
Numerical simulations of the pulsating flow of cerebrospinal fluid flow in

the cervical spinal canal of a Chiari patient

Anders Helgelanda, Kent-Andre Mardalb, Victor Haughtonb,c, Bjørn Anders Pettersson Reifa,d,e

aNorwegian Defence Research Establishment (FFI), Kjeller, NORWAY
bCenter for Biomedical Computing, Simula Research Laboratory, Fornebu, NORWAY

cDepartment of Radiology, School of Medicine and Public Health, University of Wisconsin, USA
dDepartment of Mathematics, University of Oslo, Oslo, NORWAY

eUniversity Graduate Center (UniK), Kjeller, NORWAY

Abstract

The flow dynamics of the cerebrospinal fluid (CSF) in a patient-specific model of the subarachniod space
in a Chiari I patient were investigated using numerical simulations. The pulsating CSF flow was modeled
using a time-varying velocity pulse based on peak velocity measurements (diastole and systole) derived
from a selection of patients with Chiari I malformation. The present study used the general definition of
the Reynolds number to provide a meassure of CSF flow instability to give an estimate of the possibility
of turbulence occurring in CSF flow. This was motivated by the fact that the combination of pulsuating
flow and the geometric complexity of the spinal canal may result in local Reynolds numbers that are
significantly higher than the commonly used global measure such that flow instabilities may develop into
turbulent flow in these regions. The general or local Reynolds number was used in combination with
derived statistics to characterize the flow. The results revealed both local unstable regions and local
regions with velocity fluctuations similar in magnitude to what is observed in fully turbulent flows. The
results also indicated that the fluctuations were not self-sustained turbulence, but rather flow instabilities
that may develop into turbulence. The case considered was believed to represent a CSF flow close to
transition.
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1. Introduction1

The Chiari I malformation is a condition characterized by tonsilar herniation through the forman2

magnum. The herniation obstructs the pulsating flow of cerebrospinal fluid (CSF) through the foramen3

magnum and is believed to play a key role in the development of syringomyelia that commonly occurs4

in Chiari I patients. Computational fluid dynamics (CFD) has during the last decade proven itself as5

a reliable approach to predict complex fluid flow phenomena, and it has therefore become a tool for6

investigating complex biomedical flows.7

The occurrence of complex flow phenomena, including bidirectional flow patterns, in the cervical canal8

has previously been demonstrated using PC-MR for Chiari I patients [1]. Despite the complexity of the9

flow, most CSF flow studies rest on the assumption that the flow remains laminar. This is based on a10

priori estimate of the Reynolds number, based on peak systole velocity and the hydraulic diameter along11

the spinal canal, which usually lies in the range 150-570. Such a range is considered to be too low for12

turbulence to occur, c.f. e.g. [2, 3, 4]. Recent 4D PC MR studies [5] however, in which velocities as high13

as 20 cm/s were reported, have demonstrated that even higher Reynolds numbers can occur.14

Previous estimates of the Reynolds-number, and thus also on the a priori assumption of laminar15

flow, are based on a global measure that does not provide information about local variations of the16

Reynolds-number within the spinal canal. The motivation for this study is that the combination of17

pulsating flow and the geometric complexity of the canal may result in local Reynolds-numbers that18

are significantly higher than the commonly used global measure such that flow instabilities may develop19

into chaotic turbulent flow in these regions. The objective of the present study is to use a state-of-20

the-art CFD methodology to investigate pulsating CSF flow in Chiari I patients in order to provide21

better understanding of the complexity of flow field, and to provide a measure of CSF flow stability that22
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estimated the possibility of turbulence in CSF flow. The possibility of turbulent flow in the CSF has23

not to our knowledge been studied systematically. For this study, we created a 3D model of the spinal24

subarachnoid space in a Chiari I patient and we assumed CSF flow volumes in the upper range of normal.25

2. Mathematical and computational modeling26

The present study employs a method that is similar to what is known as direct numerical simulations27

(DNS) which is a branch of traditional Computational Fluid Dynamics (CFD) devoted to high-fidelity28

solution of transitional and turbulent flows [6]. This approach differs from conventional CFD in that the29

turbulence is explicitly resolved rather than being represented by a statistical model. In essence, DNS30

can be viewed as a numerical experiment that from first principles produces a series of non-empirical31

solutions representing a virtual three-dimensional and time dependent turbulent or transitional fluid flow.32

The approach is therefore ideal for addressing basic research questions regarding turbulence physics, but33

due to the high computational demand and its inherent characteristics DNS has not become a general34

purpose research tool.35

The explicit requirement of a DNS is that all temporal and spatial scales of the flow field are com-36

putationally resolved. Turbulence is inherently a multi-scale fluid flow phenomena and it can be shown37

that the number of degrees-of-freedom of a turbulent flow scales as N ∼ Re9/4 [7] where Re is the38

Reynolds-number which typically exceeds O(103) in turbulent flows1. Due to the extreme computational39

costs, the applicability of DNS is limited to low Reynolds-number flows only which makes it a potentially40

viable approach in biomedical applications. A still unresolved issue, however, is that all inflow/outflow41

boundary conditions must be properly prescribed (in time and three-dimensional space). Lacking this42

information makes the application of DNS in biomedical flows challenging, and special attention has to be43

taken to ensure minimum influence of this error. Since the CSF flow considered in this study is subjected44

to an oscillatory motion, this issue were handled by defining the size of the computational domain such45

that the inflow/outflow boundaries had very small influence on the results in the area of interest.46

2.1. Governing equations47

The equations governing the flow of an incompressible Newtonian fluid, such as CSF flow, are based
on the fundamental principles of conservation of mass and momentum which can be written as

∂ũi(x, t)

∂t
+ ũk(x, t)

∂ũi(x, t)

∂xk
= ν

∂2ũi(x, t)

∂xk∂xk
−

1

ρ

p̃(x, t)

∂xi
, (1)

∂ũi(x, t)

∂xi
= 0. (2)

These are commonly referred to as the Navier-Stokes equations. Here ũi(x, t) denotes the instantaneous48

velocity component in the xi direction, p̃(x, t) is the instantaneous pressure, and ρ is the fluid density49

whereas ν = µ/ρ denotes the kinematic viscosity and µ is the molecular viscosity. We apply the notation50

[x1, x2, x3] = [x, y, z], cf. figure 1, and [ũx, ũy, ũz] = [ũ, ṽ, w̃]. Einsteins summation convention also51

applies, i.e. summation over repeated indices, e.g. ∂ũi/∂xi = ∂ũ1/∂x1 + ∂ũ2/∂x2 + ∂ũ3/∂x3.52

The CSF fluid is assumed to have the physical properties as water at 37 degrees C, i.e. ρ =53

1000 [kg/m3] and ν = 0.7 ∗ 10−6 [m2/s]. Gravity is neglected from equation 1 since its effect is im-54

plicitly contained in the inlet velocity boundary conditions which is obtained indirectly from measured55

data.56

2.2. Numerical simulations57

From the registry of Chiari patients at the University of Wisconsin, with approval of the local Insti-58

tational Review Board, a patient with Chiari I and with evidence of elevated CSF velocities was chosen59

for the patient-specific modeling. A 3D high-resolution volume MR sequence of the cervical spine and60

lower posterior fossa showing the subarachnoid space with high contrast resolution was used to create61

a patient-specific surface model of the spinal canal. The surface model was created using the Vascular62

1In most applications Re ∼ O(103) − O(109)
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Implicit boundary profile
derived from the simulation

Boundary plug−flow pulse

Explicitly set boundary profile

Figure 1: The computational domain [0.0916 ≤ x ≤ 0.129, 0.0769 ≤ y ≤ 0.1129, 0.03175 ≤ z ≤ 0.106] and the velocity
CSF boundary pulse.

Modeling Toolkit [8]. Figures 1 and 2 show the three-dimensional geometry of the spinal canal used in63

the present study. The three-dimensional and time dependent Navier-Stokes equations (1) - (2) were64

solved using an unstructured finite volume code based on second-order accurate discretization in time65

and space, cf. [9].66

2.2.1. Boundary conditions67

The pulsating CSF flow in the subarachnoid space was simulated using a time varying velocity pulse68

defined at the lower boundary of the computational domain (see fig 1). The form of the pulse varies69

from case to case, but in general the systolic phase of the flow (downward fluid movement) has a greater70

amplitude and a shorter period compared to the diastolic phase (upward fluid movement). The CSF71

flow pulse used in this study was generated to agree with the peak velocity amplitudes derived from72

a selection of patients with Chiari I malformation measured by Shah et. al. [10], cf. figure 1. The73

pulse was generated to produce maximum systolic and diastolic velocities around 10 cm/s and 7.5 cm/s,74

respectively, with a cycle of = 0.75 seconds. This corresponds to a heart rate of 80 beats per minute.75

Figure 2 shows the modeled spinal channel. The outer (and inner) boundaries of the spinal canal were76

assumed to be rigid and therefore modeled using no-slip boundary conditions, i.e. ũi = 0, for all i.77

Since the flow direction reverses during each cycle, special care has to be taken to minimize any influ-78

ence of the inflow/outflow boundaries on the flow field within the region of interest. The computational79

model was therefore geometrically extended from the upper and lower boundary surfaces. The extension80

was designed to prevent flow structures created within the spinal channel to be affected by the computa-81

tional boundaries. The reason that this could happen is that the imposed velocity field at the boundaries82

is assumed to be one-componential and unidirectional (i.e. the only non-zero velocity component being83

that perpendicular to the inflow plane), whereas flow structures in general are three-dimensional and84

three-componential (ũi(x, y, z, t) 6= 0). A three-dimensional flow structure that is advected through the85

boundary would no longer be present when the flow reverses. The terminology ”one-componential” alludes86

to a velocity field with only one non-zero component, whereas all three velocity components generally are87

non-zero in a ”three-componential” field.88

The length of extension was estimated by considering the length a particle near the original boundary89

surfaces would travel on average in the oscillating CSF flow during one cycle. Using the boundary plug-90

flow pulse as a mean velocity measure gives us an average traveled distance of approximately 0.9 cm91

(in both systole and diastole). This distance can be used as an upper limit near the upper boundary92

wall since the upper surface has a greater area and therefore lower velocities on average. Based on this93

estimate, we extended the upper surface by 1 cm and the lower by 3 cm. It should be noted that the94

cross-sectional area is smaller in the lower part of the geometry which implies higher velocities. The95

geometrical extensions were thus added to the model to minimize the influence of the explicit boundary96

condition on the flow field within the originally segmented geometry. The analysis presented here are97

based only on the computed flow field within the originally segmented spinal channel. The complete98
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l = 3cm

l = 1cm

(region of interest)

Originally segmented geometry

Upper extension
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Figure 2: Expansion of the originally segmented model of the spinal canal.

computational model, including the region of interest, is shown in figure 2.99

2.2.2. Computational mesh100

The simulations were run using a computational mesh consisting of approximately 46.5 million volume101

cells. Special care was taken to ensure that the grid density was fine enough to resolve spatial flow struc-102

tures that may appear. The most common estimate of the smallest flow scales is based on the Kolmogorov103

scale estimates [11]. According to Kolmogorov, the smallest scales that can persist in a time-dependent104

flow has a length η ∼ ν/u∗ where u∗ is the local frictional velocity and ν is the kinematic viscosity of the105

fluid. The local friction velocity is defined as u∗ =
√

2ν|SijSij |1/2 where Sij = 1/2 (∂ũi/∂xj + ∂ũj/∂xi)106

is the symmetric part of the velocity gradient tensor.107

The quality of the grid resolution was then estimated by considering the ratio between the averaged

grid size, ∆l = ∆
1/3

vol where ∆vol is the volume of the computational cell, and the Kolmogorov scale, i.e.

l+ =
u∗∆l

ν
. (3)

Ideally, this ratio should be less than unity but in practice l+ ∼ O (10) usually suffices, cf. [6].108

Similarly, the computational time step, ∆t, required to resolve the most rapidly varying structures
can be estimated by considering the ratio between the time step (∆t) and corresponding Kolmogorov
time scale τ = ν/u2

∗, i.e.

t+ =
∆tu2

∗

ν
. (4)

In this study we have used ∆t = 0.00075 s.109

It should be noted that l+ and t+ are both a priori unknown since the friction velocity depends on the110

solution. These checks can therefore only be performed after the simulation is completed. It is however111

important to also notice that since these measures depends on the size of the computational grid, and112

the selected time step, the computed values of l+ and t+ only serve as an indirect measure of the quality113

of the computation. This procedure is nevertheless very valuable assessing the quality of the simulation114

setup. The results presented here produce l+ ≤ 2.4 and t+ ≤ 0.66 within the spinal channel. This115

confirms that the current simulations were conducted using sufficient spatial and temporal resolution in116

order to properly resolve the smallest expected structures of the flow field.117
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2.3. Flow instabilities118

The flow inside the spinal canal develops into a complex fully three-dimensional field. The nonlin-119

earity of the Navier-Stokes equations, represented by the advection term in equation 1, tends to trigger120

instabilities that eventually may develop into a fully turbulent state. A frequently used approach to make121

an a priori assessment if the flow is turbulent or not, is to consider the so-called Reynolds number (Re);122

if the Reynolds number exceeds a certain critical value, Re > Recritical, turbulent flow is likely to occur.123

There exists however no generally applicable number Recritical since the exact value varies from case to124

case. This means that in order to identify possible regions were flow instabilities may occur, a different125

method is needed.126

Let us consider the Reynolds number based on its most general definition, i.e. as the ratio between
the inertia and viscous forces. For the flow in the xi-direction this ratio is given by

Rei =
ρ(∂ũi/∂t + ũm∂ũi/∂xm)

µ(∂2ũi/(∂xk∂xk))
(5)

with no summation over the repeated index i, cf. also (1). Considering a three-dimensional flow, the127

magnitude of this ratio defines the general or local Reynolds-number Reg, i.e. Reg(x, t) = (Re2
1 + Re2

2 +128

Re2
3)

1/2 which varies locally in the flow2. The notion of a critical Reynolds number comes from the fact129

that if the (destabilizing) inertia forces are large enough compared to the (stabilizing) viscous forces,130

instabilities are able to grow in time without being damped by viscous effects.131

2.4. Statistical description132

The flow field was simulated during 29 heartbeats, corresponding to 29 cycles of CSF flow. For
each time step during each cycle the numerical solution of equations (1) and (2) with the given boundary
conditions provide the instantaneous three-dimensional velocity and pressure fields inside the spinal canal.
In order to facilitate a meaningful flow field analysis, the instantaneous velocity field is decomposed into
a mean and a fluctuating part, i.e. ũi(x, t) = Ui(x, t) + ui(x, t) which are obtained as

Ui(x, t) = 〈ũi(x, t)〉N1
(6)

and
ui(x, t) = ũi(x, t) − 〈ũi(x, t)〉N1

, (7)

respectively, where 〈...〉N represents the point-wise phase averaged correlation using N cycles. The133

simulation was first run for 10 cycles in order to establish a fully developed flow field before the averaging134

procedure commenced. In order to obtain a statistically converged mean flow field N1 = 10 was used.135

The fluctuating velocity field is analyzed using the single-point second-order moment:

Rij(x, t) = 〈ui(x, t)uj(x, t)〉N2
. (8)

This correlation is commonly referred to as the components of the Reynolds stress (Rij) tensor. Rij(x, t)136

physically represents the effect of the phase averaged fluctuating velocity components on the mean flow137

field. Here, N2 = 9 was judged to constitute a sufficient number of cycles in order to obtain converged138

statistics in the present case. Statistics were sampled at 6 discrete time points during the heart-beat139

cycle, cf. figure 3.140

The physical characterization of the Reynolds-stress tensor has been carried out using:

Λ(x, t) =
Rii

Rkk + UjUj
(9)

and

IIa(x, t) = −
1

2
bijbji, (10)

2It should be noted that the local Reynolds number as defined in (5) can become pointwise singular within the compu-
tational domain, thus displaying very large local values. The pointwise extremes are however not associated with regions
at which local instabilities can occur.
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Figure 3: The boundary plug-flow pulse together with six discrete sample points during the heart-beat cycle in which
statistics were sampled.

where Λ(x, t) is a measure of the ratio between the fluctuating and the total kinetic energy. Here Rii and141

UjUj denote (twice) the kinetic energy (per unit mass) of the fluctuating and mean flow field, respectively.142

IIa(x, t) is the second invariant of the Reynolds-stress anisotropy tensor (bij = 2Rij/Rkk − 2δij/3) and143

it is used to characterize the kinematical structure of the fluctuating flow field. Mathematically, IIa is144

a measure of the departure from isotropic fluctuations, i.e. fluctuations that are statistically the same145

in all directions (R
1/2

11 = R
1/2

22 = R
1/2

33 ). From its definition (10), the following limits can be analytically146

deduced: IIa = 0 represents isotropic fluctuations; IIa = −2/3 indicates that no fluctuations are present,147

and IIa = −4/3 represents so-called ’one-componential’ (1-C) fluctuations, i.e. that the fluctuations only148

occur in one directions, e.g. R
1/2

11 = R
1/2

22 = 0 and R
1/2

33 6= 0. The 1-C case represents a physical state149

where fluctuations occur but the flow has not yet been developed into full turbulence (which must have150

fluctuations in all directions in order to remain self-sustained).151

3. Results152

Phase averaged statistics were computed at six discrete times (T0−T5) during each cycle, cf. figure 3.153

Figure 4 displays contours of the vertical (z) component of the mean velocity in a vertical plane cutting154

across the spinal channel at different (time) points during the cycle. Figure 5 shows the corresponding155

mean velocity (Uz) contours in a horizontal plane near the Chiari I malformation. The results demonstrate156

the complexity of the CSF flow field. Flow along the spinal axis occurs synchronously in positive and157

negative vertical direction at several instances throughout the CSF cycle (t = T0, t = T3, and t = t4)158

as can be seen from figure 5. There is also a time lag between the directional changes of the inflow159

velocity profile at the lower boundary and the changes of the flow field within the spinal channel. This160

can for instance be observed by investigating figure 4, at t = T4, which clearly reveals local regions with161

opposite velocity direction (compared to the inflow pulse) that prevails for a periode of time after the162

inflow velocity pulse changes direction.163

In order to identify regions of the CSF flow that may develop instabilities, the general or local164

Reynolds-number (Reg(x, t)) has been computed. The result indicates that the most unstable region of165

the flow is located in the vicinity of the Chiari I malformation. This is exemplified in figures 6(a) and166

6(b) where contours of Reg(x, t) at t = T0 are shown on a vertical and a horizontal plane, respectively.167

Large values (> 2000) can be observed in the vicinity of the malformation which means that the (desta-168

bilizing) inertia forces acting on the fluid in this particular region are much larger than the corresponding169

(stabilizing) viscous forces; instabilities are therefore likely to develop in this particular region that may170

trigger velocity fluctuations. Similar results are also found at t = T3 in regions nearby the malformation.171

Somewhat similar but not as pronounced results also occurred for the other sampled time instances.172

Figure 7 displays contours of the fluctuating and mean kinetic energy ratio parameter Λ(x, t), cf. (9),173

at t = T0, t = T3, and t = T4 in a horizontal plane close to the malformation. The results indicate that174

strong velocity fluctuations, relative to the local mean velocity magnitude, occur in the spinal channel175
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(a) T0 (b) T1

(c) T2 (d) T3

(e) T4 (f) T5

Figure 4: Contours of the vertical (z) component of the mean velocity (cm/s) for six time samples in a vertical (y,z) plane
at x = 0.101. The color tables are fixed for all images with green, yellow and red colors representing positive values and
with grey, dark blue, cyan, blue and magenta colors representing negative values.
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(a) T0 (b) T1 (c) T2

(d) T3 (e) T4 (f) T5

Figure 5: Contours of the vertical (z) component of the mean velocity for six time samples in a horizontal (x,y) plane at
z = 0.097. The color tables are fixed for all images with green, yellow and red colors representing positive values and with
cyan, blue and magenta colors representing negative values.

(a) (b)

Figure 6: Contours of the General Reynolds number for a vertical plane (a), at x = 0.101, and a horizontal plane (b), at
z = 0.097, both at t = T0.
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(a) (b) (c)

Figure 7: Contours of the ratio Λ = Rii/(Rkk + UjUj) for t = T0 (a), t = T3 (b) and t = T4 (c) in a horizontal (y,z) plane,
at z = 0.097, in vicinity of the Chiari I malformation. In red areas, the velocity fluctuations are 10% (or higher) relative to
the local mean velocity magnitude. Note that the plotted values of Λ are squared values, meaning that values close to 0.01
corresponds to fluctuations around 10% of the mean velocity.

close to the malformation; 10 - 20 % of Uz. This is not so evident for the other time instances considered176

here. In other regions of the spinal channel the fluctuations are in general very small (but finite), with177

the exception of a few small areas with relatively high levels of fluctuations.178

The simulation results also indicate that the second invariant IIa ≈ −4/3 across most of the spinal179

channel, also in the vicinity of the malformation where the strongest fluctuations occur. This implies180

that the fluctuating velocity field is nearly one-componential and thus is not fully turbulent. Despite its181

one-componential nature, a non-zero correlation between the vertical fluctuation and the fluctuation in182

the horizontal plane could be observed. This is an indication that the flow field is close to transition.183

4. Conclusions184

The numerical simulation presented in this study has revealed that the oscillating CSF flow in the185

spinal channel is very complex. The flow field is fully three-dimensional and exhibits regions with opposing186

flow directions during a significant portion of the CSF cycle. These opposing flow structures contribute187

significantly to the dynamics of the CSF flow, including the observed time lag between the inflow time188

variation and the local temporal response of the mean flow in the spinal channel.189

The present study has utilized the fundamental definition of the Reynolds-number to reveal the most190

unstable regions of the flow. To the knowledge of the authors this is the first time this definition is used191

in the literature for the purpose of analyzing local Reynolds-numbers. It was demonstrated that the192

most significant region of unstable flow in the spinal channel is located in the immediate vicinity of the193

malformation. In this region, one-componential velocity fluctuations developed with magnitude 10−20%194

of the local mean flow magnitude which is similar to what can be observed in fully turbulent flows. The195

results also indicate that the fluctuations are not self-sustained turbulence, but rather flow instabilities196

that eventually may develop into a turbulence.197

The case considered in this study is believed to represent a CSF flow that is very close to turbulence198

transition. Firstly, a modest increase of inflow velocity magnitude and/or frequency may be enough to199

initially trigger turbulence in the immediate vicinity of the malformation, and then also across the entire200

spinal channel. Secondly, the ”nerve roots” that stretches across the spinal channel have been neglected201

in the present study; these inherently introduce flow disturbances that may influence the dynamics of the202

CSF flow and cause turbulence transition to occur.203
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