
A Comparison of Quality Scheduling in Commercial
Adaptive HTTP Streaming Solutions on a 3G Network

Haakon Riiser1, Håkon S. Bergsaker1, Paul Vigmostad1

Pål Halvorsen2,3, Carsten Griwodz2,3

1Netview Technology AS, Norway
2Simula Research Laboratory, Norway

3Department of Informatics, University of Oslo, Norway

ABSTRACT
There are many available commercial streaming solutions
that perform quality adaption. An important issue with re-
spect to users’ perceived quality is how the system schedules
the quality levels to match the available network resources.
In this study, we compare several adaptive media players on
the market to see how they perform in challenging streaming
scenarios on a mobile 3G network. Bandwidth data collected
in real-world field trials is used in all tests. We investigate
how the media players respond to fluctuating bandwidth
and outages, and how this affects the quality levels used,
the bandwidth utilization, and the number and duration of
buffer underruns. We found significant differences in perfor-
mance and optimization goals between the different players’
schedulers. We conclude that the quality scheduler is an im-
portant factor in providing a satisfying quality of experience
when using an adaptive media player.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems—Video; C.4 [Computer Sys-
tems Organization]: Performance of Systems

General Terms
Experimentation, Measurement, Performance

Keywords
adaptive streaming, bitrate adaption, quality scheduling,
mobile internet, 3G, wireless, fluctuating bandwidth, Mi-
crosoft Smooth, Apple HLS, Adobe Dynamic, Netview

1. INTRODUCTION
Adaptive streaming over HTTP [13, 12] is rapidly becom-

ing popular among commercial vendors of streaming tech-
nology. It can be implemented as a combination of simple

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MoVid’12, February 24, 2012, Chapel Hill, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1166-3/12/02 ...$10.00.

servers and intelligent clients that make adaptation decisions
based on local observations. The technology’s versatility
and relative simplicity has made it successful on everything
from high-speed fixed networks with HD-capable receivers
to small handheld devices on mobile wireless networks. As
a strictly pull-based approach, adaptive HTTP streaming is
quite different from early video streaming techniques that
relied on server-side decisions and multicast. Pull-based
streaming has become viable because the development of
the Internet infrastructue has made it possible to take cheap
server capacity and backbone network capacity for granted.
Under these conditions, providing good quality of experience
on a fixed high-speed network is not very difficult any more,
but it is considerably more challenging when the client’s ac-
cess network is a mobile wireless network with severe and
frequent bandwidth fluctuations and outages. Such network
conditions result in recurring buffer underruns and frequent
quality switches, both harmful to the viewer’s quality of ex-
perience.

Under such circumstances, proper configuration of a me-
dia player’s quality scheduler is both challenging and impor-
tant. The overall aim is to provide the best possible viewing
experience. Important goals include:

1. Avoid buffer underruns, as they cause interruptions in
video playback.

2. Avoid rapid oscillations in quality, as this negatively
affects perceived quality [8, 15].

3. Utilize as much of the potential bandwidth as possible
to give the viewer a higher average video quality.

While actively using several commercial video systems in
our other projects, we have experienced large differences in
performance with regard to the goals stated above. This
prompted us to conduct a more rigorous performance com-
parison, where we investigate how the players perform and
adapt in challenging mobile streaming scenarios using typ-
ical bus, ferry, metro and tram commute routes in Oslo,
Norway. In particular, we want to know how the different
systems perform in terms of robustness against underruns,
stability in quality, and bandwidth/quality utilization.

To the best of our knowledge, one similar study has been
performed before [6], but they have used synthetic band-
width data which looked nothing like the strongly fluctuat-
ing bandwidth curves we have observed in real mobile wire-
less networks [11, 10].

Because several of the compared systems are closed source,
we cannot know the exact algorithms, but we can still re-
port their behavior. In earlier related work [6], this has been
done by looking at the consumed bandwidth and buffer sizes,
which is not necessarily closely related to video quality and
user perception. In our experimental testbed, we have sup-
port for Adobe, Apple, Microsoft and Netview’s media play-
ers from a single video representation. This means that we
encode the content once for each quality level, and use that
exact stream on all media players to be compared. Conse-
quently, we can actually compare the resulting video play-
back quality.

From our experimental results using Telenor’s 3G mobile
network, we observe large differences in the rate adaption
policies. Apple and Adobe’s players represent two oppo-
sites in that Apple focuses more on stable quality at the
expense of high average quality, whereas Adobe does the
opposite. Microsoft’s Smooth Streaming [14] and Netview’s
Media Client [4] try to achieve good stability as well as
high bandwidth/quality utilization, but the Netview solu-
tion seems to offer better protection against buffer under-
runs and better bandwidth utilization.

2. EXPERIMENTS

2.1 Tested Systems and Video Formats
Several competing HTTP streaming systems exist, and it

is out of the scope to compare all. The Motion Pictures
Experts Group is working on standard formats under the
label DASH [13], which will standardize formats, but not
the way in which clients adapt quality. We have therefore
selected four different, representative media players to in-
vestigate how they make adaptation decisions:

• Adobe’s Strobe Media Playback (v1.6.328 on Flash 10.1
on a Windows 7 PC) using its native HTTP Dynamic
Streaming format [2]. Note that this player is also
known as OSMF, short for the Open Source Media
Framework on which it is built.

• Apple’s iPad player (iOS v4.3.3 (8J2)) using its native
HTTP Live Streaming (HLS) format [9].

• Microsoft’s Silverlight (v4.0.60531.0 on a Windows 7
PC) using its native Smooth Streaming format [14].

• Netview’s Media Client (v2011-10-10 on a Linux PC)
using Apple’s HLS format. Netview’s client offers mul-
tiple schedulers; the scheduler studied in this paper is
designed for streaming in 3G networks.

We do know several other pull-based approaches like Netflix
(using Microsoft Smooth Streaming) and Move Networks.
These systems are closed, meaning that we could not support
them in our testbed. Netflix was however tested more gener-
ally in [6] – its aggressive adaption mechanism targeted for
fixed networks would place it between Microsoft and Adobe
in terms of performance. Thus, in the context of this paper,
we test the four listed systems as representatives for existing
commercial systems.

We verified that each system could play all quality levels
with no issues. For the Adobe, Apple and Microsoft players,
we used their native formats. Netview’s media client sup-
ports all of the above formats and we decided to use Apple’s

Figure 1: Relation of video quality levels and their
average bandwidth consumption.

HLS format – its overhead was never more than 12 % higher
than the other formats, and by choosing the HLS format for
the Netview client, we could show that Apple’s quality adap-
tion results are due to their implementation, not the format
itself.

On the server side, we used CodeShop’s Unified Stream-
ing Platform v1.4.25 [7] (integrated into the Apache v2.2.14
web server [3]) to support all streaming formats without re-
quiring different video encodings; i.e., the only differences
between the tests of the different systems were the proto-
col and media container formats. Differences in bitrates
between formats (due to different container overhead) was
always less than 12 %, meaning that the results were not
significantly affected by the chosen streaming format1. The
web server ran on a dedicated Linux box with 2 GB RAM
and an Athlon 64 3200+ CPU. Both the receiver and the web
server were on the same 100BASE-TX Ethernet, using our
custom-made throttling module to reproduce the behavior
of a real 3G network (see section 2.3).

2.2 Video Stream Configuration
Ensuring fairness in the video stream means that the video

segmentation has to be as equal as possible (duration and
bits per segment) for all the different media formats used.
We encoded video (a European football match) with a fixed
segment duration of two seconds and six quality levels. The
bitrates used for the six quality levels are shown in figure 1.
Bitrates at the lower end were chosen based on Akamai’s
recommendations [1] for small handheld devices on mobile
networks. Bitrates for the higher qualities were chosen based
on subjective testing, trying to achieve a linear scale in per-
ceived quality. The reason for the larger leaps in bitrate
between the highest three levels is diminishing returns in
quality – it was necessary to double the bitrate to make
level 6 visibly better than level 5.

2.3 Realistic and Equal Network Conditions
To perform a fair and realistic comparison of the differ-

ent streaming systems, we need equal network conditions for

1We could have encoded an extra representation for HLS
to compensate for this overhead, but sacrificing quality to
achieve the same overall bitrate means that the quality levels
would not be identical in all tests. Because the relative
bitrate difference was less than 12 % even for the lowest
quality level (where the relative overhead is highest), we
deemed it negligible and decided instead to use the same
representation for all tests.

each test which match the observed bandwidths in real mo-
bile 3G networks. We have previously [10, 11] performed a
large number of real-world experiments, and while we found
the bandwidth (as a function of geographical location) to be
fairly deterministic, this study requires identical results on
each run to achieve a fair comparison.

For this reason, we created an advanced throttling module
for our Apache web server. This module takes as input a
bandwidth log (from a real-world test) that contains a single
kbit/s number for every second of the session. After loading
the bandwidth log, the first HTTP request starts the session.
At time t after the session starts, the web server’s maximum
throughput for the next second will be B(t), where B(t) is
the bandwidth at time t in the log that was used as input to
the throttling module. In addition to bandwidth throttling,
our Apache module also adds a small one-way delay of 40 ms
to simulate the average round-trip latency as experienced
and measured in our real wireless 3G network.

This approach means that each media player can get ex-
actly the same conditions, ensuring both fairness and repro-
ducibility in our experiments, while at the same time being
nearly as realistic as a field trial.

We selected four representative bandwidth logs from our
database of measurements2. Each log represents a typical
run in its respective environment. The four streaming en-
vironments are popular commute routes in Oslo (Norway)
using ferry, metro, bus and tram. The travel routes with the
corresponding bandwidths are shown in figure 2. We can see
that they represent different challenges with respect to both
achieved rates and outages.

2.4 Logging a Segment’s Video Quality
While streaming, we used tcpdump [5] on the server to log

every packet transmitted to the receiver, so that we could
measure the actual achieved throughput (which might be
less than the bandwidth cap set by the throttling module,
e.g., if the client consumes the available network resources
inefficiently). The packet dump contains every HTTP GET
request for every downloaded segment, so it also contains the
information we need to plot the quality level as a function
of playout time. However, because we are testing propri-
etary media players where we do not know the state of their
internal buffers, buffer underruns were logged manually by
actually watching the video in every test, and registering the
times when the video stopped and resumed.

3. RESULTS AND ANALYSIS
In this section, we present our results. In particular, we

look at 1) the achieved segment quality along the routes
according to time, 2) the amount of video data presented
in each quality level including buffer underruns, and 3) the
length of each playout interval at a given quality to give an
indication of the quality switching pattern. These properties
are plotted in figures 3, 4 and 5, respectively, for all four
routes.

3.1 Adobe
Comparing Adobe’s quality level plots in figure 3 with

the bandwidth plots, one can clearly see that their shapes

2These streaming environments were used extensively in
our previous paper on predictive quality scheduling algo-
rithms [10].

(a) Ferry

(b) Metro (dotted line in tunnel)

(c) Bus

(d) Tram

Figure 2: Test environments and the observed band-
widths used in our experiments.

are almost identical. From this, we conclude that the qual-
ity scheduler in Adobe’s Strobe player bases its decisions
almost exclusively on the most recent bandwidth numbers.
The next segment to be downloaded is the one whose bitrate
is closest to the current bandwidth, with no considerations to
stability or safety margins. As a result, the users’ quality of
experience suffers due to buffer underruns and too frequent
oscillations in quality (figure 5). Despite minimal use of
buffering, the scheduler achieves decent bandwidth utiliza-
tion, mainly because high bitrate segments were downloaded
quite often (even when unsafe to do so), meaning more bytes
per download request, and thus, less wasted bandwidth.

3.2 Apple
The quality scheduler in Apple’s iPad player stands out

from the others by being more careful about increasing qual-
ity. Its frequent use of low quality segments produces stable
quality (figure 5) with long intervals in the same quality. The

(a) Ferry (b) Metro

(c) Bus (d) Tram

Figure 3: Comparison of quality scheduling for the four commute routes. Quality is plotted at playout time.
This implies that effects of network outages are reflected with a delay when buffers run dry.

tendency to pick low quality levels is clearly seen in figure 4.
Despite having lower quality on average than the other play-
ers, Apple’s bandwidth utilization is higher than one would
expect. The reason for this is that the bandwidth utilization
number does not take into account whether the downloaded
video data was actually used. Unlike the other players, the
iPad player often re-downloads segments – sometimes the
same segment is downloaded two or more times, usually in
different qualities, but not always. This means that some of
the downloaded video data is never used, and bandwidth is
wasted.

3.3 Microsoft
Microsoft’s Silverlight player achieves a nice balance be-

tween bandwidth utilization and stability. Compared to Ap-
ple’s player, it uses more of the available qualities (figure 4),
while still achieving a fairly stable viewing experience (fig-
ure 5), setting it apart from Adobe’s player. We observe
that Microsoft fills its buffers when the bandwidth is high,
progressively increasing quality, instead of instantly jump-
ing to the quality level whose bitrate is closest to the current

bandwidth. However, we observe that the quality increases
just as quickly when the bandwidth is poor, indicating that
filling its buffers is not a priority.

Microsoft’s biggest problem is that the buffer tends to
be very small, especially considering that it is designed for
PCs with plenty of memory. This limitation makes it more
vulnerable to buffer underruns than Netview’s player (fig-
ure 3(c)). Average quality is better than Apple’s, but not
quite as high as Adobe’s numbers. Microsoft’s player would
have achieved better results with a better buffering strat-
egy, as it often wastes bandwidth by idling, even when its
buffers are almost empty. On the other hand, the bandwidth
utilization is quite stable at about 65 % and the Silverlight
media player is intended to run as a browser plugin, so it
might be a design goal to leave some bandwidth available
for other services.

3.4 Netview
To efficiently use available resources and provide a good

viewing experience, Netview’s reactive scheduler uses sev-
eral techniques, described in [10] with the only modifica-

(a) Ferry (b) Metro

(c) Bus (d) Tram

Figure 4: Cumulative distribution function of quality. The height of each step represents the total amount
of time that a video is played out at a given quality level (and the last step shows the cumulative duration
of playout interruptions). Higher towards top-left corner is generally better, but the frequency of quality
changes, which is visible in figure 3 and which can be visually disruptive, is not represented.

tion that bandwidth capping is now only enabled when the
buffer has less than 30 seconds of video. The results show
that the Netview scheduler is most successful in scenarios
with periodically high bandwidth, such as figures 3(a) and
3(c)). Like the scheduler in Apple’s iPad, it is designed for
the needs of a product utilizing wireless networks. Thus,
Netview’s player is conservative when the buffer is small,
increasing quality slower than the other players, and using
extra bandwidth to increase its buffer. When the buffer
is sufficiently large, it prioritizes stability over buffer full-
ness, making the quality very stable (figures 5(a) and 5(c)).
In scenarios with poor bandwidth, it sacrifices stability (fig-
ures 5(b) and 5(d)) to achieve more robustness against buffer
underruns. However, unlike Adobe’s player, it always takes
precautions to avoid switching too often, avoiding the rapid
fluctuations that are known to annoy users [8, 15]. Similar
to Microsoft’s player, the Netview player usually achieves
a progressive increase and decrease in quality, i.e., avoiding
large jumps (except when performing bandwidth capping to
preserve the buffer fullness). Note that Netview’s player is
more aggressive when dealing with the lower quality levels,
as there are diminishing returns in quality as bitrates in-
crease. The bandwidth utilization of Netview’s scheduler is
good in all tested scenarios, both due to buffer strategy and
by frequently downloading high bitrate video segments.

4. CONCLUSION
We found large performance differences between the var-

ious systems, even though none of them have advantages
over each other in terms of what scheduling information is
available. Apple and Adobe’s players represent two oppo-
sites in that Apple sacrifices high average quality for stable
quality, whereas Adobe does the opposite. Microsoft’s Sil-
verlight player falls in between, but without compromising
too much on either parameter. Netview’s scheduler is simi-
lar to Microsoft’s, but offers better protection against buffer
underruns and better bandwidth utilization. From our ex-
periments, we conclude that the quality scheduler has a large
impact on the quality of experience in adaptive HTTP solu-
tions and that several products on the market have a defini-
tive potential for improvement when streaming in mobile
networks.

Acknowledgements
This work has been performed in the context of the HyS-
tream project (project number 176847) and the iAD centre
for Research-based Innovation (project number 174867) –
both funded by Norwegian Research Council.

(a) Ferry (b) Metro

(c) Bus (d) Tram

Figure 5: Cumulative distribution function of quality stability on the four commute routes. A point in the
plot represents how much of the playout time (y-axis) has been played out with stable quality intervals larger
than a given length (x -axis). Buffer underruns are not counted. Note: This plot considers only stability but
ignores the quality of the playout interval (the long intervals of the Apple player in figures 5(b) and 5(d) are
playouts at quality level 1 as seen in figures 3(b) and 3(d)).

5. REFERENCES
[1] Akamai HD for iPhone encoding best practices.

http://www.akamai.com/dl/whitepapers/Akamai_

HDNetwork_Encoding_BP_iPhone_iPad.pdf, 2010.

[2] HTTP dynamic streaming on the Adobe Flash
platform. http://www.adobe.com/
products/httpdynamicstreaming/pdfs/

httpdynamicstreaming_wp_ue.pdf, 2010.

[3] The Apache HTTP server project.
http://httpd.apache.org/, 2011.

[4] Netview Media Client.
http://www.netview.no/

index.php?page=downloader, 2011.

[5] tcpdump. http://www.tcpdump.org/, 2011.

[6] S. Akhshabi, A. C. Begen, and C. Dovrolis. An
experimental evaluation of rate-adaptation algorithms
in adaptive streaming over http. In Proc. of ACM
MMSys, pages 157–168, Feb. 2011.

[7] CodeShop. Unified Streaming Platform.
http://www.unified-streaming.com/, 2011.

[8] P. Ni, A. Eichhorn, C. Griwodz, and P. Halvorsen.
Fine-grained scalable streaming from coarse-grained
videos. In Proc. of ACM NOSSDAV, pages 103–108,
June 2009.

[9] R. Pantos and W. May. HTTP live streaming.
http://tools.ietf.org/html/

draft-pantos-http-live-streaming-07, 2011.

[10] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz,
and P. Halvorsen. Video streaming using a
location-based bandwidth-lookup service for bitrate
planning. TO APPEAR IN ACM TOMCCAP, 2011.

[11] H. Riiser, P. Halvorsen, C. Griwodz, and B. Hestnes.
Performance measurements and evaluation of video
streaming in HSDPA networks with 16QAM
modulation. In Proc. of IEEE ICME, pages 489–492,
June 2008.

[12] H. Riiser, P. Halvorsen, C. Griwodz, and D. Johansen.
Low overhead container format for adaptive streaming.
In Proc. of MMSys, pages 193–198, Feb. 2010.

[13] T. Stockhammer. Dynamic adaptive streaming over
HTTP: Standards and design principles. In Proc. of
ACM MMSys, pages 133–144, Feb. 2011.

[14] A. Zambelli. Smooth streaming technical overview.
http://learn.iis.net/page.aspx/626/

smooth-streaming-technical-overview/, 2009.

[15] M. Zink, O. Künzel, J. Schmitt, and R. Steinmetz.
Subjective impression of variations in layer encoded
videos. In Proc. of IWQoS, pages 137–154, 2003.

