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Abstract. In this paper we study some mathematical properties of an
inverse problem arising in connection with electrocardiograms (ECGs).
More specifically, we analyze the possibility for recovering the transmem-
brane potential in the heart from ECG recordings, a challenge currently
investigated by a growing number of groups. Our approach is based on
the bidomain model for the electrical activity in the myocardium, and
leads to a parameter identification problem for elliptic partial differential
equations (PDEs).

It turns out that this challenge can be split into two subproblems:
(1) The task of recovering the potential at the heart surface from body

surface recordings.
(2) The problem of computing the potential inside the heart from the

potential determined at the heart surface.
Problem (1), which can be formulated as the Cauchy problem for an
elliptic PDE, has been extensively studied and is well-known to be se-
verely ill-posed. The main purpose of this paper is to prove that problem
(2) is stable and well-posed if a suitable prior is available. Moreover, our
theoretical findings are illuminated by a series of numerical experiments.
Finally, we discuss some aspects of uniqueness related to the anisotropy
in the heart.

1. Introduction

The sources of the electrical voltages measured at the body surface in ECG
recordings is the electrical pulses generated by the heart. This electrical
activity is very important and closely linked to the blood pumping function
of the myocardium. Many heart diseases lead to changes in the potential
distribution and can therefore be identified by carefully examining ECG
recordings.

The first human ECG was published by Augustus D. Waller in 1887. Since
then it has become one of the most widespread and commonly used medical
monitoring devices. This is probably due to the fact that heart conditions
are among the most common diseases in the world [26] and the relatively
low costs linked to buying and maintaining ECG machines.

In spite of its success, diagnoses based on manual inspection of ECGs
often fail to detect heart diseases and malfunctions [3, 15, 27]. The outcome
of such procedures is, of course, also highly depend upon the expertise and
skills of the involved medical personnel. Thus, there is a need to improve
this technology.

The purpose of this paper is to explore the possibilities for using mathe-
matical models to compute the potential distribution within the heart from
ECGs recorded at the body surface of a patient. If one manages to solve this
problem, it could lead to the construction of new medical imaging devices
providing the physicians with valuable information.

During the last three decades many researchers have analyzed inverse
ECG problems, see e.g. [6, 10, 13, 8, 17, 18, 16, 19, 22, 23, 24, 31, 33, 34,
35, 38, 43, 44, 45, 46, 50]. In particular, the task of recovering the electrical
potential at the heart surface, the so-called epicardial potential distribution,
from body surface measurements has received a lot of attention. We will
refer to this challenge as the classical inverse ECG problem. Note that the
second formulation that could be called classical, namely the reconstruction
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of epicardial activation sequences, is usually formulated into a linear inverse
problem of exactly the same type. The purpose of such studies is to increase
our knowledge about this organ. Furthermore, many diseases are revealed
through changes in the epicardial potential. Nevertheless, mainly due to
severe validation difficulties, it is still unclear when, or if, such techniques will
come into clinical use, see chapters 7 and 8 in [24] and [39] for a discussion.

Mathematically, the classical inverse ECG problem leads to a Cauchy
problem for a second order elliptic PDE. It has thus not only been thoroughly
analyzed in the bioengineering literature, but also in classical mathematical
texts [5, 9, 21] - to mention a few. More precisely, the potential at the
heart surface is, even though it is uniquely identifiable, highly unstable with
respect to uncertainties in the measured potential at the body surface. The
reconstruction is a severely ill-posed problem and often approximately solved
by invoking second order Tikhonov regularization. A simple introduction to
the topic is presented in Chapter 7 in [48].

The aim of the present paper is to investigate whether this inverse solu-
tion process can be taken one step further. Namely, to analyze the task of
computing the transmembrane potential inside the heart from the epicar-
dial potentials generated by solving the classical problem. In fact, we will
prove that this task can be formulated in terms of a stable set of equations,
provided that proper topologies are used. On the other hand, the nullspace
of the involved parameter-to-observation map contains nonzero elements.
Consequently, in its original form, this problem does not have a unique so-
lution. Apriori information about the potential distribution is hence needed
in order to compute meaningful solutions. We analyze this problem both
in terms of the closed range theorem and by considering it in view of the
famous Babuška-Brezzi conditions for saddle point problems.

In [7] an “oblique dipole layer” model of the excitation wavefront inside
the heart is proposed and analyzed. It contains interesting results regarding
the unique identification of the wavefront from ECG data, i.e. information
that might turn out to be important for understanding more about the
nullspace of our parameter-to-observation map. However, please note that
the present text mainly addresses stability issues and does not concern dipole
layer models.

This paper is organized as follows: A brief presentation of the bidomain
model is given in Section 2, sections 3 and 4 contain our stability analysis,
and the numerical experiments are presented in Section 5. The nullspace
associated with the inverse transmembrane potential problem is discussed
in Section 6, and we summarize our findings in Section 7.

2. Bidomain model

The bidomain equations are widely accepted as an accurate model for the
electrical activity in heart. They were developed during the 70s and 80s
[36, 37, 51] and have been thoroughly studied by many scientists, see e.g.
[25, 43, 48].

One may split the heart tissue into two parts; the intracellular and extra-
cellular spaces separated by the cell membrane. In the bidomain modeling
framework, each of these spaces are assigned a potential, i.e. the intracellular
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potential ui and the extracellular potential ue. Furthermore, the myocardial
tissue is regarded as a continuum medium1 such that ui(x, t) and ue(x, t)
are defined at every point x in the heart H and t ∈ [0, t∗]. Here, [0, t∗]
represents the time span of a heart beat.

By defining the transmembrane potential v = ui−ue, the scaled bidomain
model take the form

∂s

∂t
= F (s, v) for x ∈ H, t ∈ [0, t∗],(1)

vt + I(s, v) = ∇ · (Mi∇v) +∇ · (Mi∇ue) for x ∈ H, t ∈ [0, t∗],(2)

∇ · (Mi∇v) +∇ · ((Mi +Me)∇ue) = 0 for x ∈ H, t ∈ [0, t∗],(3)

whereMi andMe are the intracellular and extracellular conductivity tensors,
respectively, and F and I are given functions. The state vector s = s(x, t)
contains one to approximately fifty entries which represent gating variables
and ionic currents. Details about (1)-(3) can be found in, e.g., [43, 48].

Equation (1) defines a system of ordinary differential equations at every
point x in the heart. The form of this system depends on the vector function
F used to incorporate the cell dynamics. Many such models have been pro-
posed throughout the last three decades: Beeler and Reuter [2], DiFrancesco
[11], Luo and Rudy [29, 30] and Winslow et al. [52], etc. The form of the
total ionic current I is also determined by the particular framework used.

Let B denote the domain occupied by the entire body and define T =
B \H, see Figure 1. Outside the heart there are no electrical sources and
the involved tissues are passive conductors. The electrical potential uo in T
is thus governed by an elliptic PDE on the form:

(4) ∇ · (Mo∇uo) = 0 for x ∈ T, t ∈ [0, t∗],

where Mo = Mo(x) is the conductivity in the torso T , cf. [48] for further
details.

n
n

n

n

T

B

H

T

T

H

Figure 1. A schematic illustration of the domains and nor-
mal vectors involved in our study; the heart H, the torso T
and the entire body B = H ∪ T . Note that nT = −nH at
∂H and that ∂T = ∂H ∪ ∂B.

We will assume that the surface ∂B of the body is electrically insulated,
for example surrounded by air. This yields the boundary condition

(5) (Mo∇uo) · nB = 0 on ∂B,

1Considering the intracellular space as a continuous volume is justified by the fact that
cardiac cells are connected via so-called gap junctions. This topic is certainly beyond the
scope of the present text. Further details can be found in [25, 43].
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where nB denotes the normal vector of ∂B of unit length. At the epicardial
surface ∂H, separating the heart H from the torso T , one usually applies
the interface condition

(6) ue = uo on ∂H

for the potential, and

(Me∇ue) · nH = −(Mo∇uo) · nT on ∂H,(7)

(Mi∇v +Mi∇ue) · nH = 0 on ∂H,(8)

for the currents. Here, nH and nT represent the outward normal vectors
of ∂H and ∂T , respectively - see Figure 1. Equations (6) and (7) simply
express that the extracellular potential and current are continuous at the
heart surface. The property (8) is linked to the preservation of the total
current. Further details about this topic can be found in [48]. Note that,
adding (7) to (8) yields the equation

(9) ([Mi +Me]∇ue) · nH + (Mi∇v) · nH = −(Mo∇uo) · nT on ∂H.

Provided that initial conditions for the transmembrane potential v and
the state vector s are given, we can use (1)-(8) to simulate the electrical
changes in the myocardium during one heart beat. This is a challenging
scientific issue in itself, but not the topic of the present paper.

3. Inverse transmembrane potential problem

Let us now turn our attention toward the main purpose of this paper.
That is, toward the task of computing the transmembrane potential inside
the heart H from ECGs recorded at the body surface ∂B. As mentioned
above, we might split this problem into two subtasks:

(1) Use the ECG to determine the potential at the heart surface ∂H.
(2) Use the result generated in (1) to compute v throughout H.

The next two subsections are devoted to each of these problems.

3.1. Estimating the heart surface potential from ECG recordings.

How can we use an ECG e recorded at the body surface ∂B to compute
the epicardial potential? Combining the ECG with (4) and (5) yield (using
standard notation for Sobolev spaces): Compute uo|∂H ∈ H1/2(∂H) from

∇ · (Mo∇uo) = 0 in T,(10)

(Mo∇uo) · nB = 0 on ∂B,(11)

uo = e on ∂B.(12)

This is the classical Cauchy problem for second order elliptic PDEs, which
has been extensively studied by many researchers, see e.g. [5, 9, 21]. Even
though it is severely ill-posed, several regularization techniques have been
constructed that seem to yield reconstructions of suitable quality by incor-
porating prior knowledge, e.g. second order Tikhonov regularization or the
L1-norm of the normal derivative (cf. [14]). Further details about this prob-
lem from an inverse ECG perspective can be found in the references cited
in Section 1. Will not dwell any further upon the Cauchy problem, since it
has already been thoroughly analyzed.
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3.2. Computing the Transmembrane Potential. In the following we
investigate the problem of computing the transmembrane potential from
body surface potential maps. This problem can be decomposed into two
steps, first of all the well-studied case of computing the epicardial potential
from the data on the body surface, and secondly the extension into the heart
to obtain the transmembrane potential. While the first part is known to be
ill-posed with severe instability, we show that the second step is stable in a
reasonable setting. The main issue in computing transmembrane potentials
instead of epicardial potentials is the nullspace of the forward operator,
which needs to be taken care of by prior knowledge - an issue we further
discuss below.

In Section 3.2.1 we study this challenge in terms of the closed range
theorem and in Section 3.2.2 by standard theory for saddle point problems.
The former provides a rather compact analysis, whereas the latter yields a
system of PDEs that can be solved to compute the transmembrane potential
v throughout H.

3.2.1. Analysis in terms of the closed range theorem. In the following we
provide an operator-theoretic analysis for the problem of computing the
transmembrane potential from the epicardial potential. Let us start with
the overall inverse problem of computing the transmembrane potential from
measurements of the body surface, which can be formulated as the operator
equation

(13) Av = e,

where e are the potential recordings and A is the forward operator

(14) A : H1(H) → L2(∂B), v 7→ u0|∂B ,

with u0 connected to v via the forward model (3), (4), (5), (6), and (9)
together with the normalization condition

(15)

∫

∂H
u0 dσ = 0.

Note that some normalization condition for the potential is always needed
for the well-definedness of the forward model. We use (15) for simplicity,
but alternative normalizations can be considered with analogous arguments.

We split the forward operator into

(16) A = A2 ◦ A1,

where A2 is the (standard) forward operator used for reconstructing the
epicardial potential, i.e.

(17) A2 : H
1/2
� (∂H) → L2(∂B), u|∂H 7→ u0|∂B ,

with u0 satisfying (4)-(6), and A1 is the operator

(18) A1 : H
1(H) → H

1/2
� (∂H), v 7→ ue|∂H ,

where u0 and ue satisfy the forward model (3), (4), (5), (6), (9), and (15).

Here H
1/2
� (∂H) is defined via

(19) H
1/2
� (∂H) := {h ∈ H1/2(∂H) |

∫

∂H
h dσ = 0}.
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Our aim is to show that all ill-posedness (in the sense of instability) in the
solution of (13) is included in the inversion of A2, while A1 is an operator
with continuous generalized inverse but a possibly huge nullspace.

Theorem 3.1. Let A1 be defined as above. Then

(20) R(A1) = H
1/2
� (∂H).

Proof. First of all, it is straight-forward to show that there exists a unique
solution of (3), (4), (5), (6), (9), and (15). By the trace theorem it is

clear that R(A1) ⊂ H1/2(∂H) and due to (15) R(A1) is indeed a subset of

H
1/2
� (∂H).

Vice versa, let h ∈ H
1/2
� (∂H) be a function in H1(H) with trace h. Then

there exists a unique solution u0 of (4), (5), and

u0 = h on ∂H.

Then the Neumann trace M0∇u0 ·nT is in H−1/2(∂H) and has zero surface
integral (from the solvability condition of the Neumann problem). Now let
ue ∈ H1(H) be an arbitrary function satisfying ue = h on ∂H. Then there
exists a solution v ∈ H1(H) and u0 ∈ H1(T ) of the Neumann problem (3),
(4), (5), (6), (9), since the solvability condition
∫

∂H
(([Mi +Me]∇ue) · nH + (Mi∇v) · nH) dσ = −

∫

∂H
(Mo∇uo)·nT dσ = 0

holds. Hence, u0, ue, and v satisfy (3) - (6), (9), (15), which implies h =
A1v. �

A particular consequence of the characterization of R(A1) is its closed-

ness, since H
1/2
� (∂H) is a Banach space (a subspace of co-dimension one in

H1/2(∂H)). By the closed range theorem, this implies that the generalized
inverse of A1 is a continuous linear operator.

We can further conclude that the operators A and A2 have related decay
of singular values, more precisely there exist positive constants ĉ1 and ĉ2
such that

ĉ1‖A
∗
2w‖ ≤ ‖A∗w‖ ≤ ĉ2‖A

∗
2w‖.

Indeed, ĉ1 is the square of the smallest nonzero singular value of A1 and ĉ2
is the square of the largest singular value. From this relation it is possible
to transfer stability estimates for the pseudo-inverse of A2, which are well-
known in the literature (cf. [1]), to estimates of the pseudo-inverse of A,
with the same quantitative dependence on data error. This means that the
reconstruction of the transmembrane potential is exactly as unstable as the
reconstruction of the epicardial potential. We hence conclude that it makes
sense to invert for the transmembrane potential if a good prior is available
(needed to eliminate the nullspace).

3.2.2. Analysis in terms of the Babuška-Brezzi conditions. The purpose of
this section is to explain how we may use data available at the heart surface
to compute the transmembrane potential v throughout the entire heart wall.
More specifically, we propose to do this by minimizing the deviation between
v and a suitable prior subject to constraints given by equation (3) and
boundary conditions on the epicardial surface ∂H.
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Let us assume that we have managed to compute d = uo|∂H ∈ H1/2(∂H)
and that we want to use this information to determine the transmembrane
potential v inside the heart H. In principle, one could of course seek to
use the bidomain model (1)-(3) in its full complexity to solve this problem.
However, due to the involved steep gradients, the numerical solution of (1)-
(3) is extremely CPU demanding [12, 42, 49] and consequently not well-
suited for inverse solution procedures so far. Fortunately, as we will see
below, it turns out to be possible to inversely compute v (from heart surface
data) by only using equation (3).

Suppose that we have computed the heart surface potential d = uo|∂H ∈

H1/2(∂H) from an ECG recording e by solving the Cauchy problem (10)-
(12). Our goal is to use d and

g = (Mo∇uo) · nT on ∂H,

to compute v inside H, cf. (9). To this end, assume that some prior vprior
for the transmembrane potential throughout H is available2. In terms of
mathematical symbols, our strategy can now be formulated as follows:

(21) min
v∈H1(H)

1

2
‖v − vprior‖

2
H1(H)

subject to the constraints

∇ · [(Mi +Me)∇u] +∇ · (Mi∇v) = 0 in H,(22)

([Mi +Me]∇u) · nH + (Mi∇v) · nH = −g on ∂H,(23)

Tu = d on ∂H,(24)

where g ∈ H−1/2(∂H), d ∈ H1/2(∂H), and

T : H1(H) → H1/2(∂H)

denotes the trace operator. For the sake of simple notation, we write u
instead of ue.

We will now use the Babuška-Brezzi theory for saddle point problems to
analyze (21)-(24). More specifically, it turns out that this problem satisfies
the inf-sup and coercivity conditions, provided that the conductivities Mi

andMe are well-behaved. This means that (21)-(24) defines a stable problem
that can be solved by considering a system of PDEs. The details are as
follows.

Assumptions. We will throughout this text assume that H is a Lipschitz
domain, Mi and Me are symmetric tensors, and that there exist positive
constants c1 and c2 such that

0 < c1 ≤
aTMi(x)a

aTa
≤ c2 for all x ∈ H and all a ∈ IRn \ {0},(25)

0 < c1 ≤
aTMe(x)a

aTa
≤ c2 for all x ∈ H and all a ∈ IRn \ {0},(26)

where n = 2 or 3 depending on the spatial dimension of the problem under
consideration.

2The availability of such a prior will be discussed below.
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3.2.3. Linear system. The Lagrangian associated with (21)-(24) reads

L(v, u,w, q) =
1

2
‖v − vprior‖

2
H1(H) + (Tu− d, q)H1/2(∂H)

+

∫

H
(Mi +Me)∇u · ∇w dx+

∫

H
Mi∇v · ∇w dx+ 〈g, Tw〉

for (v, u,w, q) ∈ H1(H)×H1(H)×W ×H1/2(∂H), where

W =

{

ψ ∈ H1(H);

∫

H
ψ dx = 0

}

.

In a straightforward manner we find that the directional derivatives of L
are

〈
∂L

∂v
, ψ〉 = (v − vprior, ψ)H1(H) +

∫

H
Mi∇w · ∇ψ dx, ψ ∈ H1(H),

〈
∂L

∂u
, ψ〉 =

∫

H
(Mi +Me)∇w · ∇ψ dx+ (Tψ, q)H1/2(∂H), ψ ∈ H1(H),

〈
∂L

∂w
,ψ〉 =

∫

H
(Mi +Me)∇u · ∇ψ dx+

∫

H
Mi∇v · ∇ψ dx+ 〈g, Tψ〉, ψ ∈W,

〈
∂L

∂q
, ψ〉 = (Tu− d, ψ)H1/2(∂H), ψ ∈ H1/2(∂H),

and the optimality condition

∂L

∂v
= 0,

∂L

∂u
= 0,

∂L

∂w
= 0,

∂L

∂q
= 0

thus gives the following system: Find v, u ∈ H1(H), w ∈ W and q ∈

H1/2(∂H) such that

(27)









G 0 A′
i 0

0 0 A′
i+e K ′

Ai Ai+e 0 0
0 K 0 0

















v
u
w
q









=









Gvprior
0

−T ∗g
Rd









,

where

G : H1(H) → (H1(H))′, v → (v, ·)H1(H),

Ai : H
1(H) → (H1(H))′, v →

∫

H
Mi∇v · ∇ · dx,

Ai+e : H
1(H) → (H1(H))′, u→

∫

H
(Mi +Me)∇u · ∇ · dx,

K : H1(H) → (H1/2(∂H))′, u→ (Tu, ·)H1/2(∂H),

R : H1/2(∂H) → (H1/2(∂H))′, d→ (d, ·)H1/2(∂H).

Note that assumptions (25) and (26) imply that Ai and Ai+e define uni-
formly elliptic operators.

A solution of (21)-(24) is equivalently characterized by (27). We will
therefore proceed by analyzing (27) and prove that this problem is well-
posed.
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Block system. Let us introduce the notation

X = H1(H)×H1(H),

Y =W ×H1/2(∂H),

‖x‖X =
(

‖x1‖
2
H1(H) + ‖x2‖

2
H1(H)

)1/2
for x = (x1, x2) ∈ X,

‖y‖Y =
(

‖y1‖
2
H1(H) + ‖y2‖

2
H1/2(∂H)

)1/2
for y = (y1, y2) ∈ Y.

By defining

A : X → X ′, A =

[

G 0
0 0

]

,(28)

B : X → Y ′, B =

[

Ai Ai+e

0 K

]

,(29)

x = (v, u)T ,

y = (w, q)T ,

we may write (27) on the standard form: Find x ∈ X and y ∈ Y such that

(30)
Ax+B′y = [Gvprior 0]

T

Bx = [−T ∗g Rd]T .

Please note that

〈Ax, y〉 = (x1, y1)H1(H)

and

〈Bx, y〉 =

∫

H
Mi∇x1 · ∇y1 dx

+

∫

H
(Mi +Me)∇x2 · ∇y1 dx

+(Tx2, y2)H1/2(∂H).

Coercivity. We will now prove that the operator A is coercive on the kernel

(31) Z = {z ∈ X; 〈Bz, y〉 = 0 for all y ∈ Y }

of B.

Lemma 3.1. There exists a positive constant c3 such that the operator A,
defined in (28), satisfies

〈Az, z〉 ≥ c3‖z‖
2
X for all z ∈ Z,

where Z ⊂ X is the space defined in (31).

Proof. Let z = (z1, z2) ∈ Z be arbitrary. Then z ∈ Z implies that
∫

H
Mi∇z1 · ∇ψ dx+

∫

H
(Mi +Me)∇z2 · ∇ψ dx+ (Tz2, φ)H1/2(∂H) = 0

for all ψ ∈ W and φ ∈ H1/2(∂H), and by choosing ψ = z2 −
∫

H z2 dx ∈

W, φ = Tz2 ∈ H1/2(∂H) we find that

(32)

∫

H
(Mi+Me)∇z2 ·∇z2 dx+(Tz2, T z2)H1/2(∂H) = −

∫

H
Mi∇z1 ·∇z2 dx.
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From (25) and the Cauchy-Schwarz inequality we conclude that
∫

H
(Mi +Me)∇z2 · ∇z2 dx+ (Tz2, T z2)H1/2(∂H) ≤ c2‖z1‖H1(H)‖z2‖H1(H),

and (25)-(26) and Friedrich’s inequality, see e.g. [32], imply that there exists
a constant c5 > 0 such that

c5‖z2‖
2
H1(H) ≤ c2‖z1‖H1(H)‖z2‖H1(H).

Consequently,

(33) ‖z2‖H1(H) ≤ c6‖z1‖H1(H) for all z = (z1, z2) ∈ Z,

where c6 = c2/c5.
The coercivity of A on the nullspace Z of B follows easily from (33).

More precisely, for any z = (z1, z2) ∈ Z:

〈Az, z〉 = ‖z1‖
2
H1(H)

≥
1

2
‖z1‖

2
H1(H) +

1

2c26
‖z2‖

2
H1(H)

= c7(‖z1‖
2
H1(H) + ‖z2‖

2
H1(H))

= c7‖z‖
2
X .(34)

�

Inf-sup. Let us now show that the famous inf-sup condition holds.

Lemma 3.2. There exists a positive constant c4 such that the operator B,
defined in (29), satisfies

inf
y∈Y

sup
x∈X

〈Bx, y〉

‖x‖X‖y‖Y
≥ c4.

Proof. Let y = (y1, y2) ∈ Y be arbitrary. Consider the harmonic extension

x2 ∈ H
1(H) of y2 ∈ H

1/2(∂H) to H, i.e x2 satisfies

∆x2 = 0 in H,(35)

Tx2 = y2 on ∂H,(36)

in the weak sense. Then there exists a constant c8, only depending on the
domain H, such that

(37) ‖x2‖H1(H) ≤ c8‖y2‖H1/2(∂H),

see e.g. [20]. Furthermore, let x1 ∈ H1(H) denote the unique function
satisfying3

∫

H
Mi∇x1 · ∇ψ dx = −

∫

H
(Mi +Me)∇x2 · ∇ψ dx(38)

+(y1, ψ)H1(H) ∀ψ ∈ H1(H),
∫

H
x1 dx = 0.(39)

3(Note that by choosing ψ = 1 in (38) it follows that
∫
H
y1 dx = 0, i.e. y1 must belong

to W ).
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By choosing ψ = x1 in (38) and applying assumptions (25)-(26), the Cauchy-
Schwarz and Poincaré’s inequalities we conclude that

‖x1‖H1(H) ≤ c9
(

‖x2‖H1(H) + ‖y1‖H1(H)

)

≤ c10

(

‖y2‖H1/2(∂H) + ‖y1‖H1(H)

)

,(40)

where the last inequality follows from (37).
Define x̂ = (x1, x2) where x2 and x1 denote the solutions of (35)-(36)

and (38)-(39), respectively. By choosing ψ = y1 in (38), and recalling that
Tx2 = y2 along ∂H, it follows that

〈Bx̂, y〉 = (y1, y1)H1(H) + (y2, y2)H1/2(∂H = ‖y‖2Y .

Moreover, (40) and (37) imply that

‖x̂‖2X ≤ c210

(

‖y2‖H1/2(∂H) + ‖y1‖H1(H)

)2

+c28‖y2‖
2
H1/2(∂H)

≤ c211

(

‖y2‖
2
H1/2(∂H)

+ ‖y1‖
2
H1(H)

)

= c211‖y‖
2
Y ,

and consequently

sup
x∈X

〈Bx, y〉

‖x‖X‖y‖Y
≥

〈Bx̂, y〉

‖x̂‖X‖y‖Y
=

‖y‖2Y
‖x̂‖X‖y‖Y

≥
‖y‖2Y

c11‖y‖Y ‖y‖Y
=

1

c11
,

Finally, since y was arbitrary, we conclude that

inf
y∈Y

sup
x∈X

〈Bx, y〉

‖x‖X‖y‖Y
≥

1

c11
.

�

By applying straightforward techniques, one can show that A;X → X ′

and B : X → Y ′ are continuous. Consequently, standard theory for saddle
point problems imply that (see e.g. [4]):

Theorem 3.2. The operator

A : X × Y → X ′ × Y ′, A =

[

A B′

B 0

]

is continuously invertible. Here, A and B are the mappings defined in (28)
and (29), respectively.

By combining Theorem 3.2 with the analysis presented above we conclude
that; for every vprior ∈ H1(H), the problem (21)-(24) has a unique solution

v ∈ H1(H) which depends continuously on the data (d, g) ∈ (H1/2(∂H,H−1/2(∂H)).
That is, (21)-(24) is well-posed, and the solution of this problem can be com-
puted by solving the system (27).
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4. Heart models with cavities

So far we have ignored the cavities in the heart. We will now briefly discuss
this issue by reconsidering the coercivity and inf-sup conditions presented
in lemmas 3.1 and 3.2.

Let C = CL ∪ CR, where CL and CR are the domains occupied by the
left and right heart cavities, see Figure 2. Note that the transmembrane
potential v only is defined in the heart wall H, whereas the state equation
is defined in both H and C. The model (21)-(24) must thus be changed
accordingly:

(41) min
v∈H1(H)

1

2
‖v − vprior‖

2
H1(H)

subject to

∇ · (M∇u) =

{

−∇ · (Mi∇v) in H,
0 in C,

(42)

([Mi +Me]∇u) · nH + (Mi∇v) · nH = −g on ∂H,(43)

Tu = d on ∂H,(44)

ue = uC on ∂C(45)

(Me∇ue) · nH = −(MC∇uC) · nC on ∂C,(46)

(Mi∇v +Mi∇ue) · nH = 0 on ∂C,(47)

where ue = u|H , uC = u|C and nC is the outward directed normal vector of
unit length of ∂C. Note that the interface conditions (45)-(47) on ∂C are
similar to those valid at the epicardial surface, cf. (6)-(8). Since the cavities
are filled with blood, the function M takes the form

(48) M(x) =

{

Mi(x) +Me(x) for x ∈ H,
MC for x ∈ C.

where MC is the conductivity of blood. Recall that g ∈ H−1/2(∂H) and

d ∈ H1/2(∂H) are given data.
The solution u of the state equation (42) is harmonic in C. This fact plays

an important role in our analysis, and we therefore introduce the Hilbert
space

(49) Q =

{

ψ ∈ H1(H ∪ C)|

∫

C
∇ψ · ∇φdx = 0 for all φ ∈ H1

0 (C)

}

.

For the present model, the corresponding Lagrangian, cf. sections 3.2.2 and
3.2.3, thus reads

L(v, u,w, q) =
1

2
‖v − vprior‖

2
H1(H)

+

∫

H∪C
(M∇u) · ∇w dx+

∫

H
Mi∇v · ∇w dx+ 〈g, Tw〉

+(Tu− d, q)H1/2(∂H)

for (v, u,w, q) ∈ H1(H)×Q×W ×H1/2(∂H), where

W =

{

ψ ∈ Q|

∫

H
ψ dx = 0

}

.
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With cavities the Hilbert spaces associated with the saddle point problem
are

X = H1(H)×Q,

Y =W ×H1/2(∂H).

Figure 2. Torso T , heart wall H, and cavities CL and CR.
In this text we employ the notation C = CL∪CR and ∂C =
∂CL ∪ ∂CR. Note that ∂H denotes the epicardium, not
including the endocardial surfaces ∂CL and ∂CR.

The proof of Lemma 3.1 (coercivity) is based on proving inequality (33).
For the present model, this is achieved as follows. Analogous to (32), we
find that

(50)

∫

H∪C
(M∇z2) · ∇z2 dx+ (Tz2, T z2)H1/2(∂H) = −

∫

H
Mi∇z1 · ∇z2 dx,

and the Cauchy-Schwarz inequality implies that
∫

H∪C
(M∇z2) · ∇z2 dx+ (Tz2, T z2)H1/2(∂H) ≤ c12‖z1‖H1(H)‖z2‖H1(H).

Since the epicardial surface ∂H constitutes the boundary of H ∪C, we may
employ Friedrich’s inequality to conclude that there exists a constant c13 > 0
such that

c13‖z2‖
2
H1(H∪C) ≤ c12‖z1‖H1(H)‖z2‖H1(H) ≤ c12‖z1‖H1(H)‖z2‖H1(H∪C).

Consequently,

(51) ‖z2‖H1(H∪C) ≤ c14‖z1‖H1(H),

where c14 = c12/c13. The coercivity on the kernel of the state equation is
now a simple consequence of (51), cf. (34).

Next, we consider the inf-sup condition. Let ψ ∈ Q be arbitrary, where
Q is defined in (49). Since ψ is harmonic in the cavities C, it follows from
standard stability results for elliptic PDEs that there exists a constant c15,
independent of ψ, such that

‖ψ‖H1(C) ≤ c15‖ψ‖H1/2(∂C) ≤ c15(‖ψ‖H1/2(∂C) + ‖ψ‖H1/2(∂H)).
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From the trace theorem we thus conclude that

(52) ‖ψ‖H1(C) ≤ c16‖ψ‖H1(H) for all ψ ∈ Q.

We can employ (52) to generalize the argument for the inf-sup condition,
presented in the proof of Lemma 3.2, to the present situation. The details
are as follows.

For arbitrary y = (y1, y2) ∈ Y , let x2 ∈ H
1(H) be the unique solution of

∆x2 = 0 in H ∪ C,(53)

Tx2 = y2 on ∂H.(54)

Classical stability estimates imply that there exists a constant c17 such that

(55) ‖x2‖H1(H∪C) ≤ c17‖y2‖H1/2(∂H).

Clearly, C ⊂ H ∪ C and therefore x2 ∈ Q.
Next, consider the bilinear form

a(ψ, φ) =

∫

H
Mi∇φ · ∇ψ dx for φ,ψ ∈W.

From Poincaré’s inequality we find that

a(φ, φ) ≥ c18‖φ‖
2
H1(H) for all φ ∈W,

and since W ⊂ Q inequality (52) implies that

a(φ, φ) ≥ c19‖φ‖
2
H1(H∪C) for all φ ∈W.

We conclude that a(·, ·) is coercive on W ×W . The continuity of a(·, ·) is
verified by employing straightforward techniques.

The linear functional

l(ψ) = −

∫

H∪C
M∇x2 · ∇ψ dx+ (y1, ψ)H1(H∪C) for ψ ∈W

is bounded. From Riesz Representation Theorem we thus conclude that
there exists a unique element r ∈W satisfying

a(r, ψ) = l(ψ) for all ψ ∈W.

If we choose x1 to be the restriction of r to H, then x1 ∈ H1(H) and by
invoking standard estimates for elliptic PDEs one finds that

‖x1‖H1(H) ≤ ‖r‖H1(H∪C)

≤ c20
(

‖x2‖H1(H∪C) + ‖y1‖H1(H∪C)

)

≤ c21

(

‖y2‖H1/2(∂H) + ‖y1‖H1(H∪C)

)

,

where the last inequality follows from (55). The remaining part of the proof
of the inf-sup condition for heart models with cavities is analogous to the
argument presented in connection with Lemma 3.2.
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5. Numerical experiments

We now turn our attention toward an experimental study of the theo-
retical findings presented above. The tests will be performed on 2D heart
models with cavities, see Figure 2, and only address the problem of comput-
ing the transmembrane potential from heart surface potentials. The task of
determining the voltages at the heart surface from body surface data can, as
briefly discussed above, be handled by solving a standard Cauchy problem
for an elliptic PDE.

5.1. Software issues. In order to ease the implementation of software for
solving (41)-(47) we remove the inhomogeneous Dirichlet condition (44) by
using a harmonic extension d̄ of d ∈ H1/2(∂H) to H1(H ∪C). More specif-
ically, d̄ ∈ H1(H ∪ C) is the unique solution of

∆d̄ = 0 in H ∪ C,(56)

T d̄ = d on ∂H,(57)

and we define

ū = u− d̄.

In addition, a simple penalty method, parameterized by 0 < ε � 1 is invoked
such that the transmembrane potential v can be extended to be defined in
both the heart wall H and in the cavities C. We thus suggest the following
penalized approximation of (41)-(47):

(58) min
v∈H1(H)

{

1

2
‖v − vprior‖

2
H1(H) + ε

1

2
‖v − vprior‖

2
H1(C)

}

subject to the constraints

∇ · [M∇ū] =

{

−∇ · (Mi∇v)−∇ ·
[

M∇d̄
]

in H,
−ε∇ · (Mi∇v)−∇ ·

[

M∇d̄
]

in C,
(59)

(M∇ū) · nH + (Mi∇v) · nH = −(M∇d̄) · nH − g on ∂H,(60)

T ū = 0 on ∂H,(61)

where we, for the sake of convenience, have omitted to repeat the interface
conditions on the boundary ∂C of the heart cavities, cf. (45)-(47). Further-
more, the intracellular conductivity Mi is extrapolated to also be defined in
C, and M is defined in (48).

Our procedure for computing the transmembrane potential v from the
heart surface data d and g, cf. the third paragraph of Section 3.2.2, hence
consists of two steps:

• Determine the harmonic extension d̄ of d by solving (56)-(57).
• Solve the optimality system associated with (58)-(61) with the fi-
nite element method. (For further details about how to derive such
optimality systems, please see Section 3.2.3).

Concerning the size of the penalty parameter ε, we used ε = 10−4 in all the
examples presented below. Simulations with smaller values for ε produced
virtually the same results.
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5.2. Prior. If the heart surface quantities g and d are available, one can in
principle compute the transmembrane potential v at any time during a heart
beat by solving (58)-(61). However, a suitable prior is needed in order to
obtain meaningful results. This is a delicate issue and, as far as the authors
know, reasonable priors are not available at arbitrary time instances. In the
numerical experiments we will therefore focus on the resting phase of the
heart cycle and ischemic heart disease.

Ischemia is a reversible precursor of heart infarction caused by partial
occlusion of one or more of the arteries/vessels supplying blood to the heart.
Consequently, there might be subregions, referred to as ischemic regions, in
the organ not receiving sufficient blood. If the condition persists, this may
eventually lead to an infarction.

According to reported lab measurements [28], the transmembrane poten-
tial v has a particularly simple structure during the resting phase. More
specifically, v is constant in both the healthy tissue and in the ischemic
region(s) with a transition zone in-between. Figure 3 shows the resting
transmembrane potential computed by solving the bidomain model (1)-(3)
with altered cell dynamics in the ischemic zone, see e.g. [47] for further
details. Motivated by this information, we considered the reconstruction of
v during rest, employed the prior vprior = −96mV , and checked whether the
ischemic location could be identified.

8 9 10 11 12 13 14 15 16
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−74

Figure 3. The resting transmembrane potential v generated
by solving the bidomain model with modified cell properties
in the ischemic region.

5.3. Examples. We considered five different test cases. In each case we
added uniformly distributed noise N to the true heart surface potential d
and two measures for the noise level were used:

• Mean amplitude:

(62)
1
n

∑n
i=1 |N(i)|

max d−min d
,

where n denotes the number of mesh points at the heart surface.
• Relative L2:

(63)

√

∫

∂Ω |N |2ds
∫

∂Ω |d− dmean|2ds
,

where dmean is the mean value of d.
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Notice that the mean value of N was zero in all the experiments. We use
both measures, since in the mathematical literature it is more common to
define the noise level in the relative L2 sense, whereas in the biomedical
literature one refers to amplitudes when defining the amount of noise in
ECG signals.

Please note that no regularization was used in the reconstructions pre-
sented below.

5.3.1. Test 1: Transmural posterior ischemia. Figure 4 shows the results
obtained for a transmural posterior ischemia. The ischemic region can easily
be identified with 53 % noise, measured in the relative L2 sense, in the data.
However, the size of the ischemic zone is underestimated and the method
fails to identify the transmural property of the true lesion. In view of our
theoretical findings, we find it reasonable to suspect that these shortcomings
are caused by our choice of prior.

5.3.2. Test 2: Transmural anterior ischemia. The results shown in Figure
5 for a transmural anterior ischemia are similar to those observed in Test
1. This indicates that anterior and posterior transmural lesions are approx-
imately equally difficult to identify - at least if heart surface data is used in
the reconstruction process.

5.3.3. Test 3: Subendocardial anterior ischemia. We also explored whether
subendocardial lesions could be recovered. Results concerning such a case
are shown in Figure 6. Even though the reconstructions are of lower quality
than those obtained for the transmural cases in Test 1 and Test 2, it is still
possible to roughly identify the position of the ischemic region with 49 %
noise (relative L2) in the heart surface potential d.

5.3.4. Test 4: Ischemia in the septum. The identification of ischemia in the
region between the cavities is more challenging than the examples explored
in tests 1-3, see Figure 7. Nevertheless, please note that the largest values
of the reconstructed transmembrane potentials occur in the septum, not far
away from the true ischemic region. Moreover, the reconstruction obtained
with 40 % noise (relative L2) is almost as good as the one computed with
no noise.

5.3.5. Test 5: A healthy heart. Noisy data didn’t introduce any false is-
chemic regions in the tests with a healthy heart shown in Figure 8. In
this case the noise free heart surface potential d was constant, consequently
max d − min d = 0, and the noise measures defined in (62)-(63) couldn’t
be used. We have therefore instead included the range of the uniformly
distributed noise N in Figure 8.

6. Nullspace and Specific Priors

Since we have shown above that the computation of the transmembrane
potential given the epicardial potential is a stable problem, we now discuss
the remaining issue, namely the nullspace in the map between the trans-
membrane and epicardial potential.
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6.1. Monodomain Case. We start with the simple case of proportional
anisotropies, i.e.

(64) Me(x) = λMi(x) x ∈ H

for some positive constant λ, where the bidomain model actually reduces to
the monodomain case. Under this condition it is well-known that ue can be
explicitly computed from (3)

∇ · (Mi∇((1 + λ)ue + v)) = 0

as

(65) ue(x) = −
1

1 + λ
v(x)

If the support of v is a compact subset of H all (Neumann and Dirichlet)
boundary values of ue on ∂H vanish. In particular ischemic regions cannot
be seen at all from electrical measurements.

A similar reasoning holds for almost proportional conductivities, which
we model by an expansion of the form

(66) Me(x) = λMi(x) + εM̃e x ∈ H

with ε small. Then we look for ue in an expansion of the form

(67) ue(x) = u0e(x) + εu1e(x) +O(ε2).

It is straight-forward to see that the correct asymptotic yields again

u0e(x) = −
1

1 + λ
v(x),

hence u0e does not contribute to the boundary data if v has compact support.
The next order is determined from the elliptic equation

∇ · ((1 + λ)Mi∇u
1
e −

1

1 + λ
M̃e∇v)) = 0,

which yields a solution u1e not proportional to v if M̃e is not proportional
to Mi, and hence potentially nonzero contribution to the boundary data.
Even if the contribution is nonzero, we observe that ue is at most of order
ε at the boundary, and hence also u0 will be of order ε at the boundary
of ∂B. For small values of ε this nonzero part will definitely be dominated
by measurement noise and it again becomes impossible to reconstruct a
transmembrane potential under practical conditions.

6.2. Piecewise Constant Shapes. A particularly interesting prior knowl-
edge is an approximately piecewise constant shape of the transmembrane po-
tential, e.g. during the resting phase of the heart, where the transmembrane
potential is known to approximately have two specific values in healthy re-
spectively ischemic tissue. In the following we will hence further study the
potential identifiability or non-identifiability of piecewise constant trans-
membrane potentials with only two pre-determined values. For the simplic-
ity of notation we assume that the scaling of the potential is such that

(68) v(x) = χΩ(x) =

{

1 x ∈ Ω
0 x ∈ H \ Ω,
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where Ω is the ischemic subregion of the heart. This means that the ECG
is scaled such that the healthy heart yields potential recordings zero. We
shall assume that Ω is a disjoint union of a finite number of domains with
C1-boundaries, whose closure lies entirely in H. Moreover we assume that
H \ Ω is simply connected.

As we shall see below the identifiability depends heavily on the anisotropies
in Mi and Me and their directions relative to the orientation ∂Ω. In the
oversimplified case of isotropic conductivities the ischemic regions remain
completely invisible to electrical data.

Due to the low regularity of v in a piecewise constant model, we need
to resort to very weak formulations of (3). If u, v satisfy (3), then for all
functions ϕ ∈ C∞

0 (H), the equality
(69)
∫

H
∇ · ((Mi +Me)∇ϕ)u dx = −

∫

H
∇ · (Mi∇ϕ)v dx = −

∫

Ω
∇ · (Mi∇ϕ) dx.

Applying Gauss’ Theorem we have
∫

H
∇ · ((Mi +Me)∇ϕ)u dx = −

∫

∂Ω
(Mi∇ϕ) · n dσ.

By choosing test functions ϕ supported in the interior of Ω or H \ Ω
respectively, it is straight-forward to see that u solves

(70) ∇ · ((Mi +Me)∇u) = 0 in H \ ∂Ω,

since ∇v ≡ 0 in H \ ∂Ω. It hence remains to derive appropriate interface
conditions on ∂Ω. For this sake we split (69) into integrals on H \ Ω and
Ω and integrate by parts. Denoting by n the exterior normal vector and by
[ψ] the jump of a quantity ψ across ∂Ω (limit from H \Ω minus limit from
Ω)

∫

H
∇ · ((Mi +Me)∇ϕ)u dx = −

∫

H\∂Ω
((Mi +Me)∇ϕ) · ∇u dx

−

∫

∂Ω
[(Mi +Me)∇ϕ)u] · σ

=

∫

H\∂Ω
∇ · ((Mi +Me)∇u)ϕ dx

−

∫

∂Ω
[(Mi +Me)∇ϕ)u] · n dσ

+

∫

∂Ω
[(Mi +Me)∇u)ϕ] · n dσ.

Due to (70) the first term vanishes and noticing that with the assumed
smoothness of test functions ϕ and ∇ϕ are continuous across ∂Ω, we con-
clude from (69)
(71)
∫

∂Ω
(((Mi +Me)[∇u]) · nϕ− ((Mi +Me)∇ϕ) · n[u] + (Mi∇ϕ) · n) dσ = 0

We finally mention that due to the density of C∞ in C1, (71) actually
holds for all test functions ϕ ∈ C1(U), where U is an open set such that
∂Ω ⊂ U and U ⊂ Ω.
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6.3. Non-Proportional Anisotropies. In the following we further exam-
ine the case of non-proportional anisotropies, for simplicity restricting our-
self to spatial dimension two with spatially constant tensors Mi and Me. In
principle a similar treatment seems possible in spatial dimension three, but
then the differential geometry of the surfaces becomes more involved, which
shadows the main arguments.

We shall assume that Mi and Me are both positive definite, but not
proportional by a scalar factor. It is easy to check that this condition can
be written equivalently as

(72)
λ1(Mi +Me)

λ2(Mi +Me)
>
λ1(Mi)

λ2(Mi)
,

where λ1(M) denotes the largest and λ2 the smallest eigenvalue of M .
The general intuition, confirmed by numerical results in [40, 41], is that

ischemic regions can be well detected from body surface potential measure-
ments for realistic anisotropies. In particular such regions should lead to
boundary measurements different from the healthy heart. Such a general
statement is difficult to prove, but here we provide at least a partial re-
sult for a class of subregions, showing that indeed there is a significant set
of ischemic regions that result into nonzero body surface potential maps,
and hence the situation completely differs from the one with proportional
anisotropies.

Proposition 6.1. Let ∂Ω be of class C2 and include a straight part (curva-
ture zero) with positive one-dimensional Hausdorff measure. Then for each
Γ ⊂ ∂B with positive measure we have u0|Γ 6= 0.

Proof. Assume u0 ≡ 0 on Γ ⊂ ∂B with Γ having nonzero boundary measure.
By the uniqueness of the Cauchy problem for elliptic equations we conclude
u0 ≡ 0 in B \ H. As a consequence u0 ≡ 0 and ∇u0 ≡ 0 on ∂H. The
interface conditions on ∂H further imply u ≡ 0 and ∇u ≡ 0 on ∂H. Using
(70) we can again conclude u ≡ 0 in H \Ω by the uniqueness of the Cauchy
problem. Hence, all jump terms in (71) are just the one-sided limits from
inside Ω, i.e. we have
∫

∂Ω
((−(Mi +Me)∇u) · nϕ+ ((Mi +Me)∇ϕ) · nu+ (Mi∇ϕ) · n) dσ = 0.

In the following let

a := ((Mi+Me)n)·n, b := ((Mi+Me)n)·t c := (Min)·n, d := (Min)·t,

where t is the tangent vector on ∂Ω. Then the interface condition can be
rewritten as

∫

∂Ω

(

−a
∂u

∂n
ϕ− b

∂u

∂σ
ϕ+ a

∂ϕ

∂n
u+ b

∂ϕ

∂σ
u+ c

∂ϕ

∂n
+ d

∂ϕ

∂σ

)

dσ = 0.

Now let ϕ be a test function such that φ ≡ 0 on ∂Ω, then also ∂ϕ
∂σ ≡ 0 and

hence,
∫

∂Ω

(

a
∂ϕ

∂n
u+ c

∂ϕ

∂n

)

dσ = 0.
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Since ∂ϕ
∂n can still be chosen arbitrarily, we conclude

u = −
c

a
on ∂Ω.

Taking a test function with vanishing normal derivative, but arbitrary on
∂Ω we have after integration by parts with respect to σ we conclude

∫

∂Ω

(

a
∂u

∂n
ϕ+ b

∂u

∂σ
ϕ+ ϕ

∂(bu)

∂σ
+ ϕ

∂d

∂σ

)

dσ = 0.

From the arbitrary choice of ϕ we conclude

a
∂u

∂n
= −b

∂u

∂σ
−
∂(bu)

∂σ
−
∂d

∂σ
.

Now assume there exists a straight subset Σ of ∂Ω with positive measure.
Since n and t are constant on Σ, we conclude that a, b, c, and d are constant
on Σ. Hence, ∂u

∂n = 0 and u = − c
a is constant. By the uniqueness of the

Cauchy problem for (70) we conclude that u is constant in the connected
component Ω0 of Ω to whose boundary Γ belongs. This implies that ∂u

∂n = 0
on ∂Ω0, i.e. from the above formula for the normal derivative

b
∂u

∂σ
+
∂(bu)

∂σ
+
∂d

∂σ
= 0.

Inserting u = − c
a we further conclude

0 = −2
b

a

∂c

∂σ
+ 2

bc

a2
∂a

∂σ
−
c

a

∂b

∂σ
−
∂d

∂σ

From the Frenet formulas in the plane we conclude

∂a

∂σ
= −2bκ,

∂c

∂σ
= −2dκ

and
∂b

∂σ
= (a− t · ((Mi +Me)t))κ,

∂d

∂σ
= (c− t · (Mit))κ.

Hence, in each part of ∂Ω0 with nonzero curvature we conclude

4
bd

a
− 4

b2c

a
+
c

a
t · ((Mi +Me)t))− t · (Mit) = 0.

Since ∂Ω0 is a closed curve there exists a point x0 ∈ ∂Ω0 such that t is an
eigenvector of (Mi+Me) corresponding to the larger eigenvalue λ1(Mi+Me),
and consequently also n is the eigenvector of the second eigenvalue. Then

b(x0) = ((Mi +Me)n) · t = λn · t = 0.

Now we can choose such an x0 with the further property that there exists
xδ0 ∈ ∂Ω0 in a ball of radius δ around x0 such that the curvature at xδ0 is
nonzero. In particular the remainder terms

r = 4
bd

a
− 4

b2c

a

satisfy r(xδ0) → 0 as δ → 0, since a(xδ0) is uniformly positive and b(x0) = 0.
Hence, the equality

r(xδ0) +
c(xδ0)

a(xδ0)
t(xδ0) · ((Mi +Me)t(x

δ
0))− t(xδ0) · (Mit(x

δ
0)) = 0
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implies in the limit δ → 0

c(x0)

a(x0)
t(x0) · ((Mi +Me)t(x0))− t(x0) · (Mit(x0))

respectively after inserting c and a

λ1(Mi +Me)

λ2(Mi +Me)
=

t · ((Mi +Me)t)

n · ((Mi +Me)n)
=

t · (Mit)

n · (Min)
≤
λ1(Mi)

λ2(Mi)
,

which contradicts our original assumption. �

Note that the assumption of the ischemic region having a straight part is
mainly a technical one. The first part of the proof is a general derivation
and it would remain to discuss the compatibility condition for an elliptic
Cauchy problem with boundary data

u = −
c

a
on ∂Ω

and

a
∂u

∂n
= −b

∂u

∂σ
−
∂(bu)

∂σ
−
∂d

∂σ
on ∂Ω.

This is of course easier in the case with straight part, where u is constant
and ∂u

∂n vanishes.
Our preliminary result might be just the starting point of a more detailed

study of the dependence of the inversion on the anisotropic structure of the
heart. A particularly important question in this respect is to characterize
ischemia that can or cannot be uniquely reconstructed from body surface
potential measurements. As mentioned in the Introduction, the results pre-
sented in [7] might turn out to be important for achieving this goal. We
hope to be able to stimulate future research on this topic.

7. Summary and conclusions

Most research addressing inverse problems arising in connection with ECG
data focus on the computation of epicardial voltage distributions or activa-
tion sequences. We have investigated whether such inverse solutions can be
taken one step further. More precisely, we have analyzed the task of comput-
ing the transmembrane potential inside the heart from heart surface data.
In our main result we showed that this problem can be formulated in terms
of a stable set of partial differential equations, provided that proper topolo-
gies are employed. Unfortunately, the solution of the problem is not unique,
and consequently, the reconstruction of transmembrane voltages inside the
myocardium must be guided by additional medical information.

During the resting phase of the heart cycle the transmembrane potential
is known to be approximately constant in a healthy heart. This information
can be used to define a suitable prior for identifying voltage changes due to
ischemic heart disease. In a number of test cases this approach was used to
explore our theoretical findings by performing numerical experiments with
synthetic data. As predicted by our mathematical analysis, these compu-
tations turned out to be robust with respect to noise in the input data -
no regularization was needed. On the other hand, these tests also revealed
the importance of having a good prior, which turned out to be particularly
important for identifying ischemia in the region between the left and right
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(a) True solution (b) No noise

(c) 28% relative L2 noise, 5% mean ampli-
tude noise

(d) 53% relative L2 noise, 10% mean am-
plitude noise

(e) 140% relative L2 noise, 26% mean am-
plitude noise

(f) 211% relative L2 noise, 40% mean am-
plitude noise

Figure 4. The first case concerns a transmural posterior
ischemia. The true solution is shown in the uppermost left
panel. The uppermost panel to the right shows the result
obtained with noise free data. The remaining figures were
computed with varying degree of noise.

ventricles. Further apriori knowledge should therefore be invoked and tests
with clinical data must be undertaken.
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[13] O. Dössel. Inverse problem of electro- and magnetocardiography: Review and recent
progress. International Journal of Bioelectromagnetism, 2(2), 2000.

[14] S. Ghosh and Y. Rudy. Application of L1-norm regularization to epicardial potential
solution of the inverse electrocardiography problem. Annals of Biomedical Engineer-

ing, 37:902–912, 2009.
[15] P.H. Ginn, B. Jamieson, and M.D. Mendoza. Clinical inquiries. How accurate is the

use of ECGs in the diagnosis of myocardial infarct? The Journal of Family Practice,
55:539–40, 2006.

[16] F. Greensite. Second-order approximation of the pseudoinverse for operator deconvo-
lutions and families of ill-posed problems. SIAM J. Appl. Math., 59(1):1–16, 1998.

[17] F. Greensite. Myocardial activation imaging. In P. Johnston, editor, Computational

inverse problems in electrocardiography, pages 143–190. WIT Press, 2001.
[18] F. Greensite and G. Huiskamp. An improved method for estimating epicardial poten-

tials from the body surface. IEEE Transactions on Biomedical Engineering, 45(1):98–
104, January 1998.

[19] R. M. Gulrajani. Forward and inverse problems of electrocardiography. IEEE Engi-

neering in Medicine and Biology, 17(5):84–101, September 1998.
[20] W. Hackbusch. Elliptic Differential Equations. Theory and Numerical Treatment.

Springer-Verlag, 1992.
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