Combining Search-based and Adaptive Random
Testing Strategies for Environment Model-based Testing
of Real-time Embedded Systems

Muhammad Zohaib Igbal"?, Andrea Arcuri', Lionel Briand"*

! Certus Center for V & V, Simula Research Laboratory, P.O. Box 134, Lysaker, Norway
2 Department of Informatics, University of Oslo, Norway
3SnT Center, University of Luxembourg, Luxembourg
{zohaib, arcuri }@simula.no, lionel.briand@uni.lu

Abstract. Effective system testing of real-time embedded systems (RTES) re-
quires a fully automated approach. One such black-box system testing approach
is to use environment models to automatically generate test cases and test ora-
cles along with an environment simulator to enable early testing of RTES. In
this paper, we propose a hybrid strategy, which combines (1+1) Evolutionary
Algorithm (EA) and Adaptive Random Testing (ART), to improve the overall
performance of system testing that is obtained when using each single strategy
in isolation. An empirical study is carried out on a number of artificial problems
and one industrial case study. The novel strategy shows significant overall im-
provement in terms of fault detection compared to individual performances of
both (1+1) EA and ART.

1. Introduction

Real-time embedded systems (RTES) are widely used in critical domains where high
system dependability is required. These systems typically work in environments com-
prising of large numbers of interacting components. The interactions with the envi-
ronment are typically bounded by time constraints. Missing these time deadlines, or
missing them too often for soft real-time systems, can lead to serious failures leading
to threats to human life or the environment. There is usually a great number and varie-
ty of stimuli from the RTES environment with differing patterns of arrival times.
Therefore, the number of possible test cases is usually very large if not infinite. Test-
ing all possible sequences of stimuli is not feasible. Hence, systematic automated
testing strategies that have high fault revealing power are essential for effective test-
ing of industry scale RTES. The system testing of RTES requires interactions with the
actual environment. Since, the cost of testing in actual environments tends to be high,
environment simulators are typically used for this purpose.

In our earlier work, we proposed an automated system testing approach for RTES
software based on environment models [1, 2]. The models are developed according to
a specific strategy using the Unified Modeling Language (UML) [3], the Modeling
and Analysis of Real-Time Embedded Systems (MARTE) profile [4] and our pro-
posed profile [5]. These models of the environment were used to automatically gener-

ate an environment simulator [6], test cases, and obtain test oracle [1, 2].

In our context, a test case is a sequence of stimuli generated by the environment
that is sent to the RTES. A test case can also include changes of state in the environ-
ment that can affect the RTES behavior. For example, with a certain probability, some
hardware components might break, and that affects the expected and actual behavior
of the RTES. A test case can contain information regarding when and in which order
to trigger such changes. So, at a higher level, a test case in our context can be consid-
ered as a setting specifying the occurrence of all these environment events in the sim-
ulator. Explicit “error” states in the models represent states of the environment that
are only reached when RTES is faulty. Error states act as the oracle of the test cases,
i.e., a test case is successful in triggering a fault in the RTES if any of these error
states is reached during testing.

In previous work, we investigated several testing strategies to generate test cases.
We used random testing (RT) [7] as baseline, and then considered two different ap-
proaches: Search-based Testing (SBT) [8] and Adaptive Random Testing (ART) [1].
For SBT, an order function was defined that utilizes the information in environment
models to guide the search toward the error states. In contrast, with ART, test cases
are rewarded based on their diversity. The results indicated that, apart from the failure
rate of the system under test (SUT), the effectiveness of a testing algorithm also de-
pends on the characteristics of the environment models. For problems where the envi-
ronment model is easier to cover or where the failure rate of the RTES is high, even
RT outperforms SBT. However, for more complex problems, SBT showed much
better performance than RT. This raised the need for a strategy that combines the
individual benefits of the two strategies and utilizes adaptive mechanisms based on
the feedback from executed test cases.

In this paper, we extend our previous work by devising such a hybrid strategy that
aims at combining the best search technique, i.e., (1+1) Evolutionary Algorithm (EA)
in our experiments and ART (which is the algorithm that gave best results in our
earlier experiments in [2]) in order to achieve better overall results in terms of fault
detection. We defined two different strategies for combining these algorithms, but due
to space constraints, in this paper, we only discuss the strategy that showed the best
results. The hybrid strategy (HS) discussed here starts with running (1+1) EA and
switches to ART when (1+1) EA stops yielding fitter test cases. The decision of when
to switch (referred to as configuration) can have significant impact on the perfor-
mance of the strategy and one main objective of this paper is to empirically investi-
gate different configuration options. The other combination strategy started by run-
ning ART and later switched to (1+1) EA if consecutive test cases generated through
ART showed better fitness compared to previously executed test cases. It did show
improvements over the individual algorithms, but fared worse than HS.

We evaluate the fault detection effectiveness of HS by performing a series of ex-
periments on 13 artificial problems and an industrial case study. The RTES of the
artificial problems were based on the specifications of two industrial case studies.
Their environment models were developed in a way to vary possible modeling char-
acteristics so as to understand their effect on the performance of the test strategies.
We could not have covered such variations in environment models with one or even a
few industrial case studies, hence the motivation to develop artificial cases. The in-
dustrial case study used is of a marine seismic acquisition system, which was devel-

oped by a company leading in this industry sector. For all these cases, we compared
the performance of HS (with best configuration) with that of ART, (1+1) EA, and RT.
The results suggest that in terms of success rates (number of times an algorithm found
a fault within a given test budget), for the problems where RT/ART showed better
performance over (1+1) EA, HS results are similar to ART/RT and for the problems
where (1+1) EA was better, HS results are similar to those of (1+1) EA, thus suggest-
ing that HS combines the strength of both algorithms.

The rest of the paper is organized as follows. Section 2 discusses the related work,
while Section 3 provides an introduction to the earlier proposed environment model-
based system testing methodology that we improve in this paper. Section 4 describes
the proposed hybrid strategy, whereas Section 5 reports on the empirical study carried
out for evaluation purposes. Finally, Section 6 concludes the paper.

2. Related Work

Depending on the goals, testing of RTES can be performed at different levels: model-
in-the-loop, hardware-in-the-loop, processor-in-the-loop, and software-in-the-loop
[9]. Our approach falls in the software-in-the-loop testing category, in which the em-
bedded software is tested on the development platform with a simulated environment.
The only variation is that, rather than simulating the hardware platform, we use an
adapter for the hardware platform that forwards the signals from the SUT to the simu-
lated environment. This approach is especially helpful when the software is to be
deployed on multiple hardware platforms or the target hardware platform is stable.

There are only a few works in literature that discuss RTES testing based on envi-
ronment models rather than system models. Auguston ef al. [10] discusses the model-
ing of environment behaviors for testing of RTES using an event grammar. The be-
havioral models contain details about the interactions with the SUT and possible haz-
ardous situations in the environment. Heisel et al. [11] propose the use of a require-
ment model and an environment model along with the model of the SUT for testing.
Adjir et al. [12] discuss a technique for testing RTES based on the system model and
assumptions in the environment using Labeled Prioritized Timed Petri Nets. Larsen et
al. [13] propose an approach for online RTES testing based on time automata to mod-
el the SUT and environmental constraints. Igbal ef al. [5] propose an environment
modeling methodology based on UML and MARTE for black-box system testing.
Fault detection effectiveness of testing strategies based on these models was evaluated
and reported in [8], including RT/ART [1], GA, and (1+1) EA. The results indicate
that SBT show significantly better performance over RT for a number of cases and
significantly worse performance than RT for a number of other cases.

There has been some work to combine SBT with RT. Andrews et al. propose the
use of GA to tune parameters for random unit testing [14]. An evolutionary ART
algorithm that uses the ART distance function as a fitness function for GA is pro-
posed in [15]. In [16], the authors propose a search-based ART algorithm by using a
variant of ART distance function as the fitness function for Hill Climbing to optimize
the results of ART when the input domains are more than two dimensional.

The work presented here improves the work on environment model-based testing
presented in [8] by combining the strengths of both ART and (1+1) Evolutionary
Algorithm. Approaches discussed in the literature for combining ART/RT with SBT
are restricted to improving ART or tuning RT by using search techniques. In contrast,
here we want to use (1+1) EA to generate test cases that exploit the characteristics of
environment models as well as benefit from the test diversity generated by ART, thus
combining the two approaches.

3. Environment Model-based Testing

In this section, we discuss in more details the various components of our environment
model-based testing approach.

3.1. Environment Modeling & Simulation

For RTES system testing, software engineers familiar with the application domain
would typically be responsible for developing the environment models. The environ-
ment models consist of a domain model and several behavioral models. The domain
model, represented as a class diagram, captures the structural details of the RTES
environment, such as the environment components, their relationships, and their char-
acteristics. The behavior of the environment components is captured by state ma-
chines. These models are developed, based on our earlier proposed methodology by
using UML, MARTE, and our proposed profile for environment modeling [5]. These
models not only include the nominal functional behavior of the environment compo-
nents (e.g., booting of a component) but also include their robustness (failure) behav-
ior (e.g., break down of a sensor). The latter are modeled as “failure” states in the
environment models. The behavioral models also capture what we call “error” states.
These are the states of the environment that should never be reached if the SUT is
implemented correctly. Therefore, error states act as oracles for the test cases. Java is
used as an action language and OCL (Object Constraint Language) is used to specify
constraints and guards. An important feature of these environment models is that they
capture the non-determinism in the environment, which is a common characteristic
for most RTES environments. Non-determinism may include, for example, failures of
components, or user commands. Each environment component can have a number of
non-deterministic choices whose exact values are selected at the time of testing.

Using model to text transformations, the environment models are automatically
transformed into environment simulators implemented in Java. The transformations
follow specific rules that we discussed in detail in [6]. During simulation a number of
instances can be created for each environment component, which can interact with
each others and the SUT (for example multiple instances of a sensor component). The
generated simulators communicate with the SUT through a communication layer
(e.g., TCP layer), which is written by software engineers. They are also linked with
the test framework that provides the appropriate values for each simulation execution.
The choice of Java as target language is based on actual requirements of our industrial
partner, where the RTES under study only involves soft real-time constraints.

3.2. Testing RTES based on Environment Models

In our context, a test case execution is akin to executing the environment simulator.
During the simulation, values are required for the non-deterministic choices in the
environment models. A test case, in our context, can be seen as a test data matrix,
where each row provides a series of values for a non-deterministic choice of the envi-
ronment component (the number of rows is equal to the number of non-deterministic
choices). Each time a non-deterministic choice needs to be made, a value from the
corresponding matrix row is selected.

To calculate the distance between two test data matrices m; and m, for ART we use
the function dis(m;, my) =Y . abs(m;[r,c] — my[r,c])/ |D(r)|, where r and c represent
the rows and columns of the matrices. In other words, we sum the absolute difference
of each variable weighted by the cardinality of the domain of that variable. Often,
these variables represent the time in timeout transitions. Therefore, ART rewards
diversity for the values of non-deterministic choices. The results of the first experi-
ments we conducted showed that RT/ART perform better than SBT [1].

For search-based testing, rather than using a fitness function, we use an order func-
tion. An order function is used to determine whether one solution is better than anoth-
er, without having the problem of defining a precise numerical score (this is often
difficult when several objectives need to be combined and tight budget constraints do
not allow a full multi-objective approach). The new order function /4 can be seen as an
extension of the fitness function developed for model-based testing based on system
specifications [17]. The original fitness function uses the so-called “approach level”
and normalized “branch distance” to evaluate the fitness of a test case. For environ-
ment model-based testing, we introduced the concept of “time distance” with a look-
ahead branch distance and the concept of “time in risky states” [8].

In our context, the goal is to minimize the order function /4, which heuristically
evaluates how far a test case is from reaching an error state. If a test case with test
data m is executed and an error state of the environment model is reached, then %(m)
= (). The approach level (4) refers to the minimum number of transitions in the state
machine that are required to reach the error state from the closest executed state. Fig.
1 shows a dummy example state machine to elaborate the concept. The state named
Error is the error state. Events e/, e2, and e3 are signal events, whereas events after
“t, 5”7, after “tl, ms”, and after “t2, ms” are time events with ¢, ¢/, and ¢2 as the time
values and ms and s as time units referring to milliseconds and seconds. If the desired
state is Error and the closest executed state was State3, then the approach level is 1.

We use branch distance heuristic (B) to heuristically score the evaluation of the
guards on the outgoing transitions from the closest executed state. In previous work
[18], we have defined a specific branch distance function for OCL expressions that is
reused here for calculating the branch distance. In the dummy state machine in Fig. 1
we need to solve the guard “y > 0” so that whenever e4 is triggered, then the simula-
tion can transition to Error.

The third important part of the order function is the time distance (7), which comes
into play when there are timeout transitions in the environment models. For example,
in Fig. 1, the transition from State2? to Error is a timeout transition. If a transition
should be taken after z time units, but it is not, we calculate the maximum consecutive
time ¢ the component stayed in the source state of this transition (e.g., State2 in the

T after "t1, ms"

- State4
Statel

) T after “t2, ms"
J{i State?
Bzl *l [x > 0]
State3 ; Tﬁ, after "t, ms"

B e30 5 y>0] . «Error»
State5

Hed ()| ETor

Hmel1()

Fig. 1. A dummy state machine to explain search heuristics

dummy example). To guide the search, we use the following heuristic: 7 = z — ¢,
where ¢ < z. For transitions other than time transitions, we initially decided to calcu-
late branch distance after an event is triggered. As investigated in our earlier work [8],
this is not suitable for time transitions and therefore the concept of a look-ahead
branch distance (LB) was introduced. LB represents the branch distance of OCL guard
on a time transition when it is not fired (i.e., the timeout did not occur). Because OCL
evaluations are free from side-effects [18], this approach is feasible in our context.

The fourth important part of the order function is “time in risky states” (TIR). TIR
favors the test cases that spent more time in the state adjacent to the error state (i.e.,
the risky state). For example, for the state machine shown in Fig. 1, this heuristic will
favor the test cases that spend more time in the risky states State2 or State5. For in-
stance in State2, it is possible to increase the value of 7/ in the time event after “ti,
ms”, which will increase the time spent in this state. T/R is less important than the
other three heuristics and is only used when the other heuristics fail to guide the
search. The order function / using the four previously described heuristics, given two
test data matrices m; and m; as input, is defined as:

v(m, my if vim;, my =0
h(m,my)= 1 if v(m;, m,) = 0 and TIR,(m;) > TIR g u(m>)
0 if v(m;, m,) = 0 and TIR,(m;) = TIRu(m>)

-1 otherwise (D

1 if Amin(ml)<Amin(m2) or (Amin(ml):Amin(mZ) and Bmin(ml) < Bmin(mZ))
or (Amin(ml):Amin(mZ) and Bmin(ml): Bmin(mZ) and IT‘Dnﬁn(’nI”n 2) = 1)

YOPDZ N i A1)~ A iy (1) a0 By (1) Bii(m) and ITD i (m; 115)-0)
-1 otherwise
1 ifLB,(m;) <LB,(my) or (LB,(m;) = LB, (m,) and T,(m,;) < T,(m;))
1D mymy = 30 i (LBe(m)) = LB, (my) and T,(m;) = T.(m2))

-1 otherwise

where for an error state e, A4,,,(m) represents the minimum approach level over all
error states, B,,,(m) represents the minimum branch distance, 7, represents the time
distance, LB, is the look-ahead branch distance for an error state e, and TIR,,,,(m) is
the sum of time spent in risky states for all error states for test data matrix m.

The results, based on our extensive experiments evaluating various heuristics [8],
suggested that (1+1) EA with the order function in (1) gave best results in cases where
the approach to a risky state was non-trivial (i.e., simulation cannot reach a risky state
in <5 random test cases). But in cases where the approach was easy, RT outperformed
evolutionary algorithms.

4. Hybrid Strategy by Combining Search-based and Adaptive
Random Testing

In this section we present our proposed hybrid strategy (HS) that combines (1+1) EA
and ART to improve the overall fault detection effectiveness of our system testing
approach. As discussed earlier (Section 3), previous studies showed that, in some
cases, RT/ART could perform better than SBT. The difference between their perfor-
mances was mostly significant and at times even extreme. In [2] and [8], we identified
two possible reasons for this behavior. First of all, for the problems with high failure
rates, randomized algorithms were found to be much better than SBT [2]. For high
failure rates, there is no need for search, as solutions are anyway found quickly. Sec-
ondly, the performance of the algorithms also depended on the properties of environ-
ment models, and in particular how easy is it to traverse the models in order to reach
the error states. In other words, by combining ART and (1+1) EA, we hope to achieve
consistently good results, regardless of the properties of the SUT or its environment.

In the environment models, there are transitions on paths leading to error states that
depend only on the behavior of the SUT (i.e., they can only be triggered when the
SUT behaves in a certain way). Transition from a risky state to an error state is one
such example as it is only triggered when the SUT behaves in an erroneous way.
Another example can be when a guard on a transition depends on a specific response
from the SUT. To execute this behavior of SUT, the overall environment needs to
behave in a particular way. This particular behavior of the environment that is re-
quired to trigger SUT behavior cannot be determined before simulation, since for
practical reasons discussed earlier the design of the SUT is not visible. Hence, the
information of what should be executed in the environment to trigger this behavior is
not available in the environment models. The fitness function for SBT (which exploits
the environment models to guide the search towards error states) in this case does not
give enough gradient to generate fitter test cases (i.e., a search plateau). In these cases
maximizing the diversity of the environment behavior (e.g., by using entirely different
values for the test data matrix, irrespective of their effect on the fitness) appears to be
a better option, thus favoring RT/ART. This can explain the scenarios where RT/ART
show better results than (1+1) EA.

On the other hand, if in the environment models, there are transitions on the path to
error states which are triggered by specific behaviors of the environment (e.g., a tran-
sition triggered as a result of a specific non-deterministic event in the environment,
such as a failure of an environment component) or time transitions, then fitness func-
tion for SBT is specifically designed to deal with these cases and are more suitable for
such cases than RT. For example, in the fitness function, the time distance heuristic is
defined specifically for time transitions and favors test cases that are closer to execut-
ing the transitions (i.e., with a value of ¢ closer to z, see Section 3.2). OCL constraints
in guards that are independent of SUT behavior but dependent on the state of envi-
ronment components (e.g., a constraint requiring a sensor to be broken), can be solved
by directly changing the values of these components’ attributes. For such constraints,
our previous results showed that SBT are an order of magnitude better than RT [18].

HS combines ART, which showed best results in our initial experiments [2], with
our proposed SBT strategy that showed best performance [8], i.e., (1+1) EA with

improved time distance and the “time in risky state” heuristic (ITD-TIR). The strategy
is designed to combine the strengths of both (1+1) EA and ART. This strategy starts
by applying (1+1) EA. If (1+1) EA does not find fitter test cases after running » num-
ber of test cases, the testing algorithm is switched to ART. All the test cases that were
executed so far are now used for distance calculations in ART. Fig. 2 shows the pseu-
do-code for HS. The idea behind switching from (1+1) EA to ART is that there is not
enough time for a random walk to get out of a fitness plateau. And so, in this scenario,
applying ART can yield better results. Running system test cases is very time con-
suming, so only few fitness evaluations are feasible within reasonable time (e.g., 1000
test cases can already take several hours). Therefore, in case of fitness plateau, it is
reasonable to switch strategy, and rather reward diversity instead of the fitness value.
Though the choice of n is arbitrary it can have significant consequences on the per-
formance of this strategy. A too small value of n will result in an early switch to ART.
If the given problem matches the case where (1+1) EA performs better, then the per-
formance of HS will be affected. Similarly, if # is too large then the remaining testing
budget might not be sufficient for ART to perform well.

Algorithm HybridStrategy(mx, n, w)

Input mx: # of maximum fitness evaluations, n: # of consecutive test cases with no
improved fitness, w: # of random test-cases to generate for comparison in ART
Declare Y: set of executed test cases = {}, W set of randomly generated test cases = {}

ev: # of fitness evaluations performed = 0, z: # of consecutive test cases with no im-
proved fitness found so far = 0, 7,: a random test case, 7,,: mutated test case,

T\: a test case from W, T: test case from I/ selected according to ART criteria,

D,,: minimum distance of test case T, with all the test cases in Y, d: maximum value of
D,, obtained over W

1. begin

2. Generate a random test case 7,

3. Execute 7. and evaluate whether environment error state is reached, Add 7.to ¥
4. while environment error state not reached AND ev <=mx AND z <=n

5. Mutate 7. to get 7,,, Execute 7,,and evaluate whether environment error state is reached
6. Add T, to ¥, Increment ev

7. if fitness(T,,) >= fitness(T,) then T, = T,,,z = |

8. else Increment z

9. while environment error state not reached AND ev <= mx

10. Sample w random test cases and add them to ¥, d =0

11. foreach 7, e W

12. Calculate D,,

13. if D,>dthend=D,, T.=T,

14. Execute T, and evaluate whether environment error state is reached

15. Add T,to Y, Increment ev

16. end

Fig. 2 Pseudo code of the proposed hybrid strategy (HS)

5. Empirical Study

The objective of this empirical study is to evaluate the fault detection effectiveness of
the proposed hybrid strategy.

5.1. Case Study

To enable experimentation with diverse environment models and RTES, we devel-
oped 13 different artificial RTES that were inspired by two industrial cases we have
been involved with [2] and one case study discussed in the literature [19]. Since, there
are no benchmark RTES available to researchers, we specifically designed these arti-
ficial problems to conduct our experiments (called P1 — P13). The goal while devel-
oping the models of these RTES was to vary various characteristics of the environ-
ment models (e.g., guarded time transitions, loops) that were expected to have an
impact on the test heuristics. Nine of these artificial problems were inspired by a
marine seismic acquisition system developed by one of our industrial partners. They
covered various subsets of the environment of that RTES. Three problems were in-
spired by the behavior of another industrial RTES (automated recycling machine)
developed by another industrial partner. The thirteenth artificial problem was inspired
by the train control gate system described in [19].

These RTES are multithreaded, written in Java and they communicate with their
environments through TCP. Each of the artificial problems had one error state in their
environment models and non-trivial faults were introduced by hand in each of them.
We could have rather seeded the faults in a systematic way, as for example by using a
mutation testing tool [20] but opted for a different procedure since the SUTs are high-
ly multi-threaded and use a high number of network features (e.g., opening and read-
ing/writing from TCP sockets), features that are not handled by current mutation
testing tools. Furthermore, our testing is taking place at the system level, and though
small modifications made by a mutation testing tool might be representative of faults
at the unit level, it is unlikely to be the case at the system level for RTES. On the
other hand, the faults that we manually seeded came from our experience with the
industrial RTES and from the feedback of our industry partners.

The industrial case study we also report on (called IC) is a very large and complex
seismic acquisition system (mentioned above) that interacts with many sensors and
actuators. The timing deadlines on the environment are in the order of hundreds of
milliseconds. The company that provided the system is a market leader in its field.
For confidentiality reasons we cannot provide full details of the system. The SUT
consists of two processes running in parallel, requiring a high performance, dedicated
machine to run. For the industrial case study, we did not seed any fault and the goal
was to find the real fault that we uncovered earlier [1].

5.2. Experiment

In this paper, we want to answer the following research questions:
RQ1. Which configuration is best in terms of fault detection for the proposed hybrid
strategy (HS)?
RQ2. How the fault detection of the best HS configuration compares with the perfor-
mance of ART, (1+1) EA, and RT for (a) the artificial problems (P1-13) and (b) the
industrial case study (IC)?

To answer these research questions, we have conducted two distinct sets of exper-
iments, one for the artificial problems (to answer RQ1 and RQ2a) and one for the
industrial RTES (to answer RQ2b). For test case representation in these experiments

we used a dynamic representation with a length equal to 10 for the test cases (which
correspond to each row of the test data matrix m). In our earlier experiments this
setting showed the best results [2]. For (1+1) EA we calculated the mutation rate as
1/k, where k is the number of total elements in a test data matrix. This strategy is
widely used for SBT and was initially suggested in [21]. We used the fitness function
that performed best in our previous experiments [8], as discussed in Section 4: Im-
proved Time Distance with Time in Risky State (ITD-TIR).

To answer RQ1, we used 12 different values for the number of test cases which fit-
ness should be considered before switching from (1+1) EA to ART: n € {10, 20, 50,
60, 70, 80, 90, 100, 200, 300, 400, 500}. We ran these 12 configurations on each of
the 13 artificial problems. To answer RQ2a, we selected the configuration of HS that
gave the best result in terms of fault detection for the 13 artificial problems. We com-
pared this configuration with the results of (1+1) EA, ART, and RT on these prob-
lems. RT was used as a comparison baseline.

For the artificial problems, the execution time of each test case was fixed to 10 se-
conds and we stopped each algorithm after 1000 sampled test cases or as soon as we
reached any of the error states. The choice of running each test case for 10 seconds
was based on the properties of the RTES and the environment models. The objective
was to allow enough time for the test cases to reach an error state. We ran each of the
strategies 20 times on each artificial problem with different random seeds. The total
number of sampled test cases was 1,561,390, which required around 180 days of CPU
resources. Therefore, we performed these experiments on a cluster of computers.

Table 1. Success Rates (SR) for 12 configurations of HS on the 13 problems

Configurations — | 10 | 20 | 50 | 60 | 70 | 80 | 90 | 100 | 200 | 300 | 400 | 500
Problems |

P1 0.5] 0.75| 0.95 1 1 1 1 1 1 1 1 1
P2 0.85] 0.95 1 1 1 1 1 1, 0.9 1 1 1
P3 1 1 1 1 1 1 1 1] 09 08 0.6/ 0.5
P4 0.05| 0.2] 0.8/ 0.85] 0.7/ 0.75| 09| 0.9 1 1] 0.9 1
P5 0.85 1 1 1 1 1 1 1 1 1 1 1
P6 0| 0.15/ 0.45] 0.4] 0.45] 0.5/ 0.45] 0.6/ 0.7/ 0.7/ 0.5] 0.6
P7 03] 04 0.8 0.8/ 0.85/ 095 0.8 0.8 0.8/ 0.8 0.8 1
P8 1 1 1 1 1 1 1 1 1 1| 0.95 1
P9 0.05| 0.05| 0.45] 0.55| 0.55| 0.35| 0.6 0.4 0.8 0.45 0.5 0.55
P10 1 1 1 1] 0.95| 0.85 1] 0.95| 0.65| 0.55] 0.4] 0.45
P11 1 1 1] 095/ 0.95, 0.9 1| 0.9] 0.65 0.05| 0.1] 0.4
P12 1 1 1 1/ 0.95 1 1 1| 0.9 0.9] 0.75] 0.65
P13 1 1 1 1 1 1 1 1| 0.9 0.7] 0.95| 0.85
Average SR 0.66| 0.73] 0.88] 0.89] 0.88] 0.87, 0.9] 0.89| 0.86| 0.77| 0.73] 0.77
Average Rank 6.38] 6.73| 5.19| 5.77| 5.23] 6.31| 6.50] 6.19] 6.73| 8.46| 7.73] 6.69

To answer RQ2b, we carried out experiments on the described seismic acquisition
system. We run each test case for 60 seconds, where 1000 test case executions (fitness
evaluations) can take more than 16 hours. This choice has been made based on the
properties of the RTES and discussions with the actual testers. Due to the large
amount of resources required, we only ran the configuration that on average gave best

results for the artificial problems (i.e., n=50) and compared its fault detection rate
with that of (1+1) EA, ART, and RT. We carried out 39 runs for each of these four
test strategies. The total number of sampled test cases was 55,283, which required
over 55 days of computation on a single, high-performance, dedicated machine.

To analyze the results, we used the guidelines described in [22] which recommends
a number of statistical procedures to assess randomized algorithms. First we calculat-
ed the success rates of each algorithm: the number of times it was successful in reach-
ing the error state out of the total number of runs. These success rates are then com-
pared using the Fisher Exact test, quantifying the effect size using an odds ratio (v)
with a 0.5 correction. When the differences between the success rates of two algo-
rithms were not significant, we then looked at the average number of test cases that
each of the algorithms executed to reach the error state. We used the Mann-Whitney
U-test and quantified the effect size with the Vargha-Delaney A, statistics. The sig-
nificance level for these statistical tests was set to 0.05.

5.3. Results & Discussion

Table 1 provides the success rates (in terms of fault detection) for various HS configu-
rations. The last row of the table shows the average ranking of each configuration
based on the statistical differences among them. Configurations that are statistically
equivalent (i.e., p-values above 0.05) are assigned a similar ranking. This is done by
assigning scores based on pairwise comparisons of configurations. Whenever a con-
figuration is better than the other and the difference is statistically significant, its
score is increased (for details, see [22]). Then, based on the final scores, each configu-
ration is assigned ranks ranging from 1 (best configuration) to 12 (worst configura-
tion). In case of ties, ranks are averaged. As the success rates and average rankings
indicate, using a very low (< 50) or very high value (>=200) of n results in a degraded
performance for HS. With a low value of n, HS makes the switch from (1+1) EA to
ART too early, which does not give sufficient time for (1+1) EA to converge and
hence running HS becomes similar to only running ART. In cases where ART per-
forms well, such configurations of HS also perform well (see Table 2 for the perfor-
mance of ART on artificial problems). For instance, for n = /0, the average success
rate is 66% and average ranking is 6.38. Similarly, when HS switches too late, it does
not give enough time to ART (given the upper bound of 1000 iterations) and hence
running HS is similar to running (1+1) EA in such cases. These configurations per-
form well in cases where (1+1) EA performs well (Table 2) and poor otherwise. The
best results are provided for values between 50 and /00 and the differences in results
in this range are not significant. Though the results are not fully consistent across all
problems, configuration » = 50 has the best average rank across all problems and is
always very close to the maximum success rates. We can hence answer RQI by stat-
ing that, overall, n=50 shows the best results for HS and therefore this configuration
can be used when applying HS on new problems.

For RQ2a we compared the best HS configuration (n = 50) with RT, ART, and
(1+1)EA. Table 2 shows the corresponding success rates of these algorithms and
Table 3 shows a comparison of HS with the other three algorithms based on statistical
tests. The statistics for the situations where HS is significantly better are bold-faced

and are italicized where it is significantly worse. Table cells with a ‘-’ denote no sig-
nificant differences. P-values obtained as a result of Fisher Exact test on the success
rates are denoted as p and odds ratio as . In cases where there is no statistical differ-
ence in success rates, the number of iterations is considered and the p-values of the
Mann-Whitney U-test are denoted as iz-p and corresponding effect sizes by 4,,.

When compared to (1+1) EA, HS showed better fault detection performance in
four of the artificial problems (P3, P10 — P12) and had similar results otherwise. The-
se are the problems where (1+1) EA, when ran in isolation, showed poor results when
compared to RT and ART (as visible from Table 2). For example in the case of P11,
(1+1) EA was not able to find the a in any of the runs. On the other hand it is 100%
for HS, RT, and ART, which means that these strategies were able to find a fault in
every run. Hence, HS shows significant improvement over (1+1) EA.

When compared to RT, HS showed significantly better results in terms of success
rates for six artificial problems (P1, P4, P5, P6, P7, and P9) and had similar results for
all the other problems. Similarly with ART, in terms of success rates, HS showed
better results for six artificial problems (P1, P2, P4, P6, P7, and P9) and had similar
results for the rest. P1, P4, P6, P7, and P9 are the problems where ART and RT
showed poor results when compared to (1+1) EA (Table 2). For example in the cases
of P4, P6, and P9, the success rate of both RT and ART is 0, but that of (1+1) EA and
HS is 1 and 0.8, respectively. Hence, in terms of success rates, HS shows significantly
better results when compared to RT and ART. However, in terms of number of itera-
tions required to detect the fault, HS is significantly worse than RT in four problems
(P8, P10, P12, and P13) and significantly worse than ART in six problems (P3, P§,
P10, P11, P12, and P13). But, for all these problems, the success rate of HS, RT, and
ART is 1, which means that whenever these algorithms run they find the fault (within
the budget of 1000 test cases). Therefore, we can answer RQ2a by stating that HS
shows overall significantly better performance than ART, RT, and (1+1) EA in terms
of fault detection, but was slower than RT/ART in finding faults for problems where
these two algorithms perform better than (1+1) EA. But since the success rate of HS
is 100%, and therefore the first run is expected to reach the error state, this difference
in execution time has limited practical impact.

For RQ2b we compared the performance of the best configuration of HS (n = 50)
with that of ART, RT, and (1+1) EA on the industrial case study. The last row of
Table 3 shows a comparison of the results of the four strategies on this case study (IC)
and the last column of Table 2 shows the corresponding success rates. The results are
similar to that obtained for those artificial problems where RT and ART perform
better than (1+1) EA. HS outperformed (1+1) EA. When compared with the results of
ART and RT, there is no significant difference though (100% success rate). These
results are consistent with RQ2a and we can therefore answer RQ2 by stating that,
overall, HS shows significantly better results when compared to (1+1) EA, RT, and
ART. However, as for RQ2a, for problems where ART performed much better than
(1+1) EA, though the success rates of HS and ART are similar, ART find the faults
faster than HS.

HS starts with (1+1) EA and switches only when fifty consecutive test cases do not
show better fitness. Fitness evaluations make HS slower than ART/RT but its effec-
tiveness considerably improves over ART/RT for the problems where they showed
poor results. In the light of these results, we can conclude that when applying our

testing approach, using HS seems to be the most practical choice as its performance,
unlike that of (1+1) EA, ART, and RT, is not drastically affected by the properties of
the SUT and its environment models. As a result, testers can apply this strategy in
confidence, knowing it will perform well in most circumstances.

Table 2. Success Rates of HS (best configuration), RT, ART, and (1+1) EA

P1 P2 P3 P4 [P5 P6 P7 P8 P9 P10 P11 |P12 P13 |Avg. IC
HS | 0.95 1 1] 0.8 1] 045 0.8 1| 0.45 1 1 1 1| 0.88 1
ART| 0.4 0.75 1 0] 0.95 0| 0.15 1 0 1 1 1 1] 0.63 1
EA 1 1] 05 1 1] 0.7, 0.85 1] 0.35] 0.45 0 0.7] 0.95] 0.73| 0.74
RT | 0.45 1 1 0] 0.65 0 0.2 1 0 1 1 1 1] 0.64| 0.97
Table 3. Comparison of best HS configuration with RT, ART, & (1+1)EA
Problem HS vs. (1+1) EA HS vs. RT HS vs. ART
Pl - p =0.0012, y =15.74 p = 0.0004, v =19.12
P2 - it-p = 0.0065, A;;, =0.25 | p =0.047, y =14.55
P3 p =0.0004, y = 41.00 - it-p= 0.013,4,,=0.73
P4 - p =1.5¢-07, y = 150.33 p = 1.5e-07, y = 150.33
P5 - p = 0.0083, w =22.78 -
P6 - p =0.0012, v = 33.87 p=0.0012, y = 33.87
P7 - p =0.0004, v =13.44 p =8.7¢-05, y = 18.33
P8 - it-p = 0.009, 4;,=0.74 | it-p = 0.0004, A;,=0.825
P9 - p =0.0012, y = 33.87 p=0.0012, v = 33.87
P10 p =0.0001, y =49.63 it-p = 0.0006, A;,=0.81 | it-p =0.0002, 4;,= 0.85
P11 p = 1.4e-11, y = 1681.00 - it-p = 0.0032, 4;,=0.77
P12 p=0.02, y =18.38 it-p = 0.0016, A;,=0.79 | it-p = 0.0008, A;,=0.81
P13 - it-p = 0.0199, A;,=0.71 | it-p=0.021, 4;,=0.71
IC p =0.0004, v = 28.83 - it-p =0.015, A;,= 0.66

5.4. Threats to Validity

Although the artificial problems that we developed were based on industrial RTES
and are not trivial to test (they are multithreaded and hundreds of lines long), these
artificial problems may not be representative of complex RTES. To reduce this threat,
we used artificial problems inspired by actual RTES and intentionally varied the
properties of their environments in ways that could affect the testing strategies.

A typical problem when testing RTES is the accurate simulation of time. To be on
the safe side, to evaluate whether our results are reliable, we selected a set of experi-
ments and ran them again with exactly the same random seeds. We obtained equiva-
lent results with a small variance of a few milliseconds, which in our context did not
affect the testing results.

Another possible threat to validity could be the faults that were manually seeded in
the artificial problems. The faults that we seeded came from our experience with the
industrial RTES and from the feedback of our industry partners, so they are repre-
sentative of real faults. We could not use a more systematic fault seeding techniques
due to the reasons mentioned in Section 5.1.

6. Conclusion

In this paper, we proposed a hybrid strategy (HS) that combines (1+1) Evolutionary
Algorithm (EA) and Adaptive Random Testing (ART) for black-box automated sys-
tem testing of real-time embedded systems (RTES). The strategy was developed to
combine the benefits of both algorithms, since their individual results varied greatly
depending on the failure rate of the system under test and properties of its environ-
ment. The ultimate goal was to obtain a strategy with consistently good results. The
proposed strategy starts with running (1+1) EA and switches to ART when the (1+1)
EA search stops yielding fitter test cases. We empirically investigated when to switch
to ART and identified an optimal setting for HS. Results indicate that switching too
early or too late than the identified setting has a negative impact on the performance
of the strategy. Based on the experiments, when using HS in practice, we propose
switching to ART after (1+1) EA generates 50 consecutive test cases that do not im-
prove fitness. We evaluated the proposed strategy and compared its performance with
that of running (1+1) EA and ART individually. We also use random testing (RT) as a
comparison baseline. The empirical evaluation uses an industrial case study and 13
artificial problems that were developed based on two industrial case studies belonging
to different domains. The models of these artificial problems were developed in order
to vary their characteristics, thus potentially affecting the performance of the evaluat-
ed testing strategies. Overall, the results indicate that HS shows significantly better
performance in terms of fault detection (an overall 88% success rate for artificial
problems and 100% for the industrial case study) than the other three algorithms (for
artificial problems: ART: 63%, RT: 64%, and (1+1) EA: 74% and for the industrial
case study: ART: 100%, RT, 97%, (1+1) EA: 74%). Unlike the other strategies, varia-
tions in environment properties do not have a drastic impact on the performance of
HS and it is therefore the most practical approach, showing consistently good results
for different problems.

Acknowledgements. The work is supported by supported by the Norwegian Research
Council and was produced as part of the ITEA 2 VERDE project. L. Briand was sup-
ported by a FNR PEARL grant. We are thankful to our industrial partners for their
support.

References

1. Arcuri, A., Igbal, M., Briand, L.: Black-Box System Testing of Real-Time Embedded
Systems Using Random and Search-Based Testing. In: Petrenko, A., Simdo, A., Maldonado, J.
(eds.) Testing Software and Systems, vol. 6435, pp. 95-110. Springer Berlin / Heidelberg
(2010)

2. Igbal, M.Z., Arcuri, A., Briand, L.: Automated System Testing of Real-Time Embedded
Systems Based on Environment Models. Simula Research Laboratory, Technical Report (2011-
19) (2011)

3. OMG: Unified Modeling Language Superstructure, Version 2.3,
http://www.omg.org/spec/UML/2.3/. (2010)

http://www.omg.org/spec/UML/2.3/

4. OMG: Modeling and Analysis of Real-time and Embedded systems (MARTE), Version 1.0,
http.//www.omg.org/spec/MARTE/1.0/. (2009)

5. Igbal, M.Z., Arcuri, A., Briand, L.: Environment Modeling with UML/MARTE to Support
Black-Box System Testing for Real-Time Embedded Systems: Methodology and Industrial
Case Studies. In: Petriu, D., Rouquette, N., Haugen, @. (eds.) Model Driven Engineering
Languages and Systems, vol. 6394, pp. 286-300. Springer Berlin / Heidelberg (2010)

6. Igbal, M.Z., Arcuri, A., Briand, L.: Code Generation from UML/MARTE/OCL
Environment Models to Support Automated System Testing of Real-Time Embedded Software.
Simula Research Laboratory, Technical Report (2011-04) (2011)

7. Arcuri, A., Igbal, M.Z., Briand, L.: Random Testing: Theoretical Results and Practical
Implications. IEEE Transactions on Software Engineering 38, 258-277 (2012)

8. Igbal, M.Z., Arcuri, A., Briand, L.: Empirical Investigation of Search Algorithms for
Environment Model-Based Testing of Real-Time Embedded Software In: International
Symposium on Software Testing and Analysis (ISSTA). ACM (2012)

9. Broekman, B.M., Notenboom, E.: Testing Embedded Software. Addison-Wesley Co., Inc.
(2003)

10. Auguston, M., B, M.J., Shing, M.: Environment behavior models for automation of testing
and assessment of system safety. Information and Software Technology 48, 971-980 (2006)

11. Heisel, M., Hatebur, D., Santen, T., Seifert, D.: Testing Against Requirements Using UML
Environment Models. In: Fachgruppentreffen Requirements Engineering und Test, Analyse &
Verifikation, pp. 28-31. GI (2008)

12. Adjir, N., Saqui-Sannes, P., Rahmouni, K.M.: Testing Real-Time Systems Using TINA.
Testing of Software and Communication Systems, vol. 5826. Lecture Notes in Computer
Science, Springer Berlin / Heidelberg (2009)

13. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online Testing of Real-time Systems Using
Uppaal. Formal Approaches to Software Testing, vol. 3395. Lecture Notes in Computer
Science, Springer Berlin / Heidelberg (2005)

14. Andrews, J.H., Menzies, T., Li, F.C.H.: Genetic algorithms for randomized unit testing.
IEEE Transactions on Software Engineering 37, 80-94 (2011)

15. Tappenden, A.F., Miller, J.: A novel evolutionary approach for adaptive random testing.
IEEE Transactions on Reliability 58, 619-633 (2009)

16. Schneckenburger, C., Schweiggert, F.: Investigating the dimensionality problem of
Adaptive Random Testing incorporating a local search technique. In: IEEE International
Conference on Software Testing Verification and Validation Workshop (ICSTW '08), pp. 241-
250. (2008)

17. Lefticaru, R., Ipate, F.: Functional search-based testing from state machines. In:
Proceedings of the International Conference on Software Testing, Verification, and Validation,
pp- 525-528. IEEE Computer Society (2008)

18. Ali, S., Igbal, M.Z., Arcuri, A., Briand, L.: A Search-based OCL Constraint Solver for
Model-based Test Data Generation. 11th International Conference on Quality Software, pp.
41-50. IEEE (2011)

19.Zheng, M., Alagar, V., Ormandjieva, O.: Automated generation of test suites from formal
specifications of real-time reactive systems. The Journal of Systems & Software 81, 286-304
(2008)

20. Andrews, J., Briand, L., Labiche, Y., Namin, A.: Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE Transactions on Software Engineering 32, 608-624
(2006)

21.Miihlenbein, H.: How genetic algorithms really work: I. mutation and hillclimbing. Parallel
problem solving from nature 2, 15-25 (1992)

22. Arcuri, A., Briand, L.: A Practical Guide for Using Statistical Tests to Assess Randomized
Algorithms in Software Engineering. In: 33rd International Conference on Software
Engineering (ICSE), pp. 1 - 10 (2011)

http://www.omg.org/spec/MARTE/1.0/

