
Exploring the Impact of Inter-smell Relations on
Software Maintainability: An Empirical Study

Aiko Yamashita
Simula Research Laboratory

Lysaker, Norway
aiko@simula.no

Leon Moonen
Simula Research Laboratory

Lysaker, Norway
leon.moonen@computer.org

Abstract—Code smells are indicators of issues with source code
quality that may hinder evolution. While previous studies mainly
focused on the effects of individual code smells on maintainability,
we conjecture that not only the individual code smells but
also the interactions between code smells affect maintenance.
We empirically investigate the interactions amongst 12 code
smells and analyze how those interactions relate to maintenance
problems. Professional developers were hired for a period of four
weeks to implement change requests on four medium-sized Java
systems with known smells. On a daily basis, we recorded what
specific problems they faced and which artifacts were associated
with them. Code smells were automatically detected in the pre-
maintenance versions of the systems and analyzed using Principal
Component Analysis (PCA) to identify patterns of co-located code
smells. Analysis of these factors with the observed maintenance
problems revealed how smells that were co-located in the same
artifact interacted with each other, and affected maintainability.
Moreover, we found that code smell interactions occurred across
coupled artifacts, with comparable negative effects as same-
artifact co-location. We argue that future studies into the effects
of code smells on maintainability should integrate dependency
analysis in their process so that they can obtain a more complete
understanding by including such coupled interactions.

Index Terms— code smells; bad smells; inter-smell relations;
smell interaction; software maintenance; software quality.

I. INTRODUCTION

The presence of code smells indicates that there are issues
with code quality, such as understandability and changeability.
This can lead to a variety of maintenance problems, including
the introduction of faults [1]. Beck and Fowler described 22
code smells and associated each of them with refactoring
strategies that can be applied to counteract the potentially
negative consequences of having these smells present in your
source code [1]. However, code smells are only indicators of
potentially problematic code. Not all smells are equally harm-
ful, and some of them may not even be harmful in particular
contexts. In addition, applying refactoring strategies implies
a certain cost and risk, e.g., any changes made to the code
may introduce unwanted side effects and could trigger faults
in the system. Therefore, we need to better understand the
relationship between code smells and maintenance problems.

When analyzing the relation between individual code smells
and maintainability [2], we observed that several code smells
tended to be present in the same artifact. Based on these
observations, we conjectured that interaction effects between
co-located smells (i.e., smells located in the same artifact)

can intensify problems caused by individual code smells or
lead to additional, unforeseen maintenance issues. The notion
of inter-smell relations has only been brought to attention
recently, but the concept seems promising for understanding
the nature and effects of code smells. Inter-smell relations
were introduced by Pietrzak and Walter [3] to support more
accurate detection of code smells. An example inter-smell
relation they propose is plain-support, which is defined as
follows: “...smell B is supported by smell A if the existence
of A implies with sufficiently high certainty the existence of B.
B is then a companion smell of A, and the program entities
(classes, methods, expressions etc.) burdened with A also suffer
from B...” While Pietrzak et al. introduced inter-smell relations
in the context of code smell detection, we argue that this notion
can also help to better understand how code smell interaction
effects can cause problems for developers.

This paper reports on an empirical study that investigates
interactions among twelve different code smells and how these
interactions can lead to maintenance problems. It is based on
an industrial case study in which six professional software
engineers were hired to maintain four medium-sized Java
systems with equivalent functionality but dissimilar designs
for a period of up to four weeks. During that time, they
were asked to implement a number of change requests. Via
interviews and think-aloud sessions, we recorded on a daily
basis detailed reports about the maintenance problems that
were faced, and which artifacts were associated with them. Af-
terwards, we used tools to automatically detect the code smells
that were present in the original “pre-maintenance” versions
of the systems and applied Principal Component Analysis
(PCA) to find out how code smells were co-located (i.e., find
clusters of smells present in the same artifact). The reported
problems were analyzed in detail to investigate how co-located
smells interacted with each other, and how this interaction
related to the problems experienced during maintenance. In
addition, we found that interaction occurred between code
smells distributed across coupled artifacts (“coupled smells”
hereafter) and analyzed how this affected maintenance.

The remainder of this paper is structured as follows: Sec-
tion 2 presents the background and related work. Section 3
describes the study design, the systems under analysis and
the maintenance tasks. Section 4 presents and discusses the
results. Section 5 concludes and presents future work.

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

682



II. THEORETICAL BACKGROUND AND RELATED WORK

A code smell is a suboptimal design choice that can degrade
different aspects of code quality, such as understandability
and changeability, and may also lead to the introduction of
faults [1]. Beck and Fowler [1] informally described 22 code
smells and associated them with refactoring strategies to im-
prove the design. In the last decade, code smells have become
an established concept for patterns or aspects of software
design that may cause problems for further development and
maintenance of these systems [4]. Code smell analysis allows
people to integrate both assessment and improvement into the
software evolution process itself.

Van Emden and Moonen [5] provided the first formalization
of code smell detection and developed an automated code
smell detection tool for Java. Mäntylä [6] and Wake [7]
proposed two initial taxonomies for code smells. Mäntylä
investigated how developers identify and interpret code smells
and how these methods compare to results from automatic
detection tools. Examples of recent approaches for code smell
detection can be found in [8–17]. Automated detection has
been implemented in commercial tools, such as Borland To-
gether1 and InCode2.

Previous studies have empirically investigated the effects
of individual code smells on different aspects related with
maintainability, such as defects [18–22], effort [23–26] and
changes [15, 27, 28]. From these earlier empirical studies,
only the study by Abbes et al. [26] has brought up the
notion of interactions between code smells. They conducted an
experiment in which 24 students and professionals were asked
questions about the code in six Open Source Systems (OSS).
The authors concluded that classes and methods identified
as God Classes and God Methods had no effect on effort
or quality of responses in isolation, but when they appeared
together, they led to a statistically significant increase in
response effort and a statistically significant decrease in the
percentage of correct answers. We believe that the explanatory
and predictive power of code smells can be improved by
considering and investigating inter-related code smells, rather
than only focusing on the study of individual code smells.
This study attempted first to identify patterns of co-located
code smells via PCA and subsequently explored the effects
of interactions between code smells on the incidence of
maintenance problems.

III. THE EMPIRICAL STUDY

A. Systems Under Analysis

In 2003, Simula Research Laboratory’s Software Engineering
department sent out a tender for the development of a web-
based information system to keep track of their empirical
studies and resulting scientific publications. Based on the
submitted bids, four Norwegian consulting companies were
hired to independently develop a version of the system using
the same requirements and specifications. More details on

1 http://www.borland.com/us/products/together
2 http://www.intooitus.com/products/incode

TABLE I
SIZE OF THE SYSTEMS ANALYZED (LOC)

System A B C D

LOC 7937 14549 7208 8293
No. Java files 63 167 29 118

the original development projects can be found in [29]. The
four development projects led to the creation of four systems
with the same functionality. We will refer to them as System
A, System B, System C, and System D. The systems were
primarily developed in Java, and they all have similar three-
layered architectures. Although the systems exhibit nearly
identical functionality, there were substantial differences in
how they were designed and coded. An overview of their size
in lines of code (LOC) and number of Java files is shown in
Table I.

The systems were all deployed over Simula Research Lab-
oratory’s Content Management System (CMS), which at that
time was based on PHP and a relational database system. The
systems had to connect to the database in the CMS to access
data related to the research at Simula Research Laboratory as
well as information on the publications.

B. The Maintenance Tasks and the Developers

In 2008, Simula Research Laboratory introduced a new CMS
called Plone3, which interfered with the operation of the
systems. Consequently, it was necessary to modify the systems
so they could operate in the new environment (i.e., an adaptive
maintenance task was required). In addition, it was required to
extend the systems with additional functionality. Two Eastern
European software companies were hired to do the main-
tenance tasks between September and December 2008 at a
total cost of 50,000 Euros. The maintenance tasks are briefly
described in Table II and were completed by six different
developers. The developers were recruited from a pool of 65
participants of a previously completed study on programming
skill [30]. Additional information about the skill scores used
for this purpose can be found in [30]. The developers were
evaluated to ensure they had sufficient English skills for the
purpose of our study, and they were explicitly asked if they
were willing to take part in the planned study. As part of
the study, all developers individually completed each of the
three tasks (in the order specified in Table II) on two different
systems. These developers first performed all tasks on one
system and then repeated the tasks on the second system. The
systems were randomly assigned to developers with controls in
place for equal representation. Clearly, there is a learning effect
from repeating the same tasks on a second system. However,
this effect is not considered a threat to the validity of this
particular study, since (i) it reflects realistic situations where
developers have relevant experience for performing similar
tasks, (ii) the speed with which developers perform their tasks

3 http://plone.org

683



TABLE II
MAINTENANCE TASKS

Task Description

1. Adapting the system to the new Simula CMS In the past, systems had to retrieve information through a direct connection to
a relational database within Simula’s domain (mainly information concerning the
researchers at Simula and publications associated or derived from the different
studies). Currently, Simula uses a CMS based on the Plone platform, which uses
an Object Oriented database called ZODB[51]. In addition, the Simula CMS
database previously contained unique identifiers for employees and publications
that were based on Integer type. Now, a Char type is used as a unique identifier for
both employees and publications. Task 1 consisted of modifying the data retrieval
procedure by consuming a set of web services provided by the new Simula CMS
to access all the information associated with employees and publications.

2. Authenticating via web services Under the previous CMS, authentication was done through a connection to a remote
database, and this process used the authentication mechanisms available at that time
for the Simula website. Task 2 consisted of replacing the existing authentication
procedures by calling a web service for this purpose.

3. Adding new reporting functionality A new functionality consisted of introducing a set of options for configuring
personalized reports. In these reports, the user should be able to choose the type of
information related to a study to be included in the report, set as inclusion criteria
a list of the people responsible for the study, sort the resulting studies according to
when the study was finalized, and group the results according to the type of study.
The configuration of the report must be stored in the systems’ database and should
be editable only by the owner of the report configuration.

is of no importance, and (iii) repeating the same tasks actually
helps developers to contrast maintainability across the systems.

C. Study Design

1) The Process: First, the developers were given an
overview of the tasks (e.g., the motivation for the maintenance
tasks and the expected activities). Then they were provided
with the specification of the maintenance tasks. When needed,
they could discuss the maintenance tasks with a researcher;
one was always present at the site during the entire duration of
the project. We had daily meetings with the developers where
we tracked their progress and the problems they encountered.

Think-aloud sessions were conducted every other day at a
random point during the day, and they lasted for 30 minutes.
Acceptance tests and individual open interviews, which had a
duration of 20-30 minutes, were conducted once all three tasks
were completed. In the open-ended interviews, the developers
were asked about their opinions of the system, e.g., about their
experiences when maintaining it.

Eclipse was used as a development tool along with MySQL4

and Apache Tomcat5. Defects were registered in Trac6, and
Subversion7 was used as the versioning system. A plug-in for
Eclipse called Mimec [31] was installed on each developer’s
computer to log all the user actions performed at the graphical
user interface (GUI) level with millisecond precision.

2) Code Smells Analyzed: Twelve code smells were auto-
matically identified in the original “pre-maintenance” versions
of the systems, using Borland Together and InCode. Table III
presents descriptions of the code smells that were detected
(based on [1, 32]). The detection strategies used in the tools are

4 http://www.genuitec.com 5 http://tomcat.apache.org
6 http://trac.edgewall.org 7 http://subversion.apache.org

based on [33] (see the Appendix in our technical report [34]
for more details on the detection parameters). Even though
it is not part of the 22 smells defined by Fowler and Beck,
the design principle violation called Interface Segregation
Principle Violation (ISP Violation) was included because it
constitutes an anti-pattern that is believed to have negative
effects on maintainability [32] and therefore can be considered
a code smell. Borland Together is able to detect violations of
this design principle.

3) Identification of Problems and Problematic Artifacts:
The aim of the study was to explore situations where main-
tenance problems occurred due to the interaction of several
code smells. Therefore, we needed to identify the artifacts that
caused problems during maintenance and to record the nature
of the problems caused by these artifacts. In the context of
this study, we defined a maintenance-related problem as “any
struggle, hindrance or problem developers encountered while
they performed their maintenance tasks that was observed by
us through daily interviews and think-aloud sessions.” The
daily interviews with each developer allowed us to record the
problems encountered during maintenance while they were
still fresh in the developers’ minds. The following is an
example comment of a developer who complained about the
complexity of a piece of code: “It took me three hours to un-
derstand this method...” We tagged such comments as partial
evidence for maintainability (understandability) problems in
the artifact that included this method.

During the think-aloud sessions, the developers’ screens
were recorded with a ZD Soft Screen Recorder.8 Sometimes
the maintenance problems were derived from more than one
data source (e.g., by a combination of direct observation,
8 http://www.zdsoft.com

684



TABLE III
CODE SMELLS AND THEIR DESCRIPTIONS (BASED ON [1, 32])

Code Smell (ID) Description

Data Class (DC) Classes with fields and getters and setters that do not implement any function in particular.
Data Clump (CL) Clumps of data items that are always found together whether within classes or between classes.
Duplicated code in
conditional branches (DUP)

The same or similar code structure repeated within the branches of a conditional statement.

Feature Envy (FE) A method that seems more interested in another class other than the one it actually is in. Fowler
recommends putting a method in the class that contains most of the data required by the method.

God Class (GC) A class that takes too many responsibilities relative to the classes with which it is coupled. The God Class
centralizes the system functionality in one class, which contradicts decomposition design principles.

God Method (GM) A class has the God Method smell if at least one of its methods is very large compared to the other
methods in the same class. The God Method centralizes the class functionality in one method.

Misplaced Class (MC) A class that needs the classes from other packages more than those from its own package.
Refused Bequest (RB) Subclasses do not want or need everything they inherit.
Shotgun Surgery (SS) A change in a class results in the need to make a lot of little changes in several classes.
Temporary variable used for
several purposes (TMP)

Temporary variables used in different contexts, implying that they are not consistently used. These types
of variables can lead to confusion and the introduction of faults.

Use interface instead of
implementation (IMP)

Castings to implementation classes should be avoided and an interface should be defined and implemented
instead.

Interface Segregation
Principle Violation (ISPV)

The dependency of one class upon another one should depend on the smallest possible interface. Even
if there are objects that require non-cohesive interfaces, clients should see abstract base classes that are
cohesive. Clients should not be forced to depend on methods they do not use, since this creates coupling.

the developers’ statements on a given topic/element, and the
time/effort spent on an activity). When it was possible to
map the identified maintenance problems to an artifact, we
categorized the artifact as problematic. While the assessment
of problematic artifacts can be subjective to some extent, we
perceived the connections between problems and code in this
study to be quite direct, i.e., asserting a connection did not
require much judgment that could introduce a bias.

The researcher that was on site during the study kept a
logbook during the interviews and think-aloud sessions where
the maintenance problems were documented in detail. For each
identified maintenance problem, the following information was
recorded:

• the developer and the system
• the statements provided by the developers related to the

maintenance problem
• the source of the problem (e.g., infrastructure, developer,

source code, external web services)
• artifacts such as classes or interfaces, and possibly meth-

ods, related to the problem
In short, the categorization of the problematic artifacts was
based on either the direct observation of the developers’
behavior during the think-aloud sessions, or on the comments
made by the developers during the daily interviews. A detailed
account on the identification of problems and problematic
artifacts can be found in [35, 36].

4) Analysis Technique: To observe patterns of co-located
code smells, a principal component analysis (PCA) using
orthogonal rotation (varimax) was conducted on the set of
artifacts that was modified/inspected by at least one of the

developers during maintenance. Subsequently, a follow-up
qualitative analysis based on the data from the interviews and
the think-aloud sessions was performed. This analysis is based
on the explanation building technique [37] and aims to deter-
mine the extent to which the presence of a single code smell or
several code smells contributed to the problems experienced
by the developers during maintenance. An essential input to
the qualitative analysis was the analysis of Java files that were
modified or inspected during the maintenance work. These
files were identified using the logs generated by Mimec [31].
This plug-in recorded not only the type of action performed
by the developer in the IDE but also the Java element (if any)
that was the subject of the interaction, such as the name of
the file selected or the name of the class/method being edited.
For more details on the analysis of the Mimec logs we refer
to [36].

IV. RESULTS

A. Exploration of the Maintenance Problems

Most of the maintenance problems that we identified were
related to one of the following: (1) introduction of defects as
result of changes (25%), (2) time-consuming changes (39%),
and (3) troublesome program comprehension and information
searching (27%). Table IV provides a description of each
type of problem. The remaining problems (9%) manifested
at much lower scale, and include: cumbersome configuration
(6%) and debugging (3%). In total, 137 different maintenance
problems were identified. Out the total number of maintenance
problems, 64 (47%) related to Java source code. The remaining
73 (53%) constituted problems that were not directly related

685



TABLE IV
DESCRIPTION OF THE THREE MAIN TYPES OF PROBLEM IDENTIFIED

No. Type of Problem Description

1. Introduction of defects Undesired behavior or unavailability of functionality in the system (i.e., defects) that manifested after
modifying different components of the system. This problem introduced delays in the work and forced
the developers perform lengthy debugging or to roll back initial strategies for solving the tasks.

2. Time-consuming or
costly changes

Time consuming or costly changes were associated with situations with one of the following: i) a
high number of components in the system required changes in order to accomplish a task, and, ii)
cognitively demanding tasks due to the nature of the problem to be solved or due to the system’s
intricate design, visualization, or information distribution.

3. Troublesome program
comprehension and in-
formation searching

This problem type comprised three situations: i) the developers struggled to get an overview of the
system or to obtain high-level understanding of the system’s behavior, ii) the developers became
confused during low-level understanding of the code because they found inconsistent or contradictory
evidence in different components of the system, and iii) the developers faced time-consuming or
troublesome information or “task context” searches (e.g., finding the appropriate place to make the
changes, finding the data needed to perform a task).

to code (e.g., a lack of adequate technical infrastructure,
developer coding habits, external services, run-time environ-
ment, and defects initially present in the system). The high
percentage of non-source code-related problems suggests that
problems identifiable via current definitions of code smells
may only cover a smaller part (in this case, 47%) of the
total problems identified during maintenance. In total, 301
artifacts (i.e., Java files) across all four systems were modified
or inspected by at least one developer during maintenance,
from a total of 377 artifacts. This indicates that nearly 80% of
the artifacts across all four systems were modified/inspected.
Out of those artifacts that were modified/inspected, 61 (20%)
of them were reported as problematic during maintenance
by at least one developer. Table V presents the numbers
and proportions of problematic and non-problematic artifacts
across the four systems, and the percentage of the total number
of files that were modified/inspected in each system.

B. The Factor Analysis

A principal component analysis (PCA) was conducted on
the 301 data points using orthogonal rotation (varimax). The
Kaiser-Meyer-Olkin (KMO) measure was used to verify the
sampling adequacy for the analysis, as recommended by Field
[38]. With KMO = 0.604 and all KMO values for individual
items being > 0.5, the sample meets the minimum acceptance
criterion defined by Kaiser [39]. In addition, Bartlett’s test of
Sphericity, with χ2(66) = 561.252 and p < .001, indicates

TABLE V
DISTRIBUTION AND PERCENTAGE OF PROBLEMATIC VS.

NON-PROBLEMATIC ARTIFACTS

System Problematic Non-Problematic Total

A 11 20% 45 81% 56 88%
B 37 30% 88 70% 125 75%
C 3 12% 22 88% 25 86%
D 10 11% 85 89% 95 80%

Total 61 20% 240 80% 301 80%

that the correlations between the items are sufficiently large
for a satisfactory application of PCA. An initial analysis was
run to obtain eigenvalues for each component in the data. Five
components had eigenvalues over Kaiser’s criterion of 1 and in
combination explained 63.5% of the variance. Table VI shows
the factor loadings after rotation.

C. Relations Between Factors and Problems

In total, five factors were identified, as shown in Table VI.
Below we discuss for each factor what code smells contributed
to them, the code smells’ role in them, and the observed effects
of those smells on maintenance problems.

Factor 1: In Table VI, the code smells God Method and
God Class are the closest in this factor, followed by the code
smells Temporal variable used for several purposes, Duplicated
code in conditional branches, and Feature Envy. Given that
the detection strategies of the first two code smells are based
on size measures (see Appendix in [34]), it is natural that
they would appear together. In addition, large classes often
use many different variables, which increase the chances of
the same Temporary variable being used for several different
purposes. Code smells in Factor 1 may, consequently, be
considered to relate to the size of the code.

The great majority of these classes contained many methods
that accessed data/methods from different areas of the system
(i.e., methods displaying Feature Envy). This characteristic
forced the developers to examine all the artifacts called by
these methods in order to first understand the behavior of the
class and then to identify the task context. Faults occurred
in those artifacts because developers missed areas of the code
that needed to be consistently changed after changes were done
on the methods displaying Feature Envy. The qualitative data
pointed out that artifacts with Feature Envy and God Method
were associated with time-consuming changes because they
involved highly complex changes in terms of the number
of changes required to complete the task and also regarding
the number of elements to be considered simultaneously to
complete the task. (This last case comprised a cognitively
demanding task.)

686



One or two classes in each system “hoarded” the business
logic/functionality of the system (i.e., StudyDatabase, DB, and
StudyDAO, as described in [34]). They were extremely large
in comparison to the rest of the artifacts of the systems, and
developers frequently will commit “slips” or mistakes due to
the size of these classes (mainly because it is hard to navigate
across the class and keep track of the changes within the class).
Some of these “hoarders” also contained Temporal variables
used in different contexts. These inconsistencies in the use
of different variables made the developers unsure about the
purpose of the variables and the behavior of the method/class
containing them. This uncertainty triggered mistakes that lead
to several faults, particularly in System C. Developers would
change a variable, expecting that it would be used in the
same way across the class. Instead, unexpected behavior would
manifest and demand debugging and refactoring.

Factor 2: ISP Violation and Shotgun Surgery belong to-
gether in a separate factor (Factor 2). This distinction indicates
that they may represent (to some extent) the same construct
(e.g., related to wide-spread, afferent coupling). Also, they did
not seem to relate much to the size of the code (Factor 1).
One critical example of program comprehension in artifacts
containing ISP Violation relates to the presence of inconsistent
design (manifested in the class StudySortBean, in System A,
see [34]). A major reason why the developers found System A
difficult to understand was due to inconsistent and incoherent
data and functionality allocation, which was considered “not
logical” by the developers. Two developers actually stated that
the design “did not make sense.” The class StudySortBean
was initially employed as a Bean9 to sort a given list of
empirical studies and present them in a report to the user.
9 In J2EE environments, it is common to use Bean files as data transfer
objects. Their counterparts, the Action files (which in turn contain the business
logic) access the Bean files.

TABLE VI
FACTOR LOADINGS AFTER ROTATION

Component
1 2 3 4 5

GM .751
GC .730

TMP .687
DUP .595
FE .537
SS .896

ISPV .823
DC .751
CL .721
IMP .823
RB .822
MC -.548

Eigenvalues 2.442 1.768 1.305 1.073 1.033
% of variance 20.350 14.731 10.875 8.942 8.607

Sometime during the initial development phase (i.e., not the
maintenance phase), the StudySortBean class started to acquire
more responsibilities that did not correspond to its class,
and it turned into an Action file. This instance is a good
example of what Martin calls the “wider spectrum of dissimilar
clients” [32]. As a result, an artifact initially containing a
Data Class acquired an ISP Violation. Both the data and
the functionality were called from many different classes,
many of them unrelated. Since the allocation of the data and
functionality seemed rather arbitrary to the developers, they
became confused about the rationale of such a design. This
case is very interesting because the ISP Violation was not
the actual cause of the problem; the real problem was the
inadequate allocation of data and functionality. Nonetheless,
the definition of an ISP Violation and its detection strategy
could identify this particular situation. We also observed that
when the developers introduced faults into artifacts displaying
an ISP Violation, the consequences of these faults manifested
themselves across different components that depended on
them. This situation caused much of the systems’ functionality
to stop working after changes, and in some cases, lead to
unmanageable error propagation. Additionally, when changes
were introduced into the aforementioned artifacts, we observed
that adaptations or amendments were needed in other artifacts
depending on the ISP Violators. This requirement resulted
in time-consuming change propagation and also caused the
introduction of defects, as developers sometimes would miss
parts of the code that needed amendments, resulting in a time-
consuming and an error-prone process.

Factor 3: Data Class and Data Clump are together in
one factor (Factor 3). Although most artifacts displaying Data
Class also displayed Data Clump, very few of the artifacts
displaying both smells were deemed to be problematic during
maintenance. The difficult artifacts with Data Class in turn
seemed to display more affinity with ISP Violation, which was
described in the previous section. Most of the problems in the
Data Class were related to Task 1, where the types for the
identifiers needed to be changed from Integer to String. These
errors were caused when developers would forget to update
some of the Data Classes, introducing defects into the systems.
One observation from artifacts constituting Data Classes is that
the great majority of them displayed incoming dependencies
from Feature Envy methods. Data were located on the artifacts
displaying Data Class, and those were accessed by methods
in the artifacts that contained most of the functionality in
the systems (i.e., Feature Envious methods). This code smell
relationship was mentioned earlier by Pietrzak et. al. [3] and
by Lanza et. al. [4, p. 78].

Factor 4: Implementation Instead of Interface represented
Factor 4. This code smell appeared very seldom in our data-set
and did not relate to any of the other code smells. Out of all
the problematic artifacts, only two contained this smell, and
one of them was problematic only because it displayed the
combination of smells described in Factor 1. Consequently, in
this study, this factor could not be associated with any serious
maintainability problems.

687



TABLE VII
TENDENCIES AND CHARACTERISTICS OF INTER-SMELL RELATIONS IDENTIFIED IN THE STUDY

Relation Nickname Factor Major Characteristics Characteristic Code Smells

Hoarders 1 Indicators of high internal complexity and large size
where the functionality for the element has grown out
of proportion. These elements are difficult to understand
and change and are prone to defects due to “slips.”

God Method, God Class, and Feature
Envy

Confounders 1 These smells indicate that there are two or more am-
biguous contexts which can easily mislead developers in
what is actually happening in a particular piece of code.
As a result, they are mostly associated with defects and
program comprehension issues and are often located in
the same classes where the Hoarders are.

Temporal variable used for several pur-
poses and Duplicated code in condi-
tional branches

Wide interfaces 2 Indicators of afferent coupling dispersion. If the mainte-
nance task requires any modification in classes display-
ing these smells, these changes will entail unexpected
side effects due to the functional coupling dispersion.
Sometimes they are found in the same class as Data
Containers or Hoarders.

Shotgun Surgery and ISP Violation

Data containers 3 Indicators of elements only containing data. Feature
Envy methods often have dependencies on artifacts
displaying these classes. Sometimes they are found in
the same class as “Wide interfaces” when the allocation
of data-functionality is not optimal.

Data Class and Data Clump

Unknowns 4 and 5 Not enough data from the study, very few instances
were found, and most of them were not associated with
maintenance problems.

Implementation instead of interface,
Misplaced Class, and Refused Bequest

Factor 5: Refused Bequest and Misplaced Class constituted
the last factor where Misplaced Class displayed a negative
loading in the PCA. This distinction indicated that Misplaced
Class tended to be negatively associated with this factor.
Positive and negative loadings can be related with the same
factor. For example, in surveys, negative loadings are caused
by questions that are negatively oriented to a factor. A combi-
nation of positive and negative questions is normally used to
minimize an automatic response bias by the respondents [40].
After analyzing the types of problems in each of the artifacts,
we concluded that none of the maintenance problems observed
in our study could be associated with the presence of Refused
Bequest or the absence of Misplaced Class.

D. Identified Trends and Inter-Smell Relations

The results from our PCA, analysis of the problematic ar-
tifacts, and the nature of the maintenance problems caused
by them, all support our position that inter-smell relations
should be analyzed alongside the individual effects of code
smells. To enable a more systematic treatment, we propose a
set of four inter-smell relations based on our observations and
analysis. Table VII gives an overview of these relations, their
associated Factors from our PCA analysis, and a description
of their major characteristics. The fact that the two inter-smell
relations hoarders and confounders were grouped in the same
factor is not surprising if we consider the fact that artifacts
which exhibit hoarders often also exhibit the confounders, so
the PCA would naturally put them together.

As mentioned before, some aspects of the inter-smell re-

lations presented in Table VII were already conjectured in
earlier work by Pietrzak and Walter [3] and by Lanza and
Marinescu [4]. In addition to the summary in Table VII, we
present a graphical overview of the relationships in Figure 1
which complements these earlier results based on concrete
empirical findings from our study.

In addition to inter-smell relations, we also observed inter-
actions between the ISP Violation code smell and other (non-
smell) types of code characteristics. Moreover, we identified a
critical case where interactions were observed between code
smells that were distributed across coupled artifacts. We refer
to these as “coupled smells” to distinguish them from the co-
located smells discussed above. These cases are discussed in
more detail in the next two subsections.

E. Interaction Between Smells and Other Characteristics

The first case was observed in System B, and it was related to
time-consuming changes and the introduction of defects after
a developer’s initial changes. All developers who worked on
System B reported the exact same problem: In order to com-
plete Task 1, which consisted of modifying the functionality
that accesses external data, the developers wanted to replace
two interfaces (Persistable and PersistentObject10) with one
new interface to support a String ID type. The external data
employs String type identifiers as opposed to the Integer types
used in the system. Replacing the interfaces was not possible

10 These artifacts constituted implementations of the Persistence Framework.
Persistence Framework is used as a part of Java technology for managing
relational data (more specifically, data entities).

688



Hoarders

Feature Envy God Class

God Method
Data Containers

Data Clump

Data Class

Wide Interfaces

ISP Violation

Shotgun Surgery

Confounders

Temporal variable used 
for several purposes

Duplicated code in 
conditional brances

have
dependencies

on

could
become

are often found 
together with

could
become

Fig. 1. Diagram displaying code smell relationships based on the observations in the study

since the entire logic flow was based on primitive types
instead of domain entities. Both interfaces were restrictive
and were made under the assumption that the identifiers for
objects would always be Integers and thus, accessor methods
getId() and setId() with a parameter of Integer type were
defined. Notice that these interfaces did not display any code
smells. The maintenance problems occurred because several
critical classes in the system implemented these two interfaces.
Many of the classes that used these interfaces exhibited ISP
Violation smells, which resulted in extensive ripple effects
when modifying the interfaces. After the developers modified
the interfaces, an extremely high number of compilation errors
were found. These errors induced the developers to rollback
the initial changes in those artifacts (i.e., keep the interfaces
untouched) and instead use explicit (forced) type-casting wher-
ever a String type identifier was required. Most developers
used a considerable amount of time trying to replace the
interface, and they were required to rollback and perform the
explicit casting. This case is an example of how the presence of
a code smell may intensify or spread the effects of bad/limited
design choices throughout the system. Since classes with wide
afferent coupling (and therefore exhibiting the ISP Violation
smell) depended on these suboptimal interfaces, any change
to the interfaces resulted in a considerable ripple effect, effec-
tively negating the abstraction benefits of using an interface.

F. Smell Interaction Across Coupled Artifacts

The second case relates to the observation that all systems
except for System B contained one single class that hoarded
most of the logic and functionality in those systems. These
classes were very large in comparison to other classes in the
system, displayed a wide spread of both afferent and efferent
coupling, and demanded high amounts of changes.

All three “hoarders” exhibited ISP Violation because they
displayed many incoming dependencies from different seg-
ments of the system. Because of their high level of efferent

coupling, they also contained Feature Envy. These “hoarders”
also exhibited the God Method smell, which is commonly
present in big, complex classes. Changes in these “hoarders”
were essential given the maintenance tasks, and they were
time-consuming since the developers first had to understand
the logic they contained. The developers reported that they
found it difficult to foresee the consequences of changes given
the combination of their internal complexity and the high num-
ber of dependent classes. Moreover, after the changes were
made, errors would manifest in different areas of the system,
causing further delays to the project. An interesting observa-
tion was that in System B, the combination of code smells
present in the “hoarders” of Systems A, C, and D was not
located in one artifact but instead they were distributed across
several problematic artifacts. The artifacts StudySearch.java
and MemoryCachingSimula.java were internally complex,
and ObjectStatementImpl.java and Simula.java displayed the
highest incoming dependencies. Both pairs of artifacts were
strongly coupled (i.e., StudySearch.java had dependencies on
ObjectStatementImpl.java, while MemoryCachingSimula.java
was dependent on Simula.java). We found that the interactions
between such coupled smells had similar effects as when code
smells were co-located in the same artifact. Table VIII gives
an overview of these coupled smells (the smell abbreviations
used are explained in Table III).

G. Implications for Research and Practice

In this study, we have discovered how code smells that appear
together in the same artifact can interact with each other,
causing various types of maintenance problems. Practitioners
could use the descriptions of the Factors identified in our study
to identify critical artifacts that may need to be prioritized for
refactoring. From a research perspective, we know only of
one empirical study (by Abbes et al., [26]) that reports on
the interaction effects between two concrete code smells (i.e.,
between God Class and God Method), and we believe that

689



TABLE VIII
OVERVIEW OF THE HOARDERS IN SYSTEM B AND THE DISTRIBUTION OF THE INDIVIDUAL SMELLS ACROSS TWO COUPLED ARTIFACTS

Filename Individual Code Smells Coupled Smells

StudySearch.java GC, GM, FE
FE, GM, ISPV, GC, SS

ObjectStatementImpl.java ISPV, SS
MemoryCachingSimula.java GC, TMP

ISPV, GC, SS, TMP
Simula.java ISPV, SS

the results from our study both extends and aligns with their
findings. In addition, our findings provide concrete empirical
evidence for some of the smell relations conjectured earlier
by Pietrzak and Walter [3] and by Lanza and Marinescu [4].

Based on our findings, we argue that studies into the effects
of inter-smell relations are a topic that deserves more attention.
This position is further supported by the observation that
in some large classes, the maintenance problems were not
so much caused by the complexity that followed from the
actual size of the class but rather were a result of interaction
effects between different code smells that appeared together in
that class. This distinction implies that the currently common
approach for code smell detection and analysis, which is
based on analyzing individual smells and not the effects of
smell combinations, severely limits the capability to explain
or predict maintenance problems.

Another limitation of the current approaches for code smell
analysis is that the coupling between code elements that
contain code smells is not considered in the analysis. However,
the results from our study indicate that, from a practical
perspective, interaction effects between code smells that are
distributed across coupled artifacts have the same conse-
quences as interaction effects between code smells that are
co-located in the same artifact. This finding has considerable
implications for further studies on code smells, since it means
that, to get a more complete understanding of the role of code
smells in software maintenance, dependency analysis should
be included in the code smell analysis process.

H. Threats to Validity

We consider threats to the validity of our study from three
perspectives:

1) Construct Validity: The definition of a “maintenance
problem” may have been interpreted differently amongst dif-
ferent developers and the researcher who conducted the data
collection (the first author of the paper). The code smells
were automatically identified via tools to avoid subjective bias.
Nevertheless, the implicit choice for the detection strategies
implemented in these tools could be a potential threat to va-
lidity. Other code smell detection tools could employ different
detection strategies than the ones used in this study, which in
turn might lead to variation in the smells that are detected in
the given subject systems.

2) Internal Validity: It is possible that some developers
were more open about the problems they faced than others, and

that some developers did not disclose all problems they expe-
rienced. In addition, developers may have worked more mind-
fully because of the interaction with researchers (Hawthorne
effect). These are common threats whenever qualitative data is
used in empirical studies. We have addressed these threats by
using three independent collection methods (interviews, direct
observation, and think-aloud sessions) and triangulating the
data.11 The detection of smells (on pre-maintenance versions
of the code) was delayed until after maintenance to avoid
influence and bias by the researcher collecting the data. The
design of the study allowed for observation of several cases
where different developers worked on the same system. This
enabled an iterative explanation building process, where we
could revise (confirm or reject) observations based on several
cases involving the same systems. Together with a clear chain
of evidence and a well-defined protocol [36], this reduced the
threats typically associated with using explanation building,
such as losing of focus from the original goals [37, p. 122].

3) External Validity: Our results are contingent on the con-
textual properties of the study and are mainly valid for main-
tenance projects in contexts similar to ours. The maintenance
work involved medium-sized, Java-based, web-applications,
and the programmers completed the tasks individually, i.e., not
in teams or using pair programming. This last characteristic
can affect the applicability of the results in highly collaborative
environments. Given the size of the tasks and the 4-week
maintenance period covered in our study, we cannot claim
that our results fully represent long-term maintenance projects
with large tasks. However, the tasks involved do resemble,
for example, backlog items in a single sprint or iteration in
the context of agile development. In this study, we closely
observed the entire maintenance process for a period of four
full-working weeks. We are unaware of other work that reports
on experimental studies of code smells in in-vivo maintenance
tasks that lasted longer than 240 minutes.

V. CONCLUSIONS AND FUTURE WORK

This paper reports on an empirical study that investigated inter-
smell relations and their effects on the incidence of main-
tenance problems. By analyzing how professional developers
conducted tasks on four different systems, we found empirical
evidence that certain inter-smell relations were associated with
problems during maintenance and also that some inter-smell

11 The term triangulation (or “cross examination”) means that multiple
sources of evidence were used to validate the consistency and reliability of
the results [37, pp. 97–99].

690



relations manifested across coupled artifacts. Our study consti-
tutes a realistic maintenance project, and we believe that the
maintenance problems that were observed are representative
of those experienced in an industrial setting. Therefore, our
results provide empirical evidence to guide the focus on
design aspects that can be used for detecting and avoiding
maintenance problems. Further studies on the basis of our
findings and experiences should include the following: (i) an
analysis of inter-smell relations in larger systems involving dif-
ferent maintenance scenarios, (ii) an analysis of the interaction
effects between smells and other design properties, and (iii)
an inter-smell analysis incorporating a dependency analysis to
consider “coupled smells.”

ACKNOWLEDGMENTS

The authors thank Gunnar Bergersen for his support in select-
ing the developers and Hans Christian Benestad for providing
technical support in the planning stages. They also thank Bente
Anda and Dag Sjøberg for finding the resources to conduct
this study and for insightful discussions. Finally, they thank
the anonymous reviewers for valuable comments that helped
to further improve this paper. This work was partly funded
by Simula Research Laboratory and the Research Council of
Norway through the projects AGILE (#179851/I40), TeamIT
(#193236/I40), and InspectIT (#191171/V30).

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[2] A. Yamashita and L. Moonen, “Do code smells reflect important main-
tainability aspects?” in IEEE Int’l Conf. Softw. Maintenance (ICSM).
IEEE, 2012, pp. 306–315.

[3] B. Pietrzak and B. Walter, “Leveraging Code Smell Detection with Inter-
smell relations,” in Extreme Programming and Agile Processes in Softw.
Eng. (XP), 2006, pp. 75–84.

[4] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer, 2005.

[5] E. Van Emden and L. Moonen, “Java quality assurance by detecting code
smells,” in Working Conf. Reverse Eng. (WCRE), 2001, pp. 97–106.

[6] M. V. Mäntylä, J. Vanhanen, and C. Lassenius, “A taxonomy and an
initial empirical study of bad smells in code,” in IEEE Int’l Conf. Softw.
Maintenance (ICSM), 2003, pp. 381–384.

[7] W. C. Wake, Refactoring Workbook. Addison-Wesley, 2003.
[8] R. Marinescu and D. Ratiu, “Quantifying the quality of object-oriented

design: the factor-strategy model,” in Working Conf. Reverse Eng.
(WCRE). IEEE, 2004, pp. 192–201.

[9] R. Marinescu, “Measurement and quality in object-oriented design,” in
IEEE Int’l Conf. Softw. Maintenance (ICSM), 2005, pp. 701–704.

[10] N. Moha, Y.-G. Guéhéneuc, and P. Leduc, “Automatic generation of
detection algorithms for design defects,” in IEEE/ACM Int’l Conf. on
Automated Softw. Eng., 2006, pp. 297–300.

[11] N. Moha, “Detection and correction of design defects in object-oriented
designs,” in ACM SIGPLAN Conf. Object-oriented programming, sys-
tems, languages, and applications (OOPSLA), 2007, pp. 949–950.

[12] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, and L. Duchien, “A domain
analysis to specify design defects and generate detection algorithms,” in
Fundamental Approaches to Softw. Eng., 2008, pp. 276–291.

[13] A. A. Rao and K. N. Reddy, “Detecting bad smells in object oriented
design using design change propagation probability matrix,” in Int’l
Multiconf. of Eng. and Computer Scientists, 2008, pp. 1001–1007.

[14] E. H. Alikacem and H. A. Sahraoui, “A Metric Extraction Framework
Based on a High-Level Description Language,” in IEEE Int’l Conf.
Source Code Analysis and Manipulation (SCAM), 2009, pp. 159–167.

[15] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An Exploratory Study of
the Impact of Code Smells on Software Change-proneness,” in Working
Conf. Reverse Eng. (WCRE). IEEE, 2009, pp. 75–84.

[16] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “DECOR:
A Method for the Specification and Detection of Code and Design
Smells,” IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 20–36, 2010.

[17] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, L. Duchien, and
A. Tiberghien, “From a domain analysis to the specification and detec-
tion of code and design smells,” Formal Aspects of Computing, vol. 22,
no. 3, pp. 345–361, 2010.

[18] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, “Software
quality analysis by code clones in industrial legacy software,” in IEEE
Symp. Softw. Metrics, 2002, pp. 87–94.

[19] W. Li and R. Shatnawi, “An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution,”
J. Syst. Softw., vol. 80, no. 7, pp. 1120–1128, 2007.

[20] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in Int’l Conf. Softw. Eng. (ICSE), 2009, pp. 485–495.

[21] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the Impact of Design
Flaws on Software Defects,” in Int’l Conf. Quality Softw. (QSIC), 2010,
pp. 23–31.

[22] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that smell?” in
Working Conf. Mining Softw. Repositories (MSR), 2010, pp. 72–81.

[23] I. Deligiannis, M. Shepperd, M. Roumeliotis, and I. Stamelos, “An
empirical investigation of an object-oriented design heuristic for main-
tainability,” J. Syst. Softw., vol. 65, no. 2, pp. 127–139, 2003.

[24] I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, and M. Shep-
perd, “A controlled experiment investigation of an object-oriented design
heuristic for maintainability,” J. Syst. Softw., vol. 72, no. 2, pp. 129–143,
2004.

[25] A. Lozano and M. Wermelinger, “Assessing the effect of clones on
changeability,” in IEEE Int’l Conf. Softw. Maintenance (ICSM), 2008,
pp. 227–236.

[26] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An Empirical
Study of the Impact of Two Antipatterns, Blob and Spaghetti Code, on
Program Comprehension,” in European Conf. Softw. Maint. and Reeng.,
2011, pp. 181–190.

[27] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An empirical study
of code clone genealogies,” in European Softw. Eng. Conf. and Symp.
Foundations of Softw. Eng., 2005, pp. 187–196.

[28] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjøberg, “Are all code smells
harmful? A study of God Classes and Brain Classes in the evolution
of three open source systems,” in IEEE Int’l Conf. Softw. Maintenance
(ICSM), 2010, pp. 1–10.

[29] B. C. D. Anda, D. I. K. Sjøberg, and A. Mockus, “Variability and
Reproducibility in Software Engineering : A Study of Four Companies
that Developed the Same System,” IEEE Trans. Softw. Eng., vol. 35,
no. 3, pp. 407–429, 2009.

[30] G. R. Bergersen and J.-E. Gustafsson, “Programming Skill, Knowledge,
and Working Memory Among Professional Software Developers from
an Investment Theory Perspective,” J. of Individual Differences, vol. 32,
no. 4, pp. 201–209, 2011.

[31] L. M. Layman, L. A. Williams, and R. St. Amant, “MimEc,” in Int’l
Ws. Coperative and Human Aspects of Softw. Eng., 2008, pp. 73–76.

[32] R. C. Martin, Agile Software Development, Principles, Patterns and
Practice. Prentice Hall, 2002.

[33] R. Marinescu, “Measurement and Quality in Object Oriented Design,”
Doctoral Thesis, “Politehnica” University of Timisoara, 2002.

[34] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations in the maintainability of a system : An empirical study (Report
no. 2012-14),” Simula Research Laboratory, Tech. Rep., 2012.

[35] A. Yamashita, “Assessing the Capability of Code Smells to Support
Software Maintainability Assessments : Empirical Inquiry and Method-
ological Approach,” Doctoral Thesis, University of Oslo, 2012.

[36] A. Yamashita, “Measuring the outcomes of a maintenance project:
Technical details and protocols. (Report no. 2012-11),” Simula Research
Laboratory, Oslo, Tech. Rep., 2012.

[37] R. Yin, Case Study Research : Design and Methods (Applied Social
Research Methods). SAGE, 2002.

[38] A. Field, Discovering Statistics Using SPSS, 3rd ed. SAGE Publica-
tions, 2009.

[39] H. Kaiser, “An index of factorial simplicity,” Psychometrika, vol. 39,
no. 1, pp. 31–36, 1974.

[40] G. E. Dunteman, Principal components analysis. Sage university paper
series on quantitative applications in the social sciences. Newbury
Park, CA: Sage, 1989.

691


