
Preemption Mechanisms for Push-to-Talk in Ad
Hoc Networks

Erlend Larsen∗, Lars Landmark∗, Vinh Pham∗, Paal E. Engelstad† and Øivind Kure∗
∗Q2S NTNU

†SimTel (Telenor/Simula)
Email: erl@unik.no, larsla@q2s.ntnu.no, {vph, paalee, okure}@unik.no

Abstract—Using push-to-talk applications in ad hoc networks
is not straightforward. There are no inherent mechanisms to
support priority of the voice traffic, to avoid great jitter and
packet loss in face of large background traffic loads. This paper
presents three preemption mechanisms that can be applied to
support push-to-talk traffic in multi-hop ad hoc networks. The
mechanisms differ in the way the background traffic is treated:
discard, buffering and inter-scheduling. It is shown that there is
a trade-off between the impact on the background traffic and
the service for the push-to-talk traffic. Discarding or buffering
the background traffic leaves the push-to-talk traffic with very
little impact by the background traffic, while inserting the low
priority packets in the interval between the high priority packets
incurs some cost to the push-to-talk traffic.

I. INTRODUCTION

The coordination of emergency and military operations has
traditionally been done by Push-to-Talk (PTT) using two-
way radio transceivers (walkie-talkies). With a single push
on a button, the user switches from voice reception mode to
transmit mode. PTT is a half-duplex method, meaning that
when a sender transmits, it is unable to hear other radios
transmitting at the same time. This inability to interrupt has
made PTT best suited for quick communication exchanges
between users.

Contrary to the low capacity analog communication sup-
ported by walkie-talkie systems, Mobile Ad Hoc Networks
(MANETs) are able to support high capacity digital commu-
nication in environments where no network infrastructure is
available. Because of the important coordination function of
PTT, it is vital to support this service also in MANETs. In
some circumstances, the PTT service can mean the difference
between life and death, e.g. when calling for support or
alerting of immediate danger. The combination of inability
to interrupt and different urgency of the PTT calls should be
reflected by the network in terms of service priority.

Push-to-talk is a one-to-many service, i.e. there is one sender
and several receivers. For such applications, multicast can be a
more efficient distribution method than unicast. With unicast,
each packet is forwarded to one single destination. For each
receiver a unique packet must be created and forwarded. An
advantage of multicast is that one packet transmission can
be received by multiple nodes, and then forwarded by these
nodes, distributing the information to the whole or larger
parts of the network. However, this efficiency makes for less
reliable link layer transmissions, due to more receivers per

transmission, where unicast with one receiver can rely on
acknowledgment of each packet.

Voice is a traffic type with high network service demands,
especially in terms of delay/jitter and loss rate. In a MANET,
the end-to-end voice communication is faced with several
challenges, including interference, packet loss and congestion.
In addition, multicast traffic is troubled by self-interference
when a received packet is transmitted almost simultaneously
by several forwarders.

This paper proposes three mechanisms based on preempting
the lower priority traffic and compares these to the well known
priority queuing mechanism. Through simulations it is shown
how preempting the lower priority traffic can increase the
network performance for the push-to-talk voice traffic.

The rest of the paper is structured in the following way.
First, in Section II, the problem of using PTT in ad hoc
networks without priority is explained. Second, in Section III,
the well known priority queuing mechanism is presented. A
first effective preemption mechanism is introduced in Sec-
tion IV, and then two more gentle preemption mechanisms
are investigated in Section V. In Section VI, the behavior
of the preemption mechanisms is scrutinized when TCP is
used as background traffic transport protocol. Related work
is presented in Section VII, and finally, in Section VIII, the
conclusions of this paper is presented.

II. RECEIVED NETWORK SERVICE FOR PUSH-TO-TALK

The normal network behavior is investigated in this section,
and then the results documenting the service problem for PTT
in ad hoc networks are shown. First, the simulation setup is
presented, and then the results documenting the impact of the
background traffic on the network service are shown.

Ns-2 [1] version 2.33 was used to run simulations evaluating
the mechanisms and solutions presented in this paper. Unless
otherwise specified, the following settings were used for the
simulations: The IEEE 802.11 MAC was used for medium
access with 2 Mbps data rate and 1 Mbps basic rate. The
interface queue size was 100 packets. The interference radius
was 550 m, and the transmission radius was 250 m. OLSR
was used as routing protocol, and link layer notification was
enabled. The simulation topology was 30 nodes moving in a
1500 x 300 m2 area using random direction with reflection
mobility model at a constant velocity of 5 m/s generated by
the tools in [2]. The nodes changed direction every 10 s ± 5 s,

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

G
o

o
d

p
u

t
(%

)

Background traffic (kbps)

High priority Background

Fig. 1. Normal received network service for push-to-talk traffic with
increasing background traffic load.

and the simulations lasted 600 s. Each simulation configuration
was run 10 times with different random seed (heuristic) and
topology, and the same 10 random topologies were used for all
simulations for comparison fairness. The confidence intervals
are given with a confidence coefficient of 95%.

The traffic pattern was as follows: At 10 s, the background
traffic starts. High priority traffic at constant bit rate 5.3 kbps
in 20 byte multicast packets, with an interval of 30 ms,
was transmitted in sessions of 5 seconds. This traffic rate
corresponds to the G.723.1 voice encoding standard. Simpli-
fied Multicast Forwarding (SMF) [3], a mesh-based efficient
flooding protocol, was used to forward the multicast traffic.
The Source-specific Multi Point Relay (S-MPR) forwarding
algorithm was used [4]. For each session, a new random node
was designated as the sender, and a 5 s pause separated the
sessions. The background traffic was unicast, where all the
nodes were divided into two groups. Each node sent traffic
to all other nodes in the same group. The packet size for
the background traffic was 64 bytes, and UDP was used as
transport protocol for both the multicast and the unicast traffic.
Measurements were started at 60 s and continued until 590 s.

In the “Normal” case, where there are no mechanisms
in place to enhance the service for the priority traffic, the
goodput results with increasing background traffic (Fig. 1)
show that the priority traffic without any competition from
the background traffic manages 80% goodput. The 20% loss
is caused by collisions and mobility. As the background traffic
is introduced and increased, the priority traffic is impacted
very negatively, because the collision rate increases and the
interface queues begin filling up, causing tail drops. Preferably,
the performance for the priority traffic should be kept at the
same level as without any background traffic.

In the following sections, mechanisms that treat packets dif-
ferently by the priority they are assigned, are analyzed. First,
the well known queue priority mechanism is presented. Then,
various preemption mechanisms are proposed and analyzed.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

G
o

o
d

p
u

t
(%

)

Background traffic (kbps)

Normal, High priority
Normal, Background

Pri Queuing, High priority
Pri Queuing, Background

Fig. 2. Goodput with and without the queue priority mechanism.

III. PRIORITY QUEUING

When packets have been processed by the routing layer,
they are passed through the link layer and queued in the
interface queue on the MAC layer. The interface fetches the
packet at the head of the queue and transmits it. Normally,
no difference is made between packets with different priority
classification. This can result in high priority packets being
inserted in the interface queue behind several low priority
packets, and delayed considerably. It also risks being discarded
by tail drop if the queue gets full.

A solution to this problem is to place the new packets in
the queue according to priority, so that all the high priority
packets are placed in front of any low priority packets. This
mechanism is part of the interface queue behavior. Placing
the high priority packets in front of the lower priority packets
ensures that no high priority packets will be dropped from the
queue before all the low priority packets have been discarded.
Also, the high priority packets are not delayed by the low
priority packets.

The cost of this mechanism is taken by the low priority
traffic. The queue tail drops impact the low priority traffic
first, since no high priority packets are discarded unless the
queue only contains high priority packets. In fact, the low
priority traffic risks starvation if there is capacity only for the
high priority traffic. Also, the background traffic always has
to wait until all higher priority packets have been transmitted,
leading to higher delay and jitter.

Simulations with and without the priority queuing mecha-
nism have been run. With the priority queuing, the goodput
(Fig. 2) for all traffic initially drops the same way as without
priority queuing. This is due to an increase in collisions for
the high priority traffic. However, with the priority queuing,
the high priority traffic stabilizes at a background traffic load
of 200 kbps and higher. This is because above 200 kbps
all new background traffic is lost due to queue tail drops.
This is confirmed through observations showing that as the
background load increases past 200 kbps, the background

traffic losses increase linearly. Without the priority queuing,
the priority traffic starts experiencing tail drops as the load
increases above 100 kbps, while using the priority queuing
avoids all the high priority packet losses due to tail drop.

IV. PREEMPTION BY DISCARD

While the queue priority mechanism is able to limit the
background traffic in the network as the network approaches
congestion, background traffic will still be transmitted in the
network. The nodes that are not originating or forwarding the
high priority traffic are free to transmit background traffic. So
are also the other nodes, after transmitting their high priority
packets. Thus, the high priority traffic has to compete with
the low priority traffic on the medium, and this reduces the
available bandwidth for the high priority traffic.

Preempting the background traffic from the network when
the high priority traffic is being sent, is a way to further prevent
interference from the background traffic. A crude form of
preemption is to discard all the lower priority traffic. Each
node discards the background traffic instead of forwarding it
during the high priority session. If the lower priority traffic is
voice, it is sensible to discard the traffic, as it will not be heard
at the receiving nodes, and only expend network resources.

The initialization and end phases are challenging with the
discard mechanism. The initialization phase starts with the
source of the high priority traffic beginning to send packets
down through the routing layer into the interface queue. At the
insertion into the interface queue, the preemption mechanism
is activated on this first node, and all the lower priority packets
are discarded until the preemption times out. It is important
that priority queuing is activated, not delaying the high priority
packets out of the source node. The high priority packet is
transmitted on the medium, and the neighbor nodes hear the
packet. Some of the neighbors also forward the packet further
out in the network. As the nodes hear the high priority packet,
the preemption is activated, and the node stops transmitting
low priority traffic. The preemption mechanism should be
implemented between the interface queue and the MAC layer,
so that the low priority packets already in the interface queue
can be easily dropped, instead of being transmitted. Finally,
after the first few packets of the high priority traffic flow have
been multicasted, all nodes have activated the preemption, and
no lower priority traffic is transmitted any longer.

The end phase, when the high priority session is over,
represents another challenge. It is difficult for any given node
to determine the end of the session, unless the application
sends out a disconnect notification. Using a timeout after the
last received high priority packet is a simple way to detect
the end of the high priority session, but this timeout must be
larger than the space between two consecutive packets, since
the packets may arrive with different delays, or may even be
lost. Although the timeout value could be optimized through
measuring the delay between packets, a one second timeout is
suggested in this paper, for simplicity.

A benefit of employing the discard mechanism is that
any competition between the high priority traffic and the

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

G
o

o
d

p
u

t
(%

)

Background traffic (kbps)

Priority Queuing, High priority
Priority Queuing, Background

Discard, High priority
Discard, Background

Fig. 3. Goodput for the discard mechanism.

background traffic is effectively avoided. Thus, the resulting
goodput for the high priority traffic should be equal to (or close
to) the goodput without any background traffic in the network.
The cost, on the other hand, are all the discarded background
packets that would otherwise have reached their destinations,
including traffic already en route to the destination. In addition,
since the network is not being fully utilized during, and
immediately after, the high priority session, a lot of network
resources are wasted.

The preemption mechanisms are dependent on priority
queuing to work as proposed. Therefore, these mechanisms
have been simulated using priority queuing and are compared
to the priority queuing results. Looking at the results for
increasing background traffic (Fig. 3), the discard mechanism
is very efficient in keeping the high priority goodput at the
same level as without the background traffic, but it does so
at the expense of the background traffic. Using the discard
preemption mechanism, the background traffic sees a reduction
from over 80% goodput with the priority queuing, to well
below 40%.

Due to the pauses between the high priority traffic sessions,
the goodput for the background traffic is as high as 35%. The
background traffic goodput is completely relient on pauses in
the high priority traffic, and the gain in the priority traffic
goodput comes at the expense of the background traffic. Thus,
there is no definite answer to what the better mechanism is,
when comparing the discard and priority queuing mechanisms,
since it is dependent on how much one is willing to penalize
the background traffic, to achieve lower loss and delay for the
priority traffic.

V. IMPROVED PREEMPTION MECHANISMS

It may be difficult to choose either preemption or only
priority queuing, since it depends on how the importance of the
lower priority traffic is weighed. In this section, attempts are
made to find a “both ways” solution, which gives good priority
for PTT and, at the same time, low consequences for the

background traffic (i.e. mechanisms that help the background
traffic).

A. Buffering of the background traffic

Instead of discarding the lower priority packets set for
transmission during a high priority session, these packets could
be held back in the interface queue until the end of the session,
and then transmitted. This mechanism is called preemption
with buffering. The issues with initializing and ending the
preemption are the same as for the discard mechanism. The
priority queuing is also required to keep any higher priority
packets from being held back in the interface queue along with
the lower priority packets, when the preemption is in effect.

An advantage of the buffering mechanism is that the low
priority packets created during the high priority session can
be transmitted after the session ends, instead of this infor-
mation being lost. Thus, the goodput would increase. Another
advantage is that any packets caught by a high priority session
while en route to the destination would not be discarded.
These packets have already spent network resources to come
somewhere along the path, and so to discard the packets would
be to waste these resources.

The mechanism will work best with a low load for the low
priority traffic, with a short high priority session and with a
large queue, since the queue may fill up fast if the load is
high, or if the priority session lasts for a long time. Packets
arriving after the queue is filled up will have to be discarded,
and the advantage of the buffering approach is reduced.

When packets buffered in the queue have to be discarded, a
choice must be made to either discard the oldest or the newest
low priority packets. Discarding the newer packets would spare
the packets already on the way to the destination, as the
forwarding nodes may produce new packets, filling the queue.
Discarding the old packets would mean losing the gain of
storing already forwarded packets. However, protocols relying
on packet acknowledgments, such as TCP, would benefit from
discarding the old low priority packets, since these probably
would time out before the high priority session is finished.

The buffer mechanism may hold the low priority packets
for extensive periods of time. The mobility can cause the next
hop of a low priority packet to be gone by the time the packet
is due to be transmitted. A packet held in the buffer for a
longer period of time will be more susceptible to have lost its
next hop. This calls for a mechanism to enable route lookup
and next hop insertion right before transmission, instead of the
regular way of doing this before inserting the packet into the
interface queue. This mechanism is explained below.

B. Ingress queuing

All packets to be transmitted by an ad hoc node have to
be assigned a next hop by the routing protocol. The normal
function is that the routing protocol assigns the packet a next
hop, and then puts it in the interface queue. Here, the packet
may stay for quite some time, before it reaches the head of the
queue. If there is mobility in the network, there is a chance
that the next hop assigned by the routing protocol is no longer

... Pa

Packet n

W Pb Pa ...

Packet n+1

Fig. 4. Preemption with a window to transmit the low priority packets.

reachable. The problem increases with higher mobility and
with more packets in the queue. This forms a vicious circle
where more packets in the queue leads to even more packets
in the queue, only limited by the queue length.

Ingress queuing [5] remedies this problem through queuing
the packets to be forwarded before assigning them a next
hop. The next hop decision is taken as the packet is about
to be transmitted, instead of doing so before the queue
insertion. Thus, the packet is routed using the current topology
information, instead of at the time of queuing.

The ingress queuing mechanism works only on unicast
packets, since multicast and broadcast packets are assigned a
special broadcast next hop. However, indirectly it works to the
advantage for the multicast traffic, since the reduction of the
number of unicast packets suffering retransmissions reduces
the risk of collisions for the multicast traffic.

C. Low priority window

The Low Priority Window (LPW) preemption is the third
proposed mechanism for preempting the background traffic,
enhancing the buffering mechanism above. Considering that
the high priority packets move in waves throughout the net-
work, the interval between any two consecutive high priority
packets could be used to transmit the low priority traffic.

The preemption is initialized in the same way as with
the previous preemption mechanisms. Upon hearing a high
priority packet, the nodes start buffering the low priority
packets. The window for transmitting the low priority traffic is
determined based on the time of the last received high priority
packet. Fig. 4 shows the receival times of the packets n and
n + 1, and the low and high priority time spans surrounding
them. Before the packets is a time span Pb, wherein the high
priority packet is being received by the upstream node. No
low priority traffic should be sent in this period. After the high
priority packet is received by the current node, there is a time
span Pa, wherein the high priority packet is forwarded by the
downstream node(s). Here too, no low priority traffic should
be sent. The Pa and Pb time spans are hereafter referred to as
“guard windows”.

After the guard window Pa is the low priority window
W . During this time span, until the period Pb starts, the low
priority traffic can be transmitted in the network. For each new
received high priority packet, the expected time for the next
high priority packet is estimated, and the low priority window
is set accordingly. This continues until no new high priority
packet has been received for an extended period (one second).

A premise for this solution to work is that the high priority
packets are transmitted at a relatively constant interval, and
that the interval between each high priority packet is so large
that jitter does not cause packets to be received out-of-order

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

G
o

o
d

p
u

t
(%

)

Background traffic (kbps)

Pri Queuing
Discard

Buffer

Buffer w/ingress
LPW w/ingress

Fig. 5. Priority traffic goodput for the improved preemption mechanisms.

at any destination. Packets received out-of-order would mean
that the space between any two packets cannot be depended
on for use by the low priority traffic, as a high priority packet
may be transmitted in the neighborhood at any given time.

The LPW preemption mechanism faces several challenges
in calculating the receival of the next high priority packet, thus
identifying the start of the Pb time span: First and foremost, it
is necessary to know the rate at which the packets are sent from
the source. This can either be calculated from an average of the
incoming packets, or it can be known through a predetermined
codec selection and hard-coded before the network is started
up.

Second, it is necessary to detect lost packets. If all the pack-
ets of the same flow have an incremental sequence number, it
is easy to detect a missing packet. Another way of detecting
lost packets is to compare the time of the incoming packets
with the known interval between the packets, and see if there
is a gap considerably larger than the expected gap between
two consecutive packets.

A third challenge is to cope with the jitter between the
packets. Jitter can be observed in terms of the variation in
delay between any two consecutively received packets. The
determination of when the LPW is in effect is done locally,
based on the time of the received high priority packet. Thus,
the dissemination delay is not a problem, although it leads
to nodes operating with local LPWs different from each
other. Both the delay and the jitter grow larger for each hop
the packet is sent outwards from the sender. Therefore the
mechanism is best suited for networks of limited size.

D. Evaluation of the improved preemption mechanisms

The priority traffic achieves a goodput without any back-
ground traffic at around 80% with the buffer mechanism
(Fig. 5), and manages to maintain this goodput as the back-
ground traffic increases. 80% is the same performance as the
discard mechanism. The difference is that the background
traffic goodput is increased, compared to the discard mech-
anism (Fig. 6). As long as the background load is low,

 0

 20

 40

 60

 80

 100

 100 200 300 400 500

G
o

o
d

p
u

t
(%

)

Background traffic (kbps)

Priority Queuing
Discard

Buffer

Buffer w/ingress
LPW w/ingress

Fig. 6. Background traffic goodput for the improved preemption mechanisms.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 100 200 300 400 500

Q
u

eu
e

ta
il

 d
ro

p
 (

p
ac

k
et

s)

Background traffic (kbps)

Priority Queuing
Discard

Buffer

Buffer w/ingress
LPW w/ingress

Fig. 7. Interface queue loss for the improved preemption mechanisms.

any low priority packets are buffered until the high priority
session is over, and then transmitted. However, for the buffer
mechanism more and more packets are lost due to tail drop as
the background traffic load increases (Fig. 7). Thus, the low
priority goodput is reduced, compared to the priority queuing
results.

The results for the buffer mechanism with the ingress
queuing (Fig. 6) show that using the ingress queuing increases
the background traffic results by some 10%. With the buffer
mechanism and ingress queuing, the number of tail drop losses
(Fig. 7) is reduced compared to without the ingress queuing,
since the packets already in the interface queue are assigned
a more correct next hop.

The LPW preemption mechanism has been simulated with
the ingress queuing enabled, since the ingress queuing clearly
has a positive impact on the background traffic performance.
The Pa and Pb guard windows enclosing the high priority
packet transmission (Fig. 4) have for simplicity been assigned
the same size in the simulations at 10 ms each, leaving
10 ms for the LPW transmissions (30 ms high priority packet
interval). In reality, the Pa window, which protects the medium

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

G
o

o
d

p
u

t
(%

)

Guard window (ms)

High priority Background

Fig. 8. Goodput with an increasing guard window.

after an actually received packet, is less, since the beginning of
the window is determined directly by the receival of the packet.
Thus, jitter can only affect the end of this guard window,
while Pb, ensuring that the upstream high priority sender
and forwarders can use the medium without any interfering
low priority traffic, is more exposed to jitter, and should as
such be larger than Pa. However, the difference is considered
negligible in our study.

The LPW mechanism yields high priority traffic results
(Fig. 5) better than using only the priority queuing, but worse
than using the buffer or discard preemption mechanisms. It is
clearly affected by the increasing background traffic, dropping
around 8% when the background traffic is increased from
zero to 500 kbps. At the same time, the background traffic
goodput is increased compared to both the buffer and discard
mechanisms.

However, it is observed that the jitter for the high priority
traffic is kept very low (0.01 s), compared with using only the
priority queuing (>0.1 s), making the buffer mechanism better
suited to support PTT than by using only the priority queuing.
Thus, the LPW preemption mechanism could be suited for
networks where the PTT traffic can tolerate some loss to
accommodate the lower priority traffic.

To better understand the behavior of the LPW mechanism,
simulations have been run where the guard window on each
side of the packet is increased by one ms at a time with
200 kbps background traffic load. These results (Fig. 8) show
that there is no clear optimum where the guard window is
perfectly matched to achieve the maximum goodput for both
the high priority and the background traffic. The high priority
traffic goodput reaches maximum with a 15 ms guard window.
This is expected, as the two guard windows Pa and Pb at 15 ms
leave no window W where low priority traffic can access the
network (the interval between the high priority packets was
30 ms).

The results show that preemption with buffering and the
ingress queuing can be used to maintain the same performance
for the high priority PTT traffic, but avoid the negative impact

TABLE I
GOODPUT FOR PRIORITY TRAFFIC USING TCP FOR BACKGROUND

TRAFFIC.

Normal Discard Buffer1 LPW1

Goodput (%) 18.3 57.5 53.9 51.9
1 with ingress queuing enabled.

on the background traffic caused by preemption with discard.
If a somewhat lower goodput for the high priority traffic is
accepted, however, LPW with the ingress queuing could be
preferred instead. Then the background traffic will not suffer
the losses that it does with the discard mechanism.

VI. PREEMPTION AND TCP

The previous simulation results are based on UDP as the
transport protocol for the background traffic. However, TCP
is the protocol mostly used for packet transportation in the
Internet. It is preferred due to its rate control, but in ad hoc
networks this feature can be detrimental for the performance
[6].

The difference between TCP and UDP is mainly rate control
and packet acknowledgments. TCP automatically attempts to
take as much as possible of the medium, while not causing
congestion. UDP, on the other hand, has no rate control and
blindly sends what is received from upper layers. With the
setup used in the simulations (i.e. where all nodes send traffic
to half of the other nodes in the network), the one hop
flows (i.e. the flows going directly between two neighbors)
will support the highest throughput. Thus, TCP will end up
transmitting most packets via these flows.

Using the TCP protocol for the background traffic yields
merely 18% goodput without any extra applied mechanisms
(Table I). TCP keeps on pushing packets for the one hop
flows at a high rate, corresponding to a very high constant
bit rate system load, while reducing the load over multi-
hop flows. This limits the propagation of the high priority
packets initiating the preemption, resulting in a lower goodput
for the discard mechanism. The initialization phase of the
preemption is harder to accomplish when TCP is used for
background traffic. It is observed that even as long as one
second after the first high priority packet is propagated in the
network, parts of the network are still transmitting TCP traffic.
Due to a combination of hidden node and TCP’s high rate
transmissions over one hop, nodes that should forward the high
priority traffic experience collisions, either when receiving the
high priority traffic, or when forwarding it. Thus, although
a particular node may have stopped transmitting the lower
priority packets, other nodes in the neighborhood are unaware
of this.

In fact, with TCP, the initialization problem gets worse
when some nodes have received a high priority packet and
subsequently stop transmitting the TCP background traffic.
This event will make more of the medium available to other
TCP flows, and these will quickly increase the load to use
the additional capacity. As the high priority traffic spreads

outwards from the source, the TCP flows that increase in load
act as hidden nodes for the high priority traffic, increasing
the probability of collisions and hence the delay in initializing
preemption. This can be seen as a race condition, where the
high priority traffic, initializing the preemption, competes with
the rate control of TCP.

The even lower goodput for the buffer and LPW preemption
mechanisms, compared to the discard mechanism, is a result
of the always full queues at the start of the high priority
sessions. These packets are to be pushed out, either after the
high priority session is over, or during the low priority window
between the high priority packets.

The results testing the preemption mechanisms with the
background traffic carried by TCP were lower than with
UDP, as the high priority flow at best, using the discard
mechanism, achieved 20% less goodput, going from around
80% to 58% goodput. The two other mechanisms buffer the
background packets, and this makes them more vulnerable to
TCP’s rate control. This was due to the vulnerable preemption
initialization phase. However, this problem is closely related
to the challenge of using TCP in ad hoc networks, and is
not a problem only faced by these preemption mechanisms.
Investigating the preemption mechanisms with the use of TCP,
and TCP modified for ad hoc networks, is an interesting topic
for further work.

VII. RELATED WORK

There is little work to be found on preemption in PTT ad hoc
networks. Most solutions for Quality of Service (QoS) in ad
hoc networks focus on QoS routing [7]. QoS for multicast has
been studied, but here too most of the work has been focused
on routing and the enhancement of multicast distribution [8].

Some QoS solutions implement call admission control, but
only a very few, such as [9] consider preemption. Works on the
preemption of traffic flows primarily focus on the preemption
of the real time flows, such as [10].

In [11], Elmasry et al. propose a model managing QoS for
Secure Tactical Wireless Ad Hoc Networks, directed towards
the future US Army tactical backbone network. It is based
on traffic characteristics measurements, calculating congestion
severity levels and, based on this, generating admission and
preemption policies.

For wireless sensor networks, several works on real-time
scheduling have been published. A more recent is JiTS [12],
a Just-in-Time scheduling protocol which works by delaying
packets so they are received “just in time” at the destination
node. The result is greater resilience against traffic bursts
causing congestion.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have showed how employing priority
mechanisms can improve multicast priority traffic conditions
in ad hoc networks. The individual effects of the mechanisms
were investigated. It was shown that priority queuing can
stop the negative impact of background traffic on the priority
traffic, but only through interface queue tail drops. To be

able to maintain the same goodput as without any background
traffic, it was necessary to use discard or buffering preemption
of the background traffic, thus effectively removing the low
priority traffic from the medium as the high priority traffic
flow was active. The low priority window preemption was a
compromise between the buffer preemption and only priority
queuing, increasing the guard windows to enhance the high
priority traffic performance at the expense of the background
traffic.

The simulations using TCP for the background traffic
showed that although the preemption with discard or buffer-
ing mechanisms were very effective with UDP, TCP poses
different challenges. The analysis on the UDP background
traffic presented in this paper is a good starting point for
continued work on the preemption mechanisms and TCP
background traffic. One solution to mend the initialization
problem could be to transmit special initialization packets at
very short intervals beginning the initialization phase. This
way, the TCP algorithm would not be able to increase the rate
as much as with only ordinary voice traffic with much larger
intervals between the packets.

Initial studies on the QoS support of IEEE 802.11 (802.11e)
MAC protocol [13] were performed. However, these showed
that the performance of the high priority traffic was reduced
compared to not using the QoS mechanism, due to the in-
creased number of collisions stemming from the reduced con-
tention window settings for the high priority traffic. Therefore,
the 802.11e was not investigated further in this paper, but could
be considered as future work.

REFERENCES

[1] “Network simulator 2 - ns2.” [Online]. Available: http://nsnam.isi.edu/
nsnam/index.php/Main Page

[2] “ns-2 code for random trip mobility model.” [Online]. Available:
http://monarch.cs.rice.edu/∼santa/research/mobility/

[3] J. P. Macker, J. Dean, and W. Chao, “Simplified multicast forwarding in
mobile ad hoc networks,” Military Communications Conference, 2004.
MILCOM 2004. IEEE, vol. 2, pp. 744–750 Vol. 2, 2004. [Online].
Available: http://dx.doi.org/10.1109/MILCOM.2004.1494892

[4] A. Hafslund, T. T. Hoang, and O. Kure, “Push-to-talk applications in
mobile ad hoc networks,” Vehicular Technology Conference, 2005. VTC
2005-Spring. 2005 IEEE 61st, vol. 4, pp. 2410–2414 Vol. 4, May-1 June
2005.

[5] L. Landmark, K. Øvsthus, and O. Kure, “Alternative packet forwarding
for otherwise discarded packets,” in Future generation communication
and networking (fgcn 2007), vol. 1, Dec. 2007, pp. 8–15.

[6] S. Xu and T. Saadawi, “Does the ieee 802.11 mac protocol work well in
multihop wireless ad hoc networks?” Communications Magazine, IEEE,
vol. 39, no. 6, pp. 130–137, Jun 2001.

[7] P. Mohapatra, J. Li, and C. Gui, “Qos in mobile a hoc networks,”
Wireless Communications, IEEE, vol. 10, no. 3, pp. 44–52, June 2003.

[8] A.-H. A. Hashim, M. M. Qabajeh, O. Khalifa, and L. Qabajeh, “Re-
view of multicast qos routing protocols for mobile ad hoc networks,”
International Journal of Computer Science and Network Security, vol. 8,
no. 12, pp. 108–117, December 2008.

[9] M. Canales, J. Gallego, A. Hernandez-Solana, and A. Valdovinos,
“Cross-layer routing for qos provision in multiservice mobile ad hoc
networks,” Personal, Indoor and Mobile Radio Communications, 2006
IEEE 17th International Symposium on, pp. 1–5, Sept. 2006.

[10] G.-S. Ahn, A. Campbell, A. Veres, and L.-H. Sun, “Swan: service
differentiation in stateless wireless ad hoc networks,” INFOCOM 2002.
Twenty-First Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, vol. 2, pp. 457–466 vol.2,
2002.

[11] G. Elmasry, C. McCann, and R. Welsh, “Partitioning qos management
for secure tactical wireless ad hoc networks,” Communications Maga-
zine, IEEE, vol. 43, no. 11, pp. 116–123, Nov. 2005.

[12] K. Liu, N. Abu-Ghazaleh, and K.-D. Kang, “Jits: just-in-time scheduling
for real-time sensor data dissemination,” in Pervasive Computing and
Communications, 2006. PerCom 2006. Fourth Annual IEEE Interna-
tional Conference on, March 2006, pp. 41–46.

[13] IEEE, “Wireless LAN medium access control (MAC) and physical layer
(PHY) specification,” IEEE standard 802.11-2007, June 2007.

