be equivalent).
. i ; ) Mrhe p-valueof a statistical test denotes the probability of a Type
ized algorithm or addresses a new software engineering problem L : .
[3], statistical testing should be part of all publications reporting | error. Thes_lgn_lflcant Ievel_a of a teSt.'S th_e highest p_—value we
sué:h empirical studies. In this paper we provide specific guide- acceptfo_r rejectingo. Atyplcal yalue, ln_herlted from widespread
lines on how to use staﬁstical tests to support comparisons amongpracm.:e in natural and social sciencesyis- 0'.05.' L
randomized algorithms Notlc_e_ that the two types of error are confllctmg; minimizing the

) probability of one of them necessarily tends to increase the prob-

ability of the other. But traditionally there is more emphasis on
not committing a Type | error, a practice inherited from natural sci-




ences where the goal is often to establish the existence of a naturahot met. Considering that the variance of the two data samples is
phenomenon in a conservative manner. In our context we would most of the time different, a Welch test should be used instead of a

only conclude that an algorithtd is better thar3 when the prob- t-test. But the problem of the normality assumption remains.

ability of a Type | error is belowy. The price to pay for a small An approach would be to use a statistical test to assess whether
« value is that, when the data sample is small, the probability of the data is normal, and, if the test is successful, then use a Welch
a Type Il error can be high . The concept of statistjpaver[10] test. This approach increases the probability of Type | error, but is

refers to the probability of rejectingl, when it is false (i.e., the often not necessary. In fact, the Central Limit theorem tells us that
probability of claiming statistical difference when there is actually t-test and Welch test are robust even when there is strong departure
a difference). from a normal distribution [53, 56]. But in general we cannot know
Getting back to our comparison of techniquésand B, let us how many data points:) we need to reach reliable results. A rule
assume we obtain a p-value equabt66. Even if one technique of thumb is to have at least = 30 for each data sample [53].
seems significantly better than the other in terms of effect size (Sec- There are three main problems with such an approach: (1) if we
tion 6), we would then conclude that there is no difference when need to have a largefor handling departures from normality, then
using the traditionadv = 0.05 threshold. In software engineering, it might be advisable to use a non-parametric test since, for a large
or in the context oflecision-makingn general, this is type of rea-  n, it might be powerful enough; (2) the rule of thumb= 30 stems
soning can be counter-productive. The tradition of using 0.05, from analyses in behavioral science, and, to the best of our knowl-
discussed by Cowles [12], has been established in the early part ofedge, there is no supporting evidence of its efficacy for randomized
the last century, in the context of natural sciences, and is still ap- algorithms in software engineering; (3) the Central Limit theorem
plied by many across scientific fields. It has, however, an increasing has its own set of assumptions, which are too often ignored. We
number of detractors [23, 24] who believe that such thresholds are now discuss points (2) and (3) in more details by accounting for the

arbitrary, and that researchers should simply repaluesand let specific properties of the application of randomized algorithms in

the reader decide in context. software engineering, using software testing examples. This choice
When we need to make a choice between techniglasd 5, was motivated by the fact that half the publications in search-based

we would like to use the one that is more likely to outperform the software engineering are on software testing [26].

other. Whether we get a p-value lower tharbears little conse- Random testing, when used to find a test case for a specific test-

guence from a practical standpoint, as in the endnmustselect ing target (e.g., a test case that triggers a failure or covers a partic-

an alternative, e.g., we must select a testing technique to verify theular branch/path) follows a geometric distribution. When there is
system. However, as we will show in Section 7, obtaining p-values more than one testing target, e.g., full structural coverage, it follows
lower thana = 0.05 should not a problem when experimenting a coupon’s collector problem distribution [6]. Givérthe proba-
with randomized algorithms. The focus of such experiments should bility of sampling a test case that covers the desired testing target,
rather be on whether a given technique brings any practically sig- then the expectation of random testing.is= 1/6 and its variance
nificant advantage, usually measured in terms of an estimated effectis 6> = (1 — 0)/0* (see [17]). Figure 1 plots the density function
size and its confidence interval, an important concept addressed inof a geometric distribution with = 0.01 and a normal distribution
Section 6. with samey andé2. In this context, the density function repre-

In practice, the selection of an algorithm would depend on the p- sents the probability that, for a given number of sampled test cases
value of comparisons, the cost difference among algorithms (e.g., [, we cover the target after sampling exadtlest cases. For ran-
in terms of inputs), and the estimated effect size. Given a context- dom testing, the most likely outcomelis= 1, whereas for a normal
specific decision model, the reader, using such information, could distribution itisl = n. Notice that the geometric distribution is dis-
then decide which technique is more likely to maximize benefits crete (i.e., it is defined only on integer values), whereas a normal
and minimizes risk. In the simplest case where compared tech- distribution is continuous. Furthermore, the density function of the
niques would have comparable costs, we would simply select the normal distribution is always positive for any value, whereas for the
technique with the best performance regardless of the p-values ofgeometric distribution it is equal @ for negative values, where in
comparisons, even if as a result there is a non-negligible probability this context the values are the number of sampled test cases. There-
that it will bring no particular advantage. fore, a testing technique careverfollow a normal distribution in

a strict way, although it might be a reasonable approximation.
As it is easily visible in Figure 1, the geometric distribution has
4. PARAMETRICVS. NON-PARAMETRIC a very strong departure from normality! Comparisons of novel
TESTS techniques versus random testing (and this is the practice when

search algorithms are evaluated [26]) usiftgsts are hence very

The two most used statistical tests are tftest and the Mann- arguable. Furthermore, in contrast to many physical and behav-
Whitney U-test. These tests are used to compare two data samples 9 ' ’ Yy phy

(e.g., the results of running times algorithmA compared a3 ). ioral phenomena, the prc_)bablllty dlstrlbu_tlons of search algorlthms
. : . : are often strongly departing from normality. A common example is
Thet-test isparametric whereas the U-test fson-parametric when the search landscape of the addressed problem has trap-like
A parametric test makes assumptions on the underlining distri- P p P

) . regions [49].
bution of the data. For example, théest assumes normality and _ .
equal variance of the two data samples. A non-parametric test The Central Limit theorem states that of n random vari-

makes no assumption on the distribution of the datéhythere a_bles converges to a nprmal c_ilstrlbutlon [17]. For_examp_le, con-
. . - . sider the result of throwing a dice. There are only six possible out-
is the need for two different types of statistical tests? A simple

answer is that, in general, non-parametric tests are less powerfulcomes‘ each one with probability 6. If we consider thesumof

than parametric ones. When, due to cost or time constraints, onlyt2wtc()) clilzceéli.eu.,rfé ;s?(,)vv\\/lse tu?a\t/?/%/iltbg Ofséblfnﬁteczi:sees‘of(rgirzevavlvuee
small data samples can be collected, one would like to use the mOStaIread. ob%ain a distribution that re_ser’nbles the normal or;e even
powerful test available if its assumptions are satisfied. y !

There i  age by of work regading which of he wo tests 10051 Wi, = L very o o nefialy. n ourcontet
should be used [16]. The assumptions of tfiest are in general y
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distribution given same meanu = 1/6 and variance 0 = per limits to the amount of computational resources a randomized

(1 —6)/6%, whered = 0.01. algorithm can use. For example, a search algorithm can be prema-
turely stopped when reaching a time limit. Random testing could
be stopped aftet00,000 sampled test cases (for example) if it has
found no failure so far. But in these cases, we are actually dealing

algorithm. This theorem has three assumptions: rtheriables with censoreddata [37] (in particular, right-censorship) and this

should be independent and their mgarmnd variance’® should requires proper care in terms of statistical testing and the interpre-
exist (i.e., they should be different from infinite). When using ran- tation of results, as discussed in Section 5.
domized algorithms, having independent runs is usually trivial to Even under proper conditions for using a parametric test, one

achieve (we just need to use different seeds for the pseudo-randonaspect that is often ignored is thaest and U-test are two different
generators). But the existence of the mean and variance requiresapproaches to analyze two different properties. Let us use a random
more scrutiny. As shown before, those valyeand §2 exist for testing example in which we identify the first test case that triggers
random testing. A well known “paradox” in statistics in which a failure Considering a failure rate the mean value of sampled
mean and variance do not exist is the Petersburg Game [17]. Sim-test cases done by random testing is hgnee1/6. Let us assume
ilarly, the existence of mean and variance in search algorithms is that a novel testing techniqué yields a normal distribution of the
not always guaranteed, as discussed next. required number of test cases to trigger a failure. If we further
If the performance of a randomized algorithm is bounded within consider the same variance as random testing and mean &hét is
a predefined range, then the mean and variance would always existof the one of random testing, which one is better? Random testing
For example, if an algorithm is run for a prefix amount of time with meany or A with mean0.85,? Assuming a large number
to achieve structural coverage for software testing, and there are of runs (e.g.,n is equal to one million), a-test would state that
structural targets, then the performance of the algorithm would be A is better, whereas a Mann-Whitney U-test would state exactly
measured with a value betweemndk. Therefore, we would have  the opposite. How come? This is not an error but the two tests
u < kandé? < k2, so using d-test would be valid. are measuring different things: Theest measures the difference
The problems arise if no bound is given on how the performance in mean values whereas the Mann-Whitney U-test deals with their
is measured. A randomized algorithm could be run until it finds an stochastic ranking, i.e., whether observations in one data sample are
optimal solution to the addressed problem. For example, random more likely to be larger than observations in the other sample. In a
testing could be run until the first failure is triggered (assuming an normal distribution, the median value is equal to the mean, whereas
automated oracle is provided). In this case, the performance of thein a geometric distribution the median is roughly?% of the mean
algorithm would be measured in the number of test cases that are[17]. On one hand, half of the data points for random testing would
sampled before triggering the failure and there would be no upper be lower thar0.7,. On the other hand, fad we have half of the
limit for a run. If we run a search algorithm on the same problem data points above.85., and a significant proportion betweer .
n times, and we have variablesX; representing the number of  and0.85u. This explains the apparent contradiction in results.
test cases sampled in each run before triggering the first failure, From a practical point of view, which statistical test should be
we would estimate the mean wifh = X >°" | X;, and hence used? Based on the discussions in this section, in contrast to [55]
conclude that the mean exists. As Petersburg Game shows, this camand in line with [39], we suggest to use Mann-Whitney U-test rather
be wrong, becausg is only anestimationof n, which might not thant-test and Welch test. However, the full motivation will be-
exists. come clear only once we discuss censored data, effect size, and the
For most search algorithms convergence in finite time is proven choice ofrn in the next sections.
under some conditions (e.g., [54]), and hence mean and variance In the discussion above, we have assumed thatdahd? are
exist. But in software engineering, when new problems are ad- randomized. If one of them is deterministic (e 8), it is still im-
dressed, standard search algorithms with standard search operatongortant to use statistical testing. Consistent with the above recom-
may not be usable. For example, when testing for object-oriented mendation, theDne-Sample Wilcoxotest should be used. Given
software using search algorithms (e.g., [59]), complex non-stdnda m 3 the performance measure of the deterministic algorithm, a one-
search operators are required. Without formal proofs, it is net saf sample Wilcoxon test would verify whether the performancelof
to speak about the existence of the mean in those cases. is symmetric aboutnz, i.e., whether by usingl one is as likely to
However, the non-existence of the mean is usually not a prob- obtain a value lower tham; as otherwise.
lem from a practical standpoint. In practice, there usually are up-



5. CENSORED DATA sible to obtain statistically significant results with-gest or U-test.

Assume that the result of an experiment is dichotomous: either Indeed, two different algorithms are extremely unlikely to have ex-
we find a solution to solve the software engineering problem at actly the same probability distribution. In other words, with large
hand uccesk or we do not failure). For example, in software enoughn we can obtain statistically difference even if that differ-
testing, if our goal is to cover a particular target (e.g., a specific €NCe is so small as to be of no practical value. _
branch), we can run a randomized algorithm with a time lifnit ~ Though it is important to assess whether an algorithm fares sta-
We will stop the algorithm as soon as we find a solution, otherwise tistically better than another, it is in addition crucial to assess the
we stop it after timel. The choice ofZ, depends on the available ~Magnitude of the improvement. To analyze such a propeffget
computational resources. Another example is bug fixing [61] where Sizémeasures are needed [25, 29, 47]. In their systematic review of
we find a patch within time, or we do not. empirical analyses in software engineering, Kampestea. [29]

These types of experiments are dealing wigiht-censorediata, found out that standardmed effect sizes were reported in25ly
and they properties are equivalent to survival/failure time analysis ©f the cases. In our review, we found none. _

[37]. Let X be the random variable representing the time a ran-  Effect sizes can be divided in two groups: standardized and un-
domized algorithm takes to solve a software engineering problem, Standardized. Unstandardized effect sizes are dependent from the
and let us consider experiments in which we collect; values. unit of measurement used in the experiments. Let us consider the

oNSIdan € ! , Jes. : : A B T
We are dealing with right-censorship since, assuming a time limit difference in mean between two algorithds= n”* — p=. This
L, we will not have observation; for the casest > L. There ~ VvalueA has a measurement unit, thatéfand3. For example, in

are several ways to deal with this problem [37] and we will limit Software testingy. can be the expected number of test executions

, . . : A B _ . : ,
One interesting special case is when we cannot say for sure whethiér — 4~ = 100 — 1 = 99, whereas on another testing artifact we

we have achieved our target, e.g., generation of test cases thagachignight haveAs = 1 — 4 = 100,000 — 200,000 = —100,000.

code branch coverage. Even when using a time libjitn these Deciding based orh; andA which algorithm is better is difficult
cases we are not tackling censored data. Putting aside trivial cases{0 determine since the two scales of measurement are diffekent.
there are usually infeasible targets (e.g., unreachable code) andS Very low compared ta\;, but in that cased is 100 times worse
their number is unknown. As a result, such experiments are not than, whereas it is only twice as fast in the case. Empirical
dichotomous because we cannot know whether we have covereddnalyses of randomized algorithms, if they are to be reliable and
all feasible targets. However, if in the experiments the comparisons 9eneralizable, require the use of large numbers of artifacts (e.g.,
are made reusing a case study from the literature, and if we wantPrograms). The complexity of these artifacts is likely to widely
to know whether within a given time we can obtain better cover- Vary, such as the number of test cases required to fulfill a coverage

age than reported studies, then such experimenst can be consideregfiterion on various programs. The use of standardized effect sizes
dichotomous despite infeasible targets. that are independent from the evaluation criteria measurement unit,

Let us consider the case in which we need to compare two ran- i therefore necessary to be able to compare results across artifacts
domized algorithms4 and B on a software engineering problem and experiments.

senting the timeA takes to find a valid solution, and I&t be the ~ dardized effect size measure and why it shoutd be used. We

collecting observationX’;, and we do the same f&. Using a time ply them in practice. The most known effect size is the so called
limit L, to evaluate which of the two algorithms is better, we can family which, in the general form, itig = (1 — %) /0. In other
consider theisuccess ratei.e., the number of times out of the words, the difference in mean is scaled over the standard devia-
runs in which they find a valid solution. To evaluate whether there tion (several corrections exists to this formula, but for more details
is statistical difference between the success ratesafid3, a test please see [25]). Though we obtain a measure that has no measure-
for differences in proportions is then appropriate, such as the Fisherment unit, the problem is that it assumes the normality of the data,
exact test [37]. and strong departures can make it meaningless [25]. For example,
If there is no statistically or practically significant difference be- in @ normal distribution, roughlg4% of the points lie withiry. + o
tween the two success rates, from a practical standpoint, the prac{17], i.e., they are at most away from the meap. But for dis-
titioner would then be interested to know which technique yields tributions with high skewness (as in the geometric distribution and
a valid solution inlesstime. This is particularly important if the @S it is often the case for search algorithms), the results of scal-
success rates are high. There can be different ways to analyze sucid the mean difference by the standard deviation “would not be
cases, such as considering artificial censorships at different timesvalid” [25], because “standard deviations can be very sensitive to
before L. For example, we can consider censorshid.z2, i.e., a distribution’s shape” [25]. In this case, a non-parametric effect
the success rate with half the time. Note that such analysis doesSize should be preferred. Existing guidelines in [29, 47] just briefly
not require to run any further experiments. Another way is to ap- discuss the use of non-parametric effect sizes. .
ply a Mann-Whitney U-test, recommended above, using only the ~ The Vargha and Delaney’,, statistics is a non-parametric ef-
times of successful runs, for whicki; andY; are lower thanl.. fect size measure [60, 25]. Its use has been advocated in [39], and
One more complex situation is when one algorithm shows a sig- ON€ example of its use in software engineering in which random-
nificantly higher success rate, but takes more time to produce valid ized algorithms are involved can be found in [51]. In our context,
solutions. Since these two variables are not necessarily correlatedgdiven a performance measulé, the A, statistics measures the

a careful decision must then be made in these situations. probability that running algorithrd yields higherd values than
running another algorithr8. If the two algorithms are equivalent,

then A, = 0.5. This effect size is easier to interpret compared
6. EFFECT SIZE to thed family. For exampleA;2 = 0.7 entails we would obtain
higher resultsr0% of the time with.A. Though this type of non-

When comparing a randomized algoritihhagainst anothes, parametric effect sizes is not common in statistical tools, it can be

given a large enough number of rungit is most of the time pos-



very easily computed [39, 25]. The following formula is reported puters as this is the case for many research institutes and universi-
in [60]: ties, and when there is no need for expensive, specialized hardware
(e.g., in hardware-in-the-loop testing), then large numbers of runs
i can be carried out to properly analyze the behavior of randomized
Az = (Rofm = (m+1)/2)/n @ algorithms. Many soffwa?e e};ginec)e/ring problems are furthermore
where R, is the rank sum of the first data group we are com- not highly computationally expensive, as for example code cover-
paring. The rank sum is a basic component in the Mann-Whitney age at the unit testing level, and can therefore involve very large
U-test, and most statistical tools provide it. In that formutajs numbers of executions. There are however exceptions, such as the
the number of observations in the first data Sample, whereathe System testing of embedded Systems (e.g'7 [5]) where each test case
number of observations in the second data sample. In most experi-can be very expensive to run.
ments, we would run two randomized algorithms the same number  \whenever possible, in most cases, it is therefore recommended
of times:m = n. to use a very high number of runs. For most problems in software
When dealing with dichotomous results (as discussed in Section engineering, thousands of runs should not be a problem and would
5), several types of effect size measures [25] can be considered spolve most of the problems related to the power and accuracy of sta-
The odds ratiois the most used and “is a measure of how many ftistical tests. For example, as illustrated in [43, 14] in Table 1, even
times greater the odds are that a member of a certain populationywhen 100 runs are used the U-test might be not powerful enough
will fall into a certain category than the odds are that a member of to confirm a statistical difference ate05 significance level, even

another population will fall into that category” [25]. Giventhe when the data seem to suggest such a difference.

number of times algorithrd finds an optimal solution, anglfor Most discussions in the literature about statistical tests focus on
algorithm3, the odds ratio is calculated #s= (a/n —a)/(b/n — situations with small numbers of observations (e.g., as in [55]).
b). There is no difference between the two algorithms when 1. However, with thousands of runs, one would detect statistically sig-
The cases in which) > 1 implies that algorithmA has higher  nificant differences on practically any experiment (see Section 3).
chances of success. Itis hence essential to complement such analyses with the study of

Both A, andy are standardized effect size measures. But be- the effect size as discussed in Section 6. Even when having large
cause their calculation is based on a finite number of observationsnumbers of runs may not be necessary for axsetel (e.g.,0.05)

(e.g.,n for each algorithm, s@n when we compare two algo-  if differences of practical significance also show p-values less than
rithms), they are only estimates of the redl, and¢*. If n is «, additional runs would help tighten the confidence intervals for
low, these estimations might be very inaccurate. One way to deal effect size and would be of practical value.

with this problem is to calculateonfidence interval€Cl) for them In Section 3, we suggested to use U-test insteatte§t. For

[25]. A (1 — o) Clis a a set of values for which there(is — «) very large samples, such as= 1,000, there would be no prac-
probablllty that the vglue of the effect size lies in that range. For tical difference between them regarding power and accuracy. The
example, if we haved,, = 0.54 and a(1 — «) Cl with range choice of a non-parametric test would be driven by its effect size
[0.49,59], then with probability(1 — «) the real valuedi, lies in measure. In Section 6 we argued that effect size measures based on

[0.49,59] (Wwhere A,, = 0.54 is its most likely estimation). Such  the mean (i.e., theé family) were not appropriate for randomized
effect size confidence intervals lead intuitively to decision making algorithms in software engineering. It would be pointless to detect
as benefits, which are directly related to effect size, can be com- statistical difference of mean values with-gest if then we cannot
pared to the costs of using alternative algorithms while accounting use a reliable measure for its effect size. In other words, it is ad-
for uncertainty. To see how confidence intervals can be calculated, visable to use size measures that are consistent with the differences
please see [25] and [60]. being tested by the selected statistical test.

Notice that a confidence interval can replace a test of statistical
difference (e.g.t-test and U-test). If the null hypothesig, lies 8. MULTIPLE TESTS
within the confidence interval, then there is no enough statistical |~ -« situations, we need to compare several alternative al-

evidencz_e to claim there is a ste_lti_stic_ally significant difference. In gorithms. Furthermore, if we are comparing different algorithm
the previous example., bgcatﬁ;é is inside the(1—a) Cl [0'49’59].’ settings (e.g., population sizes in a Genetic Algorithm), then each
then there is no statistical difference at the selected S|gnn‘|canceSetting technically defines a different algorithm. This often leads
levela.. For a dichotomous resultfo would bey) = 1. to a large number of statistical comparisons. It is possible to use
statistical tests that deal with multiple techniques (treatments, ex-
7. NUMBER OF RUNS periments) at the same time (e.g., Factorial ANOVA), and effect
How many runs do we need when we analyze and compare ran-size has been defined for those cases [25]. However, in our appli-
domized algorithms? As many as necessary to show with high con- cation context, we would like to know the performance of each al-
fidence that the obtained results are statistically significant and to gorithm compared against all other alternatives individually. Given
obtain a small enough confidence interval for effect size estimates. a set of algorithms, we would not be interested to simply determine
In many fields of science (e.g., medicine and behavioral science), whether all of them have the same mean values. Rather, dgiven
a common rule of thumb is to use at least= 30 observations. algorithms, we want to perforr@ = K (K — 1)/2 pairwise tests
In the many fields where experiments are very expensive and timeand measure effect size in each case.
consuming, it is in general not feasible to work with high values However, using several statistical tests inflates the probability of
for n. Several new statistical tests have been proposed and dis-Type | error. If we have only one comparison, the probability of
cussed to cope with the problem of lack of power and violation Type | error is equal to the obtained p-value. If we have many
of assumptions (e.g., normality of data) when smaller numbers of comparisons, even when all the p-values are low, there is usually

observations are available [62]. a high probability that at least in one of the comparisons the null
Empirical studies of randomized algorithms do not involve hu- hypothesis is true as all these probabilities somehow add up. In
man subjects and the number roins (i.e., n) is only limited by other words, if in all the comparisons the p-values are lower than

computational resources. When there is access to clusters of com«, then we would normally reject all the null hypotheses. But the



probability that at least one null hypothesis is true could be as high
asl — (1 — a)? for Z comparisons, which converges s Z
increases.

One way to address this problem is to use the so c8ltatfer-
roni adjustmen{50, 46]. Instead of applying each test assuming
a significance levet, we would use an adjusted lewe)Z. For
example, if we want 8.05 probability of Type | error and we have
two comparisons, we would need to use two statistical tests with
a0.025 «, and then check whether both differences are significant
(i.e., if both p-values are lower than025). However, the Bonfer-
roni adjustment has been seriously criticized in the literature [50,
46], and we largely agree with those critiques. For example, let us
assume that for both those tests we obtain p-values equeab4o
If a Bonferroni adjustment is used, then both tests will not be sta-
tistically significant. A researcher could be tempted to publish the
results of only one of them and claiming statistical significance be-
cause).04 < 0.05. Such a practice can therefore hinder scientific
progress by reducing the number of published results [50, 46]. This
would be particularly true in our application context in which many
randomized algorithms can be compared to address the same soft-
ware engineering problem: it would be very tempting to leave out
the results of some of the poorly performing algorithms. Though
we do not recommend the Bonferroni adjustment, it is important to
always report the obtained p-values, not just whether a difference
is significant or not. If for some reasons the readers want to evalu-
ate the results using a Bonferroni adjustment or any of its variants,
then it is possible to do so. For a full list of other problems related
to the Bonferroni adjustment, please see [50, 46]. Notice that there
are other adjustment techniques that are equivalent to Bonferroni
but that are less conservative [19]. However, the statistical signifi-
cance of a single comparison would still depend on the number of
performed and reported comparisons.

In Section 3 we stated that in software engineering in general,
and for randomized algorithms in particular, we mostly deal with
decision-making problems. For example, if we must test software
and must choose one alternative amdnglifferent techniques. In
this case, even if the p-values are higher thharwe need to test
the software anyhow and we must make a choice. In this context,
Bonferroni-like adjustments make even less sense. Just choosing
one alternative at random because there is no statistically signifi-
cant difference does not make much sense as it ignores available
information.

9. PRACTICAL GUIDELINES

Based on the above discussions, we propose a set of practical
guidelines for the use of statistical tests in experiments comparing
randomized algorithms. Though we expect exceptions, given the
current state of practice (Section 2 and [3, 29]), we believe that
it is important to provide practical guidance that will be valid in
most cases and enable higher quality studies to be reported. We
recommend that practitioners follow these guidelines and justify
any necessary deviation.

There are many statistical tools that are available. In the fol-
lowing we will provide examples based dh[52], because it is a

example30 runs were performed and the total execution time
was just one hour, then it is rather difficult to justify why a
higher number of runs was not used to gain statistical power,
lower p-values, and narrow the confidence interval of effect
size estimates.

For detecting statistical differences, use the non-parametric
Mann-Whitney U-test for interval-scale results and the Fisher
exact test for dichotomous results (i.e., in the cases of cen-
sored data as discussed in Section 5). For the former case,
in R you can use the function “w=wilcox.test(X,Y)” where
X andY are the data sets with the observations of the two
compared randomized algorithms. If you are comparing a
randomized algorithm against a deterministic one, use
“w=wilcox.test(X,mu=D)", whereD is the resulting mea-
sure of the deterministic algorithm. When we have number
of successea for the first algorithm anad for the second,
you can use “f=fisher.test(m)”, where is a matrix derived

in this way: “m =matrix(c(a,n-a,b,n-b),2,2)".

Report all the obtained p-values, whether they are smaller
thana or not, and not just whether differences are significant.

Always report standardized effect size measures. For di-
chotomous results, the odds ratidand its confidence inter-
val) is automatically calculated with “f=fisher.test(m)”. For
interval-scale results and thé,» effect size, the rank sum
R; used in Equation 1 can be calculated with
“R1=sum(rank(c(X,Y))[seq_along(X)])". It is also strongly
advised to report effect size confidence intervals (but the sup-
port for A, is unfortunately limited). This is in fact a much
easier to use substitute to p-values for decision making where
potential benefits can be compared to costs while accounting
for uncertainty.

To help the meta-analyses of published results across studies,
report means and standard deviations (so that effect sizes in
the d family can be used). For dichotomous experiments,
always report the valuesandb (so that other types of effect
sizes can be computed [25]).

If space permits, provide full statistics for the collected data,
as for example mean, median, variance, min/max values, skew-
ness, median and absolute deviation. Box-plots are also use-
ful to visualize them.

When analyzing more than two randomized algorithms, use
pairwise comparisons followed by pairwise statistical tests
and effect size measures.

Always states the employed statistical tool (there can be sub-
tle differences on how the tests are computed).

10. THREATS TO VALIDITY

The systematic review in Section 2 is based on only three sources,
from which only 16 out of 132 papers were selected. A larger re-

powerful tool that is freely available and supported by many statis- view might lead to different results, although we can safely argue
ticians. But any other professional tool would provide similar ca- that TSE and ICSE are representative of research trends in software

pabilities.
Practical guidelines are summarized as follows:

engineering. Furthermore, that review is only used as a motivation
for providing practical guidelines, and its results are in line with

other larger systematic reviews [3, 29]. Last, papers sometimes
e On each problem instance (e.g., program) in the case study,lack precision and interpretation errors are always possible.

run each randomized algorithm at least= 1,000 times. If

As already discussed in Section 9, our practical guidelines may

this is not possible, explain the reasons and report the total not be applicable to all contexts. Therefore, in every specific con-

amount of time it took to run the entire case study. If for

text, one should always carefully assess them. For some specific



cases, other statistical procedures could be preferable, especially [9] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An

when only few runs are possible. approach for gos-aware service composition based on genetic
algorithms. InGenetic and Evolutionary Computation
11. CONCLUSION Conference (GECCQpages 1069-1075, 2005.

[10] J. Cohen. Statistical power analysis for the behavioral
sciences, 1988.

K. D. Cooper, P. J. Schielke, and D. Subramanian.
Optimizing for reduced code space using genetic algorithms.
In Proceedings of the ACM SIGPLAN workshop on
Languages, compilers, and tools for embedded systems
pages 1-9, 1999.

In this paper we report on a systematic review to evaluate how
the results of randomized algorithms in software engineering are
analyzed. This type of algorithms (e.g., Genetic Algorithms) are [11]
widely used to address many software engineering problems, such
as test case selection. Similar to previous systematic reviews on re-
lated topics [3, 29], we conclude that the use of rigorous statistical
methodologies are somehow lacking when investigating random-

ized algorithms in software engineering. [12] M. Qoyvles gnq C Davis. O.n the origins oflthe .05 level of
To cope with this problem, we provigwactical guidelines tar- statistical significanceAmerican Psychologist

geting researchers in software engineering. In contrast to other 37(5):553-558, 1982.

guidelines in the literature for other scientific fields (e.g., [47] and [13] J. W. Duran and S. C. Ntafos. An evaluation of random

[30]), the guidelines in this paper are tailored to the specific proper- testing.|[EEE Transactions on Software Engineering (TSE)

ties of randomized algorithms when applied to software engineer- 10(4):438-444, 1984.

ing problems. The use of these guidelines is important in order to [14] J. Durillo, Y. Zhang, E. Alba, and A. Nebro. A Study of the

develop a reliable body of empirical results over time, which enable Multi-objective Next Release Problem. linternational

comparisons across studies and which will converge towards gen- Symposium on Search Based Software Engineering (SSBSE)

eralizable results of practical importance. Otherwise, as in many pages 49-58, 2009.

other aspects of software engineering, unreliable results would pre-[15] T. Dyb4, V. Kampenes, and D. Sjaberg. A systematic review

vent effective technology transfer and would limit the impact of of statistical power in software engineering experiments.

research on practice. Information and Software Technology (IS#8(8):745-755,

2006.
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