
A SysML-Based Approach to Traceability Management
and Design Slicing in Support of Safety Certification:

Framework, Tool Support, and Case Studies

Shiva Nejati1 Mehrdad Sabetzadeh1 Davide Falessi1 Lionel Briand1 Thierry Coq2

1Simula Research Laboratory, Norway 2Det Norske Veritas, France
{shiva,mehrdad,falessi,briand}@simula.no thierry.coq@dnv.com

Abstract

Context: Traceability is one of the basic tenets of all safety standards and a key
prerequisite for software safety certification. In the current state of practice, there
is often a significant traceability gap between safety requirements and software
design. Poor traceability, in addition to being a non-compliance issue on its own,
makes it difficult to determine whether the design fulfills the safety requirements,
mainly because the design aspects related to safety cannot be clearly identified.
Objective: The goal of this article is to develop a framework for specifying and
automatically extracting design aspects relevant to safety requirements. This goal
is realized through the combination of two components: (1) A methodology for
establishing traceability between safety requirements and design, and (2) an al-
gorithm that can extract for any given safety requirement a minimized fragment
(slice) of the design that is sound, and yet easy to understand and inspect.
Method: We ground our framework on System Modeling Language (SysML).
The framework includes a traceability information model, a methodology to es-
tablish traceability, and mechanisms for model slicing based on the recorded trace-
ability information. The framework is implemented in a tool, named SafeSlice.
Results: We prove that our slicing algorithm is sound for temporal safety proper-
ties, and argue about the completeness of slices based on our practical experience.
We report on the lessons learned from applying our approach to two case studies,
one benchmark and one industrial case. Both studies indicate that our approach
substantially reduces the amount of information that needs to be inspected for
ensuring that a given (behavioral) safety requirement is met by the design.

Keywords: Safety Certification, SysML, Traceability, Model Slicing

Preprint submitted to Information and Software Technology January 13, 2012

1. Introduction

Safety-critical software is typically subject to a strict safety certification pro-
cess. The goal of the process is for a licensing or regulatory body to review the
safety evidence and arguments provided by the supplier and ensure that the de-
velopment and usage of the software are in compliance with the applicable safety
standards, e.g., IEC 61508 [1] (and its sector-specific specializations) for vari-
ous kinds of programmable devices, DO-178B [2] for airborne systems, and the
upcoming ISO 26262 [3] for the automotive industry.

Traceability is one of the core principles mandated by all these safety stan-
dards, with an overarching effect on all aspects of development. Typically, the
development of a safety-critical system begins with hazard and risk analysis. The
results of this analysis are used to define the overall (system-level) safety require-
ments. The safety requirements for the “software” elements of the system are de-
rived from the overall safety requirements and realized within the software design
and implementation. In such a development context, it is essential to preserve
traceability from hazards and risks to the overall safety requirements on to the
software safety requirements on to the software design on to the software imple-
mentation. Further, the development artifacts built throughout the process must be
traceable to the various verification and validation activities (e.g., static analysis,
testing, formal proofs) that they have been subject to. This web of traceability
information is not only crucial for the maintenance and evolution tasks to be per-
formed by the supplier, but is also a key prerequisite for any systematic inspection
of software safety by the certifiers.

This present article was prompted by the difficulties in the software safety
certification process that arise from poor traceability. These difficulties were ob-
served during an investigation of the software safety certification inspections in
the maritime and energy industry, but the problems should also be representative
of those faced in other software-intensive safety-critical domains, such as the au-
tomotive industry, where software safety certification is an emerging topic.

An important source of traceability problems in software safety certification is
the chain from the overall safety requirements to software safety requirements to
software design. In the current state of practice, this chain often lacks sufficient
detail to support the inspections that certifiers conduct to ensure that the (software-
related) safety objectives of a system are properly addressed by the software de-
sign. Poor traceability, in addition to being a non-compliance issue on its own,
makes it hard to check whether the design satisfies the safety requirements. This
is largely due to the safety-related design aspects not being clearly identifiable.

2

1.1. Contributions
Broadly, this article is concerned with the problem of traceability from require-

ments to design. This problem is driven by three main considerations: (1) the way
the requirements are expressed, (2) the way the design is expressed, and (3) the
goal to achieve from traceability. In our work, the requirements are expressed as
(unrestricted) natural language statements; the design is expressed using the Sys-
tems Modeling Language (SysML) [4]; and the goal is to facilitate design safety
inspections by enabling engineers to focus on the aspects of the design that are
relevant to safety. This goal is achieved by automatically extracting, for each
safety requirement, a minimized fragment (slice) of the design that is sound, and
yet easy to understand and inspect. The combination of natural language require-
ments, SysML, and slicing is novel and useful in practice, noting that SysML is an
INCOSE [5] standard and represents a significant and increasing segment of the
safety-critical software industry. Our work in this article concentrates specifically
on behavioral safety requirements, i.e., safety requirements that constrain some
system behavior. We do not consider here other categories of requirements, such
as performance, availability, and security, which can have safety implications.
Specifically, we make the following contributions in this article:

• We characterize, based on our observation of actual certification meetings,
consultation with certification experts, and reviewing major safety standards
(most notably IEC 61508 [1]), the traceability information that is necessary
for arguing that the (behavioral) safety requirements are accounted for in
the software design. This is achieved by developing an information model
for traceability.
• We develop a SysML-based methodology to guide designers in establishing

the traceability links prescribed by our information model.
• We devise an algorithm that, using the established traceability links, auto-

matically extracts slices relevant to a (behavioral) safety requirement, thus
reducing the amount of information to be inspected.
• We develop a tool to support our methodology and slicing algorithm. The

tool, named SafeSlice (http://modelme.simula.no/pub/pub.html#ToolSlice) [6],
helps designers follow the methodology, automatically checks the consis-
tency of the established traceability links, and automatically generates SysML
design slices based on the links. Additionally, the tool provides facilities for
model navigation, project status monitoring, and report generation.

3

• We provide both formal and empirical validation of our work. In particu-
lar, we provide a formal proof that our slicing algorithm is sound for be-
havioral safety properties, and argue about the completeness of the gener-
ated slices based on our experience. We report on the lessons learned from
applying our approach to two case studies, one a benchmark case study
and the other an industrial case study concerning a safety Input/Output (IO)
software module used on ships and offshore facilities [7]. Both case stud-
ies indicate that our approach offers benefits by substantially reducing the
amount of information that needs to be inspected in order to ensure that a
given safety requirement is met by the design.

1.2. Structure
The remainder of the article is structured as follows: In Section 2, we pro-

vide a short overview of SysML. We describe our SysML-based methodology in
Section 3. The information model upon which the traceability links in the method-
ology are based is given in Section 4. In Section 5, we discuss how the traceability
links can be utilized for automation, specifically, for automatic extraction of the
design information relevant to a particular safety requirement. Section 6 presents
tool support. Section 7 provides an evaluation of our approach. Section 8 reviews
the related work. Finally, Section 9 summarizes the article and outlines directions
for future work.

2. Background on SysML

In this section, we provide a brief introduction to SysML and highlight its
main advantages. The appeal of SysML in our work comes from the fact that
safety-critical software is typically embedded into some greater technical system
(e.g., one with electronic and mechanical parts). Hence, it is crucial to consider the
interactions of software with the non-software elements as well. Since SysML is
rapidly becoming a de-facto standard for systems engineering [8], it was a natural
choice to base our work on.

SysML extensively reuses UML 2, while also providing certain extensions to
it. There are two types of SysML diagrams that do not exist in UML 2. These are
(1) the Requirement Diagram, where we can capture/develop the requirements
and relate them to other requirements or model elements, and (2) the Paramet-
ric Diagram, where we can capture continuous constraints for property values of
hardware components. Activity Diagrams, Internal Block Diagrams, and Block

4

Definition Diagrams are modifications of existing Activity Diagrams, Collabora-
tion Diagrams, and Class Diagrams in UML 2, respectively. Sequence Diagrams,
State Machine Diagrams, Use Case Diagrams, and Package Diagrams in SysML
are identical to their UML 2 counterparts.

Compared to UML, SysML offers the following advantages for specifying
control systems [9]:

• SysML expresses systems engineering semantics (interpretations of model-
ing constructs) better than UML, thus reducing the bias UML has towards
software. In particular, UML classes are replaced with a concept called
block in SysML. Block is a modular unit of system description. Blocks are
used to describe structural concepts in a system and its environment.

• SysML has built-in cross-cutting links for interrelating requirement and de-
sign elements. This allows engineers to relate requirements and design ele-
ments/models described at different levels of abstraction.

Our methodology in Section 3 utilizes all SysML diagrams. For a complete
specification of SysML, see [10].

3. Design Methodology

SysML is only a modeling notation and does not provide any specific modeling
methodology. To use SysML effectively, one needs a methodology tailored to the
problem domain and the objectives to be achieved from modeling. In this section,
we describe a SysML-based methodology for modeling safety-critical control sys-
tems. Our methodology adapts the best practices in the existing model-based sys-
tems engineering methods [11] to the needs of software safety certification. The
main objective pursued here is providing precise and unambiguous specifications
of the system requirements and design, and establishing traceability between the
two. The traceability provides the basis for clearly identifying the design aspects
that are related to the safety requirements. This in turn allows safety engineers
to more effectively check whether the safety requirements are addressed by the
design.

We use a small fragment of a Production Cell System (PCS) [12] as a work-
ing example. Briefly, the aim of PCS is the transformation of metal blanks into
forged plates (by means of a press) and their transportation from a feed belt into a
container. We focus on interactions between two devices of the cell: the feed belt
and the (rotary) table. The cell operator puts the blanks one by one on the feed

5

A Case Study for Testing Object-Oriented Software: A Production Cell 23 December 1998 17:41 3

 • Robot

The rotary robot (see figure 5) consists of two orthogonal
extendable arms equipped with an electromagnet. The
robot is powered by three bidirectional electric motors
which allow the rotation of the robot and the horizontal
translation of the arms (extension or retraction). The
motors can be started and stopped by the control pro-
gram. The angle of rotation of the robot and the value of
extension of each arm is given by potentiometers. In
order to meet various safety requirements, each arm has
to be retracted while the robot rotates and while the other
arm performs loading or unloading a blank.

travelling

deposit belt (belt 2)

robot

elevating

press

crane

rotary table

lower
arm

upper arm (arm 1)

feed belt (belt 1)
up / down

electromagnets

Fig. 2. Top view of the production cell

 (arm 2)
container

electric
motor

electromagnet

electric
motor

Fig. 5. Robot (side view)

Potentiometer

Potentiometer

 (0..1)

 (-100..70)

A Case Study for Testing Object-Oriented Software: A Production Cell 23 December 1998 17:41 3

 • Robot

The rotary robot (see figure 5) consists of two orthogonal
extendable arms equipped with an electromagnet. The
robot is powered by three bidirectional electric motors
which allow the rotation of the robot and the horizontal
translation of the arms (extension or retraction). The
motors can be started and stopped by the control pro-
gram. The angle of rotation of the robot and the value of
extension of each arm is given by potentiometers. In
order to meet various safety requirements, each arm has
to be retracted while the robot rotates and while the other
arm performs loading or unloading a blank.

travelling

deposit belt (belt 2)

robot

elevating

press

crane

rotary table

lower
arm

upper arm (arm 1)

feed belt (belt 1)
up / down

electromagnets

Fig. 2. Top view of the production cell

 (arm 2)
container

electric
motor

electromagnet

electric
motor

Fig. 5. Robot (side view)

Potentiometer

Potentiometer

 (0..1)

 (-100..70)

A Case Study for Testing Object-Oriented Software: A Production Cell 23 December 1998 17:41 3

 • Robot

The rotary robot (see figure 5) consists of two orthogonal
extendable arms equipped with an electromagnet. The
robot is powered by three bidirectional electric motors
which allow the rotation of the robot and the horizontal
translation of the arms (extension or retraction). The
motors can be started and stopped by the control pro-
gram. The angle of rotation of the robot and the value of
extension of each arm is given by potentiometers. In
order to meet various safety requirements, each arm has
to be retracted while the robot rotates and while the other
arm performs loading or unloading a blank.

travelling

deposit belt (belt 2)

robot

elevating

press

crane

rotary table

lower
arm

upper arm (arm 1)

feed belt (belt 1)
up / down

electromagnets

Fig. 2. Top view of the production cell

 (arm 2)
container

electric
motor

electromagnet

electric
motor

Fig. 5. Robot (side view)

Potentiometer

Potentiometer

 (0..1)

 (-100..70)

Figure 1: A fragment of the Production Cell System (PCS) [12]

belt and the belt conveys them to the table. The table then rotates and lifts to put
the blanks in the position where a robot arm can take them. A picture of the feed
belt, table, and the robot arms is shown in Figure 1. Several safety requirements
are stated in the specification of PCS to ensure its safe operation including the one
below:
Avoidance of falling metal blanks: The metal blanks must not be dropped outside
safe areas of PCS. The safe areas include the surface of PCS devices and places
that are reachable by the robot arms.

Figure 2 shows an overview of our proposed methodology. The methodol-
ogy includes one or more iterations of the following two main phases: In the first
phase, the system requirements are identified. The second phase is composed of
three parallel but inter-related tasks: Describe the system structure and Describe the
system behavior that are concerned with the construction of structural and behav-
ioral design models respectively, and Establish Traceability which is concerned with
the creation of traceability links between the requirements and design.

The input to our methodology is (1) a set of standards for the domain of the
system under analysis, (2) stakeholders’ requirements, and (3) a model capturing
domain concepts and their relationships. In Figure 2, the steps within each phase
are depicted as being conducted sequentially. However, in reality, the discoveries
made at later stages of the development may affect the decisions made in earlier
stages. Thus, the diagrams developed in the process will co-evolve and none will
be considered final until the design is complete.

Our methodology borrows and adapts from other Model Driven Engineering
(MDE)-based methodologies in particular, from [13] and [14], and from the MDE

6

Standards
Stakeholders'
Requirements

Domain
Model

(1) System
Context
Diagram

(2) System-Level
Requirements

(3) Top-Level
Use Cases

(I) Requirement Specification

Step

External
Input

(4) System
Decomposition

Structural Models Behavioural Models

(II) System Design

Establish Traceability

(5)
Communication

Interfaces
(7) Inter-Block

Communication

(6) Intra-Block
Communication

(8) Decompose
System-Level
Requirements

(9) Re-express
Requirements in
terms of Block
Operations and

States

Figure 2: Methodology for model-driven development of control systems.

methodologies for systems engineering described in [11, 10]. The two main char-
acteristics that distinguish our methodology from the previous work are:

1. The decomposition of system-level requirements is interleaved with the de-
sign steps rather than preceding them. The reason is that requirements de-
composition implicitly contains a decomposition of the system into its sub-
systems and components. Hence, unless some thought is given to the system
design first, decomposing the requirements may cause a premature commit-
ment to decisions about the system structure. To avoid this problem, we
suggest that an initial decomposition of the system precedes the derivation
of the lower-level requirements.

2. The guidelines for capturing requirement and design details and creating
traceability links from requirements to design are specific for safety certifi-
cation inspections.

Below, we briefly describe the steps comprising our methodology, emphasizing
the guidelines related to safety certification inspections. A complete description
of our methodology is available in [15, 16].

Phase I - Requirements Specification. As shown in Figure 2, this phase has

7

1
1

1

*

1 1

1

1

*1 1
forges

feeds blanks to

contains
uses

«block»
Container

Blank
«block»

ProductionCell_System

«block»
Operator

«block»
ProductionCell_Domain

«block, system of interest»

PCS Controller
«block»

PCS Devices
«block»
1

1

Figure 3: Context diagram for PCS.

three steps:

Step 1: System context diagram. The purpose of the system context diagram
is to specify the boundary between the system and its context. The system context
typically includes users, and hardware/software sub-systems that directly interact
with the system [13]. We use SysML blocks to represent the context. As an
example, the system context diagram for PCS is shown in Figure 3.
Guidelines for constructing a system context diagram: Create a Block Definition
Diagram (BDD) as follows:

• Define a top-level block indicating the domain.

• Decompose the domain block into a block, denoting the system of interest,
and the blocks that directly interact with the system of interest, e.g., users
and hardware/software subsystems. In our methodology, we use the sys-
tem of interest stereotype for the block representing the system that we are
studying.

• Describe the relationships between the system of interest block and the other
blocks.

• Decompose the system of interest block into a software controller block and
a block denoting hardware/mechanical devices.

Many safety requirements arise from assumptions about the system context,
also known as environmental assumptions. Incorrect environmental assumptions
and incorrect transition from these assumptions to system requirements may cause
catastrophic system failures [17]. Therefore, it is important to specify these as-
sumptions explicitly and in an analyzable form. We describe the environmental

8

ProductionCell_Domain

height width

blank_widthblank_height

widthlength

value

is_acceptable

blank: Blank pcsDevices: PCS Devices

pcsDevices_length pcsDevices_width

constraint : Dimensions Constraints

value = (blank_height < 1/4 * pcsDevices_length) AND (blank_width < 3/4 * pcsDevices_width)

Figure 4: A SysML parametric diagram expressing an assumption.

assumptions using SysML parametric diagrams for continuous (numeric) proper-
ties of a hardware entity, and OCL constraints for discrete (logical) properties of
a software entity. In addition, we create traceability links from assumptions to
system-level requirements.

In Figure 4, we have shown an example parametric diagram. The diagram
describes a domain assumption about the physical dimensions of the blanks that
are fed to PCS. The assumption states that the height of a blank is no larger than
1/4 of the length of the PCS devices, and that the width of a blank is not larger
than 3/4 of the width of the PCS devices. These constraints ensure that the blanks
can be carried and transferred safely by the PCS devices from the feed belt to the
press and from there to the container.
Guidelines for describing environmental assumptions (Parametric Diagrams):

• Describe a constraint relating the physical properties of the hardware-related
blocks in the context diagram.

• Specify the input and output variables of the constraint. Map the input vari-
ables of the constraint to the variables of the blocks in the context diagram,
and specify the output variables as the output of the parametric diagram.

Guidelines for describing OCL constraints are available in [14].

Step 2: System-level requirement diagram. System-level requirements ad-
dress the entire system, and can relate to both hardware and software. These re-
quirements typically describe the needs of the users that interact with the system
and are defined at the level of the blocks in the system context diagram. System-
level requirements may come from a variety of sources including, standards, cus-

9

tomers, domain experts, environmental assumptions. Our focus here is to capture
(1) safety requirements, i.e., quality requirements ruling out software effects that
might result in accidents, degradations, or losses in the environment [18] (e.g.,
the PCS requirement described earlier in this section), and (2) safety-relevant re-
quirements, the requirements that in some way contribute to the satisfaction of the
system safety requirements. Examples of system-level (safety) requirements from
the PCS include:

Restrict machine mobility. Each PCS device should be stopped before the end
of its possible movement, otherwise it would destroy itself.

Avoid machine collisions. There should not be any collision between PCS de-
vices.

Avoid falling metal blanks. The blanks must not fall on the ground.

Avoid piling or overlapping blanks. Blanks should not be piled on each other,
overlapping, or placed too close for being distinguished by PCS photoelec-
tric cells.

Step 3: Use case diagram capturing system’s top-level functions. Use cases
represent the functionality of the software part of a system from an external point
of view. In our methodology, like many existing model-based methodologies [14,
10], use case diagrams are used to represent an overview of the system functions
that are later refined into detailed design views. They can be directly traced to the
system-level requirements that they are expected to address. In our work, use case
diagrams can be created following the guidelines presented in [14, 10]. The use
case diagram for PCS is shown in Figure 5.

Phase II - System Design. Software design involves the creation of two main
complementary views: structural and behavioral. Structural views describe orga-
nization of a system in terms of its constituent blocks and their interaction points,
and behavioral views describe how the blocks work together and communicate
with one another to deliver functionality. Below, we first briefly describe the dia-
grams capturing these two views, and then discuss the Establish Traceability task.

Steps 4,5: Structural Diagrams. We describe the structure of a system using
SysML Block Definition Diagrams (BDDs) and Internal Block Diagrams (IBDs).
The BDDs are used to represent the system hierarchical decomposition (Step 4
in Figure 2), and the IBDs are used to represent the communication interfaces

10

ProductionCell_System
PCS Controller

Operator

turnOn

turnOff

produce
Forged
Plates

stop

<extends>

PCS
 Devices

«block» Blank
«block»

«block»
Container

Figure 5: Use case diagram for PCS.

between system blocks (Step 5 in Figure 2) [10]. Note that we also used BDDs
for the purpose of creating system context diagrams in Step 1.

System Decomposition BDDs are used for decomposing a system into its con-
stituent blocks and specifying conceptual relations between these blocks. We use
association relations to represent communication between software and hardware
blocks, and association, dependency and generalization relations to model con-
ceptual relations between software components. Figure 6(a) shows a fragment
of the BDD for the PCS controller introduced at the beginning of this section.
This diagram shows the decomposition of the PCS controller into software blocks
related to the feed belt and table devices.
Guidelines for creating system decomposition diagrams (BDD):

• Define a BDD that initially includes, from the system context diagram de-
veloped in Step 1, the system of interest block and its constituent blocks:
the controller block, and the hardware devices block.

• Decompose the controller block (resp. the hardware devices block) into
specific software (resp. hardware) blocks. The decomposition stops when
all the blocks required for establishing traceability links in Steps 8 and 9 are
generated.

• Specify interactions between software and hardware blocks using associa-
tion relations, and specify interactions among software blocks using associ-
ation, generalization and dependency relations.

• Add the necessary multiplicity constraints to the relations.

11

feedbelt:FeedBelt

initialize

add_blank

feed_table

table:Table

initialize

go_unload_
position

go_load_
position

(a)

(b)

-turnOn()
-turnOff()
-add_blank()
-stop()

PCS Controller

-initialize()
-add_blank()
-feed_table()

-running:boolean
-blankAtEnd:boolean

FeedBelt

-initialize()
-go_load_position()
-go_unload_position()

-pos:Table_Position
-loaded:boolean

Table

feedbelt table1 1

11

interact

Pick_From_Table

FeedTable

Go_Unload_Position

turnON

Go_Load_Position

Go_UnLoad_Position

turnON

AddBlank

FeedTable

Signal

Sending a signal

Signal

Receiving a signal

Act

Action/Activity

a:A

Activity Partition

Merge Node

Entry point

Figure 6: A fragment of design diagrams for PCS: (a) Block Definition Diagram, and (b) An
activity diagram consisting of two activity partitions where each corresponds to a block in (a).

Communication Interfaces IBDs are used for specifying communication be-
tween the blocks identified in BDDs. More specifically, we refine the conceptual
relationships that we defined between the software/hardware blocks in a BDD
into a set of architectural connectors with specific communication interfaces and
ports. Making the interfaces between different system blocks explicit is a ma-

12

blt:FeedBelt table:Table
1 1

11

Table_FeedBelt_IF

FeedBelt_Table_IF

Figure 7: An fragment of the internal block diagram for PCS representing interaction points be-
tween software blocks and their interfaces.

jor concern in safety-critical systems to ensure that components can be integrated
properly. We capture two kinds of communications using IBDs: (1) Commu-
nications between the hardware and software blocks, and (2) Communications
between software blocks (Figure 7 represents an example of the latter kind of
communications).
Guidelines for capturing communications between hardware and software blocks
(IBD):

• Create an IBD by including the software and hardware parts from BDD that
directly communicate with one another.

• Refine the association relations between software and hardware blocks in
the BDD into information flows in the IBD. For each flow, specify the com-
munication ports on both ends. Define the multiplicity for each port.

Guidelines for capturing communications between software blocks (IBD):

• Create an IBD by including the software parts from BDD that participate in
a use case (Step 3).

• Refine the relations between software blocks in the BDD using interaction
points specified through standard ports. At each interaction point, a part
either provides or requires an interface. Define the multiplicity for each
port.

Steps 6,7: Behavioral Diagrams. Like many existing model-based
approaches, we use sequence/activity diagrams to represent inter-block scenar-
ios, and state machine diagrams to represent intra-block state-based specifica-
tions [19]. For each software block with control behavior, we create one state
machine diagram. Each such block can be further related to a timeline or a parti-
tion in some sequence or activity diagram, respectively. We make these relations
explicit by creating SysML allocation links from each block to its related state
machine, and to its related sequence diagram timelines and activity partitions. In

13

the rest of the article, we focus on activity diagrams for representing block behav-
iors. Guidelines for creating sequence diagrams and state machine diagrams, and
examples for these diagrams are available at [15, 16].

Figure 6(b) includes a small legend summarizing the notational elements used
in our activity diagrams. As shown in the figure, an activity diagram consists of
several activity partitions that capture the parallel behaviors of their corresponding
blocks. Each activity partition contains a sequence of nodes for actions/activities,
and nodes to represent sending and receiving of signals. In our methodology,
we represent the communication between different activity partitions via message
passing where messages capture signals. This mode of communication is common
in embedded software systems. Note that our treatment for activity diagrams can
be easily generalized to other behavioral diagrams (see [15]).

Using behavioral diagrams, we can infer temporal dependencies between sys-
tem operations, i.e., we can identify the relative ordering of the occurrence of
system operations. Specifically, from activity diagrams, we can infer the fol-
lowing dependencies: (1) Triggering of an activity/action by a signal. For ex-
ample, the FeedTable signal triggers the feed table activity in Figure 6(b).
(2) Sending of a signal upon completion of an activity/action. For example, the
go load position activity triggers sending of the FeedTable signal. (3) Com-
munication of a signal from one activity partition to another activity partition. For
example, the FeedTable signal sent from the activity partition related to Table is
received by the activity partition related to FeedBelt.

Note that call relations between block operations can be reflected to relations
between activities/actions related to those block operations. For example from
the activity diagram in Figure 6(b), we can infer that the go load position()
operation of Table triggers the feed table() operation of FeedBelt because in
their related activity partitions, upon completion of the go load position activ-
ity, Table sends the FeedTable signal to FeedBelt which, in turn, triggers the
feed table activity.
Guidelines for creating behavioral diagrams (Activity Diagrams):

• Identify from the IBD diagram, that captures the communications between
software blocks (Step 5), the blocks that interact with one another. Create
activity partitions for each of these blocks.

• Identify the sequence of actions that each block performs and complete ac-
tivity partitions for each block.

14

• Specify the communications between blocks by signals that are sent and
received across activity partitions.

Consistency: To keep the activity diagram consistent with the structural diagrams,
the following rules must hold:

• Each block with control behaivour must be related to an activity partition.

• The actions in each activity partition must appear as operations in the block
that the partition represents.

• The received (resp. sent) events in each activity partition should be part
of the provided (resp. required) interface of the block represented by the
partition.

For example, Figure 6(b) shows the activity partitions related to FeedBelt

and Table blocks in Figure 6(a). The actions initialize, add blank, and
feed table in the activity partition related to FeedBelt appear as FeedBelt op-
erations. Similarly, the actions initialize, go load position, and
go unload position in the activity partition of Table appear as Table oper-
ations in Figure 6(a). A complete set of consistency rules between behavioral and
structural diagrams used in our methodology is available at [15, 16].

Steps 8,9: Establish traceability. Through the activities under this task, we
establish traceability links from the system-level requirements down to the de-
sign diagrams adapting and using the SysML traceability links. The traceability
links specify which parts of the design contribute to the satisfaction of each re-
quirement. This part of the methodology is the main extension compared to the
existing methodologies [13, 14, 11, 10]. We expect the engineers to undertake
the activities under this task only for selected safety and safety-relevant require-
ments that are subject to stringent inspections during certification. Our approach
to establishing traceability links has the following two steps:

From system-level requirements to block-level requirements. In this step,
we decompose system-level requirements into lower-level requirements that can
be traced to a single or a small set of blocks contributing to the satisfaction of that
requirement. Decomposition of system-level requirements structurally mimics the
decomposition of the system into its constituent blocks discussed in Step 4.

We create explicit links between system-level and block-level requirements
using SysML decompose links, and between block-level requirements and their
related blocks using SysML trace links. For example, Figure 8 shows how a

15

“feed belt conveys a blank” ↔
feedbelt.feed table()

-initialize()
-add_blank()
-feed_table()

-running:boolean
-blankAtEnd:boolean

FeedBelt

-initialize()
-go_load_position()
-go_unload_position()

-pos:Table_Position
-loaded:boolean

Table

feedbelt table

1 1interact

Avoidance of falling metal blanks

The feed belt conveys a blank to table if the table is in load position

decompose

tracetrace “table is in load position” ←
post(table.go load position())

p1 p2

“table is in load position” ←
post(table.initilize())

Figure 8: Traceability from a system-level requirement to a block-level requirement and from the
block-level requirement to the relevant blocks.

system-level requirement of the PCS example is decomposed into a block-level
requirement which is traced to FeedBelt and Table blocks from Figure 6(a).

One way to assist engineers in decomposing system-level requirements is to
first trace down the requirement to use cases, and then further down to sequence
diagrams related to those use cases. Some of these blocks whose instances appear
in the sequence diagrams are responsible for fulfilling system-level requirements.
The next step is then to derive block-level requirements for these blocks by care-
fully analyzing scenarios, their messages, and triggered operations.

Re-express requirements in terms of block operations and states. The
trace links specified in Step 8 are rather too coarse-grained because requirements
often do not concern entire blocks. Rather, they refer to particular operations
or states of the blocks. We make the traceability links to blocks more specific by
augmenting them with mappings from the requirement phrases to block operations
or to block states. Syntactically, the mappings are generated by the following
simple grammar:

mapping ::= phrase from requirements rel block op |
phrase from requirements rel block st

rel ::= ↔ | → | ←

where, mapping and rel are non-terminals, and the rest, which are terminals,
are explained below. We use the requirements and blocks in Figure 8 for exempli-
fication.

• phrase from requirements is a requirement phrase, describing one of
the following situations:

16

1. an action being performed by a system block, e.g., “feedBelt conveys
a blank”; or

2. a state or period during which a block is stable, i.e., block attributes
do not change their values, e.g., “table is in load position”.

• block op denotes a block operation and is formalized as
block.blockop(), e.g., feedbelt.feed table().
• block st denotes a boolean expression describing a block state and can be

formalized in the following ways:

1. as a state invariant of a block: (block.attr1 = v1∧. . . ∧ block.attrn = vn)

e.g., table.pos = loadposition; or
2. as a pre condition of a block operation: pre(block.op()),

e.g., pre(feedbelt.feed table()); or
3. as a post condition of a block operation: post(block.op()), e.g.,

post(feedbelt.feed table()).

Note that pre(feedbelt.feed table()) and post(feedbelt.feed table()) de-
scribe the state of the FeedBelt block before and after execution of
feed table(), respectively.
• ↔, →, ← are implication relations describing how a
phrase from requirements is related to a block operation or a block
state. Specifically, we use ↔ when the situation described by
phrase from requirements is fully captured by block op or
block st on the right-hand side, and →, ← when
phrase from requirements respectively describes a less general or more
general situation than the right-hand side.

The guidelines for creating the above mappings are as follows: (1) Decom-
pose the requirement into phrases referring to actions or states of a system. (2)
Determine block operations and block states related to the phrases. (3) Use logical
implication relations introduced above to relate each phrase to a block operation
or a block state.

Suppose we want to augment the trace links in Figure 8 with mappings. The
requirement in Figure 8 has two phrases: p1 = “feedBelt conveys a blank” refer-
ring to a block action, and p2 =“table is in load position” referring to a block state.
The phrase p1 matches the feed table() operation of FeedBelt, as this operation
is responsible for passing the blank to the table, and the phrase p2 refers to a state

17

where the Table block is in loadposition. This state can be formalized in sev-
eral ways: (1) via the state invariant table.pos = loadposition, (2) via the post
condition post(table.go load position()) as the operation go load position()
causes the table to move to its load position, (3) via the pre condition
pre(table.go unload position()) as the operation go unload position() assumes
that the table is already in its load position, and (4) via the post condition
post(table.initialize()) as the operation initialize() causes the table to
move to its initialized position which is the load position. We then use logical im-
plication relations to establish the mappings between p1, p2 and block operations
and states:

(1) p1 ↔ feedbelt.feed table()
(2) p2 ↔ table.pos = loadposition

(3) p2 ← post(table.go load position())
(4) p2 ← pre(table.go unload position())
(5) p2 ← post(table.initialize())

In (1) and (2), the phrases are equivalent to the left-hand side expressions,
but not in (3), (4), and (5). Informally, (3), (4), and (5) hold because table being
in load position is one of the conjuncts in post(table.go load position()),
pre(table.go unload position()), and post(table.initialize()), respec-
tively.

In Figure 8, we use mappings (1), (3), and (5) to augment the links from the re-
quirement to FeedBelt and Table, respectively. We could further add mappings
(2) and (4) to our example. The exact choice of the mappings to use depends on
the logical argument that the designer wants to provide to demonstrate the satis-
faction of the requirement in question. Here, mappings (1), (3), and (5) already
provide enough information for a complete argument that the table is in load po-
sition prior to the operation that causes the blanks to move from feed belt to table.
Hence, we did not include mappings (2) and (4).

Finally, we note that in our methodology, we assume that safety requirements
are already linked to the hazards and risks being mitigated as well as the de-
tection method, control, and actions specified for each failure mode during Fail-
ure Mode and Effects Analysis (FMEA) [20]. We therefore focus exclusively on
requirements-to-design traceability, which was the main problem based on our
analysis of actual certification meetings. Of course, our approach can benefit
from work that automatically synthesizes and links some of the above informa-
tion to SysML models (e.g., automatic generation and linkage of FMEA reports
to SysML diagrams [21]), but we do not pursue this idea further in this article.

18

4. Traceability Information Model

The information model in Figure 9 specifies the well-formedness criteria for
the traceability links underlying our methodology in Section 3. There are three
kinds of relationships in this model. (1) The structural relations between entities:
These are characterized by the generalization and aggregation relations, and the
association relation between Block and Block Relationship in Figure 9. (2)
The traceability links that engineers manually create between entities: These are
characterized by all the labelled associations in Figure 9. We refer to these links
as explicit traceability links. (3) The links that are not explicitly created by the en-
gineers but rather are induced by the methodology guidelines in Section 3: These
are characterized by the thick dashed-line associations in Figure 9. We refer to
these links as implied traceability links. Below, we discuss the second (explicit
traceability links) and third (implied traceability links) groups of relationships.

Explicit traceability links:

• The derive link between System-Level Safety Requirement and its Source.
When Source is a Stakeholder, this link specifies who has suggested a
requirement. Otherwise, the link specifies what rules, policies, standards,
and practices mandate a requirement (see Section 3, Step 2).
• The derive/justify link between Assumption on the system context and

System-Level Safety Requirement. This link is used to capture the relation be-
tween properties of the system environment and the requirements yielded
by these properties. As discussed in Section 3, Step 1, the assumptions can
be formalized using SysML parametrics or OCL constraints. Recall that the
system context diagram consists of blocks capturing environment entities
(Environment Block) and a single block representing the system of interest
(System Block). The latter block is further decomposed into internal sys-
tem blocks during design (see Section 3, Step 4).
• The refine link relating System-Level Safety Requirement and the Use Case

operationalizing that requirement (see Section 3, Step 3).
• The decompose link relating System-Level Safety Requirement and Block-

Level Safety Requirement (see Section 3, Step 8).
• The derive link between Block-Level Safety Requirement and Block-Level

Safety-Relevant Requirement. Recall that safety-relevant requirements are the
non-safety requirements that are relevant to the fulfillment of the system’s
safety requirements (see Section 3, Step 2). We also use the derive link

19

System Context

Requirement Concepts

Design Concepts

 Block

1..*

Mapping

Block
Operation

trace

Activity
Partition

Block State

allocate

Use Case

refine

*

*

derive/justify

Standard

Assumption
*

OCL Constraint

Parametrics

Source

*

1.. *

Recommended
Practice

Stakeholder

System
Context

1*

Environment
Block

System Block

*

derive

Activity Node

Activity Edge

*

1

System-Level
Safety

Requirement

Block-Level
Safety

Requirement

Block-Level
Safety-Relevant

Requirement

derive
derive

Block-Level
Requirement

*
decompose

1 *
1.. *

*

1.. *

*

 Block
Relationship

1 *

*

1

*

1

*

src trgt

src
*

1 tgt

Law/
Regulation

Figure 9: Traceability Information Model. The part of the model directly used by the Slicing
algorithm in Section 5.2 is delineated by thick dotted line.

to specify sequences of safety-relevant requirements that directly or indi-
rectly contribute to a particular safety requirement. This is indicated by the
self-loop labelled derive in Figure 9.
• The trace link between Block-Level Requirement and Block to indicate the

20

blocks contributing to the satisfaction of those requirements (see Section 3,
Step 8). As discussed in Step 9, we augment trace links with mappings
between requirement phrases and block operations and states. This is shown
through the association class Mapping in Figure 9.
• The allocate link between Block and design elements representing the

block behavior (see Section 3, Steps 6,7). To save space, in Figure 9, we
have shown only the allocate link for activity diagrams.

Among the links discussed above, the links labelled derive and
derive/justify are new in our work. Though the rest of the links already exist
in SysML, we specialize their semantics and usage to fit our application context.
The refine link in the SysML standard is meant to be used for the same pur-
pose as ours with the difference that we use this link to relate System-Level Safety
Requirements to use cases, while in the standard, it is used to relate any kind of
requirements to use cases [10].

The decompose link relates complex requirements into sub-requirements, whereas
we specifically use this link to break-down system-level requirements into block-
level ones. The trace link is a general free-form link connecting a requirement
element to any requirement/model element, but we use trace specifically to link
block-level requirements to their related blocks. We further make the trace links
more precise using mappings. The allocate link is used for making connections
between design elements, but the interpretation of this link is left open in SysML.
In our work, we use allocate specifically for relating a block to the elements
representing the behavior of that block. Due to lack of space we illustrate and
exemplify the trace links only. Examples of other links are available at [15, 16].

Implied traceability links:

• As shown in Figure 9 and the example in Figure 8, the Mapping elements are
modeled as association classes attached to trace links connecting block-
level requirements and blocks. The content of the mappings, however,
relates requirement phrases to block states and operations. The implicit
relation between the content of the mappings and block states and opera-
tions is captured using the implied traceability links represented as thick
dashed-line associations connecting Mapping to Block Operation and to
Block State (see Figure 9). For example, in Figure 8, the engineer explic-
itly creates the trace links between the requirement and the FeedBelt and
Table blocks, and further specifies the mapping phrases. From these map-
ping phrases, we can imply the traceability links between the requirement

21

and the operation feed table() of FeedBelt and the state
post(go load position()) of Table, i.e., the state where Table enters
when it finishes execution of the operation go load position().
• A block is consistent with the activity partitions representing its behavior

if: (1) For every block operation related to a safety requirement, there is
at least one activity node in some activity partition related to that block.
This is because every block operation related to a safety requirement de-
scribes an important behavior of that block such as an interaction between
the block and other internal blocks or the environment. Since these opera-
tions describe major system behaviors, they appear in the diagrams repre-
senting block behaviors. For example, the operation go load position()
of Table in Figure 6(a) appears in the activity partition of Table in Fig-
ure 6(b). Note that some of the block operations describing detailed be-
haviors may not appear as activity nodes, e.g., getter/setter operations of a
block that simply retrieve/set values of some variables. (2) For every block
state related to a safety requirement, there is an activity edge in some ac-
tivity partition related to that block. This is because block states often refer
to situations before or after execution of some block operation, and hence
they can be mapped to the incoming or outgoing edges of the activity node
related to that block operation. For example, post(go load position()),
i.e., the situation where table is in load position, can be mapped to the edge
from the go load position activity to the node for sending of the signal
FeedTable in Figure 6(b).

The consistency conditions (1) and (2) described above are respectively
specified using thick dashed-lines between Block Operation and
Activity Node, and between Block State and Activity Edge in Fig-
ure 9.

5. Automated Generation of Design Slices Relevant to Safety Requirements

This section explains how the traceability links described in Section 4 can be
used to automatically extract slices of the design diagrams relevant to a particular
safety requirement. Specifically, given a set of SysML diagrams conforming to
the information model in Section 4 and given a particular block-level safety re-
quirement r, we present an algorithm for extracting a design slice (i.e., a set of
fragments of the SysML diagrams) that is relevant to r. Our algorithm refers to
and uses a number of concepts in the traceability information model in Figure 9.

22

In Section 5.1, we formalize these concepts to define the notation used by our
algorithm presented in Section 5.2. In Section 5.3, we show that our slicing algo-
rithm is sound for temporal safety properties, and argue about the completeness
of the generated slices based on our practical experience with the algorithm.

5.1. Formal Notation for the Slicing Algorithm
All the concepts that our algorithm in Section 5.2 refers to are already defined

by the information model in Figure 9 in terms of classes and associations. In
this section, we develop a formal (symbolic) notation for these classes and asso-
ciations. Specifically, the definition below formalizes the part of the information
model in Figure 9 that is used directly by our algorithm.

Definition 1 (Formalizing Traceability Information Model). Let r be a block-
level requirement. We denote the set of blocks related to r via trace links by Br,
and the set of activity partitions related to the blocks in Br via allocate links by
AP r. The Mapping elements associated to trace links relate block-level requirements
to block states and block operations. We denote the set of block states and opera-
tions related to r via Mapping elements by Block Str and Block Opr. We define
Block Elemr to be the union of Block Str and Block Opr, i.e., Block Elemr =
Block Str ∪Block Opr. We denote the set of activity nodes related to Block Opr

by Act Nd r, and the set of activity edges related to Block Str by Act Ed r. We
define Act Elemr to be the union of Act Nd r and Act Ed r, i.e., Act Elemr =
Act Nd r ∪ Act Ed r.

For example, let r be the block-level requirement of Figure 8. Then, Br

is {Table, FeedBelt}; AP r contains the two activity partitions in Figure 6(b);
Block Elemr is
{feedbelt.feed table(), post(table.go load position()), post(table.initialize())}
and, Act Elemr includes (1) the feed table activity, (2) the transition from

the go load position activity to the FeedTable signal, and (3) the transition
from the initialize activity to the FeedTable signal in Figure 6(b).

Note that in Block Elemr, feedbelt.feed table() refers to a block opera-
tion, while post(table.go load position()) and post(table.initialize())
are block states. The feed table activity in Act Elemr is related to the block op-
eration feedbelt.feed table(), the transition in Act Elemr from
go load position to FeedTable is related to the block state
post(table.go load position()), and the transition in Act Elemr from
initialize to FeedTable is related to the block state post(table.initialize()).

23

Throughout the article and in our algorithm, we have referred to some concepts
that are not explicitly present in the information model, but can be defined based
on the existing elements in the information model. Below, we formally define
these concepts.

Definition 2 (Block Diagram). A block diagram BD is a tuple
(B, BR, srcBD, tgtBD) where B is a set of blocks, BR is a set of block relation-
ships, and srcBD, tgtBD : BR → B are functions respectively giving the source
and the target of each block relationship.

Definition 3 (Activity Diagram/Activity Partition). An activity diagram AD is
a set AP of activity partitions. Each activity partition ap ∈ AP is a tuple
(N, n0, E), where N is a finite set of activity nodes, n0 ∈ N is an initial activity
node, and E ⊆ N ×N is a set of activity edges.

For example, the block definition diagram in Figure 6(a) has three blocks and
three block relationships, and the activity diagram in Figure 6(b) has two activity
partitions. As shown in Figure 9, each block can have a set of states and a set
of operations, and each activity partition has a set of nodes and a set of edges.
One node in each partition is designated as the initial node. Note that Definition 3
does not distinguish different types of nodes. This treatment is sufficient for the
description of the algorithm in Figure 10. In Appendix B, we define a semantics
for activity partitions in order to demonstrate soundness of our slicing algorithm.
There, we will discuss the semantic differences between activity nodes. Partic-
ularly that activity nodes may describe one of the following: actions/activities,
sending/receiving of signals or merging/splitting.

Definition 4 (Block Diagram Slice). Let r be a block-level requirement. A block
diagram slice Block Slicer is a block diagram (Bslicer , BRslicer , srcslicer , tgt slicer

)
where for every b ∈ Br, there exists some b′ ∈ Bslicer such that 1

1. bOp ∩ Block Opr ⊆ bOp′ where bOp is the set of operations of b and bOp′

is the set of operations of b′.
2. bAttr ∩ Block Str ⊆ bAttr′ where bAttr is the set of attributes of b and

bAttr′ is the set of attributes of b′.

1Recall the notation Br, Block Opr, and Block Str from Definition 1.

24

Definition 5 (Activity Diagram/Partition Slice). Let r be a block-level require-
ment. An Activity diagram slice Act Slicer is a set APslicer of activity parti-
tions where for every ap ∈ APr such that ap = (N, n0, E), there exists some
ap′ ∈ APslicer such that ap′ = (N ′, n′

0, E
′), and 2

1. N ∩ Act Nd r ⊆ N ′ ⊆ N

2. E ∩ Act Ed r ⊆ E ′

3. There is at least one path from n0 to n′
0 (or to all successors of n′

0) that does
not go through any node in N ′.

Intuitively, Definitions 4 and 5 state that a block diagram slice related to a
requirement r must include all the block operations and states directly related to
r, (i.e., operations and states of the blocks in Br intersecting with Block Opr

and Block Str repectively), and similarly, an activity diagram slice related to a
requirement r must include all the activity nodes and edges directly related to
r, (i.e., nodes and edges of activity partitions in Actr intersecting with Act Nd r

and Act Ed r repectively). Note that these definitions are not meant to uniquely
characterize a notion of design slice. Rather, they describe the minimum syntactic
conditions (the necessary conditions) that design slices must satisfy. The slices
generated by our algorithm in Section 5.2 satisfy the conditions in Definitions 4
and 5. We formally proved this in Theorem 1 in Section 5.2. In addition, our
slicing algorithm preserves certain semantic properties. We discuss this in Sec-
tion 5.3.

5.2. Slicing Algorithm
Figure 10 shows our algorithm for extracting block and activity diagram slices.

Briefly, the algorithm identifies which model elements (i.e., activity nodes/edges,
block operations/states, and relationships between blocks) can be abstracted away
as they are not required for evaluation of the considered requirement. All the
concepts used in the algorithm were introduced in the information model in Fig-
ure 9 and were formalized in Section 5.1. The algorithm takes as input the sets
Br, AP r, Block Elemr, and Act Elemr for a block-level requirement r. These
sets are defined in Definition 1 and can be extracted from SysML diagrams con-
forming to the information model in Section 4. The output of the algorithm is

2Recall the notation APr, Act Ndr, and Act Edr from Definition 1.

25

Algorithm. GENERATESLICE

Input: The sets Br, APr, Block Elemr, and Act Elemr for a block-level requirement r.
The set BRr of block relationships between blocks in Br, and
The functions srcr and tgtr relating the relations in BRr to the blocks in Br.

Output: A block diagram slice (Bs, BRs, srcs, tgts), and a set APs of activity partition slices.

/* Step 1. Find elements temporally related to r (Design Elemr). */
1. Design Elemr = Block Elemr ∪Act Elemr

2. for any block b ∈ Br and any element e ∈ Design Elemr do
3. if operation op of b triggers (or is triggered by) e then
4. Design Elemr = Design Elemr ∪ {op}
5. for any activity partition a ∈ APr and any element e ∈ Design Elemr do
6. if activity node n of a triggers (or is triggered by) e then
7. Design Elemr = Design Elemr ∪ {n}

/* Step 2. Extract block diagram slices (Block Slicer). */
8. for every block b ∈ Br do
9. Let bOp and bAttr be the sets of operations and attributes of b, respectively.

/*Remove any operation in bOp that is not in Design Elemr.*/
10. bOp′ = bOp ∩Design Elemr

/*Remove any attribute in bAttr that is not in Design Elemr.*/
11. bAttr ′ = bAttr ∩Design Elemr

12. Let bOp′ and bAttr ′ be the new sets of operations and attributes of b, respectively.
13. Bs = Bs ∪ {b}

/* Add block relationships and source/target functions to the block diagram slice.*/
14. BRs = BRr, tgts = tgtr, and srcs = srcr

/* Step 3. Extract activity diagram slices (Act Slicer). */
15. for every activity partition a ∈ APr do
16. Let aNodes and aEdges be the sets of nodes and edges of a, respectively.
17. Let init be the initial node of a.

/* Remove every node in aNodes except for those in Design Elemr, and
the ending points of the activity edges in Design Elemr.*/

18. aNodes ′ = aNodes ∩
(
Design Elemr ∪ {the ending points of the activity edges in Design Elemr}

)
/* Remove every edge in aEdges except for those whose ending points are in aNodes ′.*/

19. aEdges ′ = aEdges ∩
(
Design Elemr ∪ {the edges whose both ending points are in Design Elemr}

)
20. Let aNodes ′ and aEdges ′ be the new sets of nodes and edges of a, respectively.

/* Add stuttering edges.*/
21. for every pair n, n′ ∈ aNodes ′ do
22. if n′ is reachable from n in a through edges none of which are in aEdges ′ then
23. add a stuttering edge from n to n′

/* Pick a new initial node.*/
24. for every node n in activity partition a do
25. if there is a path from init to n that does not go through any node in aNodes ′ then
26. mark n as a new initial node of a.
27. if more than one node is marked as initial node then
28. add a new initial to a with transitions to the old ones.
29. APs = APs ∪ {a}

Figure 10: Algorithm for generating design slices.

26

a block diagram slice (Definition 4) and an activity diagram slice (Definition 5).
The algorithm has three main steps discussed and exemplified below.

Step 1 (Find Design Elemr). This step identifies the design elements that are
temporally related to r. The set Design Elemr is initially set to include the block
and activity diagram elements that are directly related to r via the explicit and im-
plied traceability links suggested by our information model (Figure 9). We then
compute the set of block operations and activity nodes that trigger (or are trig-
gered by) the elements in Design Elemr. We do so by adding to Design Elemr

any block operation or activity node that triggers (or is triggered by) an existing
element in Design Elemr. The resulting Design Elemr is the set of design ele-
ments that are temporally related to r. Recall that in our methodology (Steps 6
and 7 in Section 3), we discussed how the temporal relationships between block
operations and activity nodes can be identified to compute Design Elemr (see
[15] for more details). If the behavioral diagrams do not fully comply with our
methodology, we can still build Design Elemr using existing techniques for con-
trol dependence analysis [22].

For example, Design Elemr for the requirement in Figure 8 is initially set to
the union of Block Elemr and Act Elemr which includes the following elements:

• the block operation feedbelt.feed table()

• the block state post(table.go load position())

• the block state post(table.initialize())
• the activity node feed table

• the activity transition from go load position to FeedTable

• the activity transition from initialize to FeedTable

After executing Step 1, Design Elemr would be extended to include the fol-
lowing elements in addition to the above ones:

• the block operation feedbelt.go load position()

• the block operation feedbelt.initialize()

• the activity node related to receiving signal FeedTable in the activity par-
tition related to FeedBelt in Figure 6(b)
• the activity node related to sending signal Go Unload Position in the ac-

tivity partition related to FeedBelt in Figure 6(b)

27

The block operations feedbelt.go load position() and feedbelt.initialize()

are added because they trigger the block states post(table.go load position())
and post(table.initialize()), respectively. The two activity nodes in the
above list are added because the former triggers the activity node feed table,
while the latter is triggered by the same activity node.

Step 2 (Extract Block Slicer). This step abstracts away attributes and opera-
tions not present in Design Elemr from blocks in Br. For example, the block
diagram slice related to the requirement in Figure 8 is shown in Figure 11(a).

Step 3 (Extract Act Slicer). This step abstracts away every activity node from
activity partitions in AP r that is not in Design Elemr or is not an ending point of
an edge in Design Elemr. It also removes every edge that is not in Design Elemr.
To maintain connectivity between the nodes, after the removal of edges, the last
part of the algorithm adds special edges between those nodes whose connecting
paths are removed. These edges are meant to preserve only the reachability re-
lations between nodes and not the exact number of steps to go from one node to
another. For this reason, we call them stuttering edges [23]. For example, the
activity slice related to the requirement in Figure 8 is shown in Figure 11(b). The
stuttering transitions between activity nodes are shown as dashed arrows. After
adding the stuttering transitions, for each activity partition, we identify an initial
node. To do so, we find a node to which there is a path from the initial node of
the original non-sliced activity partition that does not go through any other node
in the sliced activity partition. If several nodes in the activity partition satisfy this
condition, we create a dummy initial node with transitions to all of these nodes.

Theorem 1. Our algorithm in Figure 10 generates block diagram and activity di-
agram slices, (i.e., the block diagram and activity diagram slices generated by the
algorithm in Figure 10 satisfy the conditions in Definitions 4 and 5, respectively.).

The proof of the above theorem is given in Appendix A. Adding stuttering
transitions and identifying initial nodes of activity diagram slices allow us to rea-
son about the soundness of our algorithm (see the discussion on soundness in
Section 5.3). Note that the notation for activity diagram slices is slightly different
from the conventional SysML/UML activity diagram notation mainly due to addi-
tion of stuttering transitions. However, this notational difference does not hinder
the use of existing standard SysML/UML tools for manipulating the slices be-
cause we can develop a profile to extend the SysML notation to include stuttering
transitions, and hence, use such tools to create diagram slices.

28

feedbelt:FeedBelt

feed_table()

table:Table

go_load_
position()

(b) Activity Slice:

-feed_table()
FeedBelt

-initialize()
-go_load_position()

Table

feedbelt

table

1

1

interact

(a) Block Slice:

FeedTable

initialize

FeedTable

Go_Unload_Position

Figure 11: The block and activity slices for the requirement in Figure 8 extracted from the SysML
design diagrams in Figure 6.

5.3. Properties of Design Slices
Ideally, the design slices generated by our algorithm should possess the fol-

lowing two properties in order to be effectively used by certifiers for verifying
safety requirements.

Soundness If a requirement holds over a design slice, it should also hold over the
original (non-sliced) design.

Completeness If a requirement holds over the original (non-sliced) design, then
the design slice related to that requirement should contain enough informa-
tion to conclusively verify that requirement.

The first property (soundness) ensures that our algorithm generates correct
design slices. If not sound, the generated design slices cannot be trusted because
a requirement may hold over a design slice, while the original design does not
satisfy it. The second property (completeness) ensures that the certifier can always
rely on checking the generated design slices and never need to refer to the original
design. If not complete, then there are requirements for which analysis of the
design slices does not yield a conclusive result, while the original design contains
sufficient information for decisive verification or refutation of those requirements.
Between the above two properties, soundness is a more crucial one. Obviously, if
the algorithm is unsound, it cannot be used in certification. Failure to satisfy the

29

completeness property, however, does not make the algorithm inapplicable, but
requires the certifier to refer back to the original design whenever the analysis of
slices is inconclusive. Below, we discuss soundness and completeness properties
of our algorithm.

Soundness. As we explained already, the activity diagram slices are created in
such a way that the reachability relations between the nodes in the original activity
diagrams are preserved in the slices. This enables us to keep the temporal order-
ings of the nodes in the slices consistent with those of the nodes in the original
diagrams, and hence, ensure that the slices are sound for requirements express-
ible as temporal constraints. Note that many safety properties are indeed temporal
constraints because they often state in what order the actions should occur so that
the system does not end up in an unsafe or undesirable state [24]. For example, the
requirement in Figure 8 is a temporal constraint, requiring go load position()
or initialize() to occur before feed table(), and hence ensuring that table
is in the desired position prior to the execution of feed table(). The slice in
Figure 11(b) is sound for analyzing the requirement in Figure 8. This is because
the orderings between sending of signal FeedTable and go load position and
initialize activities, and between receiving of the FeedTable signal and the
feed table activity in the activity diagram slice in Figure 11(b) are the same as
the orderings between these nodes in Figure 6(b), In Appendix B, we formally
prove that our slicing algorithm in Figure 10 generates activity diagram slices that
are sound for verifying temporal safety requirements.

Completeness. As mentioned above, completeness is a less crucial property than
soundness. Automated techniques are often partially complete. In our work, it
is difficult to demonstrate that the generated design slices always contain suffi-
cient information for analyzing safety requirements because: First, completeness
of a generated design slice depends on the completeness of the traceability links
and mappings attached to the traceability links. For example, if we remove from
Figure 8 either of the mappings related to post(table.go load position())
or post(table.initialilize()), the resulting activity partition slices in Fig-
ure 11(b) will not include the activity nodes go load position and initialize

respectively. Second, the ability of the certifier to analyze the design depends on
several factors, in particular, their background on the language used for the design
and their knowledge of the domain under analysis. As a result, different peo-
ple may require different amounts of information to verify certain requirements.
However, due to the subjectiveness of this issue, we plan to evaluate complete-

30

ness of our slicing algorithm using empirical techniques by running controlled
experiments. However, we expect our slicing algorithm to be complete for a large
number of safety requirements. In particular, our analysis has shown that our al-
gorithm is complete for all of the safety requirements in our case studies described
in Section 7 when sufficient traceability links and sufficient mapping elements are
provided.

For example, we can argue that the block and activity diagram slices in Fig-
ure 11 contains enough information to check the requirement (r) in Figure 8. To
check r, we need to demonstrate that (1) in the block diagram slice, there is an
association relation between the blocks referred to by r, and (2) the sequence of
interactions in the activity diagram slice satisfies r. The block diagram slice in
Figure 11(a) fulfills the former condition. To show the latter, we need to show
that p1 ∧ ¬p2 never happens in the design (see Figure 8 for p1 and p2). In this
example, this translates into showing that feed table of FeedBelt cannot occur
unless either go load position or initialize of Table has already happened.
The activity slice in Figure 11(b) shows this is the case, i.e., feed table can only
occur when it has received the signal FeedTable. This signal is sent only after
go load position or initialize is executed. Note that the stuttering transi-
tions between sending of FeedTable signal and go load position activity indi-
cates that the go load position activity does not necessarily occur immediately
after sending of FeedTable as this edge abstracts several steps that perhaps may
involve receiving of several signals from the environment. But there is no delay
during the execution of normal activity diagram transitions, i.e., the feed table

activity occurs immediately after receipt of the FeedTable signal. Based on this
discussion, it can be seen that the slices in Figure 11 are complete for analyzing
the requirement in Figure 8.

6. Tool Support

We have developed a tool named SafeSlice (http://modelme.simula.no/
pub/pub.html#ToolSlice) in support of our approach. Specifically, SafeSlice
enables users to: (1) specify the traceability links envisaged by the traceability
information model described in Section 4; (2) check the consistency of the estab-
lished links; (3) automatically extract slices of design with respect to requirements
using the slicing algorithm in Section 5; (4) use slices for conducting inspections
and ensuring that the design satisfies the safety requirements; and (5) generate re-
ports. The reports can be customized to include various types of information, e.g.,

31

design slices, whole designs, statistics, and pie charts for progress monitoring of
inspections.

To facilitate the application of our tool in real settings and for the tool to be
more easily maintainable, we built the tool as a plugin for a major modeling en-
vironment, called Enterprise Architect (http://www.sparxsystems.com.au). In
addition to providing mature facilities for SysML modeling, Enterprise Architect
offers built-in support for managing additional information related to a modeling
project. In our case, we used this capability for managing the information related
to design inspections.

SafeSlice builds on Microsoft ActiveX COM technology. We used Microsoft
.NET Framework 2.0 and Visual Studio 2008 as the development platform. SafeS-
lice is written in Visual C# and is roughly 10,000 lines of code excluding com-
ments and third-party libraries.

Checking compliance of the links to the traceability information model in Sec-
tion 4 and extraction of slices in SafeSlice require a negligible amount of execu-
tion time. We recorded the time required to check information model compliance
and produce design slices. For the larger of the two systems in our studies in Sec-
tion 7 (i.e., PCS), SafeSlice took about half a minute to check the compliance of
the entire set of traceability links, and a maximum time of ten seconds to produce
a design slice.

7. Case Studies and Lessons Learned

To validate the feasibility and effectiveness of our approach, we have con-
ducted two case studies: the first case study is the Production Cell System, a
small fragment of which was introduced in Section 3 as the running example for
this article. The full case study material is available at [15]. The second case
study is a real-world industrial system from the maritime and energy domain. For
further details about this case study, consult [7]. Below, we first describe the two
case studies (Section 7.1), and then report on the experience gained (Section 7.2).

7.1. Description of the Case Studies
Context. In our first case study, we applied our methodology to the Production
Cell System (PCS). As discussed earlier in Section 3, the aim of PCS is the trans-
formation of metal blanks into forged plates (by means of a press) and their trans-
portation from a feed belt into a container. PCS is composed of six devices that are
applied to the blanks fed into the system in a specified order. Each of the devices

32

is equipped with sensors and actuators, enabling them to operate and communi-
cate with one another. The design of PCS must meet several safety requirements
some of which were earlier discussed in Section 3. The PCS case study serves as
an initial validation of our methodology and was conducted before applying the
methodology to a real industrial system (the second case study).

Our second case study concerns a safety critical IO module developed at a
maritime and energy company specializing in computerized systems designed for
safety monitoring and automatic corrective actions on unacceptable hazardous sit-
uations. These systems include, among others, emergency and process shutdown,
and fire and gas detection systems. The role of the IO modules in these systems
is to connect software control components to hardware and mechanical devices.
The IO module in our study was designed to transfer specific commands from a
remote control unit to a fire detection panel. The panel was intended for marine
applications (e.g., general cargo and passenger vessels, and offshore installations)
and could be set up to control a variety of fire detection sensors.

Case Study Selection. The choice of PCS as a case study was driven by two main
considerations: First, PCS is a well-known exemplar for embedded systems [12].
In PCS, similar to many safety critical systems in domains such as avionics, au-
tomotive, maritime and energy, the software control modules are integrated with
hardware devices and continuously interact with the environment. A second ad-
vantage of PCS is that it has been already analyzed using several existing formal
and semi-formal approaches [12], thus providing us with a large source of useful
information about the system. Most notably, we benefitted from an earlier object-
oriented design of PCS built using the Fusion method [25]. This earlier design
is based on a real production cell and also contains a complete list of safety re-
quirements. In lieu of access to the real system, this design served as an important
aid both to better understand the system and further to compare alternative design
decisions.

With regards to our industrial case study, our main selection criterion was that
the chosen IO module should be representative. The structure and behavior of the
module that we selected for our case study was deemed by the lead engineer of the
IO modules as being representative of the significant majority of the IO modules
developed at the company.

Results. For the first case study, we developed a complete SysML model of the
PCS with traceability to the PCS safety requirements. The model includes all the
SysML diagrams in our methodology. In particular, it consists of 58 diagrams, 479

33

compx : ComponentX [1..*]

schlr : Scheduler fieldbus : FBDriverY

ioModule : IOModule

scan

scan<<signal>>

<<complexflow>> data channel

out xport : XPort

data channel

yport : YPort

deviceIn

Figure 12: Architectural links for the IO module in the industrial case study expressed as a SysML
IBD.

elements having 419 relations and 189 attributes. We generated 10 design slices
for 10 safety requirements in the description of PCS using our slicing algorithm.
Excerpts of some of the key artifacts in the PCS case study and slices thereof were
used for illustration in earlier sections of the article (see Figures 3–8 and Figure
11).

In the second case study, we applied our methodology to the IO module un-
der investigation and developed a complete SysML model with traceability to the
module’s requirements. To understand the module, we relied primarily on in-
terviews with the developers, and an analysis of the existing documentation and
source code. The resulting SysML model (including the traceability links) was
iteratively validated and refined in collaboration with the lead engineer of the IO
modules.

For example, Figure 12 shows the (sanitized) IBD developed for the IO mod-
ule to capture its communications with the control modules (instances of Compo-
nentX), the scheduler, and a lower-level real-time driver (instance of FBDriverY).
Figure 13 shows the activity diagram representing the overall behaviour of the IO
module, and in particular, its main internal threads. The IO modules developed
by the company use a complex multithreading structure to increase performance
and to allow for more configurability. Capturing the multithreaded structure (both
at the level shown in Figure 13 and at lower levels) was one of the main model-
ing complexities in this case study. Lastly, Figure 14 shows a (sanitized) BDD
representing the internal structure of IO module.

Since the IO modules at the partner company are deployed in safety monitor-
ing and control systems, most of the modules’ requirements are safety-relevant.

34

IO	
 Module

Figure 13: Overall behaviour of the IO module in the industrial case study expressed as a SysML
AD.

IOModule

Figure 14: Structure of the IO module in the industrial case study expressed as a SysML BDD.

As we stated earlier, this means that the requirements of these modules in some
way contribute to the satisfaction of the system-level safety goals. An example

35

It shall be possible to manually trigger data transmission

-create()
-unlink()
-pull_signal()

XPortController
trace

“manually trigger data transmission”
↔ xportController.signal()

Figure 15: An example requirement from the IO module in the industrial case study with trace-
ability links to the design.

Block Slice: Activity Slice:

-pull_signal()
XPortController

pull_signal
«datastore»

MailBox

Clock
Signal

Signal Data

Figure 16: Design slice for the requirement in Figure 15.

safety-relevant requirement from our case study IO module is “It shall be pos-
sible to manually trigger data transmission”. This requirement is shown in Fig-
ure 15 along with traceability links from it to the design. The design slice that is
generated automatically for this requirement by our slicing algorithm is shown in
Figure 16.

The SysML design developed in our industrial case study includes all the
SysML diagrams envisaged by our methodology. Specifically, the design con-
sists of 23 diagrams, 194 elements having 186 relations and 57 attributes. The IO
module under study included 30 safety-relevant requirements, all of which where
traced to the SysML design through appropriate traceability links. Subsequently,
design slices were generated automatically for all these requirements.

7.2. Lessons Learned
In this section, we discuss the lessons learned from applying our methodology

to the two case studies described in Section 7.1.

Prerequisite: Use of SysML. The applicability of our methodology depends on
how feasible it is to use SysML in industrial contexts. Overall, we found
SysML to be a good fit for capturing the behavioral and structural charac-
teristics of the systems in our studies. We did not encounter challenges that
would indicate an inadequacy in the expressive power of the SysML lan-
guage for system design, nor did we come across areas where using SysML

36

made the design more complex than necessary (i.e., accidental complexity).
In comparison to the UML language, we found two aspects of the SysML
language to be advantageous for systems engineering. Firstly, SysML can
be used for capturing both object-oriented and non-object-oriented systems,
whereas UML is aimed at only the former type of systems. The ability to
handle non-object-oriented systems is particularly important for embedded
control systems, because a significant proportion of these systems, includ-
ing the IO module in our industrial case study, are not object-oriented. In
our case studies, we applied the same methodology with an equal degree of
success for capturing both object-oriented (PCS) and non-object-oriented
systems (IO module). A second main advantage of SysML is the intro-
duction of parametric diagrams, an example of which was shown in Figure
4. We found parametric diagrams very useful and a natural mechanism for
specifying the operating environment for software in the presence of elec-
trical and mechanical parts.

Costs: Level of Required Effort. The effort required to establish traceability links
according to our methodology was manageable. In our industrial case study,
the design and tracing activities took about three weeks, involving approxi-
mately 40 man-hours of effort. In the PCS case study, these activities took
about five weeks, involving approximately 90 man-hours of effort. In both
cases (the former being also confirmed by our industrial partner), the re-
quired effort seems acceptable, considering that: 1) such systems have a
long lifetime, 2) the use of SysML include additional benefits like reuse,
standard compliance, and reduced ambiguity and inconsistency, and finally,
3) the methodology is intrinsically iterative and the level of details to model
is decided by the designer according to time and schedule availability.

Effectiveness: Reduction of the Size of Design Slices. The slicing procedure re-
duced the size of the design models that needed to be reviewed in order to
determine whether the design satisfied a requirement of interest. The size of
design models is computed as the total number of elements in the models,
e.g., the elements in the design concepts package in Figure 9. The average
reduction rate was 98% both over the PCS requirements and over the IO
module requirements, thus giving an average reduction rate of 98% for the
combined set of requirements from both systems. Figure 17 shows the re-
duction frequency distribution and quantile box plot for the combined set of
requirements. As indicated by the distribution, the variation range is very

37

Figure 17: Frequency distribution and quantile box for slicing reduction

small, considering that the two systems are in different domains, and were
modeled by different people. We therefore anticipate reduction rates in size
to be close to the values observed here for other systems modeled accord-
ing to our methodology. It is reasonable to assume that inspection effort is
related to the size of the models that are required to be inspected.

In Section 5.3, we provided a formal proof of soundness for our slicing
algorithm, showing that the temporal sequencing of activities is preserved
from the source (activity) models to the sliced models. This means that the
slices never provide misleading information to the inspectors about the or-
dering of activities. As to whether a slice provides complete information
to conduct the task the slice is intended for, as we already argued in Sec-
tion 5.3, one cannot give a formal proof, unless one enforces major restric-
tions on the requirements and design specifications, and introduces more
sophisticated formal methods which could in turn reduce the applicability
of our methodology. In the two case studies we performed, we observed that
the sliced models provided adequate information for performing the task at
hand (namely, checking if a given requirement is properly realized by the
design). This was mainly attributable to the fact that we had high-quality
traceability links from the requirements to the design, thus mitigating the
possibility that slicing would filter out too much information. In general, if
a certain piece of information is deemed missing from a slice, the inspectors
can always access the original model. Further, they can update the traceabil-
ity links so as to ensure that the missing information will be included in the
slices that will be generated in the future.

38

8. Related Work

Our work is motivated by the need to improve the accuracy and efficiency of
design inspections during safety certification. Several approaches already exist in
the literature that targeted at improving software inspections. Particularly, Baz-
zana et al. [26] propose a methodological basis for software assessment and a
supporting tool environment, noting certification as one of the area where their
approach could be applied. Juristo and Morant [27] propose a framework for val-
idation and verification (V&V) of both knowledge-based and conventional soft-
ware, with inspections as one of the main parts of their framework. Kelly and
Shepard [28] describe an inspection technique and a process adopted to introduce
inspection in an industrial environment. Our work differs from the above work
in two ways: First, the scope of our work is restricted to system design specifi-
cations rather than software development artifacts in general. This enabled us to
provide more specific guidance tailored to the specific concerns in system design.
A second but related difference between our work and the above work is that our
guidelines are not aimed at improving the inspection processes per se, but rather
on how to “build” designs that can be more accurately and efficiently inspected
using the (current) inspection procedures in software safety certification.

A major aspect of our work in this article was establishing traceability between
safety requirements and design. Existing work on traceability primarily addresses
the question of how to automatically discover the traceability links. Various tech-
niques have been proposed, among many others: Cleland-Huang et al. [29] ap-
ply information retrieval techniques to find candidate links between development
artifacts; Egyed [30] utilizes run-time information to suggest links between the
system’s models and the system’s implementation; and Jirapanthong and Zisman
[31] provide a rule-based approach for inferring links between product-line arti-
facts. These techniques are all applicable for systems that are subject to safety
certification. However, they must be viewed as complementary to, and not a re-
placement for, methodologies that help developers manually create complete and
correct links at the right level of detail and thus mitigate the risk of a very lengthy
certification process whose cost would dwarf the overhead associated with manual
traceability links. Further, safety-critical software is often several folds more ex-
pensive to build than non-safety-critical software; hence, the traceability overhead
makes up for a much smaller part of the total development cost.

Using a traceability information model to systematize the construction of trace-
ability links is not new. Generic information models already exist for character-
izing the links for various development tasks. For example, Ramesh and Jarke

39

[32] provide such an information model based on an observation of the practices
in several software organizations, and Panesar et al. [33] – based on an analysis
of the traceability criteria in the IEC 61508 standard. These information models
aim to be independent from the development artifacts and hence cannot specify
either the detailed structure of the traceability links or the methodology that must
be followed for establishing them. In contrast, in our work, we assume that the
design artifacts are expressed using SysML models, thus enabling us to elaborate
the structure of the links and provide a concrete methodology for creating them.

More recently, there has been a growing interest in traceability information
models for MDE [34], the insight being that such models must be built for the
specific needs of a problem, and the notations used throughout development. Our
work in this article applies this general idea to develop an information model
for the specific needs of “unrestricted natural language requirements”, “software
safety certification” and the “SysML” notation.

The motivations for establishing traceability between development artifacts go
beyond what we considered in this article. One notable topic outside the scope of
our current work but intimately related to traceability is change impact analysis.
Change impact analysis is concerned with “identifying the potential consequences
of a change, or estimating what needs to be modified to accomplish a change” [35].
Various techniques exist for change impact analysis, with often differing require-
ments about the traceability links that need to be defined and also the semantics
of the links. For example, Briand et al. [36] propose a traceability information
model and an algorithm based on this information model for automatically ana-
lyzing the impacts of change in UML models. ten Hove et al. [37] develop and
use a first-order logic formalization of requirements relations for change impact
analysis in SysML requirements models. While useful, the conceptualization of
the traceability links in these approaches is at a coarser level of abstraction that
what is necessary for safety certification, as the links were envisaged for different
analysis purposes.

Related to slicing, several techniques already exist with the aim of reducing
complexity in various development tasks. Most of the existing work on slicing is
concerned with program code, where slicing is mainly used as a debugging aid
[38]. Other applications for code slicing have also been noted in the literature in-
cluding program comprehension, software maintenance, and testing (see [39, 40]
for surveys). For models, slicing has been studied primarily as a way to reducing
cognitive load and to improve understanding, inspection and modification of mod-
els. Various model slicing techniques have been proposed, e.g., Korel et al. [41]
provide a technique for the slicing of state-based models using dependence anal-

40

ysis, and Kagdi et al. [42] a technique for slicing UML class models based on
predicates defined over the model’s features. These approaches, in contrast to
ours, are not aimed at expressing the relationships between the requirements and
the design, and hence cannot be used for extracting design slices with respect to a
given requirement.

MDE languages such as UML and SysML are extensible by design. Indeed, it
is now increasingly common to develop standard extensions to these languages to
meet domain- or analysis-specific needs. For example, Soares et al. [43] extend
SysML requirements diagrams with new stereotypes for classification of require-
ments into functional, non-functional, and external. They also propose additional
properties for requirements, e.g., priority to facilitate requirements analysis. The
main factor that distinguishes our work from the above work and other SysML
extensions lies in the ends (i.e., purpose) to be achieved by the extension. To our
knowledge, there is no prior SysML extension specifically designed to support
the needs of design safety inspections. Addressing this gap constitutes one of the
main contributions of our work.

Our concept of design slice is similar in theme and aim to architectural views.
In fact, both slices and architectural views capture a fragment of the whole design,
consisting of several diagram types (e.g., class diagrams and activity diagrams). In
both cases, the fragment is extracted with the aim of reducing complexity and the
effort needed for analysis and review. However, in the context of software archi-
tecture, the design is typically at a higher level of abstraction than in our context.
Moreover, a design slice is related to a given (safety) requirement whereas an
architectural view is related to a set of concerns which, in contrast to our work,
represent higher-level goals, including non technical aspects such as social, psy-
chological, and managerial issues [44, 45, 46].

9. Conclusion

In this article, we developed a framework to facilitate software design in-
spections conducted as part of the safety certification process. Our framework is
grounded on SysML which is rapidly becoming the notation of choice for devel-
oping safety-critical systems. The framework includes a traceability information
model, a methodology to establish traceability, and mechanisms to use traceability
for extracting slices of models relevant to a particular (behavioral) safety require-
ment. Our slicing algorithm enables certifiers and safety engineers to narrow the
scope of their analysis to the small fragments of the design related to the task at
hand. This helps reduce cognitive load and thus makes it less likely that seri-

41

ous safety issues would be overlooked. We have validated our approach on one
benchmark and one industrial case study. Lastly, we have developed tool sup-
port for our methodology, implemented via plug-ins in a major SysML modeling
environment.

Our methodology exploits and enhances SysML capabilities for system design
and for capturing traceability between requirements and design. Generalizability
to other notations has not been our main intent. Instead, our focus has been on
ensuring that both the design and the links between the requirements and the de-
sign are ”precise” enough to allow for systematic design inspections. Achieving
precision required grounding our work on a specific notation. We chose SysML
to base our work on due to its rising popularity in the embedded systems domain.
That said, some theoretical aspects of our work are indeed generalizable. For ex-
ample, our slicing algorithm can be generalized to other notations if the sets of
input elements and output elements can be adapted for those notations. Note that
the soundness results in our paper can also easily be reused for notations with
operational semantics.

In this paper, we focused on behavioral safety and safety-relevant require-
ments because: (1) Certifiers mainly focus on safety and safety-relevant require-
ments during inspections, and (2) non-behavioral requirements cannot typically
be traced to particular design fragments, and hence, our work is not applicable
to them. For example, performance requirements are typical non-behavioral re-
quirements that can affect system safety goals. Since these requirements constrain
the behavior of the system as a whole, they cannot be inspected by focusing on a
particular design fragment.

The work reported in this article matches a major industrial need. On the
one hand, the industry has long recognized the value of model-based engineering
for managing complexity, but on the other hand, there is not an adequate level
of support, in terms of methods and tools, for building and relating models in a
way that is suitable for the analyses that need to be performed over the models,
e.g., certification, impact analysis, automated testing and verification. As a result,
developers often do not model the right aspects of the system or miss important
details. This problem must be addressed through the development of more con-
crete and validated methodologies and tools. Our work here was a step towards
this goal, focused on safety certification. Although there is certainly a cost over-
head for using our proposed framework, we believe the overhead is justified given
the overall development costs and the formidable cost and schedule risks that poor
traceability can pose during certification. Further, our framework targets (behav-
ioral) safety requirements. Hence, traceability costs are driven by the extent of

42

safety-relevant aspects, not the size of the entire system. These aspects are typi-
cally small size-wise, but need very careful analysis.

This article is directed towards inspections, which constitute only one class
of the several quality assurance measures that can be taken during the develop-
ment process. Inspections alone are seldom enough for ensuring the quality of
the design. Other important quality assurance measures taken in tandem with and
complementing inspections include prototyping, simulation, animation, and veri-
fication. In the future, we plan to investigate how we can expand our SysML-based
methodology to support other types of quality assurance measures. Particularly,
we would like to study how SysML models can be used for simulation and au-
tomated design verification. Another thread for future work is the development
of a more structured framework for expressing requirements. Two promising di-
rections that we plan to investigate related to requirements specification are: (1)
natural language requirement templates [47] and (2) requirement annotations [48].
Having a more rigorous requirements specification framework will not only im-
prove requirements quality and reuse, but will also lead to a more precise and
flexible mapping of the requirements onto design elements (e.g., block opera-
tions and states). This will in turn help with the extraction of better design slices
and also will pave the way for extending our work to non-behavioral safety re-
quirements. Lastly, we plan to conduct a more thorough evaluation of our work
through controlled experiments and larger industrial case studies. The main goal
of the evaluation will be to assess the extent to which developers benefit from our
framework and thus obtain a more conclusive picture of the cost-benefit trade-
offs for traceability in the context of safety certification. As a first step, we have
been quantitatively evaluating the usefulness of our slicing algorithm through a
controlled experiment with promising results. For details, see [49].

References

[1] Functional safety of electrical / electronic / programmable electronic safety-
related systems (IEC 61508), International Electrotechnical Commission:
International Electrotechnical Commission (2005).

[2] DO-178B - software considerations in airborne systems and equipment cer-
tification, Radio Technical Commission for Aeronautics (RTCA) Inc (1992).

[3] Road vehicles – functional safety, ISO draft standard (2009).

43

[4] J. Holt, S. Perry, SysML for systems engineering: Institute of engineering
and technology (2008).

[5] International Council on Systems Engineering, http://www.incose.org/.

[6] D. Falessi, S. Nejati, M. Sabetzadeh, L. Briand, A. Messina, Safeslice: a
model slicing and design safety inspection tool for sysml, in: SIGSOFT
FSE, 2011, pp. 460–463.

[7] M. Sabetzadeh, S. Nejati, L. Briand, A. Evensen Mills, Using SysML for
modeling of safety-critical software-hardware interfaces: Guidelines and in-
dustry experience, in: HASE, 2011, pp. 193–201.

[8] W. Schafer, H. Wehrheim, The challenges of building advanced mechatronic
systems, in: FOSE ’07, 2007, pp. 72–84.

[9] OMG Systems Modeling Language (OMG SysML),
http://www.omg.org/docs/formal/08-11-02.pdf, Object Management Group
(OMG), version 1.1. (2008).

[10] S. Friedenthal, A. Moore, R. Steiner, A Practical Guide to SysML: The Sys-
tems Modeling Language, Morgan Kaufmann, 2008.

[11] Survey of model-based systems engineering (MBSE) methodologies, IN-
COSE Survey (2008).

[12] C. Lewerentz, T. Lindner (Eds.), Formal Development of Reactive Systems
- Case Study Production Cell, Vol. 891 of LNCS, Springer, 1995.

[13] H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications
with UML, Addison-Wesley, 2000.

[14] B. Bruegge, A. Dutoit, Object-oriented software engineering - using UML,
patterns and Java (3rd ed.), Prentice Hall, 2009.

[15] L. Briand, T. Coq, T. Klykken, S. Nejati, R. Panesar-Walawege,
M.Sabetzadeh., Using SysML to support safety certification: A methodol-
ogy and case study, Tech. Rep. 2, SRL-DNV, 92 pages, Available at: http:
//vefur.simula.no/∼shiva/report2.pdf (December 2009).

44

[16] T. Klykken, A case study using SysML for safety-critical systems, Ph.D.
thesis, University of Oslo, available at: http://vefur.simula.no/
∼shiva/tonje.pdf (2009).

[17] D. Jackson, M. Thomas, Software for Dependable Systems: Sufficient Evi-
dence?, National Academy Press, 2007.

[18] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications, Wiley, 2009.

[19] D. Harel, R. Marelly, Specifying and executing behavioral requirements: the
play-in/play-out approach, Software and System Modeling 2 (2) (2003) 82–
107.

[20] C. Ericson, Hazard Analysis Techniques for System Safety, JOHN WILEY
& SONS, 2005.

[21] P. David, V. Idasiak, F. Kratz, Reliability study of complex physical systems
using SysML, Reliability Engineering & System Safety 95 (4) (2010) 431 –
450.

[22] K. Androutsopoulos, D. Clark, M. Harman, Z. Li, L. Tratt, Control depen-
dence for extended finite state machines, in: FASE, 2009, pp. 216–230.

[23] M. Abadi, L. Lamport, The existence of refinement mappings, in: LICS,
1988, pp. 165–175.

[24] E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.

[25] S. Barbey, C. Peraire, D. Buchs, A case study for testing object-oriented
software: A production cell (1998).

[26] G. Bazzana, R. Brigliadori, R. Cole, K. Kirkwood, F. Seigneur, Techniques
and tools for software assessment and certification, Annual Review in Auto-
matic Programming 16 (Part 2) (1992) 153 – 160.

[27] N. Juristo Juzgado, J. Morant, Common framework for the evaluation pro-
cess of kbs and conventional software, Knowl.-Based Syst. 11 (2) (1998)
145–159.

[28] D. Kelly, T. Shepard, Task-directed software inspection, Journal of Systems
and Software 73 (2004) 361–368.

45

[29] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, E. Romanova, Best
practices for automated traceability, IEEE Computer 40 (6) (2007) 27–35.

[30] A. Egyed, A scenario-driven approach to traceability, in: ICSE, 2001, pp.
123–132.

[31] W. Jirapanthong, A. Zisman, XTraQue: traceability for product line systems,
Software and System Modeling 8 (1) (2009) 117–144.

[32] B. Ramesh, M. Jarke, Toward reference models for requirements traceability,
IEEE TSE 27 (1) (2001) 58–93.

[33] R. K. Panesar-Walawege, M. Sabetzadeh, L. Briand, T. Coq, Characterizing
the chain of evidence for software safety cases: A conceptual model based
on the IEC 61508 standard, in: ICST, 2010, pp. 335–344.

[34] P. Mader, O. Gotel, I. Philippow, Getting back to basics: Promoting the
use of a traceability information model in practice, in: IEEE TEFSE ’09:
ICSE09 Wrkshp, 2009, pp. 21–25.

[35] S. Bohner, R. Arnold, Software Change Impact Analysis, IEEE Computer
Society, 1996.

[36] L. Briand, Y. Labiche, T. Yue, Automated traceability analysis for uml model
refinements, Information & Software Technology 51 (2) (2009) 512–527.

[37] D. ten Hove, A. Göknil, I. Kurtev, K. van den Berg, K. de Goede, Change
impact analysis for sysml requirements models based on semantics of trace
relations, in: Proceedings of the ECMDA Traceability Workshop (ECMDA-
TW), 2009, pp. 17–28.

[38] M. Weiser, Program slicing, in: Proceedings of the 5th International Confer-
ence on Software Engineering (ICSE’81), 1981, pp. 439–449.

[39] F. Tip, A survey of program slicing techniques., Tech. rep., Amsterdam, The
Netherlands (1994).

[40] D. Binkley, K. Gallagher, Program slicing, Advances in Computers (1996)
1–50.

46

[41] B. Korel, I. Singh, L. Ho Tahat, B. Vaysburg, Slicing of state-based mod-
els, in: 19th International Conference on Software Maintenance (ICSM’03),
2003, pp. 34–43.

[42] H. Kagdi, J. Maletic, A. Sutton, Context-free slicing of uml class models, in:
21st IEEE International Conference on Software Maintenance (ICSM’05),
2005, pp. 635–638.

[43] M. dos Santos Soares, J. Vrancken, A. Verbraeck, User requirements mod-
eling and analysis of software-intensive systems, Journal of Systems and
Software 84 (2) (2011) 328–339.

[44] ISO/IEC 42010:2007 – originally IEEE Std 1471:2000 – Recommended
Practice for Architectural Description of Software-intensive Systems (2007).

[45] P. Lago, P. Avgeriou, R. Hilliard, Guest editors’ introduction: Software ar-
chitecture: Framing stakeholders’ concerns, IEEE Software 27 (2010) 20–
24.

[46] P. Clements, R. Kazman, M. Klein, Evaluating Software Architecture: Meth-
ods and Case Studies, Boston: Addison-Wesley, 2002.

[47] T. Yue, L. Briand, Y. Labiche, A use case modeling approach to facilitate the
transition towards analysis models: Concepts and empirical evaluation, in:
12th International Conference on Model Driven Engineering Languages and
Systems (MODELS’09), 2009, pp. 484–498.

[48] A. Weissman, M. Petrov, S. Gupta, A computational framework for author-
ing and searching product design specifications, Advanced Engineering In-
formatics 25 (3) (2011) 516–534.

[49] L. Briand, D. Falessi, S. Nejati, M. Sabetzadeh, T. Yue, Traceability and
sysml design slices to support safety inspections: A controlled experiment,
Tech. Rep. 2010-08, Simula Research Laboratory (2010).

[50] S. Maoz, J. Ringert, B. Rumpe, ADDiff: semantic differencing for activity
diagrams, in: FSE, 2011, pp. 179–189.

47

Appendix A

Theorem 1. The block diagram and activity diagram slices generated by the al-
gorithm in Figure 10 satisfy the conditions in Definitions 4 and 5, respectively.

Proof:
Our proof consists of the following sub-arguments:

• ∀b ∈ Br · ∃b′ ∈ Bs · (bOp∩Block Opr ⊆ bOp′)∧ (bAttr∩Block Str ⊆ bAttr′)
where bOp is the set of operations of b, bOp′ is the set of operations of b′,
bAttr is the set of attributes of b, and bAttr′ is the set of attributes of b′.

∀b ∈ Br · ∃b′ ∈ Bs · ∀x · x ∈ (bOp ∩ Block Opr)
⇒ (by properties of ∩)
∀b ∈ Br · ∃b′ ∈ Bs · ∀x · x ∈ bOp ∧ x ∈ Block Opr

⇒ (by line 1 of algorithm in Figure 10 and definition of Block Elemr)
∀b ∈ Br · ∃b′ ∈ Bs · ∀x · x ∈ bOp ∧ x ∈ Design Elemr

⇒ (by line 10 of algorithm in Figure 10)
∀b ∈ Br · ∃b′ ∈ Bs · ∀x · x ∈ bOp′

∀b ∈ Br · ∃b′ ∈ Bs · ∀x · x ∈ (bAttr ∩ Block Str)
⇒ (by properties of ∩)
∀b ∈ Br · ∃b′ ∈ Bs · ∀x · x ∈ bAttr ∧ x ∈ Block Str

⇒ (by line 1 of algorithm in Figure 10 and definition of Block Elemr)
∀b ∈ Br · ∃b′ ∈ Bs · ∀x · x ∈ bAttr ∧ x ∈ Design Elemr

⇒ (by line 11 of algorithm in Figure 10)
∀b ∈ Br · ∃b′ ∈ Bs · ∀x · x ∈ bAttr′

• ∀ap ∈ AP ′ · ∃ap′ ∈ APs · ap = (N,n0, E) ∧ ap′ = (N ′, n′
0, E

′) ⇒ (N ∩
Act Ndr ⊆ N ′ ⊆ N) ∧ (E ∩Act Edr ⊆ E′).

48

x ∈ N ∩Act Ndr

⇒ (by properties of ∩)
x ∈ N ∧ x ∈ Act Ndr

⇒ (N = aNodes by line 16 of the algorithm in Figure 10)
x ∈ aNodes ∧ x ∈ Act Ndr

⇒ (by line 1 of algorithm in Figure 10 and definition of Act Elemr)
x ∈ aNodes ∧ x ∈ Design Elemr

⇒ (by line 18 of algorithm in Figure 10)
x ∈ aNodes ′

⇒ (N ′ = aNodes ′ by line 20 of the algorithm in Figure 10)
x ∈ N ′

x ∈ N ′

⇒ (N ′ = aNodes ′ by line 20 of the algorithm in Figure 10)
x ∈ aNodes′

⇒ (by line 18 of algorithm in Figure 10)
x ∈ aNodes

⇒ (N = aNodes by line 16 of the algorithm in Figure 10)
x ∈ N

x ∈ E ∩Act Edr

⇒ (by properties of ∩)
x ∈ E ∧ x ∈ Act Edr

⇒ (E = aEdges by line 16 of the algorithm in Figure 10)
x ∈ aEdges ∧ x ∈ Act Edr

⇒ (by line 1 of algorithm in Figure 10 and definition of Act Elemr)
x ∈ aEdges ∧ x ∈ Design Elemr

⇒ (by line 19 of algorithm in Figure 10)
x ∈ aEdges ′

⇒ (E′ = aEdges ′ by line 20 of the algorithm in Figure 10)
x ∈ E′

• There is at least one path from n0 to n′
0 (or to all successors of n′

0) that does
not go through any node in N ′. This directly follows from lines 24 to 28 of
the algorithm in Figure 10, and the fact that N ′ = aNodes ′ by line 20 of the
algorithm in Figure 10.

49

Appendix B

Proof of Soundness of the Algorithm in Section 5.2
In this appendix, we argue that the slicing algorithm in Figure 10 generates

activity diagram slices that are sound for verifying temporal safety requirements.
To do so, we first define a temporal semantic for safety requirements and activity
partitions. Let Σ be an alphabet. We define a trace σ over Σ to be a finite sequence
σ0σ1 . . . σn, where ∀i · 0 ≤ i ≤ n, σi ∈ Σ. We denote by Σ∗ the set of all finite
traces over Σ.

Definition 6 (Temporal Safety Requirements). Let Σ be an alphabet. We define
a temporal safety requirement to be a trace r ∈ Σ∗.

For example, the trace formalizing the requirement in Figure 8 is
go load position() · feed table() | initialize() · feed table()

where Σ is the set of block operations in Figure 6(a). In our work, the alphabet
Σ underlying a requirement r corresponds to the set of block operations and block
states related to r, i.e., Block Elemr.

In Definition 3, we described the syntax of activity partitions. Below, we pro-
vide a more detailed definition for the syntax of activity partitions which augments
the syntax already given in Definition 3 with labels for activity nodes.

Definition 7 (Activity Partition (Syntax)). An activity partition ap is a tuple
(Σ, N, n0, E, L), where Σ is a set of activity node labels, N is a finite set of activ-
ity nodes, n0 ∈ N is an initial activity node, E ⊆ N ×N is a set of activity edges,
and L : N → Σ is a labelling function.

We define the semantics of an activity diagram as the set of traces of activity
node labels that can be generated from the initial node of that diagram. Note that
SysML activity diagrams have two kinds of nodes: control nodes, (i.e., those de-
scribing actions/activities) and object nodes (i.e., those describing data). We first
argue that in activity diagrams conforming to our methodology, object nodes can
be replaced with control nodes. This is because according to Steps 6 and 7 of
our methodology in Section 3, we use object nodes in activity diagrams to model
signal communications only (i.e., sending and receiving of signals). Specifically,
an object node for sending or receiving of a signal, sig, can be replaced by a

50

action1

action2

sig2

sig1

action1

action2

(a) (b) (c) action1

action2

send
sig2receive

sig1

send
sig2

receive
sig1

(d) action1

action2
receive

sig1

send
sig1

Figure 18: Transforming object nodes used for sending and receiving of signals to control nodes

control node labelled send sig or receive sig, respectively. Figure 18 shows
an example of our translation. The two object nodes for receiving sig1 and send-
ing sig2 in Figure 18(a) are replaced by two control nodes describing the actions
for receiving sig1 and sending sig2 in Figure 18(b), respectively. According to
the semantics of SysML activity diagrams, an action/activity node becomes ac-
tive when it has received all its input tokens, i.e., signal tokens or control tokens.
So a synchronization bar is used in Figure 18(b) to capture the fact that all the
activity nodes (action1, send sig2, and receive sig1) must complete before action2
starts. The semantics of the example activity diagram in Figure 18(b) is then the
possible inter-leavings of the parallel actions (action1, send sig2, and receive sig1)
followed by action2. Two possible traces characterizing the semantics of the activ-
ity diagram in Figure 18(b) are shown in Figures 18(c) and (d). Our definition of
activity diagram semantics (given below) is very similar to the operational (trace-
based) semantics for activity diagrams given in [50]. The main difference is that
their semantic definition includes variables, while in our work data elements are
limited to signals, and hence, we do not formalize variables in our trace-based
semantics.

Definition 8 (Activity Partition (Temporal Semantics)). Let ap = (Σ, N, n0, E, L).
A trace σ = σ0σ1...σk is a behavior produced by ap iff there is a sequence
n0n1...nk+1 of activity nodes s.t. for every 0 ≤ j ≤ k, (nj, nj+1) ∈ E and
L(nj) = σj . The set of behaviors of ap, L(ap), is the set of all traces that can be
produced by ap.

Note that in the semantics of activity partitions, we treat the merge/split nodes
as nodes with ε label, indicating a silent action. For example, the set of activity
node labels for the FeedBelt activity partition in Figure 6(b) is { receive turnON,
receive AddBlank, receive FeedTable, initialize, add blank, feed table,
send Go Unload Position}. The initial node of this activity partition is receive turnON.
An example of a behavior of this activity diagram is

receive turnON · initialize · add blank · feed table · send Go Unload Position

51

In Definition 5, we provided a definition for activity partition slices. Here, we
extend that definition with conditions on the activity node labels.

Definition 9 (Activity Partition Slices (Syntax)). Let ap = (Σ, N, n0, E, L) be
an activity partition. Let r be a safety requirement over the set of alphabet
Σr. An activity partition slice of ap with respect to a safety requirement r is
(Σ′, N ′, n′

0, E
′, L′) where N ′, n′

0, and E ′ satisfy the conditions in Definition 5,
and in addition, we have

1. (Σr ∩ Σ) ⊆ Σ′ ⊆ Σ,
2. L′ ⊆ L

For example, the activity partitions in Figure 11(b) are slices of the partitions
in Figure 6(b) with respect to the requirement trace:

receive turnON · initialize · add blank · feed table · send Go Unload Position

The set of alphabet for the activity diagram slice for FeedBelt is
{receive FeedTable, feed table, sendGo Unload Position}which is a sub-
set of the alphabet of the activity diagram for FeedBelt in Figure 6(b) and a su-
perset of the alphabet of the requirement trace when it is constrained by the alpha-
bet of FeedBelt. Similarly, the set of alphabet for the activity diagram slice for
Table is {send FeedTable, go load position, initialize} which is a sub-
set of the alphabet of the activity diagram for Table in Figure 6(b) and a superset
of the alphabet of the requirement trace when it is constrained by the alphabet of
Table.

An activity partition slice apr is temporally sound if its set of behaviorsL(apr)
is preserved in the set of behaviors of its corresponding original (non-sliced) ac-
tivity partition L(ap). Hence, any temporal requirement that holds over the slice
will hold over the original design as well. To prove this argument, we note that
some of the activity node labels of the original activity partition are abstracted
away in the slice. Hence, we first define a notion of projection on the temporal
traces to formalize the act of abstracting away some labels from a trace.

Definition 10 (Trace Projection). Let Σ′ ⊆ Σ be an alphabet, and σ = σ0 . . . σn

be a trace over Σ. The projection of σ to Σ′, denoted σ ↓Σ′ , is defined as:

σ ↓Σ′= (σ0 ↓Σ′)(σ1 ↓Σ′)...(σn ↓Σ′)

where σi ↓Σ′ = σi if σi ∈ Σ′, and ε otherwise. Further, let T ⊆ Σ∗. The projection
of T to Σ′ is denoted T ↓Σ′ and is defined as:

52

T ↓Σ′= {σ | ∃σ′ ∈ T · σ = σ′ ↓Σ′}

Theorem 2. Let ap = (Σ, N, n0, E, L) be an activity partition, let r be a tempo-
ral safety requirement with the set of alphabet Σr ⊆ Σ, and let
apr = (Σ′, N ′, n′

0, E
′, L′) be an activity partition slice of ap with respect to r

generated by the algorithm in Figure 10. Then, apr is a sound activity diagram
slice of ap. That is,

I (Σr ∩ Σ) ⊆ Σ′ ⊆ Σ and L′ ⊆ L.

III L(apr) ⊆ L(ap) ↓Σ′

Proof:
Our proof has the following sub-arguments:

• (Σr ∩ Σ) ⊆ Σ′

e ∈ (Σr ∩ Σ)
⇒ (By Definitions 1 and 9)
∃n · n ∈ aNodes ∧ L(n) = e ∧ n ∈ Design Elem

⇒ (by Line 18 of the algorithm, and
that the algorithm does not change the activity node labels)
∃n · n ∈ aNodes ′ ∧ L′(n) = e

⇒ (N ′ = aNodes ′ by line 20 of the algorithm)
∃n · n ∈ N ′ ∧ L′(n) = e

⇒ (By Definition 9)
e ∈ Σ′

• Σ′ ⊆ Σ

e ∈ (Σ′)
⇒ (By Definition 9)
∃n · n ∈ N ′ ∧ L′(n) = e

⇒ (by N ′ ⊆ N from Theorem 1, and
that the algorithm does not change the activity node labels)
∃n · n ∈ N ∧ L(n) = e

⇒ (By Definition 9)
e ∈ Σ

53

• L′ ⊆ L. This follows from the fact that in our algorithm we never manipulate
the node labels.

• L(apr) ⊆ L(ap) ↓Σ′

σ ∈ L(apr)
⇒ (By Definition 8)
∃σ0, . . . , σk+1 ∈ Σ′ · ∃n0n1...nk+1 ∈ N ′ · ∀0 ≤ j ≤ k · (nj , nj+1) ∈ E′ ∧ L′(nj) = σj

⇒ (By N ′ ⊆ N , L′ ⊆ L, and Σ′ ⊆ Σ)
∃σ0, . . . , σk+1 ∈ Σ · ∃n0n1...nk+1 ∈ N · ∀0 ≤ j ≤ k · (nj , nj+1) ∈ E′ ∧ L(nj) = σj

⇒ (Case 1: (nj , nj+1) ∈ E)
∃σ0, . . . , σk+1 ∈ Σ · ∃n0n1...nk+1 ∈ N · ∀0 ≤ j ≤ k · (nj , nj+1) ∈ E ∧ L(nj) = σj

⇒ (By Definitions 8 and 10)
σ ∈ L(ap) ↓Σ′

⇒ (Case 2: (nj , nj+1) is a stuttering edge)
∃nj ,m0, . . . ,mt, nj+1 ∈ N · ∀0 ≤ l < t · (nj ,m0) ∈ E ∧ (ml,ml+1) ∈ E∧
(mt, nj+1) ∈ E ∧ L(ml), L(ml+1) ∈ Σ \ Σ′

⇒ (By Definitions 8 and 10)
σ ∈ L(ap) ↓Σ′

54

