
Code smells as system-level indicators of

maintainability: An Empirical Study

Aiko Yamashitaa,b, Steve Counsellc

aSimula Research Laboratory, P.O. Box 134, Lysaker, Norway
bDept. of Informatics, University of Oslo, Oslo, Norway

cBrunel University, Kingston Lane, Uxbridge, Middlesex, UK

Abstract

Code smells are manifestations of design flaws that can degrade code maintainability if
left to fester. The research in this paper investigates the potential of code smells to
reflect system-level indicators of maintainability. We report a study where the strengths
and limitations of code smells are evaluated against existing evaluation approaches. We
evaluated four medium-sized Java systems using code smells and compared the results
against previous evaluations on the same systems based on expert judgment and the
Chidamber and Kemerer suite of metrics. The systems were maintained over a period
up to 4 weeks. During maintenance, effort (person-hours) and number of defects were
measured, to validate the different evaluation approaches. Results suggest that code smells
are strongly influenced by size. An implication is that code smells are likely to yield
inaccurate results when comparing the maintainability of systems differing in size. When
comparing the evaluation approaches, expert judgment was found as the most accurate
and flexible since it considered effects due to a system’s size and complexity and could
adapt to different maintenance scenarios. We also found that code smells complemented
expert-based evaluation, since they can identify critical code that experts can sometimes
overlook.

Keywords: code smells, maintainability, empirical study, system evaluation

1. Introduction

Numerous studies have reported that significant effort/cost in software projects
is allocated to maintenance (Bennett, 1990; Harrison and Cook, 1990; Abran and
Nguyenkim, 1991; Pigoski, 1996; Jones, 1998). Consequently, it becomes important
to develop strategies for evaluating the maintainability of a system. Most known

Email addresses: aiko@simula.no (Aiko Yamashita),
steve.counsell@brunel.ac.uk (Steve Counsell)

Preprint submitted to Systems and Software May 16, 2012



maintainability assessments are based on software measures, such as the Main-
tainability Index (Welker, 2001) and the object-oriented suite of metrics proposed
by Chidamber and Kemerer (C&K) (1994).

Code smells reflect code that ‘screams out’ to be refactored (Fowler, 1999) and
can degrade aspects of code quality such as understandability and changeability;
they can also potentially lead to the introduction of faults. Fowler and Beck (1999)
provided a set of informal descriptions for twenty-two code smells and associated
them with different refactoring strategies that can be applied to remedy those
smells. The main motivation for using code smells for system maintainability
assessment is that they constitute software features that are potentially easier to
interpret than traditional OO software measures. They can pinpoint problematic
areas of code and, since many of the descriptions of code smells in (Fowler, 1999)
are based on situations that developers face on a daily basis, they are potentially
easier to understand and address by developers.

The research conducted by Anda (2007) evaluated and compared the maintain-
ability of four Java applications with nearly identical functionality but different
design and implementation through software measures (i.e., C&K code metrics)
and expert judgment1. The study concluded that software measures and expert
judgment addressed different aspects of maintainability in a system, and conse-
quently combining them can lead to more complete evaluations of maintainability.
We draw heavily on that study in this paper.

We report on our experiences of using bad smells in code (henceforward just
‘code smells’) for evaluating and comparing system-level maintainability of the
same four systems evaluated in (Anda, 2007) and we compare our results to those
previously derived via expert judgment and the C&K metrics. Results from the
three evaluation approaches were then compared to empirical measures of main-
tainability (i.e., maintenance effort and defects) resulting from a maintenance
project where change requests were implemented in each of those four systems
over a period of up to 4 weeks. Smell density (i.e., Smells/LOC) was used to ad-
just for size, but this measure conferred too much advantage on the largest system
(which had a very low smell density), leading to näıve assessments of maintain-
ability. When removing the largest system from the analysis and comparing the
remaining three systems (all three of similar size), smell density could single out
the system with the lowest maintainability. As a result, smell density may not
be useful when comparing the maintainability of systems differing considerably in
size. When comparing code smells with other evaluation approaches, we found

1According to Shanteau (1992), in cognitive psychology, experts are operationally de-
fined as those who have been recognized within their profession as having the necessary
skills and abilities to perform at the highest level.

2



that structural measures provided more insight into which system had the most
“balanced design”, but this approach ignored the effect of size when maintenance
consisted of small/medium tasks. Expert judgment was the most versatile, since
it considered both the effect of size and different maintenance scenarios (i.e., small
extensions to a system vis-à-vis large extensions).

The remainder of this paper is structured as follows: In the next section,
we provide related work. Section 3 describes the different elements of this case
study, namely the systems under analysis, the early evaluations performed by
Anda, our approach/rationale to evaluate maintainability via code smells and the
maintenance project from which the empirical measures were derived. In Section
4 we present the results of the maintainability evaluation based on code smells.
We then describe the outcomes from the maintenance project (Section 5). Section
6 presents the validation and comparison of the three evaluation approaches and
Section 7 discusses the results and their validity. Finally, we summarize the study
findings and present plans for future work in Section 8.

2. Related Work

2.1. Study Context

In the study conducted by Anda (2007), it was found that software measures
namely the C&K code metrics and expert judgment addressed different aspects
of maintainability in a system; thus combining them led to more complete evalu-
ations of maintainability. Nevertheless, the path from evaluation to development
of concrete action plans is not clear in expert-based evaluations. As Anda points
out (2007), if one were to ask an expert to identify the areas of code to modify
in order to improve maintainability it would be a hugely time-consuming and ex-
pensive process. The same kind of limitation applies to software measures. As
Marinescu (2002) and Heitlager (2007) suggest, code metrics lack ‘guidelines’ to
improve their value (and thereby maintainability). Since some code smells can
now be detected by automated means, it is appealing to evaluate their poten-
tial for indicating the maintainability at the system level and to compare that to
existing approaches such as software measures and expert judgment. Our study
investigated the same four systems reported in (Anda, 2007) and this enabled us to
compare a code smells-based approach with previous evaluation approaches with-
out introducing new systems. For instance, involving new systems would have lead
to the need for considering many moderator factors, and contextual variability. We
had the opportunity to conduct and observe a maintenance project involving these
four systems. This enabled us to validate empirically the different maintainability
evaluation approaches and understand better their strengths and limitations when
used in realistic settings.

3



2.2. Code Smells

The concept of a code smell was introduced as an indicator of software design
flaws that could potentially affect maintenance. As Fowler (1999) indicates, a
code smell is a sub-optimal design choice that can degrade different aspects of
code quality such as understandability and changeability. Code smells have be-
come an established concept for identifying patterns or aspects of software design
that may cause problems for further development and maintenance of the system
(Fowler, 1999; Lanza and Marinescu, 2005; Moha et al., 2010). Van Emden and
Moonen (2001) provided the first formalization of code smells and described a
tool for Java programs, while Mäntylä et al. (2003) and Wake (2003) both pro-
posed taxonomies for code smells. Travassos et al. (1999) proposed a process based
on manual detection to identify code smells for quality evaluations. In (Mäntylä
et al., 2004; Mäntylä and Lassenius, 2006) Mäntylä et al. provide an empirical
study of subjective detection of code smells and compares that approach with au-
tomated metrics-based detection. Results from manual detection were not uniform
between experienced developers and novices (i.e., experienced developers reported
more complex smells). Further Mäntylä et al. found that developers with less
experience with modules identified more code smells than developers familiar with
modules. Finally, when comparing subjective detection with automated detection,
it was found that developer evaluation of complex code smells did not correlate
with the results of the metrics detection. They concluded that subjective evalu-
ations and metric-based detection should be used in combination. Mäntylä also
reports on a experiment for evaluating subjective evaluation for code smells detec-
tion and refactoring decisions (Mäntylä, 2005). The research observed the highest
inter-rater agreements to be between evaluators for simple code smells, but when
the subjects were asked to make refactoring decisions, low agreement was observed.
Previous studies have investigated the effects of individual code smells on different
maintainability related aspects such as defects (Monden et al., 2002; Li and Shat-
nawi, 2007; Juergens et al., 2009; D’Ambros et al., 2010; Rahman et al., 2010),
effort (Deligiannis et al., 2003, 2004; Lozano and Wermelinger, 2008; Abbes et al.,
2011) and changes (Kim et al., 2005; Khomh et al., 2009; Olbrich et al., 2010).

D’Ambros et al. (2010) analyzed code in seven open source systems and found
that neither ‘Feature Envy’ nor ‘Shotgun Surgery’ smells was consistently corre-
lated with defects across systems. Juergens et al. (2009) observed the proportion
of inconsistently maintained ‘Duplicated Code’ smells in relation to the total set
of duplicates in C#, Java and Cobol systems and found (with the exception of
Cobol) that 18% of inconsistent ‘Duplicated Code’ smells were positively asso-
ciated to faults. Li and Shatnawi (2007) investigated the relationship between
six code smells and class error probability in an industrial-strength system and
found ‘Shotgun Surgery’ was positively associated with software faults. Monden

4



et al. (2002) performed an analysis of a Cobol legacy system and concluded that
cloned modules were more reliable, but required more effort than non-cloned mod-
ules. Rahman et al. (2010) conducted a descriptive analysis and non-parametric
hypothesis testing of source code and bug tracker in four systems. They found
that the majority of defective code was not significantly associated with clones
(80% of defective code at system level contained zero clones); clones may be less
defect-prone than non-cloned code and those that repeat less across the system
are more error-prone than more repetitive clones.

Abbes et al. (2011) conducted an experiment in which twenty-four students
and professionals were asked questions about the code in six open-source systems.
They concluded that ‘God Classes’ and ‘God Methods’ alone had no effect, but
code with the combination of ‘God Class’ and ‘God Method’ required a statis-
tically significant increase in effort and decrease in correctness when compared
with code without these smells. Deligiannis et al. (2003) conducted an observa-
tional study where four participants evaluated two systems, one compliant and
one non-compliant with the principle of avoiding ‘God Class’. Their main con-
clusion was that familiarity with the application domain played an important role
when judging the negative effects of god class. They also conducted a controlled
experiment (2004) with twenty-two undergraduate students as participants and
could corroborate their initial findings that a design without a ‘God Class’ re-
sulted in better completeness, correctness and consistency than that of the design
that did contain a ‘God Class’. Lozano and Wermelinger (2008) reported that exis-
tence of duplicated code increases maintenance effort on cloned methods. However,
they were unable to identify characteristics revealing a significant relation between
cloning and maintenance effort increase.

Khomh et al. (2009) analyzed the source code of Eclipse IDE and found that,
in general, classes containing the ‘Data Class’ code smell was changed more often
than classes without that smell. Kim et al. (2005) reported on the analysis of
two medium-sized open source libraries (Carol and dnsjava) and concluded that of
the ‘Duplicated Code’ smells, only 36% needed to be changed consistently; while
the remainder of the duplications evolved independently. Olbrich et al. (2010)
reported an experiment involving the analysis of three open-source systems and
found that ‘God Class’ and ‘Brain Class’ smells were changed less frequently and
had fewer defects than other classes when normalized with respect to size.

None of the aforementioned studies have explored the use of code smells for
determining the maintainability of a system, nor evaluated its accuracy and de-
scriptive richness in comparison to established methods for maintainability as-
sessments. Also, none have compared their results across several systems, which
constrains their internal and external validities. An additional knowledge gap is
that these studies consider effects of individual code smells on individual mainte-

5



nance measures located at class/method level. The applicability of their results
for maintainability assessments is still very limited, because currently there is no
knowledge on severity levels of each of the twenty-two code smells suggested by
Fowler; there is also no guidance on how to aggregate them at the system level
and interpret those aggregations to perform system-level assessments of maintain-
ability.

Examples of automated smell detection work can be found in (Marinescu and
Ratiu, 2004; Marinescu, 2005; Moha et al., 2006; Moha, 2007; Moha et al., 2008;
Rao and Reddy, 2008; Alikacem and Sahraoui, 2009; Khomh et al., 2009; Moha
et al., 2010). This has lead to commercial tools such as Borland Together (Borland,
2012) and InCode (Intooitus, 2012)as well as academic tools such as JDeodorant
(Fokaefs et al., 2007; Tsantalis et al., 2008) and iSPARQL (Kiefer et al., 2007).

2.3. Maintainability Evaluation

Maintainability is one of the software qualities defined by (ISO/IEC, 1991) as:
“The capability of the software product to be modified. Modifications may include
corrections, improvements or adaptation of the software to changes in environment
and in requirements and functional specifications”. To evaluate maintainability,
numerous conceptual surrogates have been defined alongside software quality and
measurement frameworks. Recent work on maintainability models can be found
in (Kajko-Mattsso et al., 2006; Pizka and Deissenboeck, 2007) as well as in technical
standards defined by ISO (ISO/IEC, 2005).Oman and Hagemeister (1992) suggests
a taxonomy for maintainability measures and Kitchenham et al. (1999) define an
ontology for software maintainability as an attempt to identify and describe the
major maintenance factors influencing software maintenance processes.

In software engineering research, relatively high emphasis has been given to
product and process factors for estimating maintenance effort and for maintainabil-
ity assessments. Many product-centered approaches focus on generating predic-
tion models by using historical data, using or refining previously defined software
measures, or suggesting methodologies for selecting, structuring and interpreting
software measures. Product-centered approaches that use software measures for
evaluating maintainability can be found in (Oman and Hagemeister, 1994; Ferne-
ley, 1999; Mathias et al., 1999; Muthanna et al., 2000; Fioravanti, 2001; Welker,
2001; Alshayeb and Wei, 2003; Succi et al., 2003; Benestad et al., 2006; Heit-
lager et al., 2007). A literature review of maintenance cost estimation models can
be found in (Koskinen and Tilus, 2003), and a systematic literature review on
the topic of maintainability evaluation and metrics can be found in (Riaz et al.,
2009). Some views have commented on traditional OO metrics’ lack of ‘control’
and difficulty in interpretation (Marinescu, 2002; Alshayeb and Wei, 2003; Heit-
lager et al., 2007). Benestad et al. (2006) assert that the biggest challenges of

6



metrics-based assessment of system quality is the selection of adequate metrics,
achieving a combination of metrics at system level that makes sense and, ulti-
mately, their interpretation. Other approaches suggest combining code analysis
with other approaches. One example is that by Mayrand and Coallier (1996), who
combine capability assessment (based on the ISO/IEC-12207 standard) and code
analysis. Work by Rosqvist et al. (2003) suggests combining code analysis with
expert judgment.

3. Case study

3.1. Systems Studied

To conduct a longitudinal study of software development, the Software Engineer-
ing Department at Simula Research Laboratory put out a tender for the devel-
opment of a new web-based information system to keep track of their empirical
studies. Based on the bids, four Norwegian consultancy companies were hired to
independently develop a version of the system, all using the same requirements
specification. More details on the initial project can be found in (Anda et al.,
2009). The systems developed were thus functionally equivalent, and constitute
the same systems studied by Anda in (Anda, 2007).

The same four functionally equivalent systems are used in the study presented.
We henceforward refer to them as System A, B, C and D, respectively. The systems
were primarily developed in Java, had similar three-layered architectures, but had
considerable differences in their design and implementation.

Their cost also differed notably (See Table 1), as the companies that were
hired also differed notably in their bids. The bid price may have been affected by
business factors within the companies (e.g., different business strategies to profit
from a project; some companies were willing to bid low to enter a new market). As
reported in (Anda et al., 2009), the choice of the four companies was a trade-off
between having a sufficient number of observations (projects) and having sufficient
means to hire the companies and observe their projects.

Table 1: Development costs for each system Anda et al. (2009)

System A B C D

Cost e25,370 e51,860 e18,020 e61,070

The main functionality of the systems consisted of keeping a record of the empir-
ical studies and related information at Simula (e.g., the researcher responsible of
the study, participants, data collected and publications resulting from the study).
Another key element of functionality was to generate a graphical report on the
types of studies conducted per year. The systems were all deployed over Simula

7



Research Laboratories Content Management System (CMS), which at that time
was based on PHP and a relational database system. The systems had to connect
to a database in the CMS to access data related to researchers at Simula as well
as information on the publications therein.

3.2. Previous Evaluations

In (Anda, 2007), two different approaches were used to evaluate and compare the
maintainability of the same aforementioned systems when they went fully opera-
tional. One was based on software measures adapted from the C&K metrics (Chi-
damber and Kemerer, 1994) and a second approach based on expert judgment.
The first approach draws heavily on the work by Benestad et al. (2006), who also
used the same systems for their analysis.

The structural properties of the four systems were measured through an adapted
version of the C&K metrics based on guidelines from (Bieman and Kang, 1995)
and via principal component analysis (PCA) (Benestad et al., 2006). PCA was
used to ensure that all measures were orthogonal implying that the same code fac-
tors would not be measured more than once. The list and description of the set of
measures (also used in (Anda, 2007)) is presented in Table 2. The measurements
were extracted via the M-System from Fraunhofer IESE (Ochs, 1998).

Table 2: List of software measures used in (Anda et al., 2009)

Structural measure Description

Lines of code (LOC) Number of non-commented lines of code

Comments Number of comments in the code

Classes Number of classes in the system

Weighted methods per class (WMC) Number of methods in a class

Calls to methods in unrelated class
(OMMIC)

Number of calls that a class has to unrelated classes

Calls from methods in unrelated class
(OMMEC)

Number of calls that a class has to unrelated classes

Number of children (NOC) Number of classes that inherit directly from the current
class

Depth of inheritance tree (DIT) Number of classes that are parents of a class, with the top-
most class having a count of one.

Tight class cohesion (TCC) Ratio of the number of method pairs of directly connected
public methods in a class and the number of maximal possi-
ble method pairs of connections between the public methods
of a class.

Subsequently, two different approaches were used to aggregate these measures at
system level to evaluate the maintainability of the systems: aggregation first and
combination first (these terms are taken from (Benestad et al., 2006)). In the first
approach, all the measures were aggregated into summary statistics for the four
systems (Table 3).

8



Table 3: Measures with aggregation-first approach in as described in (Anda, 2007)

System A B C D

LOC 7937 14549 7208 8293

Comments 1484 9135 1412 2508

Classes 63 162 24 96

WMC 6.9/11.2 7.8/10.3 11.4/12.5 4.9/4.5

OMMIC 7.7/15.8 5.3/11.8 8.6/25 4.7/14.1

OMMEC 7.7/20.6 5.3/15.6 8.6/16 4.7/10.1

NOC 0.46/2.75 0.59/2.37 0/0 0.76/3.81

DIT 0.46/0.5 0.75/0.81 0/0 0.83/0.54

TCC 0.26/0.37 0.17/0.31 0.20/0.23 0.11/0.22

In the second approach, the different measures were combined first per class by
using a technique called profile comparison (Morisio et al., 2002). This technique
consisted of using profile vectors, which define threshold values for each measure
in order to categorize artifacts into groups.

For example, given three supposed measures: m1,m2 and m3, for a given
class to be categorized as “Very high”, the measurement values for those measures
should start at 20, 30 and 100, respectively. Consequently, the profile vector would
be: Very High = {m1 >= 20,m2 >= 30,m3 >= 100}. The measurements per
class are iteratively compared to each profile vector, testing whether a “sufficient”
majority of measures support the categorization and if is not “strongly” opposed
by a minority of observations. For example, given our previous profile vector, if
a class A has m1 = 22,m2 = 20 and m3 = 150, it would be categorized as “Very
high”, given a rule that: “majority of measures support the classification”.

In the work reported in (Benestad et al., 2006), four categories were used: Low,
Average, High and Very High. The threshold values (profile vectors) and weights
for the measures can be found in (Benestad et al., 2006). Each class was then
classified into these four categories, according to how large their measures were.
The limits of each category were calculated from 0-50 percentile, 50-75, 75-90 and
above 90 percentile of all classes. The rule used to categorize a class was: “The
weighted sum of the criteria supporting the categorization should be larger than
the weighted sum opposing it”.

Table 4 displays the structural measures for the combination-first approach. In
this way, it is possible to evaluate for each system, the proportion of “potentially
problematic” classes and which are expected to exhibit High or Very High values
on their software measures. Based on the values from Table 3 and Table 4, Anda
concluded that System C2 had large and complex classes, uneven design, and

2In the work by Anda, the systems were also named A, B, C and D.

9



no use of inheritance. System D had a simple design and low coupling, despite
relatively high use of inheritance. System A had many elements coupled with large
dispersion values, but relatively low usage of inheritance. System B was deemed
more maintainable than System A due to lower coupling measures.

Table 4: Measures with combination-first approach (Anda, 2007)

System A B C D

Low 41 87 7 58

Average 12 40 9 30

High 8 30 6 6

Very high 2 5 2 2

When observing the measures with combination-first, Anda observed that Systems
A, C and D had few classes with high or very high values, although in System C,
the low total number of classes made this percentage large. Finally, System B
was difficult to judge since it displayed many classes with high/very high values,
but also many with low/acceptable values. Anda’s interpretation of structural
measures resulted in System D being the most maintainable and System C the
least maintainable. Systems A and B had very similar measurement values: in
aggregation-first, B was deemed better than A due to lower values on coupling
measures and in the combination-first, A was deemed better due to lower number
of classes with “High”/ “Very High” values.

Table 5 presents the ranking resulting from the interpretation of the software
measures, where: 1 = most maintainable and 4 = least maintainable. Anda re-
marks on the contingent nature of evaluations based on combined-first, given that
it is difficult to foresee the impact of class size classes containing high values on
the total maintainability of a system.

Table 5: Maintainability ranking by Anda using C&K metrics

System A B C D

Ranking 2 3 4 1

The second approach for maintainability evaluation by Anda was based on ex-
pert judgment. The decision of comparing software measures and expert judg-
ment -based maintainability evaluations was inspired on the findings by Jø rgensen
(2007). The study by Jørgensen reported that combining expert assessment and
formal methods usually provided the best results for software effort estimations.
Anda analyzed a maintainability report on the systems written by two experi-
enced software engineers, the first with more than twenty years of development
experience, and the second expert with ten years of experience. A summary of
the evaluation is given in Figure 1, which formed part of the rationale used by the
experts to perform the ranking of the systems.

10



• System A is likely to be the most maintainable system, at least as long as the extensions to the
system are not too large.

• System D exhibited slightly more potential maintainability problems than did System A, especially
as some of the code was unfinished due to ambitions that were not fulfilled. However, System D
may be a good choice if the system is to be extended significantly.

• System C was considered difficult to maintain. It may be easy to perform small maintenance tasks
on the system, but it is not realistic to think that it could be extended significantly.

• System B was too complex and comprehensive and is likely to be very difficult to maintain. The
design solution would have been more appropriate for a larger system.

Figure 1: Summary from expert’s review on the maintainability of the systems

Table 6 displays the results from evaluation performed by both experts as part
of Anda’s study where: 1 = most maintainable and 4 = least maintainable. An
important distinction made between the evaluations by Expert 1 and 2 was the
emphasis given to system size. Expert 1 deemed system B to be the least main-
tainable while Expert 2 deemed C to be the least maintainable. According to
Anda, the difference was due to “...the fact that Expert 1 considered size and sim-
plicity as more important for maintainability, while Expert 2 considered adherence
to object-oriented principles as more important...” (see Anda, 2007, pg.8). In that
way, from a size perspective, B became worst due to its size and complexity, while
C was favoured. From an OO design perspective, C was very “messy”, while B
had better structure.

Table 6: Maintainability ranking by Anda using expert judgment

System A B C D

Ranking Expert 1 1 4 3 2

Ranking Expert 2 1 3 4 2

3.3. Maintainability Evaluation Based on Code Smells

We used two commercial tools: Borland Together and InCode to detect code
smells. This was done for several reasons: first, to facilitate repeatability of stud-
ies investigating code smells. Many studies report on findings based on smells
detected by their own tools/methods and replication studies involving the same
tools/methods are seldom reported. Several studies have used Borland Together
to investigate the effects of code smells such as (Li and Shatnawi, 2007). Secondly,
both tools are based on detection strategies (metrics-based interpretations of code
smells) proposed by Marinescu (2002). We decided to measure as many types of
code smells as possible to reduce false negatives.

11



Table 7 presents the list of code smells that were detected in the systems, alongside
their descriptions, which were taken from (Fowler, 1999). It is important to note
that Together can detect more code smells than those included in the table, but
they were not included because we could not find any instances in the systems
under analysis. Also, the last smell in the table is not a smell, but a design
principle violation, as described by Martin (2002).

Table 7: Analyzed code smells and their descriptions, from (Fowler, 1999; Martin, 2002)

Smells Description

Data Class Classes with fields and getters and setters not implementing any
specific function

Data Clumps Clumps of data items that are always found together whether within
classes or between classes

Duplicated code in conditional
branches

Same or similar code structure repeated within a the branches of a
conditional statement

Feature Envy A method that seems more interested in another class other than
the one it is actually in. Fowler recommends putting a method in
the class that contains most of the data the method needs.

God (Large) Class A class has the God Class smell if the class takes too many re-
sponsibilities relative to the classes with which it is coupled. The
God Class centralizes the system functionality in one class, which
contradicts the decomposition design principles.

God (Long) Method A class has the God Method code smell if at least one of its methods
is very large compared to the other methods in the same class. God
Method centralizes the class functionality in one method

Misplaced Class In “God Packages” it often happens that a class needs the classes
from other packages more than those from its own package.

Refused Bequest Subclasses do not want or need everything they inherit

Shotgun Surgery A change in a class results in the need to make a lot of little changes
in several classes

Temporary variable is used for
several purposes

Consists of temporary variables that are used in different contexts,
implying that they are not consistently used. They can lead to
confusion and introduction of faults.

Use interface instead of imple-
mentation

Castings to implementation classes should be avoided and an inter-
face should be defined and implemented instead.

Interface Segregation Principle
Violation

The dependency of one class to another one should depend on the
smallest possible interface. Even if there are objects that require
non-cohesive interfaces, clients should see abstract base classes that
are cohesive. Clients should not be forced to depend on methods
they do not use, since this creates coupling

We used aggregation-first as the method to derive the code smell measures at
system level, since it constitutes a simple and straightforward way to analyze
code smells and no underlying assumptions are made. Another reason was that
combination-first approach described in (Benestad et al., 2006) is based on profile
vectors, and since currently there is no clear understanding of threshold values
for code smells, aggregation-first was deemed most adequate for an exploratory
study. In addition to plain smell aggregation, smell density was measured. Smell

12



density is equal to the smells divided by size (LOC). This was done to adjust for
size (Rosenberg, 1997). For the effects of our study, we calculated LOC as physical
LOC (i.e., including comment lines and blank lines), which were derived from
SVNKit (TMate-Sofware, 2010).

3.4. The Maintenance Project

After the CMS of Simula Research Laboratory was replaced by a new platform
called Plone (Plone Foundation, 2012), it was no longer possible to run the systems
under this platform. Consequently, a maintenance project was required. This
project was outsourced to two software companies in Eastern Europe at a total
cost of 50.000 Euros.

Maintenance tasks. Three maintenance tasks were implemented as described in
Table 8. Two tasks consisted of adapting the system to the new platform; a third
task consisted of adding new functionality required by the users at that time.

Developers. Six developers from two software companies based in Eastern Eu-
rope individually conducted all three maintenance tasks. The developers were
recruited from a pool of 65 participants in a study on programming skills (Berg-
ersen and Gustafsson, 2011) that also included maintenance tasks. The developers
were selected because their skill scores were > 0σ. They were also selected based
on their availability, English proficiency and motivation for participating in the
study.

Observations. Each of the six developers was asked to repeat the maintenance
tasks on a second system, resulting in 3 observations (cases) per system. Thus, we
make a distinction between “first round” cases and “second round” cases. “First
round” denotes when a developer has not maintained any of the systems previously,
and second round denotes the case when they are repeating the tasks on a second
system.

Activities and Tools. The developers were given an overview of the project
(e.g., the maintenance project goals, project activities) and a specification of each
maintenance task. When needed, they would discuss the maintenance tasks with
the researcher who was present at the site during the entire project duration.
Daily meetings were held where progress and issues encountered were tracked.
Acceptance tests were conducted once all tasks were completed and individual
open interviews were conducted where the developer was asked his/her opinion
of the system. MyEclipse (Genuitec, 2012) was used as the development tool,
together with MySQL (Oracle, 2012) and Apache Tomcat (The Apache Software
Foundation, 2012b). Defects were registered in Trac (Edgewall-Software, 2012)

13



Table 8: Maintenance tasks

No. Task Description

1 Adapting the
system to the
new Simula
CMS

The systems in the past had to retrieve information through a direct con-
nection to a relational database within Simula’s domain (information on
employees at Simula and publications). Now Simula uses a CMS based
on Plone platform, which uses an OO database. In addition, the Simula
CMS database previously had unique identifiers based on Integer type, for
employees and publications, as now a String type is used instead. Task
1 consisted of modifying the data retrieval procedure by consuming a set
of web services provided by the new Simula CMS in order to access data
associated with employees and publications.

2 Authentication
through web
services

Under the previous CMS, authentication was done through a connection to
a remote database and using authentication mechanisms available on that
time for Simula Web site. This maintenance task consisted of replacing the
existing authentication by calling a web service provided for this purpose.

3 Add new
reporting
functionality

This functionality provides options for configuring personalized reports,
where the user can choose the type of information related to a study to be
included in the report, define inclusion criteria based on people responsible
for the study, sort the resulting studies according to the date that they
were finalized, and group the results according to the type of study. The
configuration must be stored in the systems’ database and should only be
editable by the owner of the report configuration.

(a system similar to Bugzilla), and Subversion or SVN (The Apache Software
Foundation, 2012a) was used as the versioning system.

4. Maintainability Evaluation Based on Code Smells

Since the current state of art in code smell research has not yet investigated severity
levels or differences in impact size amongst types of smells, it was not possible to
calculate a weighted sum of the smells. Consequently, smells were simply added
up to summarize them at system level. For smell density, number of smells were
divided by physical LOC3 and then added up at system level. The results are
displayed in Table 9, where total smell, smell density and their standardized values
are reported. The distribution of smells per type and Mean and SD are also
reported.

Figure 2 shows, for each system, the standardized values for total number of
smells and total smell density. If we consider total number of smells, System C has
the lowest number of smells. Systems A and D have a similar number of smells,
whereas System B displays the highest number of smells.

3Note that in the work by Anda, the definition of LOC is not physical. Nevertheless,
the ratio between the systems remains the same for both interpretations of LOC.

14



Table 9: Measurement values and summary statistics of code smells

System A System B System C System D
Physical LOC 8205 26662 5768 9942
Total smells 111 161 44 97
Total smell density 1.35283 0.60386 0.76283 0.97566
Standardized value for smells 0.161 1.200 -1.231 -0.130
Standardized value for smell density 1.324 -0.987 -0.497 0.160
Code smell Qty. Den. Qty. Den. Qty. Den. Qty. Den.
Data class (DC) 12 0.146 32 0.120 9 0.156 24 0.241
Data clump (CL) 8 0.098 2 0.008 3 0.052 8 0.080
Duplicated code in conditional
branches (DUP)

1 0.012 4 0.015 2 0.035 2 0.020

Feature envy (FE) 37 0.451 34 0.128 17 0.295 25 0.251
God class (GC) 1 0.012 5 0.019 3 0.052 2 0.020
God method (GM) 4 0.049 14 0.053 3 0.052 5 0.050
Interface Segregation Principle Vio-
lation (ISPV)

7 0.085 8 0.030 1 0.017 11 0.111

Misplaced class (MC) 0 0.000 2 0.008 0 0.000 2 0.020
Refused bequest (RB) 17 0.207 8 0.030 0 0.000 1 0.010
Shotgun surgery (SS) 7 0.085 17 0.064 0 0.000 13 0.131
Temporary variable used for several
purposes (TMP)

12 0.146 31 0.116 6 0.104 4 0.040

Usage of implementation instead of
interface (IMP)

5 0.061 4 0.015 0 0.000 0 0.000

Means: Smells = 103.25, Density = 0.92
Standard Deviation: Smells = 48.11, Density = 0.32

If we observe the LOC of each system (Table 9), we see that size is somewhat
correlated to number of smells. An F test indicated a medium correlation (F ratio
= 5.7822, p = 0.1380). Although this correlation is not statistically significant, it
may hint that smells are influenced by the size of a system. This can be explained
partially by the fact that many of the detection strategies are based on measures

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

A B C D

S
td

. 
s
c
o
re

System

Smells
Smell Density

Figure 2: Standardized number of smells and density

15



related to size. For example, the God method is based on at least three size
measures: LOC, Number of local variables (NOLV), and Maximum number of
branches (MNOB). The fourth measure, Number of parameters (NOP) it could
be argued is size-related. Figure 3 displays the detection strategy for God method
(Marinescu, 2002), which can be translated to: from the top 10% methods in terms
of LOC larger than 70 LOC, select those methods that have more than 4 NOP or
more than 4 NOLV and the maximum number of if/else or case branches is bigger
than 4.

GodMethod := (LOC, TopValues(%20)) butnotin (LOC, LowerThan(70)) and

((NOP, HigherThan(4) or (NOLV, HigherThan(4))) and

(MNOB, HigherThan(4))

Figure 3: Detection strategy by Marinescu (2002) for God Method

We conducted one-way ANOVA and/or bivariate analysis (depending on whether
a smell was a binary or continuous) to compare means between smells and LOC
per class. Table 10 shows that the smells: Duplicated code in conditional branches,
Feature Envy, God Class, God Method, ISP Violation, Shotgun Surgery and Tem-
porary variable all display p values lower than .0001, indicating a significant posi-
tive correlation with LOC. As for the smells Data Class, Data Clump, Misplaced
Class, Refused Bequest, and Implementation instead of interface were not signif-
icantly correlated to LOC, and some indicated a negative correlation (e.g., Data
class displayed a T Ratio of -1.25085). Within the context of this study, we found
that a significant number of smells were actually dependent on size.

Table 10: Correlation tests between code smells and LOC per class

Code Smell F Ratio / T Ratio Sig.

Data Class -1.25085 0.2118

Data Clump -0.37268 0.7096

Duplicated code in conditional branches 76.2955 < .0001∗

Feature Envy 307.6406 < .0001∗

God Class 14.00279 < .0001∗

God Method 209.6445 < .0001∗

ISP Violation 7.291262 < .0001∗

Misplaced Class 0.5962 0.4405

Refused Bequest -0.57043 0.5687

Shotgun Surgery 3.024965 0.0027*

Temporary variable used for several purposes 105.5841 < .0001∗

Implementation instead of interface 2.6344 0.1054

16



When code smells are not adjusted for size (i.e., smell density is not used) System C
was deemed to have the highest maintainability. This system contained 44 smells in
total, corresponding to 1.231 times less number of smells than the average number
of code smells amongst all four systems. Also, this type of aggregation suggests
System B had very poor maintainability, since it contained 1.2 times more code
smells than the average number of smells (Table 9). Conversely, when smell density
is considered (which adjusts for the size of the systems), System B becomes ‘more’
maintainable than C, because this system is relatively large compared to the other
systems (1.47 times larger than the average physical LOC, and 4.6 times larger
than its smallest counterpart, System C). Consequently, its smell density resulted
very low (0.987 times lower than the average density according to Table 9). It
is interesting to note that there was no significant difference between the number
of smells and smell density for System D (see Figure 2). This was in contrast to
Systems A and B, both of which display significant differences between the two
measures. System C displays a medium difference between the two measures.

Table 11 presents an ordered ranking summarizing the evaluation based on
code smells; 1 represents the least value of table entry; for example, System C
contained the least number of smells. Assuming that the less smells in the system,
the more maintainable a system is, System C resulted as the most maintainable
according to number of smells, and B resulted as the most maintainable according
to smell density.

Table 11: Maintainability ranking according to code smells

System A B C D

Number of smells 3 4 1 2

Smell density 4 1 2 3

5. Project Outcomes

In Section 3.4, we provided details on the maintenance project and described
how developers were assigned two systems to work with. As such, we made a
distinction between “first round” (when the developer works for the first time)
and “second round” (when the developer had completed the tasks in one system
and is asked to repeat the tasks in a second system) cases. The design of the
study consisted of assigning two systems to each developer. That resulted in a
total of twelve projects (6 developers x 2 systems ). When this design choice
was made, we expected that the learning effect would not affect the maintenance
outcomes between systems maintained during the “first round” and the “second
round”. Contrary to our initial assumptions, we found that the learning effect and
code reuse during the second rounds highly influenced the effort. The difference in

17



the mean effort between first round projects and second round projects was 40.45
hours. On average, developers spent 2.03 times more in the first round compared
to the second round. Using round as the independent variable resulted on F ratio
of 8.2252 with significance level of 0.0167. For this reason, only observations from
the first round were considered. This resulted in 6 observations in total: two
observations for System A, one for System B, two for System C and one for D.

Table 12: Maintenance outcomes: means and standardized scores

Sys Obs. Effort Mean SD Std.Score Defects Mean SD Std.Score

A 2
57.45

109.71
83.58 36.95 -0.011

18

12
15 4.2 0.210

B 1 130.77 130.77 Na 1.416 21 21 Na 1.329

C 2
63.63

54
58.81 6.81 -0.761

12

7
9.5 3.5 -0.816

D 1 62.66 62.66 Na -0.644 10 10 Na -0.723

Table 12 displays for each system, the number of observations (projects), and
their corresponding effort (person-hours) and defects introduced (weighted sum).
It also displays the mean and standard deviation (for Systems A and C, which had
two observations), and the standardized scores for each measure. System B had
the highest standardized score for effort (1.416) and defects (1.329), which ranks
this system as the least maintainable. System A had a high variation between its
observations in relation to effort (SD = 36.95 hours), but not in relation to defects
introduced (SD = 4.2). Despite this variation, there is a clear tendency for this
system to be less maintainable than Systems C and D. Systems are summarized
in Table 13.

Table 13: Maintainability ranking according to empirical results

System A B C D

Ranking 3 4 1 2

Figure 4 is a diagrammatic view of the maintenance outcome scores. The stan-
dardized scores for effort and defects follow a very similar trend, except for System
A, which deviated to a small degree. Based on these observations, System C was
the most maintainable system, followed closely by System D. System A resulted
with an intermediate maintainability level; System B was deemed to be the least
maintainable system.

18



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

A B C D

S
td

. 
s
c
o
re

System

Effort
Defects

Figure 4: Maintenance scores for the systems

The data obtained from the open interviews supports the previous observations.
Based on the interviews, general conclusions on the maintainability of the systems
are the following:

• Systems A and C were considered rather small, and thus easy to understand and change (which
may have provided them with certain advantage over systems B and D).

• Despite of its relatively small size, System A was fault-prone, and had confusing design (this might
have reduced its advantage in relation to System D).

• System B was a big and complex system, which lacked flexibility and was hard to change.

• System C was the smallest, and thus easiest to perform changes on, but its high fault-proneness,
lack of adequate technical platform, and having one big, unstructured class caused some delays in
the project.

• System D had a medium size and a clear, understandable design.

Figure 5: Summary from open interviews

In the remainder of this sub-section, we will illustrate the points on each system
with literal comments given by the developers during the interviews.

Comments on System A. Both developers who worked with the system re-
ported that it was easy to get started with it due to its size (Comments 1, 2 in
Figure 6). Nevertheless, it was deemed to be fault-prone (Comment 3). This is in
line with the values for defects introduced. Potential reasons for this according to
the developers was that system A contained design/implementation choices that
“did not make sense”, which eventually lead to confusion (Comment 4).

19



Comment 1 : “A is a simple system and it was fast to start working with”

Comment 2 : “A was not so difficult, since the application was relatively small”

Comment 3 : “The biggest challenge was to make sure the changes made to the functionality
wouldnt break the system, and the biggest difficulty was duplications in the code”

Comment 4 : “In this system, data access objects were not only data access objects, they were
doing a lot of other things”

Figure 6: Statements from developers on system A

Comments on System B. The developer who worked on System B mentioned
that it was challenging to understand complex and non-standard frameworks and
to understand the overall mechanics of the system in order to “get started” (Com-
ment 1 in Figure 7). They also found System B’s mechanism for building queries to
the DB difficult to learn and utilize (Comment 2). Modifications were considered
time consuming and fault-prone due to the complex relationships of the classes
involved (Comments 3 and 4). This complexity resulted in unmanageable ripple
effects (Comment 5), which, in many cases, forced them to rollback and follow
another strategy to solve the task. These statements can explain the high values
on measures such as defects introduced.

Comment 1 :“Spent long time learning how the system worked”

Comment 2 :“The designer overdid it with a complicated framework with lots of layers and instru-
ments. It is nonsense to use such a framework in current days”

Comment 3 :“I spent long time extending it. The task was difficult because there were so many
manual changes”

Comment 4 :“It was more difficult in B to find the places to perform the changes because of the
logic spread”

Comment 5 :“There was no refactoring, that was considered too high risk”

Figure 7: Statements from developers on system B

Comments on System C. Developers who worked with System C agreed that
this system had neither structure nor inheritance, although it was deemed as easy
to learn (Comments 1, 2 in Figure 8). System C centralized the business logic
into one large class, considered very fault-prone (Comments 3, 4). The arbitrary
use of variables and the duplicated code were deemed as the main reasons for the
introduction of faults in this class. This was deemed as the main reason for delays
in the project (Comment 4).

20



Comment 1 :“Understanding the system was easy, but it is maintainable because it is small”

Comment 2 :“A messy system but not that complicated, so easy to learn”

Comment 3 :“The big class in C was not easy to use, it could have been shorter”

Comment 4 :“I had troubles with bugs in the big class, and mistakes in using different variables”

Figure 8: Statements from developers on system C

Comments on System D. In general, this system was deemed to have good
design that was understandable and easy to work with (Figure 9). Despite system
D being the second largest system, it scored as the second most maintainable
system. It is likely that the good design in D gave an advantage over smaller
systems such as A and C.

Comment 1 :“System D was quite understandable”

Comment 2 :“There were not many bugs”

Comment 3 :“System D is balanced, no classes or methods that do too much”

Figure 9: Statements from developers on system D

6. Comparison of Maintainability Evaluation Approaches

To compare the different evaluation approaches, we decided to compare and an-
alyze the degree of agreement between the maintainability rankings derived from
each of the assessment approaches (Tables 5, 6 and 11). Also, to validate the
approaches, we compared the degree of agreement between the rankings derived
from the evaluations and the ranking resulting from the empirical results (Table
13). For example, if an evaluation approach 1 ranked the systems: A,D,C,B and
the approach 2 ranked the systems B,C,D,A we would conclude that they have low
agreement. Furthermore, if based on the empirical outcomes, it turned out that
System A was the most maintainable and System B was the least maintainable,
then we would conclude that approach 1 is the most accurate one. In order to
derive a statistical measure for assessing the degree of agreement, Cohen’s Kappa
coefficient4 was used.

4Cohen’s Kappa coefficient is a statistical measure to represent inter-rater agreement
for categorical items.

21



Table 14: Maintainability evaluations and maintenance outcomes

High maint. Medium maint. Low maint.

E
v
a
lu

a
ti

o
n

s Structural measures D A,B C

Expert judgment A,D C B

Number of code smells C D, A B

Code smell density B C,D A

Maintenance outcomes C,D A B

Given that some evaluations ranked several systems similarly and the results from
the maintenance project also showed at least one pair of systems displaying very
similar results, we decided that a four-ranked ordinal scale would not give a fair
comparison. Instead, we decided to group the systems into three categories: High
maintainability, Medium maintainability and Low maintainability. Table 14 dis-
plays a merged version of the rankings reported in Tables 5, 6 and 11 adjusting
the results into three categories instead of four.

Note that the assessment of the two experts as reported in Table 6 was merged
into one to simplify the analysis. For example, the first row indicates that accord-
ing to C&K based approach, System D was evaluated as the most maintainable,
Systems A and B deemed as medium maintainable and System C as the least
maintainable. The last row in the table corresponds to the ranking based on the
actual maintenance outcomes (effort and defects), indicating that Systems C and
D required least effort and least defects were introduced (thus, considered most
maintainable) as System B required most effort and most defects were introduced
(thus, the least maintainable).

The Kappa coefficient across all evaluations was rather low (Po = 0.20). Table
16 provides a summary on the level of agreement between the different evaluation
approaches. In (Anda, 2007), structural measures and expert assessment are to
some extent aligned (Po = 0.25, as shown in Table 15). If we divide the four
systems into two groups instead: one with relatively good maintenance and one
with relatively poor maintenance, structural measures and expert judgment mainly
coincide, with A and D being acceptable systems and B and C being rather prob-
lematic. Numbers of smells agreed to an extent with previous evaluations, while
smell density displayed the lowest level of agreement, pointing in many different
directions (Po < 0.20, thus not included in Table 15). If we re-calculate the Kappa
excluding smell density, we obtain Po = 0.25, which is the same level of agreement
as structural measures and expert judgment.

When comparing the evaluation based on number of smells with structural
measures, we see that they agree with respect to System A having an medium
level of maintainability, but there is no matching for best or worst systems. When

22



Table 15: Comparison on levels of agreement between evaluations

Evaluation approaches Level of matching or agreement Kappa coefficient

Structural Measures vs.
Expert Judgment

Matching in relation to A and D being accept-
able systems and B and C being problematic.

0.25

Number smells vs. Struc-
tural Measures

Matching A as medium maintainable. No
matching for the rest.

0.25

Number smells vs. Expert
Judgment

Matching B as least maintainable. No match-
ing for the rest.

0.25

compared to expert judgment, numbers of smells agree that System B is the least
maintainable system. Finally, when comparing the evaluations with actual main-
tenance outcomes (See Table 16), number of code smells gave the best matching
over previous evaluations (with Po = 0.75): System C is most maintainable, A
is medium maintainable and B is the least maintainable. System D was ranked
with “medium maintainability” according to number of smells, but the empirical
maintenance outcomes showed slightly better results. However, given that System
D was still ranked after System C in the maintenance outcomes, this could also be
seen as a relatively good match. In Table 16, the first row indicates the degree of
matching of the evaluation based on C&K metrics compared to the maintenance
project outcomes, and its corresponding Kappa coefficient. The evaluation coin-
cides with the empirical ranking that D is most maintainable, and A is medium
maintainable. Conversely, the last row indicates the degree of agreement of the
evaluation based on smell density, which displayed zero matching with the main-
tenance outcomes.

Table 16: Comparison on levels of agreement with actual maintainability

Evaluation approaches Level of matching or agreement Kappa coefficient

Structural Measures Matching D as most maintainable and A as
intermediate.

0.50

Expert Judgment Matching D as most maintainable and B as
least maintainable.

0.50

Number smells Matching C as most maintainable, A as in-
termediate and B as least maintainable.

0.75

Smell density No matching with maintenance outcomes 0.00

Smell density ranked System B as highly maintainable, providing a rather un-
realistic comparison, at least for the size of maintenance tasks involved in this

23



project. This result suggests that one should be careful when using smell den-
sity to compare systems that differ greatly in size, given that the effect of size on
maintenance effort/defects could be masked by a density measure. However, if we
remove System B from the analysis and only consider A, C and D, smell density
can clearly discriminate the levels of maintainability given by the maintenance
outcomes. Smell density ranked Systems C and D together, followed by System
A, which is in accordance with the maintenance outcomes. In this scenario, smell
density has a higher degree of agreement with the maintenance outcomes than
number of smells.

Figure 10(a) shows a parallel plot of the standardized scores for: number of
smells, effort and defects. The left side of the figure consists of the distance between
Systems A, C and D in relation to the standardized scores on number of smells.
The line for System C is drawn at the bottom, indicating the lowest number of
smells, System D draws a line in the middle and System A is drawn at the top. In
the middle of the figure, the standardized scores on effort are drawn. Finally, on
the right side, standardized scores for defects are drawn.

Parallel plots are often used as visual aids when conducting pattern matching
(Trochim, 1989). Pattern matching is the equivalent technique to hypothesis test-
ing used in experimental settings, but applied to case study contexts. Lines in the
plot are drawn between the corresponding theoretical expectations (or measures)
and observed measures. Trochim (1989) asserts that the degree of correspondence
(or match) between hypothesized measures and observed measures can be judged
visually by the absence of crossed lines (crossovers) and the extent to which the
lines remain parallel.

In Figure 10(a), there are no crossovers between the theoretical measures (i.e.,
standardized score distance across systems for number of smells) and the observed
measures (i.e., standardized score distance across systems for effort and defects),
but the degree of correspondence for System D is low, since for the number of
smells, System D scored highly and this did not correspond to its results for effort
and defects. Figure 10(b) displays the distance across systems on the standardized
scores for smell density, effort and defects. We note that the distance between Sys-
tem C and System D is reduced, and consequently, the degree of correspondence
between the evaluation measures and the maintenance outcomes improves consid-
erably. Our preliminary results suggest that smell density tends to be sensitive to
larger differences in system size, but would behave consistently if systems of simi-
lar size were compared. Given the assumption that the systems under analysis are
of similar size, smell density can provide more informed results than just the sum
of the number of smells per system.

24



A
C
D

System

Smell density E ort DefectsNum Smells E ort Defects

(a) (b)

Figure 10: Parallel plots on the level of matching between the standardized scores of (a)
Number of smells and (b) Smell density, versus maintenance outcomes Effort and Defects

7. Discussion

7.1. Findings

Results from this study indicate that counting the number of smells at system
level can potentially be used for assessments of maintainability. In this study,
the Kappa coefficient for number of smells displayed slightly higher accuracy than
evaluations based on expert judgment and structural measures. It is important
to note however, that this result applies to contexts where medium to small tasks
constitute the typical maintenance scope. Large-scale maintainability projects
would fall out of study scope. We found that seven out of the twelve smells
measured in this study correlated strongly with class size. For some of the smells,
this can be explained by the fact that their detection strategies are based on size
measures. Also, since we sum up all the smells at system level, the final measure
is also related to system size. Consequently, using plain aggregation of different
code smells at system level may not provide any more information than LOC.

Smell density was used to adjust for size, but this measure conferred too much
advantage to large systems. Because smell densities on extremely large systems
become too small, this leads to unrealistic comparisons across systems highly dis-
similar in size. However, when removing System B from the analysis, the ranking
based on smell density matched better the maintenance outcomes than the rank-
ing based on number of smells. Consequently, we can expect that when comparing
systems with similar size, smell density can discriminate the system with the low-
est maintainability. When comparing evaluation approaches, expert judgment was
deemed the most practical of the approaches as it can be calibrated based on con-
textual information and can identify negative effects stemming from system’s size

25



and complexity. That was precisely the case for System B, which was judged by
the first expert as the least maintainable, based on its size and complexity. The
experts provided an alternative evaluation of System C:

“It may be easy to perform small maintenance tasks on the system but it is not realistic
to think that it could be extended significantly”.

The maintainability level of System C is contingent on the size of the extension or
change request to be implemented (a contextual factor). Evaluations incorporating
different maintenance scenarios are more accurate than evaluations providing one
universal perspective.

However, it seems as experts slightly misjudged System A, since it turned out
to be less maintainable than predicted. The system displayed high numbers of
code smells in comparison with C and D, and this was particularly visible when
observing its smell density. Two developers worked in this system and they both
agreed that its design was inconsistent and fault-prone.

These results stress the importance of incorporating contextual information
(e.g., size of maintenance tasks, maintenance scope). It is difficult to introduce
context-related variables into an evaluation based on code measures whether struc-
tural measures or code smells; the most reasonable alternative would be to use
expert assessment to interpret the measures. This has already been suggested by
Anda (2007), and our results support the conclusions of that work. Given that
code smells and LOC are somewhat related, one can still question the advantages
of code smell -based evaluations over the use of more simple measures such as
LOC. Code smells provide more information on the nature of the systems’ design
shortcomings than simply their size. Also, code smells can provide guidelines on
how to reduce not only the size of the code, but how to improve aspects such as
data-flow and functionality distribution to cope with a larger and more complex
code base. Of course, in some circumstances, architectural changes may be needed
to cope with system level issues and in such situations code smells may only pro-
vide limited support. Examples of architectural evaluation methods can be found
in (Knodel et al., 2006; Folmer and Bosch, 2007), surveys on software architecture
are reported in (Koziolek, 2011), and a set of architecture evaluation criteria is
reported in (Bouwers et al., 2009).

7.2. Validity of Results

We consider the validity of the study presented from three perspectives:

26



Construct validity. We defined maintainability through two widely accepted
measures: effort and number of defects introduced. They constitute a straightfor-
ward indication of maintainability. For each of these measures, we collected data
from several data sources and this allowed us to triangulate5 and ensure accuracy.
With respect to code smells, we used automated detection to avoid subjective bias.
Automated detection may still have false negatives, but the purpose of the study
was also to evaluate the usefulness of the code smell definitions and their respective
detection strategies to assess maintainability.

Internal validity. Several moderator factors were controlled for to ensure inter-
nal validity. For instance, the fact that all the evaluations used the same systems
removes much of the variability that often comes with the system’s context. The
maintenance tasks were also controlled for, and special attention was given to en-
sure a similar environment and development technology across projects. Within
the maintenance project, particular effort was spent on recruiting developers with
as similar skills as possible, by using a skill instrument reported in peer-reviewed
work (Bergersen and Gustafsson, 2011). For all developers with the exception of
one, their skill scores were > 0σ. The skill scores of the instrument were derived
from following the principles in (Bergersen et al., 2011), where performance on
each task was scored as an structured aggregate of the quality (or correctness) and
time for a correct solution for each task. Each task performance was subsequently
scaled using the polytmous Rasch model (Andrich, 1978) and validated against
test of working memory and Java programming knowledge reported in (Bergersen
and Gustafsson, 2011).

External validity. The results from this study should be interpreted within the
context of medium sized Java web information systems and medium to small main-
tenance tasks. The average effort for Tasks 1 and 2 were approximately 26 hours
and for Task 2 it was approximately 6 hours. Despite the fact that in software en-
gineering there is still no well-defined classifications of maintenance tasks (Sjøberg
et al., 2007), we can assume that Tasks 1 and 3 constitute medium sized mainte-
nance tasks and Task 2 constitutes a small maintenance task. It is possible to argue
that they represent typical maintenance scenarios, given that they are based on
real maintenance needs. Within software engineering corpus, a very small segment
of studies incorporate in-vivo analysis, and in our case, we count with qualitative
data to support the quantitative observations. We also consider the length of the
total project to be non-trivial.

5In the social sciences, triangulation is often used to indicate that more than two
methods are used in a study with a view to double (or triple) checking results. This is
also called “cross examination”(Yin, 2002).

27



This study does not constitute a longitudinal study and, as such, its results are
contingent on the context of an “acquisition project”, where developers maintain
the system for the first time. This study constitutes the first attempt to assess
the usefulness of code smells for evaluating maintainability at system level. The
rationale on how to derive system-level measures was based on previous work
involving structural measures.

8. Conclusions and Future Work

In this study, we evaluated four medium-sized Java systems using code smells
and compared the results against previous evaluations on the same systems based
on expert judgment and the C&K suite of metrics. The results from all three
evaluations were compared against empirical data resulting from a maintenance
project where several change requests were implemented in the systems.

We found that most of the code smells detection strategies used were based on
size-related measures and given that we sum up the smells at system level, total
measures were correlated to system size. A consequence of this is that when com-
paring systems varying in size, code smells may not provide any more information
than that provided by LOC. Smell density was used to adjust for size, but this
measure conferred too much advantage on large systems. Because smell densities
on extremely large systems become too small, this leads to unrealistic comparisons
across systems highly dissimilar in size. However, when comparing systems with
similar size, smell density discriminated the system with the lowest maintainability
according to the empirical maintenance outcomes. Consequently, code smells may
not be very useful for comparing systems that differ considerably in size, but can
potentially be useful for comparing systems of similar size.

When comparing code smells with other evaluation approaches, we found that
structural measures provided more insight into which system had the most “bal-
anced design”, but this measure ignored the effect of size when maintenance tasks
were of small/medium size. Expert judgment was found to be the most versatile
of all three approaches, since it considered both the effect of system size and po-
tential maintenance scenarios (e.g., small extensions vs. large extensions). One
advantage of code smells is that when comparing similar sized systems, they can
spot critical areas that experts may overlook due to lack of time.

The maintenance outcomes are contingent on the nature and size of the tasks.
Some tasks may influence certain areas of code that may or may not contain smells,
and this is not reflected in the system-level analysis. Further work will attempt
to analyze how well code smells can reflect potential maintenance problems, based
on the analysis of class-level effort and maintenance issues/difficulties reported on

28



areas of the code that were actually inspected and/or modified by the developers
during the maintenance project.

Acknowledgements. The authors thank Gunnar Bergersen for support in se-
lecting the developers of this study and Hans Christian Benestad for providing
technical support in the planning stage of the study. Also, our thanks to Bente
Anda, Dag Sjøberg and Magne Jørgensen for useful discussions that lead to the
paper. This work was partly funded by Simula Research Laboratory, and the Re-
search Council of Norway through the projects AGILE, grant no. 179851/I40, and
TeamIT, grant no. 193236/I40.

Authors’ Bio:

Aiko Yamashita received the BSc. degree from Costa Rica Institute of Technology
in 2004 and the MSc. degree from Göteborgs University in 2007. She is currently
finalizing her doctoral degree at Simula Research Laboratory and The Department
of Informatics, University of Oslo. She has worked five years as a software engineer
and consultant in Costa Rica, USA, Sweden and Norway within diverse organi-
zations. Her research interests include empirical software engineering, software
quality, psychology of programming, HCI and agile methods.

Steve Counsell is a Reader in the Department of Information Systems and Com-
puting at Brunel University. He received his PhD from Birkbeck, University of
London in 2002 and his research interests relate to empirical software engineering;
in particular, refactoring, software metrics and the study of software evolution. He
worked as an industrial developer before his PhD.

References

Abbes, M., Khomh, F., Gueheneuc, Y.G., Antoniol, G., 2011. An Empirical Study
of the Impact of Two Antipatterns, Blob and Spaghetti Code, on Program
Comprehension, in: European Conf. Softw. Maint. and Reeng., pp. 181–190.

Abran, A., Nguyenkim, H., 1991. Analysis of maintenance work categories through
measurement, in: Int’l Conf. Softw. Maint., pp. 104–113.

Alikacem, E.H., Sahraoui, H.A., 2009. A Metric Extraction Framework Based on
a High-Level Description Language, in: Working Conf. Source Code Analysis
and Manipulation, pp. 159–167.

Alshayeb, M., Wei, L., 2003. An empirical validation of object-oriented metrics in
two different iterative software processes. IEEE Trans. Softw. Eng. 29, 1043–
1049.

29



Anda, B., 2007. Assessing Software System Maintainability using Structural Mea-
sures and Expert Assessments, in: Int’l Conf. Softw. Maint., pp. 204–213.

Anda, B.C.D., Sjøberg, D.I.K., Mockus, A., 2009. Variability and Reproducibility
in Software Engineering : A Study of Four Companies that Developed the Same
System. IEEE Trans. Softw. Eng. 35, 407–429.

Andrich, D., 1978. A rating formulation for ordered response categories. Psy-
chometrika 43, 561–573.

Benestad, H., Anda, B., Arisholm, E., 2006. Assessing Software Product Maintain-
ability Based on Class-Level Structural Measures, in: Product-Focused Softw.
Process Improvement, pp. 94–111.

Bennett, K.H., 1990. An introduction to software maintenance. Inf. and Softw.
Tech. 12, 257–264.

Bergersen, G.R., Gustafsson, J.E., 2011. Programming Skill, Knowledge, and
Working Memory Among Professional Software Developers from an Investment
Theory Perspective. J. of Individual Differences 32, 201–209.

Bergersen, G.R., Hannay, J.E., Sjøberg, D.I.K., Dyb̊a, T., Karahasanovic, A.,
2011. Inferring Skill from Tests of Programming Performance: Combining Time
and Quality, in: Intl Conf. Softw. Eng. and Measurement, pp. 305–314.

Bieman, J.M., Kang, B.K., 1995. Cohesion and reuse in an object-oriented system,
in: Symposium on Softw. Reusability, pp. 259–262.

Borland, 2012. Borland Together, url:www.borland.com/us/products/together.

Bouwers, E., Visser, J., van Deursen, A., 2009. Criteria for the evaluation of
implemented architectures, in: Int’l Conf. Softw. Maint., IEEE. pp. 73–82.

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object oriented design.
IEEE Trans. Softw. Eng. 20, 476–493.

D’Ambros, M., Bacchelli, A., Lanza, M., 2010. On the Impact of Design Flaws on
Software Defects, in: Int’l Conf. Quality Softw., pp. 23–31.

Deligiannis, I., Shepperd, M., Roumeliotis, M., Stamelos, I., 2003. An empirical
investigation of an object-oriented design heuristic for maintainability. J. Syst.
Softw. 65, 127–139.

30



Deligiannis, I., Stamelos, I., Angelis, L., Roumeliotis, M., Shepperd, M., 2004.
A controlled experiment investigation of an object-oriented design heuristic for
maintainability. J. Syst. Softw. 72, 129–143.

Edgewall-Software, 2012. Trac [online] Available at: http://trac.edgewall.org [Ac-
cessed 10 May 2012].

van Emden, E., Moonen, L., 2001. Java quality assurance by detecting code smells,
in: Working Conf. Reverse Eng., pp. 97–106.

Ferneley, E.H., 1999. Design metrics as an aid to software maintenance: an em-
pirical study. J. Softw. Maint. 11, 55–72.

Fioravanti, F., 2001. Estimation and Prediction Metrics for Adaptive Maintenance
Effort of Object-Oriented Systems. IEEE Trans. Softw. Eng. 27, 1062–1084.

Fokaefs, M., Tsantalis, N., Chatzigeorgiou, A., 2007. JDeodorant: Identification
and removal of feature envy bad smells, in: Int’l Conf. Softw. Maint., pp. 519–
520.

Folmer, E., Bosch, J., 2007. A pattern framework for software quality assessment
and tradeoff analysis. Int’l J. of Softw. Eng. and Knowledge Eng. 17, 515–538.

Fowler, M., 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley.

Genuitec, 2012. My Eclipse [online] Available at: http://www.myeclipseide.com
[Accessed 10 May 2012].

Harrison, W., Cook, C., 1990. Insights on improving the maintenance process
through software measurement, in: Int’l Conf. Softw. Maint., pp. 37–45.

Heitlager, I., Kuipers, T., Visser, J., 2007. A Practical Model for Measuring
Maintainability, in: Int’l Conf. Quality of Information and Comm. Techn., pp.
30–39.

Intooitus, 2012. InCode [online] Available at:
http://www.intooitus.com/inCode.html [Accessed 10 May 2012].

ISO/IEC, 1991. International Standard ISO/IEC 9126, International Organization
for Standardization.

ISO/IEC, 2005. ISO/IEC Technical Report 19759:2005.

31



Jø rgensen, M., 2007. Estimation of Software Development Work Effort:Evidence
on Expert Judgment and Formal Models. Int’l J. of Forecasting 23, 449–462.

Jones, T.C., 1998. Estimating software costs. McGraw-Hill.

Juergens, E., Deissenboeck, F., Hummel, B., Wagner, S., 2009. Do code clones
matter?, in: Int’l Conf. Softw. Eng., pp. 485–495.

Kajko-Mattsso, M., Canfora, G., van Deursen, A., Ihme, T., Lehman, M.M.,
Reiger, R., Engel, T., Wernke, J., 2006. A Model of Maintainability - Sugges-
tion for Future Research, in: Reza, H.R.A., Hassan (Eds.), Software Engineering
Research and Practice. CSREA Press, pp. 436–441.

Khomh, F., Di Penta, M., Gueheneuc, Y.G., 2009. An Exploratory Study of
the Impact of Code Smells on Software Change-proneness, in: Working Conf.
Reverse Eng., pp. 75–84.

Kiefer, C., Bernstein, A., Tappolet, J., 2007. Mining Software Repositories with
iSPAROL and a Software Evolution Ontology, in: Int’l Workshop on Mining
Software Repositories, p. 10.

Kim, M., Sazawal, V., Notkin, D., Murphy, G.C., 2005. An empirical study of code
clone genealogies, in: European Softw. Eng. Conf. (ESEC) and ACM SIGSOFT
Symposium on Foundations of Softw. Eng. (FSE-13), pp. 187–196.

Kitchenham, B.A., Travassos, G.H., von Mayrhauser, A., Niessink, F., Schnei-
dewind, N.F., Singer, J., Takada, S., Vehvilainen, R., Yang, H., von Mayrhauser,
A., 1999. Towards an ontology of software maintenance. J. Softw. Maint. 11,
365–389.

Knodel, J., Lindvall, M., Muthig, D., Naab, M., 2006. Static evaluation of software
architectures, in: European Conf. Softw. Maint. and Reengineering, pp. 279–
294.

Koskinen, J., Tilus, T., 2003. Software maintenance cost estimation and modern-
ization support. Technical Report. Information Technology Research Institute,
University of Jyvaskyla.

Koziolek, H., 2011. Sustainability evaluation of software architectures, in: ACM
Sigsoft Int’l Conf. on the Quality of Softw. Architectures, pp. 3–12.

Lanza, M., Marinescu, R., 2005. Object-Oriented Metrics in Practice. Springer.

32



Li, W., Shatnawi, R., 2007. An empirical study of the bad smells and class error
probability in the post-release object-oriented system evolution. J. Syst. Softw.
80, 1120–1128.

Lozano, A., Wermelinger, M., 2008. Assessing the effect of clones on changeability,
in: Int’l Conf. Softw. Maint., pp. 227–236.

Mäntylä, M., 2005. An experiment on subjective evolvability evaluation of object-
oriented software: explaining factors and interrater agreement, in: Int’l Conf.
Softw. Eng., pp. 277–286.

Mäntylä, M., Vanhanen, J., Lassenius, C., 2003. A taxonomy and an initial em-
pirical study of bad smells in code, in: Int’l Conf. Softw. Maint., pp. 381–384.

Mäntylä, M., Vanhanen, J., Lassenius, C., 2004. Bad smells -humans as code
critics, in: Int’l Conf. Softw. Maint., pp. 399–408.

Mäntylä, M.V., Lassenius, C., 2006. Subjective evaluation of software evolvability
using code smells: An empirical study. Empirical Software Engineering 11,
395–431.

Marinescu, R., 2002. Measurement and Quality in Object Oriented Design. Doc-
toral thesis. “Politehnica” University of Timisoara.

Marinescu, R., 2005. Measurement and quality in object-oriented design, in: Int’l
Conf. Softw. Maint., pp. 701–704.

Marinescu, R., Ratiu, D., 2004. Quantifying the quality of object-oriented design:
the factor-strategy model, in: Working Conf. Reverse Eng., pp. 192–201.

Martin, R.C., 2002. Agile Software Development, Principles, Patterns and Prac-
tice. Prentice Hall.

Mathias, K.S., Cross, J.H., Hendrix, T.D., Barowski, L.A., 1999. The role of
software measures and metrics in studies of program comprehension, in: ACM
Southeast regional Conf., p. 13.

Mayrand, J., Coallier, F., 1996. System acquisition based on software product
assessment, in: Intl Conf. Softw. Eng., pp. 210–219.

Moha, N., 2007. Detection and correction of design defects in object-oriented
designs, in: ACM SIGPLAN Conf. on Object-oriented Programming Systems
and Applications, pp. 949–950.

33



Moha, N., Gueheneuc, Y.G., Duchien, L., Le Meur, A.F., 2010. DECOR: A
Method for the Specification and Detection of Code and Design Smells. IEEE
Trans. Softw. Eng. 36, 20–36.

Moha, N., Gueheneuc, Y.G., Le Meur, A.F., Duchien, L., 2008. A domain anal-
ysis to specify design defects and generate detection algorithms. Fundamental
Approaches to Softw. Eng. 4961, 276–291.

Moha, N., Gueheneuc, Y.G., Leduc, P., 2006. Automatic generation of detection
algorithms for design defects, in: IEEE/ACM Int’l Conf. on Automated Softw.
Eng., pp. 297–300.

Monden, A., Nakae, D., Kamiya, T., Sato, S., Matsumoto, K., 2002. Software qual-
ity analysis by code clones in industrial legacy software, in: IEEE Symposium
on Software Metrics, pp. 87–94.

Morisio, M., Stamelos, I., Tsoukias, A., 2002. A new method to evaluate soft-
ware artifacts against predefined profiles, in: Int’l Conf. on Softw. Eng. and
Knowledge Eng., pp. 811–818.

Muthanna, S., Kontogiannis, K., Ponnambalam, K., Stacey, B., 2000. A main-
tainability model for industrial software systems using design level metrics, in:
Working Conf. Reverse Eng., pp. 248–256.

Ochs, M., 1998. M-System - Calculating Software Metrics from C++ Source Code
(Report no. 005/98). Technical Report. Fraunhofer IESE.

Olbrich, S.M., Cruzes, D.S., Sjøberg, D.I., 2010. Are all code smells harmful? A
study of God Classes and Brain Classes in the evolution of three open source
systems, in: Int’l Conf. Softw. Maint., pp. 1–10.

Oman, P., Hagemeister, J., 1992. Metrics for assessing a software system’s main-
tainability, in: Int’l Conf. Softw. Maint., pp. 337–344.

Oman, P., Hagemeister, J., 1994. Construction and testing of polynomials pre-
dicting software maintainability. J. Syst. Softw. 24, 251–266.

Oracle, 2012. My Sql [online] Available at: http://www.mysql.com [Accessed 10
May 2012].

Pigoski, T.M., 1996. Practical Software Maintenance: Best Practices for Managing
Your Software Investment. Wiley.

34



Pizka, M., Deissenboeck, F., 2007. How to effectively define and measure main-
tainability, in: Softw. Measurement European Forum.

Plone Foundation, 2012. Plone CMS: Open Source Content Management [online]
Available at: http://plone.org [Accessed 10 May 2012].

Rahman, F., Bird, C., Devanbu, P., 2010. Clones: What is that smell?, in: Intl
Conf. Softw. Eng., pp. 72–81.

Rao, A.A., Reddy, K.N., 2008. Detecting bad smells in object oriented design
using design change propagation probability matrix, in: Int’l Multiconference
of Engineers and Computer Scientists, pp. 1001–1007.

Riaz, M., Mendes, E., Tempero, E., 2009. A systematic review of software main-
tainability prediction and metrics, in: Int’l Conf. Softw. Eng., pp. 367–377.

Rosenberg, J., 1997. Some Misconceptions About Lines of Code, in: Int’l Sympo-
sium on Softw. Metrics, pp. 137–142.

Rosqvist, T., Koskela, M., Harju, H., 2003. Software Quality Evaluation Based on
Expert Judgement. Softw. Quality Control 11, 39–55.

Shanteau, J., 1992. Competence in experts: The role of task characteristics. Or-
ganizational Behavior and Human Decision Processes 53, 252–266.

Sjøberg, D.I.K., Dyb̊a, T., Jø rgensen, M., 2007. The Future of Empirical Methods
in Software Engineering Research. Future of Software Engineering (FOSE) SE-
13, 358–378.

Succi, G., Pedrycz, W., Stefanovic, M., Miller, J., 2003. Practical assessment of the
models for identification of defect-prone classes in object-oriented commercial
systems using design metrics. J. Syst. Softw. 65, 1–12.

The Apache Software Foundation, 2012a. Apache Subversion [online] Available at:
http://subversion.apache.org [Accessed 10 May 2012].

The Apache Software Foundation, 2012b. Apache Tomcat [online] Available at:
http://tomcat.apache.org [Accessed 10 May 2012].

TMate-Sofware, 2010. SVNKit - Subversioning for Java. [online] Available at:
http://svnkit.com [Accessed 10 May 2012].

Travassos, G., Shull, F., Fredericks, M., Basili, V.R., 1999. Detecting defects in
object-oriented designs, in: ACM SIGPLAN Conf. on Object-oriented program-
ming, systems, languages, and applications, pp. 47–56.

35



Trochim, W., 1989. An introduction to concept mapping for planning and evalu-
ation. Evaluation and program planning 12, 1–16.

Tsantalis, N., Chaikalis, T., Chatzigeorgiou, A., 2008. JDeodorant: Identification
and removal of type-checking bad smells, in: European Conf. Softw. Maint. and
Reeng., pp. 329–331.

Wake, W.C., 2003. Refactoring Workbook. Addison-Wesley.

Welker, K.D., 2001. Software Maintainability Index Revisited. CrossTalk - J. of
Defense Softw. Eng .

Yin, R., 2002. Case Study Research : Design and Methods (Applied Social Re-
search Methods). SAGE.

36


