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Abstract. Effective system testing of real-time embedded systems (RTES) re-

quires a fully automated approach. One such black-box system testing approach 

is to use environment models to automatically generate test cases and test ora-

cles along with an environment simulator to enable early testing of RTES. In 

this paper, we propose a hybrid strategy, which combines (1+1) Evolutionary 

Algorithm (EA) and Adaptive Random Testing (ART), to improve the overall 

performance of system testing that is obtained when using each single strategy 

in isolation. An empirical study is carried out on a number of artificial problems 

and one industrial case study. The novel strategy shows significant overall im-

provement in terms of fault detection compared to individual performances of 

both (1+1) EA and ART. 

1. Introduction 

Real-time embedded systems (RTES) are widely used in critical domains where high 

system dependability is required. These systems typically work in environments com-

prising of large numbers of interacting components. The interactions with the envi-

ronment are typically bounded by time constraints. Missing these time deadlines, or 

missing them too often for soft real-time systems, can lead to serious failures leading 

to threats to human life or the environment. There is usually a great number and varie-

ty of stimuli from the RTES environment with differing patterns of arrival times. 

Therefore, the number of possible test cases is usually very large if not infinite. Test-

ing all possible sequences of stimuli is not feasible. Hence, systematic automated 

testing strategies that have high fault revealing power are essential for effective test-

ing of industry scale RTES. The system testing of RTES requires interactions with the 

actual environment. Since, the cost of testing in actual environments tends to be high, 

environment simulators are typically used for this purpose. 

In our earlier work, we proposed an automated system testing approach for RTES 

software based on environment models [1, 2]. The models are developed according to 

a specific strategy using the Unified Modeling Language (UML) [3], the Modeling 

and Analysis of Real-Time Embedded Systems (MARTE) profile [4] and our pro-

posed profile [5]. These models of the environment were used to automatically gener-



 

ate an environment simulator [6], test cases, and obtain test oracle [1, 2].  

In our context, a test case is a sequence of stimuli generated by the environment 

that is sent to the RTES. A test case can also include changes of state in the environ-

ment that can affect the RTES behavior. For example, with a certain probability, some 

hardware components might break, and that affects the expected and actual behavior 

of the RTES. A test case can contain information regarding when and in which order 

to trigger such changes. So, at a higher level, a test case in our context can be consid-

ered as a setting specifying the occurrence of all these environment events in the sim-

ulator. Explicit “error” states in the models represent states of the environment that 

are only reached when RTES is faulty. Error states act as the oracle of the test cases, 

i.e., a test case is successful in triggering a fault in the RTES if any of these error 

states is reached during testing. 

In previous work, we investigated several testing strategies to generate test cases. 

We used random testing (RT) [7] as baseline, and then considered two different ap-

proaches: Search-based Testing (SBT) [8] and Adaptive Random Testing (ART) [1]. 

For SBT, an order function was defined that utilizes the information in environment 

models to guide the search toward the error states. In contrast, with ART, test cases 

are rewarded based on their diversity. The results indicated that, apart from the failure 

rate of the system under test (SUT), the effectiveness of a testing algorithm also de-

pends on the characteristics of the environment models. For problems where the envi-

ronment model is easier to cover or where the failure rate of the RTES is high, even 

RT outperforms SBT. However, for more complex problems, SBT showed much 

better performance than RT. This raised the need for a strategy that combines the 

individual benefits of the two strategies and utilizes adaptive mechanisms based on 

the feedback from executed test cases.  

In this paper, we extend our previous work by devising such a hybrid strategy that 

aims at combining the best search technique, i.e., (1+1) Evolutionary Algorithm (EA) 

in our experiments and ART (which is the algorithm that gave best results in our 

earlier experiments in [2]) in order to achieve better overall results in terms of fault 

detection. We defined two different strategies for combining these algorithms, but due 

to space constraints, in this paper, we only discuss the strategy that showed the best 

results. The hybrid strategy (HS) discussed here starts with running (1+1) EA and 

switches to ART when (1+1) EA stops yielding fitter test cases. The decision of when 

to switch (referred to as configuration) can have significant impact on the perfor-

mance of the strategy and one main objective of this paper is to empirically investi-

gate different configuration options. The other combination strategy started by run-

ning ART and later switched to (1+1) EA if consecutive test cases generated through 

ART showed better fitness compared to previously executed test cases. It did show 

improvements over the individual algorithms, but fared worse than HS. 

We evaluate the fault detection effectiveness of HS by performing a series of ex-

periments on 13 artificial problems and an industrial case study. The RTES of the 

artificial problems were based on the specifications of two industrial case studies. 

Their environment models were developed in a way to vary possible modeling char-

acteristics so as to understand their effect on the performance of the test strategies. 

We could not have covered such variations in environment models with one or even a 

few industrial case studies, hence the motivation to develop artificial cases. The in-

dustrial case study used is of a marine seismic acquisition system, which was devel-



 

oped by a company leading in this industry sector. For all these cases, we compared 

the performance of HS (with best configuration) with that of ART, (1+1) EA, and RT. 

The results suggest that in terms of success rates (number of times an algorithm found 

a fault within a given test budget), for the problems where RT/ART showed better 

performance over (1+1) EA, HS results are similar to ART/RT and for the problems 

where (1+1) EA was better, HS results are similar to those of (1+1) EA, thus suggest-

ing that HS combines the strength of both algorithms.  

The rest of the paper is organized as follows. Section 2 discusses the related work, 

while Section 3 provides an introduction to the earlier proposed environment model-

based system testing methodology that we improve in this paper. Section 4 describes 

the proposed hybrid strategy, whereas Section 5 reports on the empirical study carried 

out for evaluation purposes. Finally, Section 6 concludes the paper. 

2. Related Work 

Depending on the goals, testing of RTES can be performed at different levels: model-

in-the-loop, hardware-in-the-loop, processor-in-the-loop, and software-in-the-loop 

[9]. Our approach falls in the software-in-the-loop testing category, in which the em-

bedded software is tested on the development platform with a simulated environment. 

The only variation is that, rather than simulating the hardware platform, we use an 

adapter for the hardware platform that forwards the signals from the SUT to the simu-

lated environment. This approach is especially helpful when the software is to be 

deployed on multiple hardware platforms or the target hardware platform is stable. 

There are only a few works in literature that discuss RTES testing based on envi-

ronment models rather than system models. Auguston et al. [10] discusses the model-

ing of environment behaviors for testing of RTES using an event grammar. The be-

havioral models contain details about the interactions with the SUT and possible haz-

ardous situations in the environment. Heisel et al. [11] propose the use of a require-

ment model and an environment model along with the model of the SUT for testing. 

Adjir et al. [12] discuss a technique for testing RTES based on the system model and 

assumptions in the environment using Labeled Prioritized Timed Petri Nets. Larsen et 

al. [13] propose an approach for online RTES testing based on time automata to mod-

el the SUT and environmental constraints. Iqbal et al. [5] propose an environment 

modeling methodology based on UML and MARTE for black-box system testing. 

Fault detection effectiveness of testing strategies based on these models was evaluated 

and reported in [8], including RT/ART [1], GA, and (1+1) EA. The results indicate 

that SBT show significantly better performance over RT for a number of cases and 

significantly worse performance than RT for a number of other cases. 

There has been some work to combine SBT with RT. Andrews et al. propose the 

use of GA to tune parameters for random unit testing [14]. An evolutionary ART 

algorithm that uses the ART distance function as a fitness function for GA is pro-

posed in [15]. In [16], the authors propose a search-based ART algorithm by using a 

variant of ART distance function as the fitness function for Hill Climbing to optimize 

the results of ART when the input domains are more than two dimensional. 



 

The work presented here improves the work on environment model-based testing  

presented in [8] by combining the strengths of both ART and (1+1) Evolutionary 

Algorithm.  Approaches discussed in the literature for combining ART/RT with SBT 

are restricted to improving ART or tuning RT by using search techniques. In contrast, 

here we want to use (1+1) EA to generate test cases that exploit the characteristics of 

environment models as well as benefit from the test diversity generated by ART, thus 

combining the two approaches. 

3. Environment Model-based Testing 

In this section, we discuss in more details the various components of our environment 

model-based testing approach. 

3.1. Environment Modeling & Simulation 

For RTES system testing, software engineers familiar with the application domain 

would typically be responsible for developing the environment models. The environ-

ment models consist of a domain model and several behavioral models. The domain 

model, represented as a class diagram, captures the structural details of the RTES 

environment, such as the environment components, their relationships, and their char-

acteristics. The behavior of the environment components is captured by state ma-

chines. These models are developed, based on our earlier proposed methodology by 

using UML, MARTE, and our proposed profile for environment modeling [5]. These 

models not only include the nominal functional behavior of the environment compo-

nents (e.g., booting of a component) but also include their robustness (failure) behav-

ior (e.g., break down of a sensor). The latter are modeled as “failure” states in the 

environment models. The behavioral models also capture what we call “error” states. 

These are the states of the environment that should never be reached if the SUT is 

implemented correctly. Therefore, error states act as oracles for the test cases. Java is 

used as an action language and OCL (Object Constraint Language) is used to specify 

constraints and guards. An important feature of these environment models is that they 

capture the non-determinism in the environment, which is a common characteristic 

for most RTES environments. Non-determinism may include, for example, failures of 

components, or user commands. Each environment component can have a number of 

non-deterministic choices whose exact values are selected at the time of testing.  

Using model to text transformations, the environment models are automatically 

transformed into environment simulators implemented in Java. The transformations 

follow specific rules that we discussed in detail in [6]. During simulation a number of 

instances can be created for each environment component, which can interact with 

each others and the SUT (for example multiple instances of a sensor component). The 

generated simulators communicate with the SUT through a communication layer 

(e.g., TCP layer), which is written by software engineers. They are also linked with 

the test framework that provides the appropriate values for each simulation execution. 

The choice of Java as target language is based on actual requirements of our industrial 

partner, where the RTES under study only involves soft real-time constraints.    



 

3.2. Testing RTES based on Environment Models 

In our context, a test case execution is akin to executing the environment simulator. 

During the simulation, values are required for the non-deterministic choices in the 

environment models. A test case, in our context, can be seen as a test data matrix, 

where each row provides a series of values for a non-deterministic choice of the envi-

ronment component (the number of rows is equal to the number of non-deterministic 

choices). Each time a non-deterministic choice needs to be made, a value from the 

corresponding matrix row is selected.  

To calculate the distance between two test data matrices m1 and m2 for ART we use 

the function dis(m1, m2) = ∑r∑c abs(m1[r,c] – m2[r,c])/ |D(r)|, where r and c represent 

the rows and columns of the matrices. In other words, we sum the absolute difference 

of each variable weighted by the cardinality of the domain of that variable. Often, 

these variables represent the time in timeout transitions. Therefore, ART rewards 

diversity for the values of non-deterministic choices. The results of the first experi-

ments we conducted showed that RT/ART perform better than SBT [1].  

For search-based testing, rather than using a fitness function, we use an order func-

tion. An order function is used to determine whether one solution is better than anoth-

er, without having the problem of defining a precise numerical score (this is often 

difficult when several objectives need to be combined and tight budget constraints do 

not allow a full multi-objective approach). The new order function h can be seen as an 

extension of the fitness function developed for model-based testing based on system 

specifications [17]. The original fitness function uses the so-called “approach level” 

and normalized “branch distance” to evaluate the fitness of a test case. For environ-

ment model-based testing, we introduced the concept of “time distance” with a look-

ahead branch distance and the concept of “time in risky states” [8].  

In our context, the goal is to minimize the order function h, which heuristically 

evaluates how far a test case is from reaching an error state. If a test case with test 

data m is executed and an error state of the environment model is reached, then h(m) 

= 0. The approach level (A) refers to the minimum number of transitions in the state 

machine that are required to reach the error state from the closest executed state. Fig. 

1 shows a dummy example state machine to elaborate the concept. The state named 

Error is the error state. Events e1, e2, and e3 are signal events, whereas events after 

“t, s”, after “t1, ms”, and after “t2, ms” are time events with t, t1, and t2 as the time 

values and ms and s as time units referring to milliseconds and seconds. If the desired 

state is Error and the closest executed state was State5, then the approach level is 1.  

We use branch distance heuristic (B) to heuristically score the evaluation of the 

guards on the outgoing transitions from the closest executed state. In previous work 

[18], we have defined a specific branch distance function for OCL expressions that is 

reused here for calculating the branch distance. In the dummy state machine in Fig. 1 

we need to solve the guard “y > 0” so that whenever e4 is triggered, then the simula-

tion can transition to Error.  

The third important part of the order function is the time distance (T), which comes 

into play when there are timeout transitions in the environment models. For example, 

in Fig. 1, the transition from State2 to Error is a timeout transition. If a transition 

should be taken after z time units, but it is not, we calculate the maximum consecutive 

time c the component stayed in the source state of this transition (e.g., State2 in the 



 

dummy example). To guide the search, we use the following heuristic: T = z – c, 

where c ≤ z. For transitions other than time transitions, we initially decided to calcu-

late branch distance after an event is triggered. As investigated in our earlier work [8], 

this is not suitable for time transitions and therefore the concept of a look-ahead 

branch distance (LB) was introduced. LB represents the branch distance of OCL guard 

on a time transition when it is not fired (i.e., the timeout did not occur). Because OCL 

evaluations are free from side-effects [18], this approach is feasible in our context.  

The fourth important part of the order function is “time in risky states” (TIR). TIR 

favors the test cases that spent more time in the state adjacent to the error state (i.e., 

the risky state). For example, for the state machine shown in Fig. 1, this heuristic will 

favor the test cases that spend more time in the risky states State2 or State5. For in-

stance in State2, it is possible to increase the value of t1 in the time event after “t1, 

ms”, which will increase the time spent in this state. TIR is less important than the 

other three heuristics and is only used when the other heuristics fail to guide the 

search. The order function h using the four previously described heuristics, given two 

test data matrices m1 and m2 as input, is defined as: 

 

 

 
where for an error state e, Amin(m) represents the minimum approach level over all 

error states, Bmin(m) represents the minimum branch distance, Te represents the time 

distance, LBe is the look-ahead branch distance for an error state e, and TIRsum(m) is 

the sum of time spent in risky states for all error states for test data matrix m.  

The results, based on our extensive experiments evaluating various heuristics [8], 

suggested that (1+1) EA with the order function in (1) gave best results in cases where 

the approach to a risky state was non-trivial (i.e., simulation cannot reach a risky state 

in <5 random test cases). But in cases where the approach was easy, RT outperformed 

evolutionary algorithms. 

 

h(m1,m2)= 

 

v(m1,m2)= 

1 if LBe (m1) < LBe (m2) or (LBe (m1) = LBe (m2) and Te(m1) < Te(m2)) 

0 if (LBe (m1) = LBe (m2) and Te(m1) = Te(m2))  

-1 otherwise 

v(m1, m2)  if v(m1, m2) != 0 

1   if v(m1, m2) = 0 and TIRsum(m1) > TIRsum(m2) 

0  if v(m1, m2) = 0 and TIRsum(m1) = TIRsum(m2) 

-1   otherwise               (1) 

 1  if Amin(m1)<Amin(m2) or (Amin(m1)=Amin(m2) and Bmin(m1) < Bmin(m2)) 

or (Amin(m1)=Amin(m2) and Bmin(m1)= Bmin(m2) and ITDmin(m1,m 2) = 1) 

0 if Amin(m1)=Amin (m2) and Bmin(m1)= Bmin(m2) and ITDmin(m1, m2)=0) 

-1  otherwise   

 

ITDe(m1,m2) = 

Fig. 1. A dummy state machine to explain search heuristics 



 

4. Hybrid Strategy by Combining Search-based and Adaptive 

Random Testing 

In this section we present our proposed hybrid strategy (HS) that combines (1+1) EA 

and ART to improve the overall fault detection effectiveness of our system testing 

approach. As discussed earlier (Section 3), previous studies showed that, in some 

cases, RT/ART could perform better than SBT. The difference between their perfor-

mances was mostly significant and at times even extreme. In [2] and [8], we identified 

two possible reasons for this behavior. First of all, for the problems with high failure 

rates, randomized algorithms were found to be much better than SBT [2]. For high 

failure rates, there is no need for search, as solutions are anyway found quickly. Sec-

ondly, the performance of the algorithms also depended on the properties of environ-

ment models, and in particular how easy is it to traverse the models in order to reach 

the error states. In other words, by combining ART and (1+1) EA, we hope to achieve 

consistently good results, regardless of the properties of the SUT or its environment. 

In the environment models, there are transitions on paths leading to error states that 

depend only on the behavior of the SUT (i.e., they can only be triggered when the 

SUT behaves in a certain way). Transition from a risky state to an error state is one 

such example as it is only triggered when the SUT behaves in an erroneous way. 

Another example can be when a guard on a transition depends on a specific response 

from the SUT. To execute this behavior of SUT, the overall environment needs to 

behave in a particular way. This particular behavior of the environment that is re-

quired to trigger SUT behavior cannot be determined before simulation, since for 

practical reasons discussed earlier the design of the SUT is not visible. Hence, the 

information of what should be executed in the environment to trigger this behavior is 

not available in the environment models. The fitness function for SBT (which exploits 

the environment models to guide the search towards error states) in this case does not 

give enough gradient to generate fitter test cases (i.e., a search plateau). In these cases 

maximizing the diversity of the environment behavior (e.g., by using entirely different 

values for the test data matrix, irrespective of their effect on the fitness) appears to be 

a better option, thus favoring RT/ART. This can explain the scenarios where RT/ART 

show better results than (1+1) EA. 

On the other hand, if in the environment models, there are transitions on the path to 

error states which are triggered by specific behaviors of the environment (e.g., a tran-

sition triggered as a result of a specific non-deterministic event in the environment, 

such as a failure of an environment component) or time transitions, then fitness func-

tion for SBT is specifically designed to deal with these cases and are more suitable for 

such cases than RT. For example, in the fitness function, the time distance heuristic is 

defined specifically for time transitions and favors test cases that are closer to execut-

ing the transitions (i.e., with a value of c closer to z, see Section 3.2). OCL constraints 

in guards that are independent of SUT behavior but dependent on the state of envi-

ronment components (e.g., a constraint requiring a sensor to be broken), can be solved 

by directly changing the values of these components’ attributes. For such constraints, 

our previous results showed that SBT are an order of magnitude better than RT [18]. 

HS combines ART, which showed best results in our initial experiments [2], with 

our proposed SBT strategy that showed best performance [8], i.e., (1+1) EA with 



 

improved time distance and the “time in risky state” heuristic (ITD-TIR). The strategy 

is designed to combine the strengths of both (1+1) EA and ART. This strategy starts 

by applying (1+1) EA. If (1+1) EA does not find fitter test cases after running n num-

ber of test cases, the testing algorithm is switched to ART. All the test cases that were 

executed so far are now used for distance calculations in ART. Fig. 2 shows the pseu-

do-code for HS. The idea behind switching from (1+1) EA to ART is that there is not 

enough time for a random walk to get out of a fitness plateau. And so, in this scenario, 

applying ART can yield better results. Running system test cases is very time con-

suming, so only few fitness evaluations are feasible within reasonable time (e.g., 1000 

test cases can already take several hours). Therefore, in case of fitness plateau, it is 

reasonable to switch strategy, and rather reward diversity instead of the fitness value. 

Though the choice of n is arbitrary it can have significant consequences on the per-

formance of this strategy. A too small value of n will result in an early switch to ART. 

If the given problem matches the case where (1+1) EA performs better, then the per-

formance of HS will be affected. Similarly, if n is too large then the remaining testing 

budget might not be sufficient for ART to perform well.  

 

 

Fig. 2 Pseudo code of the proposed hybrid strategy (HS) 

5. Empirical Study 

The objective of this empirical study is to evaluate the fault detection effectiveness of 

the proposed hybrid strategy. 

Algorithm  HybridStrategy(mx, n, w) 

Input  mx: # of maximum fitness evaluations, n: # of consecutive test cases with no  

  improved fitness,  w: # of random test-cases to generate for comparison in ART 
Declare   Y: set of executed test cases = {}, W: set of randomly generated test cases = {}  

 ev: # of fitness evaluations performed = 0, z: # of consecutive test cases with no im-

proved fitness found so far = 0, Tc: a random test case, Tm: mutated test case,  
Tw: a test case from W, Te: test case from W selected according to ART criteria, 

 Dw: minimum distance of test case Tw with all the test cases in Y, d: maximum value of 

Dw obtained over W  

1. begin 

2.  Generate a random test case Tc  

3.  Execute Tc and evaluate whether environment error state is reached, Add Tc to Y  
4.  while environment error state not reached AND  ev <= mx AND z <= n 

5.   Mutate Tc to get Tm, Execute Tm and evaluate whether environment error state is reached 

6.   Add Tm to Y, Increment ev 
7.   if fitness(Tm) >= fitness(Tc) then Tc = Tm , z = 1 

8.   else Increment z 

9.  while environment error state not reached AND ev <= mx 
10.   Sample w random test cases and add them to W, d = 0  

11.   for each Tw ∈ W 
12.    Calculate Dw  

13.    if Dw > d then d = Dw, Te = Tw  
14.   Execute Te and evaluate whether environment error state is reached 

15.   Add Te to Y, Increment ev  

16. end 



 

5.1. Case Study 

To enable experimentation with diverse environment models and RTES, we devel-

oped 13 different artificial RTES that were inspired by two industrial cases we have 

been involved with [2] and one case study discussed in the literature [19]. Since, there 

are no benchmark RTES available to researchers, we specifically designed these arti-

ficial problems to conduct our experiments (called P1 – P13). The goal while devel-

oping the models of these RTES was to vary various characteristics of the environ-

ment models (e.g., guarded time transitions, loops) that were expected to have an 

impact on the test heuristics. Nine of these artificial problems were inspired by a 

marine seismic acquisition system developed by one of our industrial partners. They 

covered various subsets of the environment of that RTES. Three problems were in-

spired by the behavior of another industrial RTES (automated recycling machine) 

developed by another industrial partner. The thirteenth artificial problem was inspired 

by the train control gate system described in [19].  

These RTES are multithreaded, written in Java and they communicate with their 

environments through TCP. Each of the artificial problems had one error state in their 

environment models and non-trivial faults were introduced by hand in each of them. 

We could have rather seeded the faults in a systematic way, as for example by using a 

mutation testing tool [20] but opted for a different procedure since the SUTs are high-

ly multi-threaded and use a high number of network features (e.g., opening and read-

ing/writing from TCP sockets), features that are not handled by current mutation 

testing tools. Furthermore, our testing is taking place at the system level, and though 

small modifications made by a mutation testing tool might be representative of faults 

at the unit level, it is unlikely to be the case at the system level for RTES. On the 

other hand, the faults that we manually seeded came from our experience with the 

industrial RTES and from the feedback of our industry partners.  

The industrial case study we also report on (called IC) is a very large and complex 

seismic acquisition system (mentioned above) that interacts with many sensors and 

actuators. The timing deadlines on the environment are in the order of hundreds of 

milliseconds. The company that provided the system is a market leader in its field. 

For confidentiality reasons we cannot provide full details of the system. The SUT 

consists of two processes running in parallel, requiring a high performance, dedicated 

machine to run. For the industrial case study, we did not seed any fault and the goal 

was to find the real fault that we uncovered earlier [1]. 

5.2. Experiment 

In this paper, we want to answer the following research questions:  

RQ1. Which configuration is best in terms of fault detection for the proposed hybrid 

strategy (HS)? 

RQ2. How the fault detection of the best HS configuration compares with the perfor-

mance of ART, (1+1) EA, and RT for (a) the artificial problems (P1-13) and (b) the 

industrial case study (IC)? 

To answer these research questions, we have conducted two distinct sets of exper-

iments, one for the artificial problems (to answer RQ1 and RQ2a) and one for the 

industrial RTES (to answer RQ2b). For test case representation in these experiments 



 

we used a dynamic representation with a length equal to 10 for the test cases (which 

correspond to each row of the test data matrix m). In our earlier experiments this 

setting showed the best results [2]. For (1+1) EA we calculated the mutation rate as 

1/k, where k is the number of total elements in a test data matrix. This strategy is 

widely used for SBT and was initially suggested in [21]. We used the fitness function 

that performed best in our previous experiments [8], as discussed in Section 4: Im-

proved Time Distance with Time in Risky State (ITD-TIR). 

To answer RQ1, we used 12 different values for the number of test cases which fit-

ness should be considered before switching from (1+1) EA to ART: n  {10, 20, 50, 

60, 70, 80, 90, 100, 200, 300, 400, 500}. We ran these 12 configurations on each of 

the 13 artificial problems. To answer RQ2a, we selected the configuration of HS that 

gave the best result in terms of fault detection for the 13 artificial problems. We com-

pared this configuration with the results of (1+1) EA, ART, and RT on these prob-

lems. RT was used as a comparison baseline. 

For the artificial problems, the execution time of each test case was fixed to 10 se-

conds and we stopped each algorithm after 1000 sampled test cases or as soon as we 

reached any of the error states. The choice of running each test case for 10 seconds 

was based on the properties of the RTES and the environment models. The objective 

was to allow enough time for the test cases to reach an error state. We ran each of the 

strategies 20 times on each artificial problem with different random seeds. The total 

number of sampled test cases was 1,561,390, which required around 180 days of CPU 

resources. Therefore, we performed these experiments on a cluster of computers.  

Table 1. Success Rates (SR) for 12 configurations of HS on the 13 problems 

Configurations → 

Problems ↓  
10 20 50 60 70 80 90 100 200 300 400 500 

P1 0.5 0.75 0.95 1 1 1 1 1 1 1 1 1 

P2 0.85 0.95 1 1 1 1 1 1 0.9 1 1 1 

P3 1 1 1 1 1 1 1 1 0.9 0.8 0.6 0.5 

P4 0.05 0.2 0.8 0.85 0.7 0.75 0.9 0.9 1 1 0.9 1 

P5 0.85 1 1 1 1 1 1 1 1 1 1 1 

P6 0 0.15 0.45 0.4 0.45 0.5 0.45 0.6 0.7 0.7 0.5 0.6 

P7 0.3 0.4 0.8 0.8 0.85 0.95 0.8 0.8 0.8 0.8 0.8 1 

P8 1 1 1 1 1 1 1 1 1 1 0.95 1 

P9 0.05 0.05 0.45 0.55 0.55 0.35 0.6 0.4 0.8 0.45 0.5 0.55 

P10 1 1 1 1 0.95 0.85 1 0.95 0.65 0.55 0.4 0.45 

P11 1 1 1 0.95 0.95 0.9 1 0.9 0.65 0.05 0.1 0.4 

P12 1 1 1 1 0.95 1 1 1 0.9 0.9 0.75 0.65 

P13 1 1 1 1 1 1 1 1 0.9 0.7 0.95 0.85 

Average SR 0.66 0.73 0.88 0.89 0.88 0.87 0.9 0.89 0.86 0.77 0.73 0.77 

Average Rank 6.38 6.73 5.19 5.77 5.23 6.31 6.50 6.19 6.73 8.46 7.73 6.69 

 

To answer RQ2b, we carried out experiments on the described seismic acquisition 

system. We run each test case for 60 seconds, where 1000 test case executions (fitness 

evaluations) can take more than 16 hours. This choice has been made based on the 

properties of the RTES and discussions with the actual testers. Due to the large 

amount of resources required, we only ran the configuration that on average gave best 



 

results for the artificial problems (i.e., n=50) and compared its fault detection rate 

with that of (1+1) EA, ART, and RT. We carried out 39 runs for each of these four 

test strategies. The total number of sampled test cases was 55,283, which required 

over 55 days of computation on a single, high-performance, dedicated machine. 

To analyze the results, we used the guidelines described in [22] which recommends 

a number of statistical procedures to assess randomized algorithms. First we calculat-

ed the success rates of each algorithm: the number of times it was successful in reach-

ing the error state out of the total number of runs. These success rates are then com-

pared using the Fisher Exact test, quantifying the effect size using an odds ratio (ψ) 

with a 0.5 correction. When the differences between the success rates of two algo-

rithms were not significant, we then looked at the average number of test cases that 

each of the algorithms executed to reach the error state. We used the Mann-Whitney 

U-test and quantified the effect size with the Vargha-Delaney A12 statistics. The sig-

nificance level for these statistical tests was set to 0.05.  

5.3. Results & Discussion 

Table 1 provides the success rates (in terms of fault detection) for various HS configu-

rations. The last row of the table shows the average ranking of each configuration 

based on the statistical differences among them. Configurations that are statistically 

equivalent (i.e., p-values above 0.05) are assigned a similar ranking. This is done by 

assigning scores based on pairwise comparisons of configurations. Whenever a con-

figuration is better than the other and the difference is statistically significant, its 

score is increased (for details, see [22]). Then, based on the final scores, each configu-

ration is assigned ranks ranging from 1 (best configuration) to 12 (worst configura-

tion). In case of ties, ranks are averaged. As the success rates and average rankings 

indicate, using a very low (< 50) or very high value (>=200) of n results in a degraded 

performance for HS. With a low value of n, HS makes the switch from (1+1) EA to 

ART too early, which does not give sufficient time for (1+1) EA to converge and 

hence running HS becomes similar to only running ART. In cases where ART per-

forms well, such configurations of HS also perform well (see Table 2 for the perfor-

mance of ART on artificial problems). For instance, for n = 10, the average success 

rate is 66% and average ranking is 6.38. Similarly, when HS switches too late, it does 

not give enough time to ART (given the upper bound of 1000 iterations) and hence 

running HS is similar to running (1+1) EA in such cases. These configurations per-

form well in cases where (1+1) EA performs well (Table 2) and poor otherwise. The 

best results are provided for values between 50 and 100 and the differences in results 

in this range are not significant. Though the results are not fully consistent across all 

problems, configuration n = 50 has the best average rank across all problems and is 

always very close to the maximum success rates. We can hence answer RQ1 by stat-

ing that, overall, n=50 shows the best results for HS and therefore this configuration 

can be used when applying HS on new problems. 

For RQ2a we compared the best HS configuration (n = 50) with RT, ART, and 

(1+1)EA. Table 2 shows the corresponding success rates of these algorithms and 

Table 3 shows a comparison of HS with the other three algorithms based on statistical 

tests. The statistics for the situations where HS is significantly better are bold-faced 



 

and are italicized where it is significantly worse. Table cells with a ‘-’ denote no sig-

nificant differences. P-values obtained as a result of Fisher Exact test on the success 

rates are denoted as p and odds ratio as ψ. In cases where there is no statistical differ-

ence in success rates, the number of iterations is considered and the p-values of the 

Mann-Whitney U-test are denoted as it-p and corresponding effect sizes by A12.  

When compared to (1+1) EA, HS showed better fault detection performance in 

four of the artificial problems (P3, P10 – P12) and had similar results otherwise. The-

se are the problems where (1+1) EA, when ran in isolation, showed poor results when 

compared to RT and ART (as visible from Table 2). For example in the case of P11, 

(1+1) EA was not able to find the a in any of the runs. On the other hand it is 100% 

for HS, RT, and ART, which means that these strategies were able to find a fault in 

every run. Hence, HS shows significant improvement over (1+1) EA. 

When compared to RT, HS showed significantly better results in terms of success 

rates for six artificial problems (P1, P4, P5, P6, P7, and P9) and had similar results for 

all the other problems. Similarly with ART, in terms of success rates, HS showed 

better results for six artificial problems (P1, P2, P4, P6, P7, and P9) and had similar 

results for the rest. P1, P4, P6, P7, and P9 are the problems where ART and RT 

showed poor results when compared to (1+1) EA (Table 2). For example in the cases 

of P4, P6, and P9, the success rate of both RT and ART is 0, but that of (1+1) EA and 

HS is 1 and 0.8, respectively. Hence, in terms of success rates, HS shows significantly 

better results when compared to RT and ART. However, in terms of number of itera-

tions required to detect the fault, HS is significantly worse than RT in four problems 

(P8, P10, P12, and P13) and significantly worse than ART in six problems (P3, P8, 

P10, P11, P12, and P13). But, for all these problems, the success rate of HS, RT, and 

ART is 1, which means that whenever these algorithms run they find the fault (within 

the budget of 1000 test cases). Therefore, we can answer RQ2a by stating that HS 

shows overall significantly better performance than ART, RT, and (1+1) EA in terms 

of fault detection, but was slower than RT/ART in finding faults for problems where 

these two algorithms perform better than (1+1) EA. But since the success rate of HS 

is 100%, and therefore the first run is expected to reach the error state, this difference 

in execution time has limited practical impact.  

For RQ2b we compared the performance of the best configuration of HS (n = 50) 

with that of ART, RT, and (1+1) EA on the industrial case study. The last row of 

Table 3 shows a comparison of the results of the four strategies on this case study (IC) 

and the last column of Table 2 shows the corresponding success rates. The results are 

similar to that obtained for those artificial problems where RT and ART perform 

better than (1+1) EA. HS outperformed (1+1) EA. When compared with the results of 

ART and RT, there is no significant difference though (100% success rate). These 

results are consistent with RQ2a and we can therefore answer RQ2 by stating that, 

overall, HS shows significantly better results when compared to (1+1) EA, RT, and 

ART. However, as for RQ2a, for problems where ART performed much better than 

(1+1) EA, though the success rates of HS and ART are similar, ART find the faults 

faster than HS. 

HS starts with (1+1) EA and switches only when fifty consecutive test cases do not 

show better fitness. Fitness evaluations make HS slower than ART/RT but its effec-

tiveness considerably improves over ART/RT for the problems where they showed 

poor results. In the light of these results, we can conclude that when applying our 



 

testing approach, using HS seems to be the most practical choice as its performance, 

unlike that of (1+1) EA, ART, and RT, is not drastically affected by the properties of 

the SUT and its environment models. As a result, testers can apply this strategy in 

confidence, knowing it will perform well in most circumstances.  

Table 2. Success Rates of HS (best configuration), RT, ART, and (1+1) EA 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 Avg.  IC 

HS 0.95 1 1 0.8 1 0.45 0.8 1 0.45 1 1 1 1 0.88 1 

ART 0.4 0.75 1 0 0.95 0 0.15 1 0 1 1 1 1 0.63 1 

EA 1 1 0.5 1 1 0.7 0.85 1 0.35 0.45 0 0.7 0.95 0.73 0.74 

RT 0.45 1 1 0 0.65 0 0.2 1 0 1 1 1 1 0.64 0.97 

Table 3. Comparison of best HS configuration with RT, ART, & (1+1)EA  

Problem HS vs. (1+1) EA HS vs. RT HS vs. ART 

P1 - p = 0.0012, ψ =15.74 p = 0.0004, ψ =19.12 

P2 - it-p = 0.0065, A12 = 0.25 p = 0.047, ψ =14.55 

P3 p = 0.0004, ψ = 41.00 - it-p =  0.013, A12 = 0.73 

P4 - p = 1.5e-07, ψ = 150.33 p = 1.5e-07, ψ = 150.33 

P5 - p = 0.0083, ψ = 22.78 - 

P6 - p = 0.0012, ψ = 33.87 p = 0.0012, ψ = 33.87 

P7 - p = 0.0004, ψ = 13.44 p = 8.7e-05, ψ = 18.33 

P8 - it-p =  0.009, A12 = 0.74 it-p =  0.0004, A12 = 0.825 

P9 - p = 0.0012, ψ = 33.87 p = 0.0012, ψ = 33.87 

P10 p = 0.0001, ψ = 49.63 it-p = 0.0006, A12 = 0.81 it-p = 0.0002, A12 = 0.85 

P11 p = 1.4e-11, ψ = 1681.00 - it-p = 0.0032, A12 = 0.77 

P12 p = 0.02, ψ = 18.38 it-p = 0.0016, A12 = 0.79 it-p = 0.0008, A12 = 0.81 

P13 - it-p = 0.0199, A12 = 0.71 it-p = 0.021, A12 = 0.71 

IC p = 0.0004, ψ = 28.83 - it-p = 0.015, A12 = 0.66 

5.4. Threats to Validity 

Although the artificial problems that we developed were based on industrial RTES 

and are not trivial to test (they are multithreaded and hundreds of lines long), these 

artificial problems may not be representative of complex RTES. To reduce this threat, 

we used artificial problems inspired by actual RTES and intentionally varied the 

properties of their environments in ways that could affect the testing strategies.  

A typical problem when testing RTES is the accurate simulation of time. To be on 

the safe side, to evaluate whether our results are reliable, we selected a set of experi-

ments and ran them again with exactly the same random seeds. We obtained equiva-

lent results with a small variance of a few milliseconds, which in our context did not 

affect the testing results. 

Another possible threat to validity could be the faults that were manually seeded in 

the artificial problems. The faults that we seeded came from our experience with the 

industrial RTES and from the feedback of our industry partners, so they are repre-

sentative of real faults. We could not use a more systematic fault seeding techniques 

due to the reasons mentioned in Section 5.1. 



 

6. Conclusion 

In this paper, we proposed a hybrid strategy (HS) that combines (1+1) Evolutionary 

Algorithm (EA) and Adaptive Random Testing (ART) for black-box automated sys-

tem testing of real-time embedded systems (RTES). The strategy was developed to 

combine the benefits of both algorithms, since their individual results varied greatly 

depending on the failure rate of the system under test and properties of its environ-

ment. The ultimate goal was to obtain a strategy with consistently good results. The 

proposed strategy starts with running (1+1) EA and switches to ART when the (1+1) 

EA search stops yielding fitter test cases. We empirically investigated when to switch 

to ART and identified an optimal setting for HS. Results indicate that switching too 

early or too late than the identified setting has a negative impact on the performance 

of the strategy. Based on the experiments, when using HS in practice, we propose 

switching to ART after (1+1) EA generates 50 consecutive test cases that do not im-

prove fitness. We evaluated the proposed strategy and compared its performance with 

that of running (1+1) EA and ART individually. We also use random testing (RT) as a 

comparison baseline. The empirical evaluation uses an industrial case study and 13 

artificial problems that were developed based on two industrial case studies belonging 

to different domains. The models of these artificial problems were developed in order 

to vary their characteristics, thus potentially affecting the performance of the evaluat-

ed testing strategies. Overall, the results indicate that HS shows significantly better 

performance in terms of fault detection (an overall 88% success rate for artificial 

problems and 100% for the industrial case study) than the other three algorithms (for 

artificial problems: ART: 63%, RT: 64%, and (1+1) EA: 74% and for the industrial 

case study: ART: 100%, RT, 97%, (1+1) EA: 74%). Unlike the other strategies, varia-

tions in environment properties do not have a drastic impact on the performance of 

HS and it is therefore the most practical approach, showing consistently good results 

for different problems.  
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