On the HTTP segment streaming potentials and
performance improvements.

Tomas Kupka

Doctoral Dissertation submitted
to the Faculty of Mathematics and Natural Sciences
at the University of Oslo
in partial fulfilment of the requirements for
the degree Philosophiae Doctor

February 2013

Abstract

Video streaming has gone a long way from its early years in the 90’s. Today, the prevail-
ing technique to stream live and [video on demand (VoD)| content is adaptive HTTP segment

streaming as used by the solutions from for example Apple, Microsoft, and Adobe. The rea-
sons are its simple deployment and management. The HTTP infrastructure, including HTTP
proxies, caches and in general (Content Delivery Networks (CDNs)| is already deployed. Fur-
thermore, HTTP is the de facto standard protocol of the Internet and is therefore allowed to

pass through most firewalls and [Network Address Translation (NAT)| devices. The goal of
this thesis is to investigate the possible uses of adaptive HTTP segment streaming beyond
the classical linear streaming and to look at ways to make HTTP servers dealing with HTTP
segment streaming traffic more efficient.

In addition to the deployment and management benefits, the segmentation of video opens

new application possibilities. In this thesis, we investigate those first. For example, we
demonstrate on the fly creation of custom video playlists containing only content relevant to
a user query. Using user surveys, we show, that it not only saves time to automatically get
playlists created from relevant video excerpts, but the user experience increases significantly
as well.

However, already the basic capabilities of HTTP segment streaming, i.e., streaming of
live and on demand video, are very popular and are creating a huge amount of network
traffic. Our analysis of logs provided by a Norwegian streaming provider Comoyo indicates
that a substantial amount of the traffic data must be served from places other than the origin
server. Since a substantial part of the traffic comes from places other than the origin server,
it is important that effective and efficient use of resources not only takes place on the origin
server, but also on other, possibly HTTP segment streaming unaware servers.

The HTTP segment streaming unaware servers handle segment streaming data as any
other type of web data (HTML pages, images, CSS files, javascript files etc.). It is important
to look at how the effectiveness of data delivery from this kind of servers can be improved,
because there might be potentially many "off the shelf" servers serving video segments (be
it a homemade solution or an HTTP streaming-unaware [CDN] server). In general, there are
three possible places to improve the situation: on the server, in the network and on the client.
To improve the situation in the network between the server and the client is generally impossi-
ble for a streaming provider. Improving things on the server is possible, but difficult because
the serving server might be out of the control of the streaming provider. Best chances are to
improve things on the client. Therefore, the major part of this thesis deals with the proposal
and evaluation of different modifications to the client-side and only some light modifications
to the server-side. In particular, the thesis looks at two types of bottlenecks that can occur.
The thesis shows how to deal with a client-side bottleneck using multiple links. In this con-
text, we propose and evaluate a scheduler for partial segment requests. After that, we discuss
different techniques on how to deal with a server-side bottleneck with for example different

modifications on the transport layer (TCP congestion control variant, [TCP Congestion Win-|
[dow [1] (CWND)| limitation) and the application layer (the encoding of segments, segment
request strategy).

The driving force behind many of these modifications is the on-off traffic pattern that
HTTP segment streaming traffic exhibits. The on-off traffic leads in many cases of live
streaming to request synchronization as explained in this thesis. The synchronization in turn
leads to increased packet loss and hence to a downgrade of throughput, which exhibits itself
by decreased segment bitrate, i.e., lower quality of experience. We find that distributing client
requests over time by means of a different client request strategy yields good results in terms
of quality and the number of clients a server can handle. Other modifications like the limiting
of the CWND) or using a different congestion control algorithm can also help in many cases.

All in all, this thesis explores the potentials of adaptive HTTP segment streaming beyond
the linear video streaming and it explores the possibilities to increase the performance of

HTTP segment streaming servers.

il

Acknowledgements

First of all, I would like to thank my supervisors Prof. Pal Halvorsen and Prof. Carsten
Griwodz for reviewing this thesis and for interesting discussions. I would also like to thank
all my great colleagues at the Simula Research Laboratory for providing a superb working
environment.

However, most of all, I would like to thank my family, David, Zuzka, my parents, my
grandparents and last but not least my perfect girlfriend Kerstin for always being there for
me.

Contents

(I__Introduction|

(1.1 HTTP Segment Streaming|
(1.2 Problem Description and Statement|

Beyond Basic Video Streaming with HI'TP Segment Streaming

[2.1 ~ The (not so) Historical Background|
2.2 Video Segmentation|.
2.2.1 Commercial Systems|

[2.2.2 SegmentEncoding|
[2.2.3 MPEG-2 Overhead when Segmentation 1s Employed|
2.3 Segment Playlists|

Improving the HI'TP Segment Streaming with Multilink|

.1 Parallel Scheduling Algorithm|
4.2 HTTP Segment Streaming Metrics|
4.3 Expertmental Results|
“4.3.1 Bandwidth Heterogeneity|
4.3.2 Latency Heterogeneity|

il

11
12
15
17
18
21
22
25
29

31
32
34
38
43

[S Enhancing the Server Performance|

[5.2.3 HTTP Segment Streaming’s On-Off Traffic Pattern|

53

HTTP Segment Streaming Performance|

53

Simulation Setup| Lo

5.6

Varying Parameters without Quality Adaptation|

[5.6.1 Varying TCP Congestion Control|f

57

Increased the Segment Duration|

538

Requests Distributed over Time|.

5.9

Limited Congestion Window|,

[5.10 Varying Parameters with Quality Adaptation|

[5.10.1 Alternative Congestion Control Algorithms|
[5.10.2 Increased Segment Duration|
[5.10.3 Requests Distributed over Time|
[5.10.4 Limited Congestion Window|

[5.11 Combination of Alternative Settings|

[5.12 Client Request Strategies|,

[5.12.1 The Segment Streaming Model|
[5.12.2 The Option Set of a Strategy|
[5.12.3 Reduction of Option Combinations|

[5.12.4 Liveness Decreasing Strategies|.
[5.12.5 Constant Liveness Strategies|
[5.12.6 Emulation Setup| o
[5.12.7 Request Strategies Impact on HT'TP Segment Streaming|
[5.12.8 Parallelism and 1ts Consequences|

12.10 Influence of Client Interarrival Times Distributionl.
[5.12.11 Implications for Multi-Server Scenartos|

6 Conclusion|

v

55
55
56
58
58
58
60
61
63
64
65
66
67
68
71
73
73
74
75
75
77
78
79
80
80
81
82
83
84
85
86
89
90
90
93

97
97
100

105

List of Figures

(1.1~ Cisco Visual Networking Index [2]]: Internet video traffic forecast.| 2
(1.2 Adaptive HTTP segment streaming architecture| 3
(1.3 When the download speed 1s higher than the playout speed the client buffer |
| becomes full eventually and the on-off tratfic pattern arises.|. 4
2.1 HTTP segment streaming timelinef 12
[2.2° Smooth Streaming file format/. L0000 13
[2.3 Architecture of Playerl3 encoder| 15
2.4 MPEG-2 packaging efficiency based on segment duration| 18
2.5 MPEG-2 packaging efficiency based on last TS packet padding size| 19
[2.6 A trace of VoD streaming from www.comoyo.no (movie: "J. Edgar”)|. 19
2.7 'lypes of segment playlists| 20
[2.8 A user 1s only interested 1n certain parts of video clips that are relevant to |
| his search query. Instead, the user must normally manually browse through |
| complete videos to find the interesting information.| 20
29 AltusvSearch[3] o o 21
[2.10 vESP user interface. The user can quickly browse through the slides of a |
| presentation in the in-page document preview. Slides can be selected and |
[added to the slide playlist, which can be afterwards playedout.| 23
[2.11 vESP shde playlist contains slides from different presentations. Each slide |
| has an associated video consisting of multiple video segments. Even though |
| the video segments come from different videos, our player 1s able to play |
[them all in a seamless manner.| oL 23
212 vESP architecture 24
[2.13 User evaluation results with max/avg/min scores (A=plain, B=document pre- |
| view, C=document preview with video), 25
[2.14 Soccer scenario userinterfacel o o000 o000 0o 26
[2.15 Playhlist architecture| o oo 27
[2.16 Davvi soccer user interface. A live football game stream 1s distributed by |
| system 2, which 1s an HT'TP segment streaming solution. System 3 gath- |
| ers metadata about the happenings in the game from different information |
| sources. System 2 uses this data to generate recommendations (or playlists) |
| for a given user query. The user 1s able to influence future system 1 recom- |
| mendations by supplying feedback on the current recommendations.| 28
[2.17 User evaluation results with max/avg/min scores (A=VGLive, B=Davv1) . . . 29

vii

[3.1 Streaming network infrastructure|o 32
[3.2° An example of events sent withina session|. 34
[3.3 Sessions statistics based on the serverlogf 35
[3.4 Per client bytes statistics| o 36
[3.5 Liveness (absolute value) of segments based on the server logf. 37
[3.6 Geographical client distribution 1n Norway (the highest density of clients 1s |
[mmtheredareas),|. 39
[3.7 Geographical client distribution 1n the world (the highest density of clients 1s |
[intheredareas).|. 39
[3.8 Userto IP address mapping|, 40
[3.9 The percentage of sessions with at least one buffer underrun by ISP| 40
3.10 ISPtouserstatistics| 40
B.I1 Content statistics] L 41
[3.12 Session statistics based on the clientlog| 42
[3.13 Example of bitrate adaptation throughout a session based on client reports| . . 43
[3.14 Types of throughput optimizations for different types of bottlenecks.| 44
4.1 Segment division into partial segments for delivery over multiple interfaces| . 46
4.2 The time that elapses between the click on the "play" button and the time |
| when the first frame appears on the screen 1s called start up delay. It 1s the |
| time t4 —t1. It depends on the speed of the download (the difference between |
| t;.1 and ¢;) and the number of segments that must be pre-buffered.| 47
4.3 Every segment duration the playout starts playing a segment from the client |
| buffer. If there are no segments 1n the buffer the playout 1s paused (time ¢2) |
| until a segment 1s downloaded (time #3) and the playout continues again. The |
[time t3 — t2 1s the deadline miss and the liveness 1s reduced by the deadline |
[IISS. « + v v e e e e e e e e e e e e e 48

4.4 Segment video quality distribution in case of emulated bandwidth heterogeneity| 49

4.5 Deadline misses 1n case of emulated bandwidth heterogeneity|. 50
4.6 Segment video quality distribution 1n case of emulated latency heterogeneity|. 51
4.7 Deadline misses 1n case of emulated latency heterogeneity| 51
4.8 Average per segment throughput with emulated dynamic network bandwidth|{. 52
4.9 Average per segment throughput with real-world wireless links| 53
[5.1 TCP congestion control inaction| 57
[5.2 Example of Linux [CWND]| after an 1dle period. Downloading five 10 MB |
| segments over the same TCP connection with variable delay between the |
[downloads) 59
5.3 Continuous download: The situation on the client 60
[5.4 An example of continuous download traffic pattern (when sampled over a |
[reasonable time).| 60
[5.5 Two examples of bandwidth sharing between 2 greedy TCP connections on |
[alOMbit/shnkl] oo o o 61

[5.6 Example of VoD traffic pattern with unlimited buffer space. (without band- |

width adaptation and request pipelining),o L0000 62
[5.7 Example of live/VoD with limited buffer space traffic pattern. (without adap- |

tation)] e e e 62
[5.8 Example of live traffic traffic pattern with 2 clients. (without adaptation)| . . . 63
5.9 Simulationsuite GUI o oo 64
[5.10 Analysistools GUI| 65
[5.1T Simulationsetup| 65
[5.12 Observed TCP congestion window inns-2{ 67
[5.13 Performance of (ns-2 version) Linux TCP congestion control algorithms| . . . 69
[5.14 R1 router queue: 150 clhents| 70
[5.15 Sample TCP congestion window for 10-second segments| 70
[5.16 Performance of longer segments: 10-second segments (Cubic)l 71
[5.17 Performance of regular vs. distributed requests (Cubic)l 72
[5.18 Performance of a limited TCP congestion window (Cubic), 74
[5.19 Quality coding 1n figures from low (0) tohigh (5){ 75
[5.20 Alternative congestion control: Cubic vs. Vegas| 75
[5.21 Segment lengths: 2 vs. 10seconds| 76
[5.22 Request distribution (1 segment buffer)[. 76
[5.23 Request distribution (5 segment buffer)[. 77
[5.24 Request distribution (15 segment bufter)| 77
[5.25 Limiting the congestion window (Cubic){. 78
[5.26 Performance of combined settings (A=Vegas, B=10 second segments, C=distributed|

requests, D=CWND lmitation) 79
[5.27 The segment streaming model| 80
[5.28 Immediate playout start with video skipping| 81
[5.29 Delayed playout, video skipping and playout based requests| 81
[5.30 Strategy MoBy| e 82
[3.31 Strategy MoVl o 83
[5.32 Strategy Coln|. 83
[5.33 Strategy CoDe| 83
[5.34 Emulationsetup| 84
[5.35 Short sessions scenario goodput|o L. 86
[5.36 Long sessions scenario goodput|, 87
[5.37 Short sessions scenario deadline misses’ empirical distribution function (ECDF)| 88
[5.38 Packets dropped by the emulated router queue for 55 MB/s bandwidth limitation| 89
[5.39 Concurrent downloads in the short sessions scenario (SSMB/s)l 90
[5.40 Short sessions quality distribution of downloaded segments (from super qual- |

ity at the top to low quality at the bottom), 91
[5.41 Long sessions quality distribution of downloaded segments (from super qual- |

1ty at the top to low quality at the bottom), 92
[5.42° Short sessions scenarios liveness (note: liveness y-axes have different scale)] . 93
[5.43 Long sessions scenarios liveness (note: liveness y-axes have different scale)| . 93

X

[5.44 Client segment download rates in the long sessions scenario

oa alancimg| L0000 o

List of Tables

[2.1 Transport stream layout of an adaptive HI'TP segment streaming segment |

(TS 1s the Transport Stream Packet [4]).| 16
[3.1 Information about every request in the server log file] 33
[3.2 Thereported clientevents|., 33
[3.3 Information about every clientevent) L. 33
[3.4 Statistics from the clientlog|, 38
B35 TPtolISPstatisticsl 40
0.1 Stream bitrates| Lo 66
[5.2 Evaluated strategies| o 82
[5.3 Strategy summary (s = segment duration)| 84

X1

Chapter 1

Introduction

A video is nothing more than a series of static images shown quickly one after another in or-
der to create an illusion of continuity. Yet, it took almost 30 years after the Internet was born
in 1969 for the commercial video streaming applications to break through (RealPlayer [J],
ActiveMovie [6]], QuickTime 4 [7]). The responsible factors are the large computing and
bandwidth requirements associated with the video encoding and transmission. To stream
(transfer) a video, each video image must be transmitted to the remote site up to a precisely
defined time to be ready in time for playout. Furthermore, because each image requires a
rather big amount of bytes to be transfered and because a lot of images is required per sec-
ond to create the illusion of continuity, the bandwidth requirement was just too high for the
early days of the Internet, i.e., even for low resolution videos. Compression can be used to
reduce the number of bytes required per image, but, in general, the computational complexity
of compression grows with the number of bytes that can be saved, and therefore, powerful
computers are needed. It was first in 1997 that both the computational and bandwidth re-
quirements could be fulfilled, and successful commercial Internet video streaming started to
boom with players from for example RealNetworks [3]], Microsoft [8]] and Apple [7]

Today, video streaming is one of, if not the most popular service of the Internet. Only
YouTube alone delivers more than four billion hours of video globally every month [10].
Furthermore, many major (sports) events like the European soccer leagues, NBA basketball
and NFL football are streamed /ive with only a few seconds delay. Other examples include the
2010 Winter Olympics, 2010 FIFA World Cup and NFL Super Bowl, which were successfully
streamed to millions of concurrent users over the Internet, supporting wide range of devices
ranging from mobile phones to HD displays. The list of video streaming providers is growing
and includes companies like HBO [11], Viasat [12], TV 2 Sumo [13], NRK [14]. But there
exist also pure Internet streaming companies like Netflix [[15] and Comoyo [16]]. Thus, the
amount of Internet video traffic has been steadily growing and is predicted to grow even more.
For example, Cisco is predicting the video traffic to quadruple by 2016 [2]. A substantial part
of the video traffic is going to be over 7 minutes and live traffic as shown in Figure
Moreover, with a share of more than 50% of the total Internet traffic, video traffic is without
doubt one of the most important candidates when it comes to the optimization.

'Before the successful commercial era there were tools like vic [9] and a few streaming commercial compa-
nies that did not survive.

Total video traffic —+—
Over 7 min. video traffic
40000 f Live video traffic - ¥

PB per month

2011 2012 2013 2014 2015 2016
Year

Figure 1.1: Cisco Visual Networking Index [2]]: Internet video traffic forecast.

1.1 HTTP Segment Streaming

As the amount of video traffic has grown, the video streaming methods has been evolving.
Historically, [User Datagram Protocol [17] (UDP)| was the protocol of choice for delivering
live videos, and reliable transport protocols like [Iransport Control Protocol [18] (TCP) were
used to deliver non-live videos. This has changed and delivering live and on-demand
videos over the [Hypertext Transfer Protocol [19] (HTTP)| on top of has become very
popular, e.g., used by Comoyo [16], Netflix [15], NRK [14]. The main reasons are to be
found in the [Internet Service Provider (ISP){and company network policies rather than in the
technical aspects. is Network Address Translation (NAT) friendly, and additionally, the
standard port 80 is allowed by most firewalls. From the technical perspective, it is the
possibility of reusing the already deployed [HTTP| infrastructure that makes streaming over
[HTTP so attractive.

To provide the client with the possibility to adapt to varying network resources in HTTP
segment streaming, a video is usually split into segments, and each of these segments is made
available in different bitrates. Thus, the client can adapt to changing network conditions
or resource availability by simply requesting video segments in bitrates that fit the current

network conditions. Figure [I.2] captures the process. We see that a live stream is first cap-
tured and sent to an encoder. The encoder encodes the stream into multiple content-identical
streams with different bitrates. These streams are then split into segments by a segmenter.
The segments are ready for playout after segmentation and can be distributed via a[CDN]|for
example. We call this type of streaming (adaptive) HTTP segment streaming. It is also known
as HTTP dynamic streaming [20]], HTTP live streaming (HLS) [21]], Smooth Streaming [22]]
and as MPEG Dynamic Adaptive Streaming over[HTTP|(MPEG-DASH) [23]. MPEG-DASH
has recently been ratified for international standard by ISO/IEC’s joint committee known as
MPEG.

Even though the HTTP segment streaming is based on HTTP, the temporal dependence
between video segments makes the network traffic different from a regular HTTP web traffic.

2

Live stream Encoder

g
S i %,
Q“ : *o,
& "
=
3 R
Client Client

Client

Figure 1.2: Adaptive HTTP segment streaming architecture

The server traffic generated by HTTP segment streaming clients is influenced by the tempo-
ral dependencies between segments and the segment availability in case of live streaming.
This results into an on-off traffic pattern, i.e., traffic where sending of data is interrupted by
idle periods. It is particularly different from the traffic generated by web clients on a web
server. The understanding and optimization of the server traffic is of importance to stream-
ing providers so that they can optimize their server and client software with respect to for
example cost per client and quality per client.

1.2 Problem Description and Statement

The problem with the classical video streaming services like for example YouTube [10] is
that the response to a search query is a list of complete videos. However, the user search
query might match only a specific part of a video, yet the returned videos must be watched in
their full length to manually find the moments of interest. However, the client driven segment
streaming opens great opportunities to enhance user experience beyond basic progressive
streaming as we know it from YouTube. In this thesis, we explore the possibilities that HTTP
segment streaming brings in terms of playlist creation based on different videos.

We further look at the performance of delivery of segments as this is a very important
aspect of a service as popular as the HTTP segment streaming. An HTTP segment streaming
client downloads the segments of a stream one after another. The client chooses the bitrate
of the segments according to the available bandwidth so that the time it takes to download a
segment is shorter or equal to the actual segment duration (the playout time of a segment).
The download time must be shorter or equal than the segment duration, because otherwise
the client buffer would eventually become empty and pauses would occur in the playout.
Since there is only a handful number of bitrates to choose from, the download time is usually
shorter (not equal) than the segment duration. Therefore, it takes less time to download

3

a segment than it takes to playout a segment, i.e., the download speed is higher than the
playout speed. The client buffer first hides this inequality by queueing every segment that
is downloaded. However, after some time, it gets full and the download of the next segment
needs to be postponed until a segment is consumed by the playout. This leads to an on-
off download pattern as shown in Figure This pattern is substantially different from a
bulk data transfer. Furthermore, the regularity of the on-off pattern (especially in the case
of live streaming where the segments become available in periodic intervals) differentiates
this pattern from the web traffic pattern (download of HTML pages, pictures, CSS, javascript
etc.).

Download speed —[54|[s3||s2|[s1|—— Playout speed
Client buffer \

P

bitrate
bitrate

i3 time 3 time

on off on off on off on

Figure 1.3: When the download speed is higher than the playout speed the client buffer
becomes full eventually and the on-off traffic pattern arises.

When downloading a web page, a client requests first the HTML code of the page and
then requests different web objects that are linked from that page like the javascript files,
images, style sheets etc. It has been shown [24] that this type of web traffic for web browsing
can be modeled fairly well by an on-off source. However, the distribution of the length of the
on and off periods is different from the distribution of the on and off periods in case of HTTP
segment streaming. The length of these periods is governed by the playout speed, which
is constant, and the segment availability in case of live streaming. This results in almost
constant on and off periods unless bandwidth or bitrate changes (the playout speed is usually
fixed to a specific number of frames per second). Therefore, other traffic patterns are formed.

In case of live streaming, all clients have the incentive to be as "live" as possible, request-
ing a new segment as soon as it becomes available. Even though, in general, the client re-
quests take different time to get to the server due to for example different RTTs, the incentive
to be as live as possible leads to a nearly perfect request synchronization. This synchroniza-
tion of the responses does not happen to web traffic. The challenge is to find ways to optimize
the HTTP segment streaming on-off traffic. This requires looking at both the transport and
the application layer.

Problem Scope and Limitations In the scope of this thesis, we first look at the application
enhancements, which are possible with segmented streaming. In particular, we practically
demonstrate the possibility of playlist creation based on segments from different original
streams.

However, the main problem we explore in this thesis is the interplay of live segment
streaming clients that share a common bottleneck. We do not restrict ourselves to single client

4

behaviour, but look at the system composed of clients and a server as a whole. We explore
primarily how client-side modifications and very light, non-invasive server-side modifications
both on the transport and the application layer can increase the number of clients that a server
is able to handle with respect to quality, deadline misses and liveness.

We are aware of the advantages of segmented streaming, especially its infrastructure
reuse, and therefore, we intentionally limit the scope of the modifications, to client and light
server modifications, making most of our investigations relevant also to general CDN]infras-
tructures where major server modifications might not be possible. For example, we do not
investigate scenarios where the server keeps state about every client in order to be able to
schedule segment delivery. We also do not assume any communication possibilities between
the clients like in a P2P environment. This makes for a perfectly distributed problem, since
the clients can not coordinate their actions with each other directly nor via a server.

We explore the following key areas in this thesis:

1. The potential of HTTP segment streaming beyond classical streaming. Here, we ex-
plore the potential application enhancements that are possible with HTTP segment
streaming. We are specifically interested in the possibilities of combining segments
from different videos into a seamless, smoothly playable playlists.

2. Leverage multiple network interfaces on a client. Today, many, especially mobile
devices, have multiple network interfaces available, e.g., HSDPA [25] and WLAN.
We therefore explore the possibilities to utilize all the available interfaces in order to
achieve better user experience, i.e., video quality and liveness.

3. Improving the performance of segment delivery from a congested server. Because the
delivery of the segments plays a major role by the scalability of HTTP segment stream-
ing, we are interested in the way segments are delivered. We consider the on-off traffic
pattern of HTTP segment streaming traffic and search for modifications on both the
client- and the server-side to increase the performance of an HTTP segment streaming
server.

1.3 Research Method

There are several ways to perform research in the area of computer science. In this respect,
the Association for Computing Machinery (ACM) describes in [26] three major paradigms,
or cultural styles, by which computer scientists approach their work:

1. The theory paradigm is rooted in mathematics. Objects of study are specified first.
Then, a hypothesis about relationships between the objects is formed, and finally, the
hypothesis is proven logically.

2. The abstraction paradigm is rooted in the experimental scientific method. Here, a
hypothesis is formed first. A model and predictions based on the model are then made.
As the third step, experiments are designed, data is collected and finally analyzed.

5

3. The design paradigm is rooted in engineering. Here, the requirements and specifica-
tions are stated first. Then, a system is designed and actually implemented. The last
step is a system test to see if the stated requirements and specifications were satisfied.

This thesis follows mainly the abstraction and design paradigm. The research on video
playlist composition (see Chapter [2)) is based on the design paradigm. Our goal is to see
the potential of HTTP segment streaming beyond linear playout and enrich and improve the
user experience of video search with the features of HTTP segment streaming. We analyze
existing services (like VG-Live [27] and TV2 Sumo [13]) providing video clips of small
events in soccer games and talk to people from Microsoft to collect their requirements and
specifications. Based on these, a design and a subsequent implementations matching the two
different application domains are created. Besides technical testing, we create user surveys
to see if the system actually significantly improves the situation or if we have to return to the
design board. Moreover, our multilink solution approach to leverage a potential client-side
link bottleneck (see Chapter [)) also follows the design paradigm. We want the client to make
use of multiple interfaces at the same time, therefore we design and implement a solution that
is able to do so. Through system testing in emulated, as well as in real networks, we propose
a segment download scheduler.

Our approach to deal with the server-side bottleneck (see Chapter [3)) falls rather into
the abstraction paradigm than into the design paradigm, because it is practically hard (in
real networks) to evaluate proposals that affect thousands of users. Our hypothesis is that
certain client and server-side modifications will help to improve the effectiveness of an HTTP
segment streaming server when the network bottleneck is at the server potentially serving
thousands of clients simultaneously. Based on our hypothesis, we formulate a simulation and
emulation model to verify our hypothesis. Unfortunately, we have no choice but to skip step
three (the real world experiment) due to practical reasons, i.e., the main reason being that we
are not able to get (in time) a streaming provider to evaluate our proposals in real networks
with thousands of real clients.

1.4 Main Contributions

This thesis explores the potential of HTTP segment streaming beyond basic video stream-
ing as well as proposes improvements to existing HTTP segment streaming techniques and
settings. The main contributions to the challenges stated in Section|l.2|are summarized here:

1. Proof of concept application enhancement implementing playlists based on segments
from different videos. Two prototypes from two different application domains (sports
and education) were implemented to demonstrate the feasibility of segment combina-
tions not only from the same video, but also across different videos. This means that
the results to a search query no longer need to be complete videos, but can also be
video segments from possibly different original videos. Furthermore, we measured the
improvement in terms of user experience with user studies and found out that in both

6

cases a significant improvement was achieved. Users liked the added functionality and
also thought it might be useful on a day-to-day basis.

2. Increasing user experience with a multilink segment download scheduler. We proposed
and tested a method to divide video segments into smaller subsegments that can be
retrieved in parallel over multiple interfaces. The proposed scheduler aggregates the
throughput of multiple interfaces enabling the client to retrieve higher quality segments.
We saw that our scheduler works not only in managed environment, i.e., emulated
test networks, but also for real HSDPA [25] and WLAN aggregation. The result was
a higher quality video stream compared to a single link scenario using either of the
available interfaces.

3. Proposed system improvements to HTTP segment streaming. Our analysis of a real
video streaming provider’s log data shows that a lot of video segments must be served
from sources other than the origin server. Since these sources are usually out of the
control of the streaming provider, no major modifications can be done on the server-
side of these, e.g., on HTTP proxy caches. Based on this knowledge, we proposed
different possible modifications to both the server, but mainly to the client-side to op-
timize segment delivery from an HTTP server. Our exploration focused on transport
layer modifications (TCP congestion control variant, limitation) and applica-
tion layer modifications (segment duration, segment request strategy). The benefits
and drawbacks were evaluated by simulation and in some cases emulation. The global
effects were evaluated in terms of increased client count per server, quality of down-
loaded segments, deadline misses and liveness (see Section4.2). Additionally, an easy
and fully distributed method for request de-synchronization was proposed. The main
finding was that client requests synchronization should be prevented. If client request
are distributed, the server performance increases, and the server can serve more clients
with higher quality segments.

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2, ""Beyond Basic Video Streaming with HTTP Segment Streaming'', provides a de-
tailed overview of HTTP segment streaming, especially the encoding of segments. It
also discusses the work on video playlists and its application to different domains.

Chapter [3, ""Analysis of a Real-World HTTP Segment Streaming Case'', shows the analy-
sis of 24-hours logs provided by a Norwegian streaming provider Comoyo. It explains
the data behind the indications of significant data delivery from sources other than the
origin server.

Chapter[d, ""Improving the HTTP segment streaming with multilink'', discusses the use of
multiple links to deal with a client-side bottleneck. It is based on the observation that
modern devices usually posses more than one network interface.

7

Chapter |5, ""Enhancing the server performance'’, begins with the explanation of the parts
of TCP relevant to HTTP segment streaming. It then proposes and evaluates different
techniques and modifications to improve the effectiveness of a single server.

Chapter [6, ""Conclusion'’, summarizes previous chapters and the work of this thesis and
sheds light on perspective future work.

Chapter 2

Beyond Basic Video Streaming with
HTTP Segment Streaming

The transmission of video has been around for many years. The first TV receivers became
commercially available in the late 1920s, and since then the technology has boomed. The
television was initially based on analog technology and used broadcasting, i.e., one-to-all
communication, to reach its audience. However, since the 1920s, there has been a lot of
progress not only in the area of video transmission, but also in the consumer needs and wishes.

The analog transmission for commercial, especially entertainment use, is being aban-
doned. In addition to moving from analog TV to digital TV, we see that video content and
other related real-time content (subtitles, overlaid text, links, etc.) is being moved more and
more to the Internet. In general, we call the delivery of video and other related real-time
content over the Internet media streaming. Media streaming has raised many new challenges,
not only due to the high processing requirements, but mainly due to the unreliability of the
Internet links, making it hard to deliver video content in time.

There has been a lot of efforts (e.g., [28. 29]) to introduce |Quality of Service (QoS)|
guarantees to the Internet. However, they have not been so far widely deployed and remain
out of reach of a normal Internet user. Thus, for the regular user, the majority of Internet
links and subsequently connections is still unpredictable in terms of available bandwidth
(capacity), delay and loss, resulting in a best-effort service. These three metrics are not only
unpredictable, but also vary over time for the same connection. The Internet media streaming

must take the unpredictability into account in order to improve user’s quality of experience.

2.1 The (not so) Historical Background

In the beginning of the Internet media streaming era, the usual way to deliver video over
the Internet links was to use proprietary, (non-open) protocols like the Microsoft Media
Server (MMS) protocol [30], Real Player’s Progressive Networks (PNM/PNA) protocol, and
Adobe’s Real Time Messaging Protocol (RTMP) [31]. These were then largely replaced
by the open standard [Real-time Transport Protocol [32] (RTP)/Real Time Streaming Proto-
lcol [33] (RTSP)| protocol suite. The [RTSP| protocol’s responsibility is to negotiate a media
streaming session parameters as well as to control the media streaming session (e.g., start,

9

pause and stop). The protocol carries the video data and is usually encapsulated in a
datagram protocol, which in practice means it is carried by (the specification does not
say it has to be and it could as well be [Datagram Congestion Control Protocol [34]|
[[DCCP)} [Stream Control Transmission Protocol [35] (SCTP)|or something else). In addition
to RTPYRTSP] a protocol called [RTP Control Protocol [32] (RTCP)|is used to get feedback
from the video receiver about its perception of the connection and the media player’s state.
Because the protocols have the full control over packet retransmission, they can be for ex-
ample used for applications where packet loss is preferred over increased delay caused for
example by TCP’s congestion control, like video or audio conferencing. The protocol suite is

very flexible, and the usage scenarios range from pure audio conferences to multicast multi-
party low delay video sessions.

However, the flexibility of packet level control brings also disadvantages in practical im-
plementations. Systems like these become quickly very complex because they have to deal
with flow and congestion control, packet loss and out-of-order packets themselves. One other
disadvantage of RTPYRTSP] streaming is that the server has to keep track of the state of ev-
ery streaming session. It needs to know whether the stream is paused or not, which ports to
send different media tracks to, which streams belong to which session etc. This implies
that specialized servers must be used, which might be costly. Additionally,
traffic is often not permitted by default firewall and settings, which makes [RTP|
deployment a rather complicated and challenging task. For example, a VG Nett (one of the
largest online newspapers in Norway) log analysis showed that only 34% of stream-
ing attempts were successful [36], and the rest was served by over MMS and
progressive download.

On the other hand, the deployment and scaling of HTTP servers is easy and well under-
stood. The default firewall and settings pose no problems in most cases. Therefore, it is
a very straightforward approach to try to deliver video over HTTP. The video file is uploaded
to a regular HTTP web server no differently than any other static web object (web page, pic-
ture, etc.). The client then accesses the HTTP web server and downloads the media file. The
difference to traditional static web object download is that the web server can limit (pace)
the download speed of the client. In the perfect case, the reduced download speed perfectly
matches the playback speed (in praxis the download should always be by a safe margin ahead
of the playback to accommodate for jitter created by TCP and the Internet link [37]). Hav-
ing the download only slightly ahead of the playback reduces the number of unwatched yet
downloaded video content in terms of bytes if the user decides to stop the playback before
the end of the video. In this way, the video provider saves link capacity that can be used by
other users. This type of paced download is called progressive download and is very popular

for VoDl

One of the main technical differences between progressive download and is
the use of under HTTP. is not optimized for real-time traffic per se. Clients need to
either buffer more data to compensate for jitter caused by TCP’s congestion control or have
a connection speed substantially faster than the playback rate [37]. However, even so, the
practical benefits of HTTP deployment and scalability seem to overweight the advantages of

10

RTP/RTSP, which is confirmed by the large scale deployment of HTTP/TCP based solutionﬂ

2.2 Video Segmentation

One possible way to adapt to available bitrate is to facilitate encoding techniques that were
designed with scalability in mind. Examples of such encoding techniques are
[scription Coding [38] (MDC)] [Scalable Video Coding [39] (SVC)| and [Scalable MPEG [40]|
[[SPEG)l MDC]uses a technique of fragmenting a single stream into a set of substreams. Any
arbitrary subset of the substreams can be used to decode and watch the content but the more
substreams are decoded, the better the quality of the video. However, the high fault toler-
ance is payed with a big overhead [41]. is similar to MDC. It uses layered encoding
where each layer N can only be decoded if layer N-1 is also decoded. A simple example of

or priority progress streaming [40] extends the currently available compression for-
mats with priority dropping. Priority dropping is a technique where the server starts dropping
less important data first when informed that the client buffer is about to underrun. This saves
bandwidth and gives a chance to the client buffer to recover. In contrast to random dropping
of data, priority dropping provides smoother degradation of quality.

However, the problem with most of these advanced encodings is that they are not sup-
ported on commercial devices. This disqualifies them from the use in practical implementa-
tions. Therefore, other "bitrate adaptation techniques", like the progressive download, based
on traditional codes like H.264 [42] are used in practice. However, the problem with pro-
gressive download (like provided by, e.g., YouTube, Dailymotion and Metacafe) is that the
quality of the media must be chosen (for example manually by the user) in the beginning of
the download. Particularly, the quality can not be changed later on when the playout is in
progress. This is a major drawback if the connection properties change during the playout. In
other words, an improvement of the connection speed leads to lower video quality as would
be possible and the worsening of the connection speed leads to playout hiccups and annoying
rebuffering periods.

To fix this problem, it should be possible to adapt the bitrate of a video stream to the
current network conditions while streaming. This is where video segmenting helps (perhaps
first mentioned in a patent filed in 1999 [43]). A live stream (or a prerecorded stream) is
encoded multiple times, each time with a different bitrate and thus different video quality.
The encoding is done in such a way that each of the streams can be chopped into smaller self
contained pieces, called segments, that can be played out on their own, i.e., a segment has
no dependencies on other segments. The client downloads the video segment by segment. It
chooses the bitrate of each segment so that it fits the currently observed connection properties
(see Figure [2.7(a)). Figure illustrates the process of distributing a video via adaptive
HTTP segment streaming. In this figure, the encoder machine receives a live stream and
produces 3 content-identical streams. Each of the 3 streams has a different bitrate. The
segmenter splits each stream into segments that are distributed for example via standard [CDN|

"For interactive media streaming sessions, like conferencing, people are now talking about RTCWeb (http:
//tools.ietf.org/wg/rtcweb/), which again may use RTP over UDP, but this is beyond the scope of
this thesis.

11

http://tools.ietf.org/wg/rtcweb/
http://tools.ietf.org/wg/rtcweb/

Client Server
GET /manifest
200 OK

>

A

GET /segment_1
200 OK

Y

GET /segment_2
200 OK

Y

A

Figure 2.1: HTTP segment streaming timeline

infrastructure. A client can find out about which segments are available by downloading a
file called a manifest ﬁleﬂ The manifest file contains the location of all available segments
and is updated every time a new segment becomes available.

Additionally to the location of segments, the manifest file can also contain some metadata
about the segments like the encoding parameters. After the manifest file is received, the client
has enough information about where to find each segment and how to decode it as illustrated

in Figure [2.1]

2.2.1 Commercial Systems

The adaptive HTTP segment streaming described in the previous section is implemented by
many commercial vendors and here we present three examples from major companies. We
describe only their main functionality here, for details please see the references.

Smooth Streaming

Smooth Streaming [22] is a streaming technology by Microsoft. The file format used is
based on ISO/IEC 14496-12 ISO Base Media File Format [44]]. The reason for choosing
ISO/IEC 14496-12 ISO Base Media File Format is that it natively supports fragmentation.
Actually, there are two formats, the disk file format and the wire file format. A video is
recorded as a single file and stored to the disk using the file format shown in Figure 2.2]
The ftyp box specifies that this is a media file [44] so that different applications can quickly
get this information. The moov box includes file-level metadata that describes the file in
general, e.g., how many media tracks there are. The media data itself is in the fragment
boxes. They include metadata on the fragment level and the actual media data (mdat). The
mfra box contains an fragment index with the video playout time each fragment contains and
is consulted if random access into the file is needed. When a client (player) requests a video

’The concept of a manifest file works similarly to a BitTorrent tracker that keeps a list of peers that have a
specific file.

12

000

File Type (ftyp)
Movie Metadata
Fragment
Fragment
Movie Fragment

Random Access
(mfra)

Movie fragment (moof)

. iTrack fragment (traf):

IR | ©
''®© ': (]) ! 2
b 3 = 9 ! © =
| < " 8 fus c : O ©
! E’g :: < € ©] S
EE i B || 22| £ |l =€
BEl Es (82| &8 || B3
e 8 < g | =
S 1l S (] '

ERE i 2 :

N . :

Figure 2.2: Smooth Streaming file format

segment (called fragment in [44]), the server seeks to the appropriate fragment and sends it
to the client.

There are two file extensions that are used for the file format as described above, namely
.ismv and .isma. The .ismv file contains video and optionally also audio. The .isma file
contains only audio. In addition to the file containing the media data, there are two more
files on the server. The .ism file describes the relationship between the media tracks, bitrates
and files on the disk (there is a separate .ismv file for each bitrate). This file is only used by
the server. The .ismc file is for the client. It describes the available streams (codec, bitrates,
resolutions, fragments, etc.). It is the first file that the client requests to get information about
the stream. Both .ism and .ismc files are based on XML.

The clients use a special URL structure to request a fragment. For example, a client uses
the following URL to request a SOCCER stream fragment that begins 123456789 time units
from the content starlﬂ in a 1,000,000 bit/s (1 Mbit/s) bitrate from comoyo.com:

http://comoyo.com/SOCCER.1ism/QualityLevels (1000000) /
Fragments (video=123456789)

The Internet Information Services (IIS) server [45]] with an installed Live Smooth Stream-

3The exact unit size is specified in the .ismc file, but is usually 100ns.

13

ing extensiorﬁ knows the URL structure and parses out the information. It then looks up the
corresponding video stream (in the .ism file) and extracts from it the requested fragment. The
fragment is then sent to the client. Note that the fragments are cacheable since the request
URLs of the same fragment (in the same bitrate) from two different clients look exactly the
same, and as such, can be cached and delivered by the cache without consulting the origin
Server.

HTTP Dynamic Streaming

HTTP dynamic streaming [20] is a technology by Adobe Systems. The basis of this technol-
ogy is similar to Microsoft’s Smooth Streaming. The file format is based also on the ISO/IEC
14496-12 ISO Base Media File Format. However, there are a few differences. There exists
three types of files (assumed the content is not protected by DRM). The .f4m file contains
the manifest file. The manifest is XML based and includes information like the information
needed to bootstrap, e.g., server serving the video content, (run) tables containing the map-
ping from a time point to the corresponding segment (see later) and fragment. The .f4f file
is a file that contains the actual media data. The difference to Smooth Streaming is that there
might be multiple of these files, called segmentﬂ for the same stream. The .f4f contains
fragments as specified by [44]] with a few Adobe extensions. For example, each fragment
contains metadata that was originally encapsulated in the moov box that is originally present
only once per [44] video file. The .f4x file is an Adobe extension that lists the fragment offsets
that are needed to locate a fragment within a stream by the web server.

Since not all fragments of a media content are necessarily contained in just one .f4f
file (segment) the URL addressing scheme is different from Smooth Streaming’s addressing
scheme. To request fragment 10 from segment 12 in HD quality from the SOCCER stream,
the player issues the following request:

http://comoyo.com/SOCCER/1080pSegl2-Fragl0

On the server-side, similarly to Smooth Streaming, a web server extension is used to parse
the client’s request and based on the obtained information extract and send the corresponding
fragment from a .f4f file back to the client. For further details please refer to [20].

HTTP Live Streaming

HTTP live streaming [21] (HLS) is a technology by Apple. In contrast to Smooth Streaming
and HTTP dynamic streaming, Apple does not use ISO/IEC 14496-12 ISO Base Media File
Format [44] as the basis for its file format. HLS encodes each segment as a sequence of
MPEG-2 Transport Stream [4] packets. We detail the encoding in the next section. Apart
from the encoding container format, the main difference is that each segment is stored as a
separate file on the server. For example, a 3600 second (1 hour) movie will consist of 360
segments, i.e., 360 files, if each segment contains 10 seconds of video (the recommended

‘http://www.iis.net/downloads/microsoft/smooth-streaming
Note that the term segment in this thesis means a fragment in HTTP dynamic streaming terminology.

14

http://www.iis.net/downloads/microsoft/smooth-streaming

Camera driver

l

Segment
encoder

Figure 2.3: Architecture of Player13 encoder.

Valueﬂ The advantage of having each segment as a separate file is that the server does not
need to extract the segments from a continuous file and therefore no extensions are required
on the web server. The drawback is that the distribution network, e.g., a@ needs to handle
thousands of small files.

The manifest file is implemented as an extension to the M3U playlist format [46]. The
playlists are text based and simply list the segments that are available. For all extensions and
their meaning please refer to [21]].

2.2.2 Segment Encoding

The video encoding process for adaptive HTTP segment streaming must take into account
that the video will be segmented. The segments must be self contained so that they can be
played out independently. The exact level of self containment depends very much on the
technique used. For example, some segmentation techniques [22) 47]] require the client to
first download a meta file describing the decoding parameters common to all segments in the
stream. Others [21] include this information in each segment.

In the scope of this thesis, we implemented a real-time segment encoder that is used to
encode live video from cameras installed at a soccer stadium in Tromsdfl The encoder’s
architecture is sketched in Figure The Playerl3 E] component receives raw frames from
a network or an USB camera and distributes them to the other modules. The possible mod-
ules include a raw H.264 encoder, a JPEG encoder that stores each frame separately (further

®Smooth Streaming encodes each video bitrate as 1 file and for HTTP dynamic streaming the number of
files is configurable.

At the time of writing the encoder, we were not able to find a reliable encoder that would fulfill our two
requirements. Firstly, it had to produce segments playable by both VLC and Apple devices. Secondly, it had to
produce segments that are so self contained that segments from different live streams can be mixed.

8The video capturing is a first step in a video processing pipeline [48,49].

9The soccer stadium project’s ultimate goal is to automate football analytics, i.e., help the coach analyze the
game. Since there are 11 players on the field and the audience is considered to be the 12th player, we decided
that the 13th player contributing to the teams success is our software, hence the name.

15

Program Association Table
%
Program Map Table
&
Adaptation field
(é) PES packet
Data
5
§D % ‘é’ Data
>
s
.. More data only TS packets ...
Adaptation field
(ﬁ Data
Q
=
s
i3

Table 2.1: Transport stream layout of an adaptive HTTP segment streaming segment (TS is
the Transport Stream Packet [4]]).

used by 3D reconstruction software) and an HTTP segment encoder. The configuration file
config.xml supplied to Playerl3 specifies the desired number and type of bitrates that should
be produced. For each bitrate, a new HTTP segment encoder thread is spawned (Figure
shows four HTTP segment encoders with bitrates 1, 2, 3 and 4 Mbit/s). When the streaming is
started, the Playerl3 component distributes the received frames to each module. It also pro-
vides the wall clock time to all HTTP segment encoder modules. The clock synchronization
is important for the production of combinable segments as we explain later in this section.

The HTTP segment encoder encodes the received frame with the H.264 codec [42] (specif-
ically libx264 [50] with the zero latency settings). The codec is set to produce an intra-coded
frame (I-Frame) every fps{:G] x segment Duration frames. This ensures that every segment
always starts with an I-Frame, which gives a random access point in the start of each segment.
The Network Abstraction Layer [42] (NAL)|units produced for each frame are wrapped into
a H.222 [4] stream as shown in Table (the NAL units are shown as data).

The Transport Stream packet (TS) is always 188 bytes long and starts with a 32 bit header.
The header specifies the content of the packet and carries a continuity counter that is incre-
mented for each packet. We placed in the beginning of each segment a Program Association
Table [4] (PAT) that associates a program number to a Program Map Table [4] (PMT). PMT
in turn specifies which elementary (audio/video) streams are associated with a program. We

OFrames per second (fps)

16

placed PMT always in the next packet after PAT (note that PMT and PAT are always padded
and use a full TS packet). Having these tables in the beginning of the segment simplifies the
parsing for the decoder since it does not need to search through the segment or get the tables
from a different place. The third TS packet includes an adaptation field that specifies the
[gram Clock Reference [4] (PCR)|value. The PCR value is the same for the same frame across
different HTTP segment encoders (they use the same wall clock provided by Playerl3). This
is important since a player later incorporates the frame into the playout buffer based on this
value. Following the adaptation field is the [Program Elementary Stream [4] (PES)| packet
specifying the Presentation Time Stamp (PTS) value, which is set to the same value as the
The rest of the third packet is then filled with[NAL]units produced by the H.264 encoder
separated by [Access Unit Delimiter NAL [42] (AUD NAL)|units. Normally, a completely en-
coded frame frame does not fit into the third TS packet and must be therefore distributed over
multiple TS packets. The last TS packet of a frame that still contains data is padded with

an artificially overblown adaptation field if needed. This process is repeated for each frame
in a segment. We tested this setup successfully with the following players: MPlayer [51],
FFplay [52], VLC [533] and QuickTime [21]].

2.2.3 MPEG-2 Overhead when Segmentation is Employed

Even though segments produced by our setup are playable by many players, the tradeoff is the
size inefficient MPEG-2 packaging of the segments (compared to fragmented MP4 [44, 47]).

Each segment must contain a PAT and a PMT table. Each of these tables is encapsulated
in a 188 bytes TS packet (PAT,, and PMT,,). Additionally, an adaptation field and
packet must be included for every frame in the segment. This means an additional cost of 8
bytes and 14 bytes (or 19 bytes if DTS timestamp is included) per frame, respectively. Lastly,
the last TS packet of every frame needs to be padded to have a size of 188 bytes and, for
frame data, a TS packet header of 4 bytes is included every 184 bytes. The overhead of the
packaging format can be expressed as follows:

P ATy +PMTp+(adaptation field+PES+lastT Spadding)* f psxsegment Duration+4x Segme"tDufng"*bitmm

segment Durationxbitrate

PAT, e +PMTpit + (adaptation field+PES+lastT Spadding)*fps

4
~ segmentDurationxbitrate bitrate + 184

We see that the first term converges to 0 as the segment duration or the bitrate increases.
The second term converges to O only if the bitrate increases. The last term is constant and
independent of the bitrate or the segment duration. It is the minimal theoretical packaging
overhead of MPEG-2, 2.17% (Riiser et al. [47] shows how this number compares to other
formats when both audio and video is included, e.g., Microsoft Smooth Streaming or Move
Networks. He concludes that the overhead of MPEG-2 is considerably higher than the over-
head of MPEG-4 [44]).

The duration of a segment has only influence on the weight of the PAT and the PMT tables
(first term) in the overhead estimation. However, bitrate influences also the weight of the per
frame overhead (second term). Figure[2.4]shows that the impact of the bitrate is considerable

17

50

! ' 2s segments 92b pad.

— | 10s segments 92b pad.
s 40 ¢
o) |
@ \
£ 30
(]
>
: |
o 20
O]
o \
s 10 -

. I

0O 05 1 15 2 25 3 35 4
Bitrate [Mbit/s]

Figure 2.4: MPEG-2 packaging efficiency based on segment duration

and the impact of the duration is only minor. In Figure [2.4] the size of the padding in the last
TS packet is assumed to be a random number of bytes between 0 and 184 bytes (the mean
value of 92 bytes 1s used for the model).

Figure [2.5| shows the impact of the last TS padding variable on the overhead estimation.
If the size of the encoded frame perfectly matches the TS packet size, i.e., no padding is
required, the MPEG-2 container overhead is reduced considerably (see 2s segments Ob pad.
in Figure2.5). However, if the last TS packet contains only 2 bytes of the data, the overhead
is increased substantially especially for small bitrates (see 2s segments 182b. pad). The plot
also shows the overhead curve for perfectly constant bitrate encoding, i.e., constant (encoded)

frame size (see 2s segments variable padding). In this case, the padding depends on the bitrate
and is computed by[''}

lastT Spadding = 184 — [(¥ree — 157) mod 184]

fps
Our model implies that a subtle change in the bitrate can lead to a performance increase or
decrease in terms of MPEG-2 segment packaging overhead. As such the implications should
be considered when choosing a bitrate.

2.3 Segment Playlists

A video segment, as described in the previous section, constitutes an independent playable
unit. Segments from the same video but of different quality can therefore be seamlessly
combined to create the illusion of a continuous video stream. This is the way a player adapts
the video quality (and bitrate) to the available bandwidth. A real trace of a HTTP
segment streaming session is shown in Figure[2.6] In addition to the changing segment bitrate,
the time a segment was requested is plotted. The flat part at the beginning of the graph

"We first subtract the first packet size and then compute how many bytes will be in the last TS packet.

18

50

2s éegménts ob pad. —

— 2s segments 92b pad.
S 40 2s segments 182b pad. - .
i ‘ 2s segments variable pad.
2 30
o
>
o
o 20
)
= 10 b\ | }i

0 HinBiR

0O 05 1 15 2 25 3 35 4
Bitrate [Mbit/s]

Figure 2.5: MPEG-2 packaging efficiency based on last TS packet padding size

indicates that the player requested multiple segments at about the same time. This is the
time the client pre-buffered video segments in the beginning of the session. After this initial
pre-buffering, a segment was requested approximately every segment duration.

1400 2400

Segme’nt request ﬁr}ue —t—
Segment bitrate

1200
- 2000

1000
4 1600

800 |-

-4 1200

Bitrate [KBit/s]

600 |

Request Time [s]

400 | 7 80

200 4 400

1 1 1 1 1 1
0 100 200 300 400 500 600 700
Segment number

Figure 2.6: A trace of VoD streaming from www.comoyo.no (movie: "J. Edgar")

Moreover, segments from different video streams can be combined (if properly encoded)
into customized videos. Both types of playlists, segments from the same video and segments
from different videos, are illustrated in Figure[2.7] In the scope of this thesis, we implemented
two systems that utilize the HTTP segment streaming playlist feature to enhance the user
experience [54 55, 156]]. The creation of both of these systems was motivated by the fact that
locating content in existing video archives like YouTube [[10] is both a time and bandwidth

19

Video 1

2.0 Mbit/s .. n

1.0 Mbit/s
0.5 Mbit/s T

to playout
—|H=a=0H

Client playout buffer

(a) Bitrate adaptation (segments come from the same video)

Video 1 Video 2

W

Rl -0 [

Client playout buffer

(b) Custom video stream (segments come from different videos)

Figure 2.7: Types of segment playlists

—> Clip 1 ’ |
—> Clip 2| *:I
—> Clip 3|:, * |

| need to watch

Figure 2.8: A user is only interested in certain parts of video clips that are relevant to his
search query. Instead, the user must normally manually browse through complete videos to
find the interesting information.

consuming process since the users might have to download and manually watch large portions
of superfluous videos as illustrated in Figure [2.8]

20

2.3.1 Related Work

The possibility of combining segments from different videos into a continuous stream has a
huge potential. However, to the best of our knowledge, there exists no service that exploit this
feature as of now, at least in our target soccer and slide presentation application scenarios.

The main problem is that the commercial players can not seamlessly play segments from
different videos without visible pauses or other artefacts during segment transitions. There-
fore, the current popular video platforms like YouTube offer playlist only in a form of
playing multiple videos one after another with the player being restarted for every playlist
item.

Moreover, none of the big video providers (e.g., YouTube and Dailymotion) provides
fine grained video search. In other words, it is possible to search, for example, for the term
"HTTP segment streaming", but the search results only include complete videos even though
the search query would be answered only by a short part of the found video, e.g., a 1.5 hour
lecture on streaming technologies where HTTP segment streaming is only mentioned for 10
minutes somewhere in the middle of the video may be returned and the user needs to manually
find the interesting part.

The most featured system we could find in the slide presentation application scenario is
the FXPAL’s TalkMiner [57] and Altus vSearch [3] (Figure @) FXPAL’s TalkMiner returns
decks of slides matching a search query that are each synchronized with video. Altus vSearch
combines enterprise video search with PowerPoint synchronization and scrolling transcripts
into an accessible and searchable video archive. It also allows the user to generate custom
presentations for later reuse. However, both of these systems still miss the functionality to
present a customized video for a selected set of slides, i.e., without manually going through
each presentation.

Shape and Velocity — Shape
Considerations

:| || Transcript | What are the
more time on cpportunities that you're going to lose than you are | & implications?

" on opportunities that you're going to win. That dcen not sound

i like an optimal sales model to me. So the first thigs aes 2.0 —= Which funnel
[_appruach is start thinking about a pipeline or 4 ith would you
- rather have?

« this big mind shift — and believe me, it is a big 5 not
IIIﬂt:u:ut what iz in your funnel, t's about what's moving thrcugh -

b bim i p med alaien e § e w b vl a b - o e L

Figure 2.9: Altus vSearch [3]

Sales 2.0

In the area of video streaming applications for soccer (and sports in general), there are
multiple available streaming solutions. Two examples are VG live [27] and TV2 Sumo [13]].

21

These systems target the live real-time streaming over the Internet as an alternative to tradi-
tional television. They also provide limited search functionality where a user can search for
games and some main game events, like goals. These systems, however, also lack the ability
to compose customized, on-the-fly generated playlists of video.

2.3.2 VvESP

General Idea Our first system prototype [34, 53] is based on the FAST enterprise search
platform (ESP). It is called vESP (video ESP). The ESP itself is already a scalable, high-end
enterprise search engine commercially used world-wide. In the next version, labeled FS14,
improved contextual meta-data aggregation, more configurable relevancy models and support
for in-page document browsing will give the users better and more relevant search results. In
this context, our aim was to further enrich the search results with corresponding video data.

The example scenario was given by a large information collection from Microsoft giving
searchable information about the Windows 7 operating system. This data set consists of Pow-
erpoint presentations by both sales and technical personnel in Microsoft and corresponding
videos that were recorded from the original presentation. Currently, FS14 is able to return
a search result where the Powerpoint slides can be browsed within the search page, and al-
ternatively another link (url) to the corresponding video, i.e., the user must manually browse
each set of slides and seek in the video to find the interesting parts. The main idea of VESP is
to align the video with the Powerpoint and then allow the user to select the interesting slides
from possibly several presentations into a new, personalized slide deck (see the prototype
user interface| “|in Figure . The relevant parts of corresponding videos are subsequently
extracted and placed into a playlist as depicted in Figure [2.T1] and both the slides and the
aligned videos are played as one continuous presentation.

Architecture Figure[2.12]shows the architecture of our prototype. The inputs for the search
index are besides the Powerpoint presentations also the transcripts of the speeches with the
corresponding timing information. The videos of the presentations are stored in HTTP seg-
ment streaming format on a video server. When a users enters a query the search index of
FS14 is searched and returns the relevant presentations. The user can then browse the in-page
view of the returned slides and select those interesting to him/her. The selected slides are put
on a slide deck, which can then be played back together with the video corresponding to each
slide.

User experience evaluation The efficiency of the technical solution as well as the arbitrary
composition of personalized videos was shown in [S8]. For instance, a very short startup la-
tency, smooth/hiccup-free playout of on-the-fly composed videos and seamless video quality
adaption to available resources was demonstrated. Our focus in the scope of this thesis, be-
sides the video integration into FS-14, was to investigate if the proposed integration of search
and in-page document browsing within VESP adds value to the user experience. We therefore
performed a user evaluation where the users evaluated three different versions of the system.

2For a demo, please visit http://www.youtube.com/watch?v=£fB3j1UHL jzoE.

22

http://www.youtube.com/watch?v=fBj1UHljzoE

All Sites | People

windows 7 r) szi;iz;“

1-10 of 15 results Sort by: [Relevance [v] B &

@ windows 7 for Small and Medium Business
Windows 7 for Small and Medium Business ... and highl Business Customer Needs

d with .. Reliability, Compatibility T| 1 1
o slide playlist

11/26/2009 17
hared Documents/OptDesk_VL| 8 .
[=

eview | View In Browser

Agenda == || Business customs er Noeds = | winsous 7 Protessional

ram mm -

5 =Ty
v | o
n Windows 7, which enables users .. Enhance Securi ity
- o tustomize socurty .. manageatilty Featurés i Vandows
—=] .) Smith Date: 11/26/2009
— |n_page }/Shared Documents/Opt .. op_VLE_Windows 7 Manageability
document
] MGX Laun| A
Preview . windows 7 Depleyments win
yment with System Center Build V|d [r
= ot 9/11/2009 €o p aye
vt Documnl P T
©) withSC.
== Preview | View In Browser

@ windows 7 Deployment Technologies

. DefaultltemOpen=1 Windows 7 Deployment Technologies ... Deployment and Migration in

Figure 2.10: vESP user interface. The user can quickly browse through the slides of a presen-
tation in the in-page document preview. Slides can be selected and added to the slide playlist,
which can be afterwards played out.

‘ PPT-file: C, slide number: 8 PPT-file: A, slide number: 2 ‘ PPT-file: E, slide number: 12

Business Customer Naeds ~ | Whatis the Microsoft = || Deployment Options

,3 = e

Deployment Toolkit?

o || L el

Video-file: C, Video-file: A, Video-file: E,
segment numbers: 231 - 288 segment numbers: 120 - 173 segment numbers: 674 - 725

iy >y
(W (W) S¥B SPFTR Sl SWIFTR

Figure 2.11: vESP slide playlist contains slides from different presentations. Each slide has
an associated video consisting of multiple video segments. Even though the video segments
come from different videos, our player is able to play them all in a seamless manner.

The first system presented search results using a textual, Google-like interface where returned
documents had to be opened using an external program like PowerPoint. The second system
added the possibility to browse slide thumbnails in-page (FS-14), and the third system (VESP)
added support for presenting the corresponding video when the user clicked on a particular
slide. For the experiments, we used the described data set with technical presentations from
Microsoft. The users evaluated the features of the systems and after the subjective tests they

23

Powerpoint slides

ﬂ % .@ » Search y Query: “Windows 7”
//&y

Presentation transcript

N Returned presentations
mE]

Slide timing

plide ptart end
humber

L p:00 R:34

p p:35 b:43

B b:44 .12

Video
p
server v

On-the-fly generated
presentation with video

T 2o
a5y

Figure 2.12: vESP architecture

Video of presentation

answered a short questionnaire about their impression of the systems and how they valued
the functionality. The order in which assessors tested the different systems was changed to
see if this affected the results.

For each system, we asked what the assessor’s first impression of the system was and
what the value of such a system was (if they would like to use it). Furthermore, we used
a 7-point Likert scale with balanced keying to express user satisfaction. In total, we had
33 assessors, all familiar with and frequent users of search systems. Their job positions
divided the group in two, i.e., technical (20) and non-technical (13) people. The results are
presented in Figure [2.13] First, we did not observe any difference with respect to the order
they tested the system. Then, we evaluated if the results are statistically significant (unlikely
to have occurred by chance) using a non-parametric statistical Friedman tesﬁ to analyze the
user data. Using a p-value (probability of the outcome) of 1%, both tests were significant
regardless of group.

With respect to the user evaluations, we first grouped the whole assessor group together
(labeled “total”). Then, we observed that the overall impression of the search result page was
improved when adding in-page document preview and again slightly more when adding the
features in vESP. For the system value test, the trend is almost the same, but the willingness is
approximately the same to use the document preview system with and without video. In this
respect, we observed that the degree of excitement for the added video feature value heavily
depends on the background of the assessors and how they use search.

Non-technical people gave very positive feedback like “tremendous value” and “very im-
pressive”, and they would really like to use the added video feature. For this group, the devia-
tion between the different assessors was also quite small. All scores were between “liked” (5)
and “wow” (7). The technical people group, was slightly more reluctant. The scores varied
more (larger gap between max and min, but also a larger standard deviation), i.e., between

Bhttp://en.wikipedia.org/wiki/Friedman_test

24

http://en.wikipedia.org/wiki/Friedman_test

T T T T Total T T T T T T T Total T T T

Technical »---x--- Technical +---x---

Non-Technical & -x- - Non-Technical # - - -
Wow T Wow T
Strongly like |- . » T4 Stonglylike f 1 .

; x H x

X [. H Py
Like - T Tt Like - bl Tt
Neutral |- x : * . Neutral |- x "‘ P
Dislike | : Dislike | 1
Strongly dislike 1 Strongly dislike - E
Useless - Useless 1

A BC ABC A BC A BC ABC ABC

system system
(a) First impression of the search result page (b) System value, willingness to use the system

Figure 2.13: User evaluation results with max/avg/min scores (A=plain, B=document pre-
view, C=document preview with video)

“disliked” (3) to “wow” (7). The average is approximately as for the system with document
preview. Some liked it a lot. However, they also had comments like “watching a video may
take a too long time”, even though some added “for me as a developer”. A problem here
seemed to be that some of the assessors did not see the feature as one that could be used,
but one that must be used all the time. Nevertheless, in total, VESP was ranked higher than
the other systems and was the only system given the top score “wow” — even in the group
of technical people. 7 out of 33 in total gave VESP this highest score. The high ranking
of the playlist feature makes HTTP segment streaming interesting for deployment even in a
company network, i.e., possibly on a relatively small scale.

2.3.3 Davvi

General Idea In the second prototype implementation [56] of a system based on HTTP
segment streaming, we focused on the soccer domain. We call the system Davvi [56]. The
idea was to provide a flexible user friendly system that can deliver summaries of football
events (e.g., goals or fouls). The interface of our prototype is shown in Figure|2.14{'*| The user
first types the desired search query into the search box. Upon this the search/recommendation
subsystem is queried and the matching events are presented to the user in a horizontally
scrollable box. The user can drag the events he is interested in to the playlist box on the
right-hand side of the screen. Another possible way to generate a playlist is to enter the
query and select the desired playlist duration (length in minutes) with a slider at the top of
the screen and hit the go button. The playlist is then automatically populated with the search
engine results not longer in total than the specified duration. Because the event boundaries
might not necessarily be perfec each playlist event has a slider associated with it. The user

“For a demo please visithttp://www.youtube.com/watch?v=cPtvz2kbt 0w
ISA user can prefer a goal event A to start 10 seconds before the goal was actually scored whereas for the
goal event B he might prefer 15 seconds instead.

25

http://www.youtube.com/watch?v=cPtvZ2kbt0w

L

penalty

scrollable

cHitseA §0-1\tvroor\
5926

description of) by drag
the event or automatically

which can be . generated
expanded e 2

each clip
quality can be

controls o .
indicator adjusted

Figure 2.14: Soccer scenario user interface

can adjust the event’s start and end time with the slider. Figure [2.15] shows a playlist and
the information available for each entry. Furthermore, it shows how the playlist is actually
composed of segments coming from different video files and zooms in into one of these
segments to show that a segment always starts with an I-frame and represents a closed Group
of Pictures (GOP).

Architecture The system is composed of three subsystems as shown in Figure[2.16] A live
stream is captured by cameras installed at a soccer stadium. The stream is then encoded as
described in the Section[2.2.2] and the segments are uploaded to regular HTTP servers. This
is the streaming subsystem (number 2 in the figure). This and especially the user interface
(described above) to the whole system is the contribution of this thesis in the scope of the
soccer project. The two subsystems which were not developed as part of this thesis are
the metadata subsystem and the search/recommendation subsystem. We describe them here
briefly anyway to give the complete picture.

The metadata mining subsystem (number 3 in the figure) acquires metadata about the
game. For example it crawls textual live commentary that is available in the Internet and
performs video analysis on the captured stream. The output is a stream of events like tackle,
save by the goalkeeper, foul, yellow/red card etc. annotated with the time of the event. The
time annotated events are stored in a database (for detail on the search system please refer
to [56]).

The event database serves as the knowledge base for the search and recommendation sub-
system (number 1 in the figure). Given a textual query like "penalty”, the subsystem queries

26

playlist {"gameid":"20081122LivTot",
=] "awayteam":"Tottenham",
"hometeam":"Liverpool",
"location":"Anfield",
"date":"2008-11-22",
"homescore":"0",
"awayscore":"0",
"keyframe":5400,
"stoptime":5414,
”starttime":5385,
"comment":”Corner for Liverpool late in the game. Can they snatch the victory
with only minutes remaining? Pantsil loses his temper as the referee makes it
into a free-kick.”}

Chelsea
Manchester U

Liverpool = :
Tottenham

Liverpool
Fulham

Manchester C
Liverpool

Manchester C
Liverpool

Manchester C
Liverpool

gameid: 20081122LivTot gameid: 20081122LivTot gameid: 20081122LivTot gameid: 20081122LivTot
segment: 923 segment: 924 segment: 925 “es segment: 938
time: 5385 - 5386 time: 5387 - 5388 time: 5389 - 5390 time: 5413 - 5414

Figure 2.15: Playlist architecture

the event database and produces a list of matching events. A list item includes the name of
the game and the corresponding time when the event happened within the game. In the scope
of this thesis we developed a unified interface to the streaming and search/recommendation
subsystem as described above.

We also added an extra layer between the search/recommendation subsystem and the user
interface. This layer learns the new event boundaries based on how the users adjust the event
start and end slider. For this, we used the following exponential moving average algorithm:

startpe, = a x startyg + (1 — @) * startgiger, 0 < a < 1
endnew - 6 * endold + (1 - 6) * endslidera 0< 6 <1

The « and /3 parameters can be tuned based on the providers preferences. A value close
to 1 will make the system very dynamic, on the other hand a value close to O will make the
system very conservative. Additionally, users can be categorized into groups with similar
preferences and the event boundaries can be adjusted for each group independently based on
group specific parameters « and (3.

User Experience Evaluation To evaluate Davvi in the soccer domain, we used 20 asses-
sors (both male and female, age 22-45, with and without interest for soccer) in a controlled
experiment. The assessors were exposed to both Davvi and a baseline system, the popular

27

live commentary

—1 Il | speech-
I to-text

|
|
|
1 .
1 ~ analysis
-
| 9 o ‘
| 'g & \u
1| o
(7]
1 |E5
|8 tracker
| * |
.
| a—,)
1 |
I 9 -
I S
I ol BN
1 g Video segments
| =
|

Figure 2.16: Davvi soccer user interface. A live football game stream is distributed by system
2, which 1s an HTTP segment streaming solution. System 3 gathers metadata about the hap-
penings in the game from different information sources. System 2 uses this data to generate
recommendations (or playlists) for a given user query. The user is able to influence future
system 1 recommendations by supplying feedback on the current recommendations.

commercial portal VG Live operated by Schibsted. VG Live provides a real-time soccer
streaming service, but also an archive of previously streamed games, manually produced
highlights, a coarse-granularity search service, statistics and the like.

The results of the user study are presented in Figure and the experiments show no
major difference between order, gender, age, or scenario interest. Furthermore, the statistical
significance was analyzed using a standard Wilcoxon signed-rank test[]ﬂ The results are
statistically significant since the probabilities that the results happened by chance are 1.335E-
05 for system value and 2.670E-05 for first impression.

The overall trend shown in Figure is that the users immediately appreciated the
added functionality Davvi provides. Davvi on average scored 5.5, while VG Live scored
more neutral 4.2. Even better results were obtained when asked about longer term value of
this functionality. The average value of Davvi increased to 5.8, compared to an average of
4.15 for VG Live. The assessors typically liked the easy way of finding particular events and
the way one could combine results on-the-fly into a playlist. They commented that this saves
time compared to the benchmark system, and Davvi was the only system that was rated with
the highest score (“wow”). This is more than an indication that these users would use Davvi
for soccer event searching and summarizations on a more regular basis. Furthermore, the
Davvi streaming component demonstrates the flexibility of the HTTP segment streaming.

1Shttp://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

28

T L T _TrOTtaI T L T T 1T_0Tta| T
Interested »---x--- Interested ==--x--=
Not interested -+ Not interested .=
Male s : Male g
Female »-=--t Female »=a-=s
Wow [R Wow [T
Strongly like H v T Strongly like i v L
[i : ! HEE s
Like v 2 : H : Like (I H L
H 5 @ ; 4 H H
Neutral - : H ¥ Neutral - : T
Dislike | i Dislike | i
Strongly dislike |- 1 Strongly dislike |- E
Useless 1 Useless 1
AB AB AB AB AB AB AB AB AB AB
system system
(a) First impression of the search result page (b) System value, willingness to use the system

Figure 2.17: User evaluation results with max/avg/min scores (A=VGLive, B=Davvi)

2.4 Conclusions

This chapter discussed the reasons that are behind the success of HTTP segment streaming,
which is based on reliable transport protocols as opposed to the classical streaming, which is
based on unreliable transport protocols. Furthermore, it showed how to construct segments
for HTTP segment streaming. In particular, segments based on MPEG-2 transport stream [4]]
were discussed in detail, and a model for the packaging overhead was presented. The model
states that the overhead of the MPEG-2 container mainly depends on the bitrate at which
segments are encoded, which in turn defines the amount of padding that is needed for each
frame.

We furthermore described two working prototypes, one from a business education do-
main [54] and one from a sports domain [56]], that use HTTP segment streaming to deliver
customized video playlists. Note that the way how different videos are chosen to be in a
playlist is out of the scope of this thesis. The demonstration of playlist composition based on
segments from different videos is the main contribution. We had additionally shown for both
domains with user studies that the users like and value the playlist enhancements.

In summary, we believe that HTTP segment streaming has a lot of potential, both with
respect to scalable delivery of current/traditional video services, but also for composing new
services. In this respect, server-side scalability is a key issue, and in the next chapter we look
at a day in a real world streaming provider’s life where scalability is a major concern.

29

Chapter 3

Analysis of a Real-World HTTP Segment
Streaming Case

In the previous chapter, we showed the basic features and some of the potentials of adaptive
HTTP segment streaming solutions. An important question then is how such systems per-
form and scale to large numbers of users. In this chapter, we therefore present the analysis of
logging data provided by a popular Norwegian streaming provider Comoyo [16]. Comoyo is
serving both on-demand and live content. The on-demand service is available for customers
that want to rent a movie from an extensive movie database. The rented movie is accessible
for 24 hourd!] and within this time can be viewed unlimited number of times. The live service
customers can watch the live transmission of the Norwegian Premier League [59]. The foot-
bal games are mostly played on Sundays and some on Wednesdays, and hence these two
days are the busiest times for football streaming.

The network infrastructure for both live and on-demand services is the same (see Fig-
ure [3.1). The difference is only the source of the stream (it can be live or pre-recorded).
There are two technologies used to stream the on-demand movies. These are the classic pro-
gressive streaming based on Windows Media Video (wmv) and Microsoft’s Smooth Stream-
ing [22] based on HTTP segment streaming. Microsoft’s Smooth Streaming is also used for
live streaming.

In the following, we focus on the Smooth Streaming, which we already described in
Section [2.2.1] As Figure [3.1|shows, a number of IIS [45] servers with installed Live Smooth
Streaming extension [60] is deployed behind a load balancer that distributes the incoming
requests. The load balancer is connected directly to the Internet, i.e., ISP 1 in the figure.
However, content is not served exclusively to subscribers of ISP 1, but also to subscribers of
other ISP as illustrated in the figure. Besides the IIS servers, an analytics server is deployed
and connected to the Internet. This server collects various information from the video clients.
For example, the clients notify the analytics server when the video playout is started, stopped
or when the quality changes.

For our study, we were provided with two types of logs. We call these the server log
and the client log based on where the information is collected and logged. For the study

'Comoyo is starting with a subscription service like Netflix in 2013.
2US readers: read soccer

31

IIS server |

IIS server

Figure 3.1: Streaming network infrastructure

in this chapter, we picked one server log and the corresponding client log from the same
day. These two logs were found representative for the 3 days that we got data for. Both
logs are 24-hour logs collected on 23.05.2012 when 8 games were played. The server log
contains information about every segment request as received by the load balancer. The
most important information are the time of the request, the request URL, client’s
[Protocol [61] (IP) address, response size and streaming type, i.e., the streaming type can be
progressive streaming, on-demand Smooth Streaming or live Smooth Streaming. Table [3.1]
lists all the other important information that is logged about each request. We analyse live

Smooth Streaming only. We focus on live streaming because we want to study the scaling of
HTTP segment streaming and live streaming has the most viewers watching the same content
- it would be hard to study for example the caching of segments with on-demand streaming
since the client per content ratio is very small (Comoyo’s movie database consists of about
4000 movies).

The client log is a collection of events collected from the live Smooth Streaming clients
by the analytics server while the clients are streaming. Collected events are described in
Table 3.2l The information logged for every event is described in Table [3.3] Specifically,
every client event includes the information to which user in which session and at what time
the event happened. Note that within a session, a user can only stream one content, and
a session can not be shared between multiple users. A typical sequence of events in one
session is shown in Figure [3.2] In our analysis, we first analyse the logs separately and then
point out the differences and inconsistencies.

3.1 Related Work

The popularity of HTTP segment streaming led to many real world studies for example,
Miiller et al. [62] collected data using different commercial streaming solutions as well as

32

Client IP Client’s IP address

HTTP method HTTP method used (e.g., GET)
Request URL The URL of the request
Response size Response size in bytes

Useragent Client’s user agent

Cookie Cookie information in the request
HTTP status Status code of the response

Time taken Time taken by the server in ms

Streaming type

The type of streaming. Possible values are progressive streaming, on-
demand Smooth Streaming, live Smooth Streaming

Timestamp

Timestamp of the request in UNIX epoch format

Table 3.1: Information about every request in the server log file

play The start of the playout

playing Regularly sent when the playout is in progress

position Sent when the user seeks to a different position in the video

pause Sent when the user pauses the playout

bitrate Sent when the player switches to a different bitrate, i.e., resutling in a
different video quality

buffer Sent when an buffer underrun occurs on the client-side

stop Sent at the end of streaming

subtitles:on

Turn on subtitles

subtitles:off

Turn off subtitles

fullscreen:on

Switch to fullscreen

fullscreen:off

Quit fullscreen mode

Table 3.2: The reported client events

User device info.

This information includes the type of browser, OS, etc.

User id Identification of the user

Content id Identification of the content

Event id See Table

Event timestamp Time of the event in second resolution

Event data E.g. for bitrate event the bitrate the player switched to
Session id The session identification

Viewer Always SilverlightPlayer v. 1.6.1.1

Client IP Client’s IP address as seen by the analytics server
Geographic info. This information includes country, city etc.

ISP Client’s [ISP]

Table 3.3: Information about every client event

33

play fullscreen:on buffering stop

J | | !

T_ 1_], 1_ time
playing playing playing playing

Figure 3.2: An example of events sent within a session

the emerging MPEG-DASH standard over 3G while driving a car. They compared the average
bitrate, number of quality switches, the buffer level and the number of times the playout was
paused because of re-buffering. A similar study was performed by Riiser et al. [63]. In
their paper, they evaluated commercial players when on the move and streaming over 3G.
They additionally proposed a location aware algorithm that pre-buffers segments if a network
outage is expected on a certain part of a journey (based on previous historical records for that
location). Houdaille et al. [64] focused on a fair sharing of network resources when multiple
clients share the same home gateway. Akhshabi et al. [[65] thoroughly compared rate adaption
schemes of Smooth Streaming, Netflix, Adobe OSMF and their own AdapTech streaming
player using synthetic workloads. Cicco et al. [66] analysed the behavior of Akamai’s High
Deﬁnitio video distribution from the client perspective and in [67] they proposed server-
side rate control algorithm based on control feedback theory, however the evaluation was
focused on the client-side (max. 2 clients were used for evaluation).

In general, studies, that we are aware of, focus all on the client-side. In other words, they
measure the user experience in one form or an other from the client-side perspective. We
believe this is mainly because the commercial content providers are protective of their data,
and it is not easy to get any statistics or logs. However, the server-side performance is equally
important in order to scale the service to 1000s of users. In this respect, we have a collabora-
tion with a commercial streaming provider Comoyo [16], and we present the insights gained
from both server- and client-side log analysis in this chapter.

3.2 Server Log Analysis

Our analysis of the server log showed that there were 1328 unique client IP addresses in
the log over the tracked 24-hour period. From all the IP addresses, 56% was tagged as live
Smooth Streaming, 6% as on-demand Smooth Streaming and 44% as progressive streaming.
6% of all IP addresses was associated with more than one type of streaming, e.g., showed
up one time as live Smooth Streaming and another time as progressive streaming. In other
words, if each user had a unique IP address there would had been 748E] people watching the
live stream.

Sessions Since the IIS server is basically a "dumb" HTTP server, it does not keep state
about an ongoing session. It therefore does not log the user identification, content id or the

3Akamai’s High Definition is similar to segment streaming with the difference that it is the server that
switches quality based on the client’s feedback.
“This is a much smaller number compared to what is reported by the analytics server (see Section .

34

7 400

6 350

5 5 300

8 a4 g 250

2 N 3 200

@ € 150
* 2

100

1 50

0 0

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 800
client session
(a) Sessions per client IP (b) Session duration

Figure 3.3: Sessions statistics based on the server log

session id (as is done by the analytics server in the client log, see Table [3.3)). For this reason,
we assumed (only for the server log) that a client is uniquely identified by its IP address, i.e.,
we assumed there is one client per IP addresf] (this proved to be a reasonable assumption,
see Section[3.3).

The content streamed can be extracted from the URL that is included in the server log,
since the URL has a fixed format for Smooth Streaming as is described in Section [2.2.1] It
is therefore possible to find out the content id, bitrate and the playout time in seconds of the
segment within a video stream by parsing the URL. Unfortunately, it does not include the
session id. We therefore approximated the session id with the combination of the client IP
address (= client id) and the content id, e.g., if a client downloaded URLs with the content id
A and B we say that the client had two sessions. Figure shows that most of the clients
had only one session. This is not what we find in the client logs as we will see later. It is also
interesting to measure the live session duration. To do this, we calculated the time difference
between the first and last request within a session. The session duration distribution is shown
in Figure [3.3(b)] The average session duration is 42 minutes (related to the break after 45
minutes in the game). Note that 107 clients are associated with multiple sessions, that is why
there are more live sessions than live clients.

Byte transfers We noticed that some segments with the same playout time (included in
URL, see Section[2.2.1)) and within the same session were downloaded more than once, each
time in a different bitrate. We conjecture this can happen because of two different reasons.
First, multiple clients with different bandwidth limitations can be hiding behind the same
IP (which can not be distinguished based on the available information). Second, the bitrate
adaptation algorithm changes its decision and re-downloads the same segment in a different
bitrate. Either way, bytes are unnecessarily downloaded, i.e., if there were multiple clients
behind the same IP they could have downloaded the segment once and shared it via a cache; if
the adaptation algorithm downloaded multiple bitrates of a segment it could have just down-
loaded the highest bitrate. We calculated the number of wasted bytes as the total number
of bytes downloaded minus the bytes actually used. For this purpose, we assumed that only

SWe assume that, for example, there are no two clients sharing the same IP because they are behind the same
NAT.

35

6000 6000

5000 5000
4000 4000
m m

S 3000 S 3000
2000 1 2000
1000 1 1000
0 0

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

client client
(a) Downloaded bytes (b) Used bytes (Downloaded — W asted)

60

50

40

%

30

20
10

0

0 100 200 300 400 500 600 700
client

(c) Wasted bytes in percent of the total bytes
downloaded

Figure 3.4: Per client bytes statistics

the highest bitrate segment for the same playout time within the same session is used by
the client, i.e., if the same IP address downloads for the same playout time segments with 1
Mbit/s, 2 Mbit/s and 3 Mbit/s bitrate, only the 3 Mbit/s segment is played out and the other
two segments are discarded (wasted). Based on the server log, approximately 13 GB out of
the 467 GB downloaded in total were wasted this way. The 13 GB or 3% of the whole data
could have been possibly saved if a different adaptation strategy or an HTTP streaming aware
cache was used.

Figure shows that there are clients that waste more than 50% of their downloaded
bytes. Specifically, there is one client from Greece that contributes with 15.5% (2 GB) to the
total amount of wasted bytes, even though its share on the total amount of downloaded bytes
is only 0.85%. We think that this person might have recorded the stream in every quality, so
there is also room for improvement on detecting and preventing behaviour like this (if stated
in the service agreement).

Liveness Each log entry, i.e., request of segment ¢ of a particular game, includes the time-
stamp when the server served that particular download request, 7. It also includes the time-
stamp of the playout time of the video segment, 77. Since we do not know the relationship
between T and T7 (we just know that they increase with the same rate), we find the minimum
of TP — T¢ over all segments i for each game and assume that this is the minimal liveness
(time the client is behind the live stream) for that game. In other words, the video segment

36

0.9 0.9 E—
0.8 / 0.8
o7 | o //
o g‘g | w06 f
O 2 // O o5 |
03 / 0.4
0.2 / 0.3
0.1 0.2
0 0.1
1 10 100 1000 10000 10000C 1 10 100 1000 10000
Liveness of segments [s] Liveness of segments [s]
(a) Game 1 (b) Game 2
1 1
0.9 A 0.9 T
0.8 0.8
0.7
0.7
/ 06 /
w06 = /
fa} / o 05
O 05 o /
/ 0.4 /
0.4 0.3
0.3 0.2
0.2 0.1
0.1 0
1 10 100 1000 10000 1 10 100 1000 10000
Liveness of segments [s] Liveness of segments [s]
(c) Game 3 (d) Game 4
1 S
0.9
0.8
0.7
0.6
8 o5 |
8 o5l
0.3 /
0.2
0.1
0
1 10 100 1000 10000
Liveness of segments [s]
(e) Game 5

Figure 3.5: Liveness (absolute value) of segments based on the server log

with the minimal 7? —7T'¢ has liveness 0, i.e., is as live as possible. In this respect, we compute
the liveness of all other segments in each game. The results are plotted in Figure [3.5]for the
5 most popular games. We see that about 90% of all segments in each game was less than 10
seconds behind the live stream (the liveness measured relatively to the most live segment as
explained above). This means that 90% of the requests for a particular segment came within a
10 seconds period. This is interesting and calls for solutions to optimize concurrent segment
access at the server-side (we look into this challenge in Chapter|[5). There are also some video
segments that were sent with quite some delay. One plausible explanation is that these are
from people that joined the stream later and played it from the start, i.e., the catch-up window
that is 2-hours long.

37

Number of IP addresses 6567

Number of users 6365

Number of sessions 20401 (or 3.21 per user on average)

Number of sessions with at least one buffer underrun | 9495 (or 46% of total)

Number of sessions with at least one bitrate switch 20312 (or 99.5% of total)

Number of content ids 15

Number of countries 36

Number of cities 562

Number of ISPs 194

Number of users with multiple ISPs 113 (or 2% of all users)
Number of IPs with multiple users 31

Table 3.4: Statistics from the client log

3.3 Client Log Analysis

Every player that streams a live football game reports to the analytics server the events de-
scribed in Table [3.3] The type of events reported is summarized in Table[3.2] The client log
includes all reported events for a duration of 24-hours. The general statistics based on the
client log are summarized in Table [3.4]

Client Location There were 6567 unique client IP addresses in the client log. This is
significantly more than the corresponding 748 live streaming client addresses found in the
corresponding server log. Not surprisingly, most of the IP addresses was located in Norway
(Figure [3.6), but there were also IP addresses from almost all corners of the world (Fig-
ure [3.7). The international IP addresses correlated with the areas that are know for high
Norwegian population like Spain and England.

Furthermore, the assumption in the server log analysis was that an IP address matches
one user/client. Figure [3.8|shows that this assumption is quite reasonable. Only a very small
number of users used more than one IP address, and an IP address was mostly used by only
one user.

Furthermore, Figure [3.10| shows that most of the users used only one ISP (an IP address
is hosted by one ISP only). Moreover, we saw that the majority of users used either Canal
Digital Kabel TV AS (2560) or Telenor Norge AS (2454) as their ISPs. The other 1442 users
were served by other providers (192 different network providers in total). We could see that
the quality of the streaming in terms of the number of buffer underruns (periods the streaming
is paused because of slow download) depends on the ISP, see Figure [3.9] For example, the
majority of sessions at the Oslo Airport experienced buffer underruns (the airport provides a
WiFi network).

Proxy Caching We hypothesise that the significant difference in the number of IP addresses
in the server log and the client log is due to the use of cache proxies as known from traditional
HTTP networks. The proxies reply to client requests before they get to the load balancer
(Figure [3.1) and are logged. We expect the caches to be somehow related to ISPs, i.e., we

38

| Map | Satelite |

taifi P Y

. : ‘s £ y$ ei ~
e
€ '["”«f\l'“ Map dala ©2013 GIS Thoovatsia, DATA*, Gaagle - Tenms of Use

Figure 3.6: Geographical client distribution in Norway (the highest density of clients is in the
red areas).

Figure 3.7: Geographical client distribution in the world (the highest density of clients is in
the red areas).

would expect a cache on the ISP level to reply to all but the first request of the same segment,
e.g., the open source proxy Squid [68] only sends the first request to the origin server all
consecutive requests are served from the partially downloaded data in the cache.

Our hypothesis is supported by the IP to ISP ratio. The server log IP to ISP ratio for live
streaming is 0.08 whereas the client log ratio is 0.03. In other words, we find 11% of the
client log IP addresses in the server log, but find over 30% of ISPs from the client log in the
server log (see Table [3.5] for exact numbers). We therefore hypothesise that HTTP caches
located between the client and the server reply to a large number of client requests. This

39

25 20

, 18
. 20 8 16
o 5 14
5 15 2 12
o} 5 10
E 10 5 8
S 2 6
z g
5 3 a4
— 2
0 0
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
User ID IP address
(a) Number of IP addresses per user (b) Number of users per IP address
Figure 3.8: User to IP address mapping
1
g
s 08
g5
23
32 04
=
%
0 20 40 60 80 100120140160180200
ISP
Figure 3.9: The percentage of sessions with at least one buffer underrun by ISP
10000 5
(2]
2 1000 | o 4
2 2
5 100 2
i g,
= :
5 10 Z]
1 0 _
0 20 40 60 80 100120140160180200 0 1000 2000 3000 4000 5000 6000 7000
ISP User ID
(a) Number of user IDs per ISP (b) Number of ISPs per user ID
Figure 3.10: ISP to user statistics
Type Server log Match in client log
live Smooth Streaming 748 1Ps 723 IPs (or 97%) hosted by 58 ISPs
on-demand Smooth Streaming 74 1Ps 5 IPs (or 7%) hosted by 3 ISPs
progressive streaming 581 IPs 390 IPs (or 67%) hosted by 32 ISPs

Table 3.5: IP to ISP statistics

means that, as expected, one of the large benefits of HTTP segment streaming is the reuse of
existing HTTP infrastructure.

40

8 8000
7 o 7000
[%] c
QE) 6 © 6000
]
S 5] & 5000
5 4 1 S 4000
() —
_g 3 1 2 3000
5 2 : E 2000
zZ >
1 1 Z 1000
0 0
0 1000 2000 3000 4000 5000 6000 7000 1 2 3 4 5 6 7 8
User ID Game
(a) Number of games streamed by a user (b) Number of sessions per game (8 games were

scheduled for that Sunday)

Figure 3.11: Content statistics

Content and Sessions On the content side, we observe in Figure that only about 2000
users streamed more than one content, i.e., several football games. The most popular content
was game 1 with over 7500 sessions followed by 4 games with about 2000 to about 4000
sessions.

We also estimated the session durations based on the client log. This is not a straightfor-
ward task since only a small fraction of the sessions is started with a play event and terminated
with a stop event (we suspect the user closes the browser window without first clicking on
the stop button in the player). We therefore calculated the session duration as the time dif-
ference between the first and last playing eventﬂ Session durations calculated this way are,
in general, shorter than they really were because they do not include the time before the first
playing event and the time after the last playing event. Note also that the session duration
represents the time the player was playing. Particularly, it does not represent the time the
player window was open, but rather the time the player was playing a stream, e.g., the time
when the stream was paused is excluded. Figure [3.12(b)| shows that the calculated session
durations ranged from 100 seconds to more than 3 hours. Please note that 6826 sessions did
not contain a playing event and therefore are not represented in this graph (e.g., they were too
short for a playing event to be sent).

Figure shows that in the majority of sessions the bitrate was switched at least 3
times. However, Figure [3.12(d)| shows that even with bitrate (quality) switching, the clients
were not able to prevent buffer underruns. The logs report that more than a half of the sessions
experienced at least one buffer underrun.

It is clear, from Figure that the pressure on a streaming system like this is the
biggest when a event begins. In this case all the games started at 5 PM UTC, and that is the
time most of the clients joined. Figure [3.12(f) shows the number of active sessions over time.

Byte transfers We also estimated the number of downloaded bytes based on the client log.
We were very conservative and our estimations were very likely smaller than what the reality
was. We split every session into periods bordered by playing events and/or bitrate events so
that there was no pause, stop, position, play or buffer (buffer underrun) event inside a period.

®The playing event is sent regularly when the live stream is playing.

41

90 100000

» 80
-5 70 10000
ﬁ €0 = 1000
o 50 5
[=) =1
o 40 g 100 }
o 30 s}
£
S 20 10 +
< 10]
1
0 1000 2000 3000 4000 5000 6000 7000 0 2000 4000 6000 8000 100001200014000
User ID Session
(a) Number of sessions per user (b) Session duration based on the playing event
1 R — 1
S
/
_. 08 _. 08
[%2) [%2)
o o
S / 2 /
2 06 2 06
(5] (5]
2] / 2]
E 04 ¥ 04
[T [T
S / S
0.2 0.2
0 0
0 20 40 60 80 100 0 5 10 15 20
Number of bitrate switches per session Number of buffer underruns per session
(c) Number of bitrate switches in a session (d) Number of buffer underruns in a session
300 6000
£
£ 250 » 5000 A
m c
S A
S 200 @ 4000
A7) Q
7 g [
2 150 %S 3000
3 2 ||
5 100 2 2000
£ : |
5 50 Z 1000
P4 \
0 0 o
O N X ©W O N < © 0 O N O O N < ©W 00 O N < © 00 O N O
o O O O o - < N N O O O O O O - - <4 N N O

- = - — -
Time [UTC] Time [UTC]

(e) Number of sessions that were started per (f) Number of sessions at each point in time
minute (all games started at 17:00 UTC) (minute resolution)

Figure 3.12: Session statistics based on the client log

This ensures that the player was really playing during a period of time defined like this (ses-
sion examples with bitrate switching are shown in Figure [3.13)). A bitrate (the video content
was available in 0.5, 1, 2 and 4 Mbit/s, and the audio in 96 KBit/s) was additionally assigned
to each period based on the client bitrate event reports. The period duration multiplied by the
corresponding bitrate gave us a good estimate of the bytes downloaded by the client in that
period since Constant BitRate (CBR) encoding is used for the live streaming. The sum of
bytes received in each period of a session gave us the total number of bytes downloaded in a
session.

It is interesting that the final sum of bytes received by all sessions is many times higher
than the number of bytes served by the server. The server log reports 551 GB in total whereas

42

L

0 20 40 60 80 100120140160 180200220 0110 10125 10140 10155 10170 10185 10200
time [min] time [s]

[

bitrate [Mbit/s]
O P N W H~» O

bitrate [Mbit/s]
O RPN W > O

[y

(a) Dynamic bandwidth session. (b) Zoomed in to minutes 168 to 170.

Figure 3.13: Example of bitrate adaptation throughout a session based on client reports

the estimate based on the client log is about 4.5 times higher. Even if only the smallest
available bitrate is assigned to every period, the total amount of data received by the clients is
2.5 times higher than the value from the server log. This is another evidence for the presence
of HTTP caches that respond to a significant number of requests.

3.4 Conclusions

In this chapter, we analysed the logs of adaptive HTTP segment streaming provided by Co-
moyo [16], a Norwegian streaming provider. We analysed two types of logs; one from the
origin server and one from the analytics server to which the clients report. The analysed
data included all streaming sessions ranging from very static to very dynamic sessions, see
example in Figure [3.13]

We observed that about 90% of the requests for the same segment in live streaming is sent
within a period of 3 to 10 seconds depending on the content (analysed football game). This
gives a great potential for caching. This also means that an HTTP proxy cache needs to cache
a segment only a very short time and that most of the segment requests come during a very
short time period.

We also deduced from the segments downloaded multiple times that at least 3% of the
bytes downloaded could have been saved if more HTTP caches or a different bitrate adapta-
tion strategy had been used. Moreover, based on the number of bytes downloaded and the IP
address distribution in the server and the client log, we found evidence that segments must
be delivered from other sources than from the examined servers. This suggests the presence
of HTTP caching proxies in the Internet that had served the requests before they got to the
load balancer. This means that the origin server is offloaded and that the idea of reusing the
(unmodified) HTTP infrastructure really works in real scenarios.

Furthermore, since a significant portion of the data is distributed by HTTP caches that
are most likely not aware of what they are serving, we conclude that it is important to look
at how HTTP streaming unaware server performance can be increased by client-side or very
light server-side modifications. In other words, it is important to look at the performance of
HTTP servers that actually deal with HTTP segment streaming traffic.

The increase of the performance of such a server is, of course, only interesting if there is
some kind of bottleneck. We can eliminate the disk as being the bottleneck for live streaming
as the segments are small and clients are interested only in the most recent segments of the

43

live stream. As such, the disk I/O poses no problem with current hardware. After the disk
bottleneck elimination, we are left with the problem of a network bottleneck.

There are two types of bottlenecks - a client-side and a server-side bottleneck. The dif-
ference is that the client-side bottleneck can not be dealt with with a faster server, i.e., in this
case the server has the capacity to serve higher bitrate segments, but the client link is not fast
enough to receive them in time. The obvious solution is to throw money at the problem and
upgrade the client link. In this thesis we use a different approach. We exploit the fact that
more and more devices have multiple interfaces (Figure available and we propose
an algorithm in Chapter [to use these effectively to increase the bitrate of the downloaded
segments.

If the bottleneck is on the server-side, the server capacity needs to be upgraded to deal
with the bottleneck. This can be either done by using multiple servers (Figure [3.14(b)) or by
increasing the capacity of the server already deployed (Figure [3.14(c)). We look at how to
increase the capacity of a server without upgrading its physical link (by using different client
request strategy, changing the TCP congestion control etc.) in Chapter [3

:

_| replace/

data data
¢

(a) Use of multiple links to deal (b) Use of multiple servers to deal (c) Use of a more powerful server
with a client bottleneck. with a server bottleneck. to deal with a server bottleneck.

Figure 3.14: Types of throughput optimizations for different types of bottlenecks.

44

Chapter 4

Improving the HTTP Segment Streaming
with Multilink

A lot of research assumes that it is often the case that it is the client link that does not have
enough bandwidth to stream the best possible bitrate available, especially in wireless en-
vironments. We build on the observation that streaming video in wireless environments is
often a subject to frequent periods of rebuffering and is characterized by low video quality.
Furthermore, we observe that increasingly more wireless devices have more than one built-
in network interface, e.g., WLAN and 3G. If client’s interfaces are connected to independent
networks, the simultaneous use of multiple interfaces can achieve a total transfer bit rate close
to the sum of all the individual interfaces’ throughput. In our work [69] we investigated the
use of such interfaces for HTTP segment streaminﬂ

Using parallel connections is a commonly used technique for improving the performance
of content distribution systems as well as multimedia streaming. Parallel access schemes, like
those described in [[70, 71]], shift the load automatically from the congested servers to the less
utilized ones. However, these parallel schemes lack the notion of deadlines when the video
segments must be available on the client for a quasi-live playout. Additionally, the quality
adaptation of HTTP segment streaming is not taken into account by these schemas. In this
chapter, we investigate how to use multiple interfaces to download video segments faster and
in higher quality.

4.1 Parallel Scheduling Algorithm

The core of every parallel download scheme is the parallel scheduling algorithm. The parallel
scheduling algorithm decides which portion of data is sent over each link or in our case
interface. As part of this thesis, we designed and evaluated a parallel scheduling algorithm
that is suitable for live HTTP segment streaming over multiple interfaces. In our approach we
first divide each segment into smaller virtual pieces, so called partial segments, see Figured.1]
Partial segments are the smallest data units our algorithm works with. We use 100 Kbytes
partial segments, which is considered to be the optimal size [/2]]. The small size of the partial

I'This chapter is based on the paper [69].

45

{1 Downloaded data !

Partial segments (100KB) {[] Not downloaded
vy B
QA T T TTTTT] [TTTTTT]TT]
g I I I A A [T T T T T T T1
Q-" W72 T, [T 1 [1
N
4
100, I, I,
KB
| R el
0 Segment s, 2 2+A Segment s, 4+A
(currently played back) (currently downloading)

Figure 4.1: Segment division into partial segments for delivery over multiple interfaces

Algorithm 1 Request Scheduler [simplified]
1: quality_level = “low”

2: request(initial partial segment over each interface)

3: request(“pipelined” partial segment over each interface)
4: while (more data available from server) do

5: data = receive()

6: I =interface that received data

7. estimate aggregated throughput

8: if (data == complete partial segment) then

9: if (data == complete segment) then
10: queue_for_playback(segment)
11: adjust quality_level to throughput
12: end if

13: request(next partial segment, I, quality_level);
14: end if

15: end while

segments makes fine-grained scheduling decisions possible. Our scheduler, Algorithm
schedules the download of each partial segment over one of the available interfaceﬂ

Initially (lines 2 and 3), two partial segments are requested on each available interface.
One of these requests is immediately answered by the server the other is pipelined. The
pipelining of requests ensures that the server always has data to sent, i.e., the link never
becomes idle due to the server waiting for the requests from the client to arrive. After a
partial segment is completely downloaded another partial segment request is pipelined on
the same interface (line 13). If the downloaded partial segment completes the download of
a segment the aggregated throughput of the available interfaces is estimated (line 10), video
quality of the next segment is chosen accordinglyﬂ (line 11) and the first partial segment of
the next segment is requested (line 13).

The partial segments are virtual units mapped to physical units, the segments, on the server’s disk. The
client uses an HTTP/1.1 range request with the partial segment’s beginning and end offset within a segment to
get it from the server.

3Before a new segment is requested, the scheduler fetches the file size of the different quality levels using
the HTTP HEAD method. The quality level of the requested segment is decided based on the number of bytes
the client can receive within a segment duration (calculated using the average throughput).

46

4.2 HTTP Segment Streaming Metrics

Before diving into the results section, we introduce performance metrics that we used to
measure the performance of HTTP segment streaming throughout the thesis. Many of these
are already known from other types of streaming. However, even the familiar metrics have
sometimes many names. For example hiccups, buffer underruns, deadline misses, stalls are
all used to describe the same metric, i.e., the event when the player does not have data to play
and the user is presented with a ’frozen” screen or another replacement for the actual content.
In this respect, we define in this section the metrics that are used throughout this thesis with
their respective names.

Client Buffer Size The client buffer size is the number of segments that the video player can
store locally.

Start Up Delay The start up delay is the time that elapses between the click on the play but-
ton in a player until the first frame is shown. The duration of the start up delay directly
depends on the available bandwidth and round trip time to the server. It also depends
on the pre-buffering that is required before the playout is started (see Figure 4.2). So,
for example, the start up delay is smaller if only 2 segments are pre-buffered instead of
4 segments of the same size, yet the exact time depends on the bandwidth and round
trip time to the server. This metric is sometimes referred to as the start-up latency.

c‘,":ve6 \‘66'6
Ry Q(e 0\)\,(’
oy QoY
2 i3 14 >
Y Y C) time

Client buffer Client buffer Client buffer

-3 Segment downloaded

—> Segment "consumed" by playout

Figure 4.2: The time that elapses between the click on the "play" button and the time when
the first frame appears on the screen is called start up delay. It is the time ¢4 — ¢1. It depends
on the speed of the download (the difference between ¢;,, and ;) and the number of segments
that must be pre-buffered.

Deadline Miss When the client starts presenting a video to the user, it implicitly sets the
presentation times of all consecutive frames in the video. These are the deadlines when
the video frames must be available for playout, i.e., the frames must be downloaded by
then (we neglect the decoding time in this thesis). In HTTP segment streaming, frames
do not arrive at the client singly, but come in groups - segments. Particularly, if the first
frame of a segment misses its deadline (is late for playout) all frames in the segment
miss their deadline. We therefore also speak about the segment missing its deadline.

47

The exception is when the player skipﬂ the initial frames of a segment and so is able
to catch up and present frames later in the segment without missing their deadline.

Liveness The liveness measures the delay between the time an event happens in reality and
the time it is presented to the user (on a screen). For example, a goal is scored at
19:00:00, but the user sees the goal first at 19:00:10 on its screen at home. The liveness
is in this case -10 seconds. In this thesis, we focus mainly on the aspects of network
delivery of segments. We therefore neglect the encoding and decoding time of the
segment as well as the time it takes to upload the segment to a server.

The minimal liveness is determined by the size of the client’s buffer. If the client
buffer size is for example 2 segments, the client must be at least 2 segments behind
the live stream in order to have a chance to fill its buffer to maximal capacity (other-
wise the playout consumes the buffered segments before the maximal buffer capacity
is reached). The liveness can change during playout. This happens when the player
does not skip segments in case of a deadline miss. An alternative name for liveness is
application layer end-to-end delay, which is the absolute value of liveness.

t1 t2 t3

A x) playout

i
BT 1T T] [[T]

Client buffer Client buffer Client buffer

-3 Segment downloaded

——> Segment "consumed" by playout

Figure 4.3: Every segment duration the playout starts playing a segment from the client
buffer. If there are no segments in the buffer the playout is paused (time ¢2) until a segment is
downloaded (time ¢3) and the playout continues again. The time ¢3 — ¢2 is the deadline miss
and the liveness is reduced by the deadline miss.

4.3 Experimental Results

We evaluated the suitability of the proposed scheduler (Algorithm [I)) for live HTTP segment
streaming. We tested our algorithm in an emulated, fully controlled environment using Linux
2.6.31 with netem/Hierarchical Token Bucket [73] (HTB)|as well as in real environment using
a client equipped with WLAN IEEE 802.11b and HSDPA [25] interfaces. For all our tests we
used the same 1,5 hour video stream segmented into 3127 2-second segments. Each segment

4The player often has to decode the initial frames anyway because frames later in the segment are dependent
on the them.

48

100 -

Super XXX
High xomom
Medium m—
o _ Low i
1ol Z‘ IO
—_ o) 2
&) - X, B Q
X 75 2 5 2
= S 3 S
8 5 4 .
5 o kS S k3
2 50 S x 2 %
= 5 & %
._g 1 2 o S
< g o %
;w & & & %
= bl < &
& Br 5 g 5 g
s s S k)
:> 3 :
s 3 %
1 A
L S I

50:0 50:50 66:0 66:34 80:0 80:20 100:0
Bandwidth ratio (in Mbit/s). :0 means that a single link was used

Figure 4.4: Segment video quality distribution in case of emulated bandwidth heterogeneity

was available in 4 different qualities, namely low (avg. 0.5 Mbit/s), medium (avg. 1 Mbit/s),
high (avg. 2 Mbit/s) and super (avg. 3 Mbit/s).

4.3.1 Bandwidth Heterogeneity

When a client has multiple interfaces it is likely that these are technologically different and
have different bandwidth. We therefore investigated the impact of bandwidth heterogene-
ity on the performance of our scheduler. In all our experiments we combined 2 links with
possibly different bandwidths but the same aggregated bandwidth of 3 Mbit/s.

Figure [4.4] shows the effect of bandwidth aggregation on the distribution of segments’
video quality. For instance, the right most columns (100:0) show the segment quality distri-
bution when a single 3 Mbit/s link is used. This is the best case achievable since all data is
downloaded continuously over one interface. The less expected result is the bad performance
of 80:20 setup (two links with 2.4 Mbit/s and 0.6 Mbit/s respectively) compared to the 80:0
setup (one link with 2.4 Mbit/s). This is caused by the last segment problem [72] that occurs
when a client with a small client segment buffer tries to stay too close to the live strearrﬂ 1e.,
since no new segments are available on the server, the faster interface is idle once for every
segment while it waits for the slow interface to download the last partial segment. This can
be mitigated by using a larger buffer as we have shown in [69]]. The last segment problem
demonstrates itself also in the increased deadline misses as shown in Figure 4.5}

All in all, we have found that bandwidth heterogeneity plays a significant role when ag-
gregating the bandwidth of two interfaces. Moreover, if the bandwidth difference is huge the
client is better off using exclusively the faster link.

>In all experiments, the client had a buffer of 2 segments, i.e., it lagged 4 seconds behind the live stream

49

08

06 .

seconds

04

*
*
: i
¥
ol -

8- o 1 -
(1.50:0) (1.98:0) (2.40:0) (3.00:0) (1.50:1.50) (1.98:1.02) (2.40:0.60)
Bandwidth ratio

0.2 |

el

Figure 4.5: Deadline misses in case of emulated bandwidth heterogeneity

4.3.2 Latency Heterogeneity

As with the bandwidth, the chances that a client has multiple interfaces with the same latency
are low. We therefore investigated how the latency heterogeneity influences the aggregated
interface performance with respect to HTTP segment streaming. We emulated a client with
two interfaces. One interface had a RTT of 10 ms while the other interface’s RTT was varied
between 10 ms and 100 ms. The bandwidth of both emulated links was 1.5 Mbit/s.

Figure 4.6 shows that the latency heterogeneity effect on the segment quality distribution
is minimal. However, the RTT heterogeneity affects the number and severity of deadline
misses, as seen in Figure The buffer size limits the frequency of segment requests,
and because a complete segment is not requested before the previous is finished (typical for
Smooth Streaming [22], Apple HTTP Live Streaming [21]), it takes one RTT before the
first bytes arrive. However, the observed lateness is not significant compared to the complete
segment length. The average lateness for all bandwidth ratios is close to 0 s and the maximum
observed lateness is less than 300 ms. The lateness can be fixed, as in the case of bandwidth
heterogeneity, by increasing the client’s buffer size. For example, increasing the buffer size
from 2 to 3 segments (4-6 seconds) eliminated all deadline misses.

4.3.3 Dynamic Bandwidth Links

In the previous paragraphs the link bandwidth was set at the beginning of the experiment. A
constant bandwidth like this is good for figuring out causes and effects. However a constant
bandwidth link occurs only seldom in best effort networks like the Internet. We therefore in-
vestigated the performance of our scheduling algorithm in networks with dynamic bandwidth
links.

Figure [4.8| shows the average throughput (over 40 runs) achieved per segment using two
links separately and together. For this set of experiments the bandwidth changes were em-
ulated so that the sum of the bandwidths was always 3 Mbit/s, but at a random interval of
t seconds, t € [2,10], the bandwidth bw Mbit/s, bw € [0.5,2.5], was changed. The RTT

50

100 -

Super XXX

High xozom

Medium m—

% & -) %) Low :=imimis
g s o o g o
X X %, X X,
~ < el (%4 > <& e
S 75| & < o % S
& g 3 s S S s
X, X X X X,
-E <& K| 1% > < (%3
— 8 < s kS S
=} S 2 4 2 g
2 s g S i g &
3 50 g o S S g i
i) 3 R S S g S
Z s o g S
= $ e g S
N X X X,
= < 2 L b
g 05 S S : g i
4) g < s g 5
Q % o x %
2 e 3 8 2
S < S S g S
i X & & ' w0 &)
Oj 3 J 3 2 5
oL ¥ T £ % K

10:0 10:10 10:20 10:40 10:60 10:80 10:100
RTT of each link (in ms). :0 means that a single link was used

Figure 4.6: Segment video quality distribution in case of emulated latency heterogeneity

03
0.25 | . -
=
3
=
]
3 02t
N
g "
E o015}
0]
g *
=
S
L o1f
&n
>
< n *
0.05 |
* n [A v *
n
oL ke HEH HH o Lal - o

10:0 10:10 10:20 10:40 10:60 10:80 10:100
RTT of each link (in ms). :0 means that a single link was used

Figure 4.7: Deadline misses in case of emulated latency heterogeneity

51

3000

2500

2000

1500 [5y

1000

Average achieved throughput (kbit/s)

500
Link 1 ——
Link 2 -------

. Multilink e

0 1 1 1
0 20 40 60 80 100

Segment number

Figure 4.8: Average per segment throughput with emulated dynamic network bandwidth

of link 1 and 2 was randomly distributed between 0 ms and 20 ms, and 20 ms and 80 ms,
respectively. When both links were used at the same time, the throughput exceeded the aver-
age bitrate-requirement for "High" quality almost for every segment. When single links were
used, the achieved throughput per segment stayed between "Medium" and "High". Moreover,
with single links, 18% of the segments had "Low", 35% "Medium", 20% "High" and 27%
"Super" quality. In combination, 95% of the segments were in "Super" quality.

The real-world link aggregation results are shown in Figure 4.9 Here, we used a device
equipped with a WLAN and a HSDPA interface. The average throughput experienced was
4.7 Mbit/s (max. 5 Mbit/s) and 2 Mbit/s (max. 2.5 Mbit/s) respectively. The average RTT
was 20 ms (max. 30 ms) and 100 ms (max. 220 ms) respectively. We again averaged the
throughput over 40 runs. The scheduler improved the performance and thereby the video
quality significantly. With WLAN, the faster of the interface, 45% of the segments were in
"Super" quality, compared to 91% when both links were used. The worst deadline misses
observed over both links were only 0.3 sﬂ

From the experiments described in this section we concluded that the proposed parallel
scheduling algorithm achieves close to perfect throughput aggregation for high degree of la-
tency heterogeneity. For links with heterogeneous bandwidths, there exists a complex trade-
off between their disparity, the achievable video liveness, and the efficiency of throughput
aggregation. For stable bandwidth interfaces the scheduler delivers almost perfect aggrega-
tion, but for heterogeneous interfaces like the combination of WLAN and HSDPA increased
client-side buffering is required to obtain the full potential and avoid possible deadline misses.

4.4 Conclusions

We introduced and analyzed a pull-based scheduler for streaming real-time video over an
aggregate of heterogeneous network interfaces. Using the file segmentation approach, which

®Because of the large interface heterogeneity client-side buffers of 6 segments were used.

52

3000

1000

=

500

Average achieved throughput (kbit/s)

WLAN ——
HSDPA -------
| Multiink --------

0 1 1 1
0 20 40 60 80 100

Segment number

Figure 4.9: Average per segment throughput with real-world wireless links

is also used in popular commercial systems [21} [74, 22]], the proposed scheduler adapts the
video quality according to the combined throughput of all the available interfaces at the client.
Experiments conducted in a controlled emulation testbed showed that the scheduler achieves
close to perfect throughput aggregation for high degrees of latency heterogeneity. For links
with heterogeneous bandwidths, there exists a complex tradeoff between their bandwidth dis-
parity, the achievable video liveness, and the efficiency of throughput aggregation. For two
stable interfaces of equal bandwidth, the scheduler achieves close to perfect bandwidth ag-
gregation, while maintaining a quasi-live video stream, i.e., never more than 4 seconds late
(after a segment is available at the web server, thus excluding encoding and server upload-
ing delay). If the bandwidth heterogeneity is higher, which is the case for a combination of
WLAN and HSDPA, about 10 seconds of delay have to be accepted to obtain the full potential
of aggregated throughput and best possible video quality.

53

Chapter 5

Enhancing the Server Performance

Upgrading the client link does not help if the server link, shared by many clients, becomes
the bottleneck. The straight forward solution to this problem is to replace the server link with
a link with a higher capacity. However, this is not always possible. In this chapter, we look
at how to make the streaming more efficient so that the same server can serve more clients
possibly with higher quality segments over the same link.

In the beginning of this chapter, we first introduce TCP concepts important to HTTP
segment streaming. This is needed in order to understand the challenges TCP is having when
faced with segmented streaming and in this chapter we need this level of detail. We later look
at what kind of traffic pattern HTTP segment streaming exhibits. We point out the differences
to a similar, but not the same traffic pattern, the web traffic pattern.

In the last part of this chapter, we look at and evaluate the possible solutions that could
lead to a better server performance.

5.1 Transmission Control Protocol

Today, is the protocol of choice for delivering content in the Internet. With the HTTP [[19]
application layer protocol it delivers both the static content and the dynamically generated
content. The combination of TCP and HTTP is also used for HTTP segment streaming.
Since TCP governs the transmission of video segments we shall describe its properties in this
section.

Vinton G. Cerf and Robert E. Kahn described the workings of TCP (or the Transmission
Control Program as TCP was originally called) in their paper Protocol for Packet Network
Intercommunication [[15] in 1974. In their work they described the fundamental features of
TCP like for instance the segmentation of a byte stream produced by an application and the
sliding window concept for the flow control. They also described the addressing of TCP seg-
ments as well as the fragmentation of TCP segments when they transit to a network with a
smaller [Maximum Transmission Unit (MTU)| The original proposal was later split into the
networking layer part and the transport layer part [[76]. RFC 791 [61] specifies the network-

ing part - the |[[P| protocol. RFC 793 [18] specifies the transport layer part, i.e., it includes
the original TCP [75] with additional improvements. Additionally, the User Datagram Proto-
col [[17] was specified on the transport layer for applications that use only the addressing and

55

routing features of |IPand do not need the features of TCP.
Even though there are many improvements and innovations to the original TCP from
1974, the main concepts still remain. Nowadays, TCP has the following five features:

Connection-orientation TCP peers establish a virtual connection (circuit) by performing
a three-way handshake during the beginning of the connection. Note that data is exchanged
first after the handshake is completed, i.e., the virtual connection is established. This is not
enforced by the TCP standard, but is done in practice for security reasons. In the future, the
TCP Fast Open feature [[77] is going to enable the client and the server to exchange data while
performing the three-way handshake, increasing the performance of short TCP connections.

Stream-orientation TCP, on the transport layer, reads the data supplied to it by the ap-
plication layer as a stream of bytes. It internally frames the continuous stream into packets
(segments) that the network layer can handle (in case of the Internet it is the packet based [[P]
protocol).

Reliable When the sender application layer gives data to TCP, TCP guarantees that the
data is going to be transmitted and then given to the receiver application in the same order
and uncorrupted. If the data or parts of the data can not be transferred due to, for example,
a network failure, TCP takes care that the receiving application gets as much continuous in
order data as possible.

Flow Control The TCP on the receiving side uses a limited buffer to buffer the received
data. The size of the buffer is stored in the receive window RWND. The application layer must
pick up this data once in a while to create room for new data to be received. If the application
layer does not pick up the data, the receiver would run out of buffer and would have to start
throwing away received data. To avoid this, TCP implements a mechanism, the flow control,
to keep the sender updated about the amount of free space in RWND. This way the sender can
stop sending data if the receiver’s buffer is full.

Congestion Control The sender TCP keeps an estimate of the connection’s bandwidth. It
then regulates its sending rate to match the estimated bandwidth. This is called the congestion
control and is the subject of the next section.

5.1.1 Congestion Control

The early TCP’s reaction to loss was a too aggressive retransmission, which led to congestion
collapse in 1986 [78]. The term congestion collapse was coined by John Nagle in [79] and
describes an overloaded network state in which senders react to data loss by sending even
more data (retransmissions) and consequently overload the network even more. This was
soon realized by the networking community and TCP was updated by congestion control
techniques like the slow-start, exponential retransmit timer backoff, round-trip-time variance
estimation, dynamic window sizing during congestion, fast retransmit [78]. The goal of all

56

80 T

: Tahoe
70 Reno
sstresh s
7 60 | \ BDP
g 50
£
o 40 |
L,
- 30t
c
3 20
10
0 e

0O 2 4 6 8 10 12 14 16 18
Round Trip Times

Figure 5.1: TCP congestion control in action

these techniques is a good estimation of connection’s bandwidth and RTT, which in turn
allows the sender to adjust its sending rate so as not to cause congestion in the network.
Sender’s estimation of connection’s bandwidth-delay product (BDP) is tracked by the
congestion window variable (CWND). [CWND] represents the number of bytes the connec-
tion’s link can store, i.e., that can be in transit from the sender to the receiver (also called in
flight bytes). This is the sender’s estimation of the number of bytes that it can send without

receiving an acknowledgement (note that the receiver can further restrict this number with
RWND, i.e., flow control).

Congestion control, in its basic form, is composed of two phases. The additive increase
(Al) phase and the multiplicative decrease (MD) phase. In the additive increase phase the
is increased by one segment every RTT. Eventually, the window increases above the
network bandwidth limit and a packet is dropped. When this happens, the CWND)is reduced
to half of its value. It has been experimentally shown that the AIMD approach leads to fair
sharing of a bottleneck link.

Because the is increased very slowly during the AI phase, an algorithm called
slow-start is used to open the window initially. An example is provided in Figure[5.1] When
the connection starts, size is doubled every RTT (each ACK increases by
one). This is the slow start phase. The slow start phase lasts until SSTHRESH/RWND limit is
reached or the first packet is dropped (round trip time 6). In case of a drop, the SSTHRESH is
set to half of the SSTHRESH is the threshold for switching from the slow-start phase
to the AT phasd[l]

What happens after the first slow-start phase is over depends on the congestion control

algorithm used. In case of Tahoe, the is set to its initial value [TCP Initial CWND [1]]
(IW)| and the slow start phase takes over again. In case of Reno, the [CWND)] is set to

To achieve 1 Gbps with 1460 byte segments without slow-start would take about 4600 RTTs, that is 7.5
minutes for a RTT of 100 ms. However, with slow-start the full speed is reached in about 1.2 seconds.

57

SSTHRESH and the Al phase is entered. There are many more TCP congestion control
algorithms besides Tahoe and Reno [80, 181} 182, 183, 184} [85]].

5.1.2 TCP’s State after an Idle Period

In this section we discuss what happens to the when the connection is idle. There are
three alternatives in use:

1. The default behavior of TCP after an idle period is specified in RFC 2581 [1l]. This
RFC states in section 4.1: “Therefore, a TCP SHOULD set to no more than
[TCP Restart CWND [1I]] (RW)| before beginning transmission if the TCP has not sent
data in an interval exceeding the retransmission timeout.”. This is the behaviour of
Windows Vista, Net/FreeBSD, which do restart from Initial Window (TW)).

2. Linux uses by default behaviour specified in an experimenta]ﬂ RFC 2861 [87]. This
RFC states that the connection should reduce its by half for every RTT the
connection is idle and SSTHRESH should be set to the maximum of its current value
and half-way between the previous and new The RFC also specifies that this
should happen also in case in which the connection speed is application limited, i.e.,
when the application does not send enough data to utilize the full The motiva-
tion for decaying the CWND)]instead of reducing it to is to improve the speed right
after the connection becomes active again. Figure [5.2] shows for a 1 Gbit/s link with
around 1 ms delay by how much the[CWND]|decreases based on the amount of time the
connection was idle.

3. The third possibility is to keep the CWND] as it was before the connection went idle,
i.e., ignore the fact that it was not validated during the idle period. This is the default
behaviour of Mac OS and Solaris.

5.2 Traffic Patterns

In this section we look at the traffic patterns that are induced by different streaming solutions.
We compare traffic patterns as seen from the point of view of a single client as well as seen
from the view of the server that serves possibly thousands of clients.

5.2.1 Related Work

On-off sources using TCP for delivering data have been studied in the literature a couple
of times. Analytical models were provided for example for simplified TCP Tahoe [88, 89],
Vegas [90] and Reno [91]. However, most of these models assume exponentially (randomly)
distributed on and off period durations whereas in the HTTP segment streaming scenario the

2Experimental RFCs are for specifications that may be interesting, but for which it is unclear if there will be
much interest in implementing them, or whether they will work once deployed [86].

58

700

100ms
150ms
200ms
250ms
300ms
400ms
700ms

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

seconds

600

500

400 +

cwnd

300 +

200 +

100

Figure 5.2: Example of Linux [CWND)| after an idle period. Downloading five 10 MB seg-
ments over the same TCP connection with variable delay between the downloads.

on and off periods are distributed differently. Different is also that an HTTP segment stream-
ing on period is first over when all bytes of a segment have been downloaded, not when a
certain time has elapsed. Furthermore, others [92] assume perfect bandwidth sharing be-
tween TCP connections. This is of course a valid assumption if the on periods are adequately
long to establish bandwidth sharing fairness, but in our scenario the stream segments are too
small to make this a valid assumption (e.g., for Cubic’s behaviour see [82]).

Adaptive HTTP segment streaming has been a hot topic over the past few years, but
most of the research has focused on the observation and the improvement of a single con-
nection [93, 162} 163]. Esteban et al. [94] looked at the interaction between TCP and adaptive
streaming. They categorized TCP segment loss into three categories: initial burst losses,
ACK clocking losses and trailing ACK losses. They identified the trailing ACKs losses as the
worst ones, because they increase the duration of the segment download by one RTT and can
potentially lead to a [Retransmission Time-Out [95] (RTO)| In their work, they investigated
how application layer pacing could help reduce the amount of trailing ACK losses. How-
ever, their conclusion was that their efforts do not improve the situation. Akhshabi et al. [96]]

studied the on-off behavior of adaptive streaming connections. They showed for example the
relationship between clients’ on period overlapping and system stability (number of bitrate
switches), as well as, the available bandwidth and the system stability. They also showed
how the system stability depends on the number of clients given the total bandwidth stays the
same.

The aforementioned works study single HTTP segment streaming connections or a small
number of HTTP segment streaming connections (12 in case of [96]]), i.e., they do not look
at a big set of HTTP segment streaming connections and their interactions. However, in a
big multi-user scenarios, the server will become the bottleneck [97], and we therefore need
to look at how multiple connections behave when sharing a server.

59

5.2.2 Continuous Download

Continuous download is the most basic form of "streaming" videos over TCP. The video
is made available as a file on a server and the client downloads it. To accommodate for
bandwidth fluctuations, the client waits until a safe amount of data is downloaded before
starting the playout in parallel to the ongoing download (Figure[5.3)). Figure[5.4]shows that the
download link is utilized at all times. Note that the goodput (the actual video data) comprises
the majority of the transfered data, but there is also the TCP/IP overhead - TCP congestion
control and protocol headers.

Video file "Bundesliga2012.mp4"

data still on server

pla'yout position download position

Figure 5.3: Continuous download: The situation on the client.

link capacity’-\

ITCP overhead

(application perceived) download speed\)

bandwidth [bit/s]

time [centuries]

Figure 5.4: An example of continuous download traffic pattern (when sampled over a reason-
able time).

The only limiting factors are the client buffer (how much data the client can pre-buffer),
the network bandwidth, RTT and loss. Since TCP was optimized for bulk download of data,
all the advantages like fair sharing (see Figure[5.5) and optimized utilization of a link do also
apply for continuous download.

The disadvantages are mainly application (streaming) related. For example, the client
might decide to stop the playout before the video is over. In this case, all bytes that were pre-
fetched, and not watched yet, are wasted. Another disadvantage is that this type of streaming
does not provide means of adapting to bandwidth changes when the playout has already
started, i.e., the bitrate can be in many cases chosen before the stream is started, but can
not be adapted (without playout interruption) to current bandwidth. If the bandwidth later
increases, the client is not going to use it to get the video in higher quality. If the bandwidth

60

i

7
I

oughput [Mbit's]

i

throughput [Mbit/s]

thre

1 L L L L L L 0 L L L L L L
00:00 00:10 00:20 00:30 00:40 00:50 01:00 01: 00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:
time time

Figure 5.5: Two examples of bandwidth sharing between 2 greedy TCP connections on a
10Mbit/s link.

decreases, the client is going to eventually run out of the pre-fetched data and unpleasant
"buffering" periods occur.

5.2.3 HTTP Segment Streaming’s On-Off Traffic Pattern

HTTP segment streaming differs from continuous download by segmenting a video file into
multiple segments, which are encoded in different qualities and made available for a client
to download. It is up to the client how it combines the segments effectively, allowing the
client to switch quality (bitrate) on a segment bases. The basic download pattern is shown
in Figure [5.6] (for simplicity only segments of one quality are shown). The segmented file is
available on a server in the form of multiple segments. The client requests the segments one
after another. The link between the server and the client is fully utilized with the exception of
short periods of time that the request for the next segment needs to get to the server. However,
even this gap can be completely eliminated with request pipeliningﬂ

The traffic pattern illustrated in Figure[5.6]is very similar to continuous download pattern.
However, in practice, the client can buffer only a limited number of segments. As a conse-
quence, when the buffer gets full, the client must wait with the request of the next segment
until a segment is played out and free space in the client buffer becomes available. In this way
the continuous download pattern degenerates to an on-off pattern, i.e., the client is switching
between downloading and waiting for free space to become available in its buffer.

This behaviour is similar to live segment streaming in where the client is additionally
limited by the fact that the segments become available on the server only in regular inter-
vals. A live HTTP segment streaming client typically downloads each segment as it becomes
available. Since there are only a finite number of bitrates to choose from, the chosen bitrate
will most likely not match with the available bandwidth perfectly. To be sure the segment is

3The client needs to decide which segment to request before it sends the next request. If pipelining is used
this decision needs to be taken before the previous segment is completely downloaded.

61

Segmented video file

[1f2]a]sfs]o]

server bandwidth [Mbit/s]

time [s]

Figure 5.6: Example of VoD traffic pattern with unlimited buffer space.
(without bandwidth adaptation and request pipelining)

Segmented video live feed

[1f2]:]+ I

Live source producing a new
segment every segment duration

tirine [s]

server bandwidth [Mbit/s]

{ one segment | one segment i one segment |
duration duration duration

Figure 5.7: Example of live/VoD with limited buffer space traffic pattern.
(without adaptation)

going to be received in time, the client chooses the highest bitrate segment that it estimates
is downloadable given the estimated available bandwidth. Because the bitrate of the chosen
segment is smaller than the estimated bandwidth, it is very likely that the segment is going
to be downloaded before the next segment becomes available on the server. This way an idle
period arises between the downloads of two consecutive segments. Figure |5.7|illustrates this
behavior. Figure 2.6/ shows a trace from a real HTTP segment streaming session. From
the linearity of the segment request time line we see that the client requested the segments
in regular intervals (the horizontal part in the beginning of the streaming session is the time
when the client was pre-buffering segments). This real world trace shows that even a
traffic pattern degenerates to an on-off pattern. Additionally, Figure [2.6] shows the varying
bitrate of the downloaded video segments - the bandwidth adaptation algorithm in action.
The on-off pattern generated by HTTP segment streaming has one more dimension. This
dimension emerges when multiple streams share the same link, which is not an unrealistic
scenario. Consider, for example, the live stream from the Olympic games in London in 2012.
In situations like these, thousands of users access the stream and follow the happenings in

62

real time. The additional dimension emerges from observing the clients that share the same
(bottleneck) link over time. It is reasonable to expect that each client wants to see the media
presentation as close to real time as possible (you want see the goal before it is revealed to
you by the cheering from the neighbor’s apartment). Therefore, all clients have an incentive
to download the video segments as soon as they become available on a server. Figure [5.§]
extends the previous illustration with the additional dimension.

Segmented video live feed
oaan - §

Live source producing a new
segment every segment duration

server bandwidth [Mbit/s]

i

2
time [s]

one segment : one segment i one segment i
duration duration duration

Figure 5.8: Example of live traffic traffic pattern with 2 clients.
(without adaptation)

The major challenge from the client’s point of view is to achieve the best throughput the
network can provide given the on-off behaviour. This is challenging because TCP has been
optimized for uninterrupted transfers and not for short, periodic on-off traffic [94]]. The idle
periods and rather small segments (a 2-second segment of a video with a bitrate of 1.5 Mbps
is about 370 KB big) do not fit the optimization goals of TCP. Nevertheless, there are possi-
bilities to improve the server performance by modifying TCP configuration and application
layer behaviour and this is what we look at in this chapter.

5.3 HTTP Segment Streaming Performance

The data analysis performed in Chapter [3] has shown that not all the data received by the
clients is served by the origin server. However, usually it is only the origin server that is
under the control of the streaming provider. Especially the segments that are cached are
delivered from servers that are not under the control of the streaming provider. As such,
these servers can only be optimized to a rather limited extent for HTTP segment streaming
(even though the live stream can make up a significant part of their downstream traffic). It is
actually one of the major strengths of HTTP segment streaming that stateless "of the shelf"
HTTP server (infrastructure) can be used. In other words, extensive server modifications are
not desirable and sometimes even not possible.

On the other hand, changes are possible on the client-side. One possibility is to write

63

players from scratch or use a player that allows instrumentation like the player from
Microsoft, which is based on the Silverlight™ development platform. Either way, it is usually
the client-side that allows changes that can improve the HTTP streaming performance. In the
next sections we look at different ways to modify the client and the server to improve the
system performance. All the changes might have an effect on the performance of a single
server in terms the number of concurrent clients it can support. These results were published
in [98, and we cite many times directly from these papers.

5.4 Simulation Suite

In the scope of this thesis, we developed a simulation suite to run and visualize different
HTTP segment streaming scenarios. A screen shot of the main GUI interface to the suite
is shown in Figure [5.9] As shown, one can choose different values for parameters like the
number of clients, client arrival distribution, quality selection strategy, number of segments,
name of the stream etc. After the selection is completed a simulation is started by clicking on
the "Submit Query" button.

Here, we chose simulation over emulation, because of the speed, reproducibility and be-
cause a network consisting of hundreds of computers is practically not feasible in our research
lab. We wrote a parametrizable ns-2 [100] script to simulate and record the performance of
periodic on-off video streams in a multi-user server scenario. Our simulation setup is based
on the observation that network bottlenecks are moving from the access network closer to
the server [97]. The ns-2 script is parametrized with the parameters selected in the GUI and
executed. The results of the simulation are stored in an SQL database for analysis.

@) @ spacestation.dyndns.org/results/ i c |

3032 1100 1 0.1 3 1 2 poisson 4 0 vegas 600 football 1375 False
3031 900 1 0.1 3 1 2 poisson 4 0 vegas 600 football 1375 False
3030 1000 1 0.1 3 1 2 poisson 4 0 vegas 600 football 1375 False
3029 210 1 0.1 6 1 2 poisson 4 0 cubic 800 football 5000 False
3028 200 1 0.1 6 1 2 poisson 4 0 cubic 800 football 5000 False
3027 175 1 0.1 6 1 2 poisson 4 0 cubic 800 football 5000 False
3026 150 1 0.1 6 1 2 poisson 4 0 cubic 800 football 5000 False
3025 140 1 0.1 6 1 2 poisson 4 0 cubic 800 football 5000 False
3024 130 1 0.1 6 1 2 poisson 4 0 cubic 800 football 5000 False
3023 120 1 0.1 6 1 2 poisson 4 0 cubic 800 football 5000 False

o
=
-

Cur. bw. based

uniform +

100 100 100 100
0.03 0.03 0.03 0.03
2000 2000 2000 2000

DropTail #

[oniorm]
[orortsi <]

vegas

@
5

dummy

I

Figure 5.9: Simulation suite GUI

64

The analysis screen is shown in Figure[5.10] The user can quickly select between different
types of graphs that help visualize different aspects of the simulation. In Figure [5.10] for
example, we see the number of active clients (clients that are in the on period) over time.
Altogether there were 200 clients in this particular simulation and we see that they were all
active in periodic intervals.

@) @ spacestation.dyndns.org,/results/3028/experiment.html

Active clients

Reset clients

Select all clients

coeee

Clear graphs

||
a
a
a
V]
||
a
V]
a
a
||
a
L]
(]
(]
(]
(]
°
o
(]
(]
(]
o
°

Figure 5.10: Analysis tools GUI

5.5 Simulation Setup

=
2
100 Mbit/ST\<%

LR

Client machines

2
R1 RZI/
&

HTTP Server

Figure 5.11: Simulation setup

The simulation suite setup that was used in the following sections (unless stated other-
wise) to measure the various performance metrics is shown in Figure[5.11] The links between
the client machines and the R2 router are provisioned for more than the highest media bitrate

65

’ Quality \ Bitrate ‘

0 250 kbit/s
1 500 kbit/s
2 750 kbit/s
3 1000 kbit/s
4 1500 kbit/s
5 3000 kbit/s

Table 5.1: Stream bitrates

(Table[5.1)). The link between the HTTP server and the router R1 is overprovisioned and can
support the highest media bitrate for all clients. The link between R1 and R2 is the simulated
bottleneck link at the server-side with a capacity of 100 Mbit/s (we have also tested with a
1 Gbps bottleneck link, but the trends are the same, i.e., only the total number of clients is
scaled up).

The delays between the clients and the server are normally distributed with an average
of ;1 = 55ms and a variation of o = 5ms. Distributing the delays prevents phase effects
in the simulation, and it also seems to be a reasonable assumption for an ADSL access net-
work [101]]. The router queue is limited to 1375 packets, which corresponds to the rule of
thumb sizing of bandwidth delay product. Furthermore, we modeled client arrivals as a Pois-

number of clients 4 o]| clients join the

segment duration’
stream within the first segment duration. This models the case when people are waiting in

front of a “Your stream starts in . .." screen for the start of the game or TV show so they do

son process with an average inter-arrival time A\ =

not miss the beginning.

On the TCP part, we chose to evaluate the Linux version of the algorithms implemented
in ns-2, because, according to [[102], over a half of all web servers in the Internet is running
the Linux operating system.

Finally, to have a realistic set of data, we used the soccer stream used in [103], encoded
with variable bitrate (Table[5.1)) as in a real HTTP segment streaming scenario.

5.6 Varying Parameters without Quality Adaptation

To understand the workings of HTTP segment streaming, we first investigated a live stream-
ing scenario in which the stream was available only in one quality, namely 500 Kbit/s, that
is quality 1 from Table In this way we can observe the system’s performance without
introducing too much complexity that quality adaptiveness brings with it. For our simulation
we used a 600 segments long video stream. Each segment was exactly 2 seconds long, which
means that each simulated run took about 20 minutes.

In the previous chapter we described how even HTTP segment streaming solutions with
client-side buffering degrade from continuous download (this is the time when the buffer is
being filled) to an on-off pattern when the buffer is full. To create the on-off traffic pattern
in our simulation right away, we set the client buffer to only one segment. In other words,

66

we remove the pre-buffering period and the client starts playing right after the first segment
is received. Note that the client was not allowed to skip video content in order to keep up
with the life stream, i.e., even if a segment is received after its deadline (its scheduled playout
time) it is played out completely and the deadline of all other segments is moved into the
future. Having only one segment buffer, the clients are forced to enter the download and wait
cycle right in the beginning of the streaming. As mentioned above, there are two cases when
this happens in reality. The first case is when all clients start the streaming from a point in
time as close to the live stream as possible. The second case occurs when all clients catch up
with the live stream and have to wait for the next segment to become available. We present
the results for different parameter variations for the setup described above in the following
sections.

5.6.1 Varying TCP Congestion Control

A typical development of during the on-off cycle is shown in Figure This is the
second case from Section [5.1.2] i.e., RFC 2581 [1]. opens during segment transfer
(on period) and collapses to [RW] when the client is waiting for the next segment. In other
words, in the majority of all caseﬂ the on (download) period starts with a TCP slow start
phase.

cwnd [TCP segments]

900 205 210 215 220
time [s]

Figure 5.12: Observed TCP congestion window in ns-2

In this section we show how different TCP congestion control algorithms cope with the
on-off traffic pattern. The default TCP congestion control algorithm on Linux is Cubic [82].
However, Linux is an open source operating system that attracts researchers and developers
of TCP congestion control algorithms and as such many other different algorithms are imple-
mented in Linux as well. It is just a matter of changing the
/proc/sys/net/ipv4d/tcp_congestion_control
variable in the virtual /proc filesystem. Because of the ease we believe that this is not

4CWND)|collapses to only if the off period is longer than RTO [[1].

67

a difficult modification to the machine running the HTTP server and so is in line with the
philosophy of not changing and reusing the already deployed infrastructure.

Figure [5.13] shows the achieved average liveness, average startup time and number of
packet drops across all clients for the tested congestion control algorithms given the setup in
Section The liveness, as described in Section measures the time that the client lags
behind the live stream. In the figures here it is specifically the liveness of the client at the
end of the stream (after 600 segments). For example, a liveness of -4 seconds means that the
client played the last segment 4 seconds after it had been made available on the server.

The server bandwidth of 100 Mbit/s should provide enough bandwidth for smooth playout
for around 200 clients. However, the liveness graph shows that this is not achievable and as
the client number grows, the liveness decreases. Because the start up times, Figure [5.13(b)]
do not increase, the decrease of liveness can only be contributed by deadline misses, or in
other words by unpleasant playout stalls. The reason for the playout stalls is an inefficient
use of bandwidth.

The reason for the inefficiency is found in the overflowing of the R1 router queue. In
Figure we see that the queue runs over approximately every segment duration at the
time just after a segment became available (the end of the off period). When the queue is full,
the new incoming data packets are discardecﬂ Figure and must be retransmitted.

The loss-based, more aggressive variants of TCP congestion control algorithms like Cu-
bic and Bic generate the highest losses and have the worst liveness. An interesting alternative
is Vegas. Vegas is a delay based congestion control algorithm that backs off before the bottle-
neck queue overruns. We see that Vegas performs better than Cubic also in terms of liveness
and can cope with an increased number of clients better. A sample development of the R1
router queue for 150 clients is shown in Figure It is clear from Figure that
Vegas induces only very few packet losses (due to queue overruns) even though the download
periods are short (around 2 seconds). However, we also want to mention that Vegas has been
shown [104] to perform badly when competing with loss-based congestion controls such as
Cubic or Reno. Therefore, unless the majority of streams running through the bottleneck is
HTTP segment streams from machines configures for using Vegas (for example a bottleneck
very close to an HTTP streaming server), one must consider carefully the deployment of
Vegas.

5.7 Increased the Segment Duration

Recent congestion control algorithms were optimized for bulk transfer. However, the seg-
mented approach of HTTP streaming creates a short interval on-off traffic rather than bulk
traffic (commercial systems use standard segment lengths from 2 seconds [22] to 10 sec-
onds [21]) and longer on-times than, e.g., HTTP/1.1. To see the effects of the segment length,
we also changed this parameter.

SEvery experiment was run 10 times with different arrival time distribution. The plots show the average
value and the error bars the minimum and maximum value.
®R1 is running a drop-tail queue.

68

Time [s]

Time [s]
k

— 0.5 | —
'16 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1
90 100 110 120 130 140 150 160 170 180 90 100 110 120 130 140 150 160 170 180
Number of clients Number of clients
(a) Liveness (b) Startup
1e+07 T T T T T T T T
1e+06 | E
8 1e+05 Wt
o 4
5)
E 1e+04 /‘-
[&] L
S]
o 4
© 1e+03 E
[4
Qo
€
2 1e+02 | E
cubic —»—
jovor |] o
compound
highspeed —+—
1e+00 —o—4 —! V\Ilgestvpvgce)d

90 100 110 120 130 140 150 160 170 180
Number of clients

(c) Number of dropped packets

Figure 5.13: Performance of (ns-2 version) Linux TCP congestion control algorithms

Figure plots the results using different segment lengths. For example, Figure
shows that the startup times are slightly higher for 10-second segments because they take
a longer time to download than 2-second segments. Please note that 10-second segments
are 5 times longer in duration than 2-second segments, but, due to increased compression
efficiency, not necessarily 5 times larger in size. Quality switching between segments requires
(see Section that every segment starts with an intra encoded frame, but the rest of
the frames in a segment can be lightweight P- and/or B-frames that occupy a much smaller
fraction of the segment than an I-frame. Nevertheless, longer duration segments are larger
than shorter ones and therefore require more time to download, prolonging the download (on)
periods. This gives TCP more time to reach its operating state.

Our experiments show that the liveness is lower than in case of 2-second segments for
multiple reasons. Firstly, we distributed the client arrivals also here across one segment
duration, i.e., 10 seconds. Therefore a client arrives on average later and so decreases the
liveness because of its increased startup time. However, note that the clients still synchronize

69

1400

1400 T 1 N m T I F
1200 I‘ H 1200
i 5
‘1000 +1000
[i] 7]
£ £
o o
g 800 g 800
o o
E 600 E 600
=
S e}
[l o
f = [=
Q@ 400 Q@ 400 #
200+ 200 4
0 |l I 0 Lot | | | |
0 5 10 15 20 0 5 .10 15 20
time [s] time [s]
(a) Cubic (b) Vegas

Figure 5.14: R1 router queue: 150 clients

when they request the second segment. Therefore, in this respect, this scenario is similar to
the 2-second segment scenario, but instead of synchronizing their requests at the third second,
clients synchronize at the eleventh second of the simulation.

We can observe that client liveness changes from about -8 seconds to -24 seconds for
175 clients. The drop of liveness with the number of clients is very much comparable to the
2-second case. This indicates that longer download periods do not help TCP to cope with an
increasing number of concurrent clients.

B
[V

cwnd [TCP segments]
= =] N w w &
Q (%] o w (=] (%] (=]

w

90 15 20 25 30 35 40 45 50
time [s]

Figure 5.15: Sample TCP congestion window for 10-second segments

To prove that TCP reaches its envisioned operating state we plotted a trace of a conges-
tion window using 10-second segments in Figure [5.15] Compared to the 2-second segment
scenario in Figure [5.12] we see that the window size oscillates with a lower frequency, i.e.,
relative to the segment size. We can also see the characteristic curve of Cubic when it probes
for available bandwidth. There is no time to do that in the 2-second segment scenario.

70

2 Isec. I —><I—
10 sec. —o—

T T T
2sec. —x—

Time [s]

Time [s]
\

20 L | 0.5 g
-25 C 1 1 1 1 1 1 1 1] O 1 1 1 1 1 1 1 1
90 100 110 120 130 140 150 160 170 180 90 100 110 120 130 140 150 160 170 180
Number of clients Number of clients
(a) Liveness (b) Startup
1e+07 T T T T T 2| T T
Sec. —>—
1400 T T I T T T T T 10 sec.
M 16406 F E
1200} 1 _ -
—_ 2 1e+05 W‘
2 o
51000 - E
£ 2 te+04 E
g 800 8
o
o “—
) © 1e+03 | E
E 600 8
5 [
o =} L -
E 200l = 1e+02
ool | 1e+01 F e
M 1e+00 1 1 1 1 1 1 1 1
% 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
time [s] Number of clients
(c) RI router queue - 150 clients (d) Number of dropped packets

Figure 5.16: Performance of longer segments: 10-second segments (Cubic)

The probing for bandwidth leads to queue overruns as shown in Figure These
overruns trigger almost constant packet loss independent of the number of clients (Fig-
ure [5.16(d)). Based on this observation we would rather lean towards using 2-second seg-
ments because they give us better liveness and give the adaptation algorithm 5 times more
chances to adapt stream’s quality to the available bandwidth.

5.8 Requests Distributed over Time

In a live streaming scenario, the clients usually download the new segment as soon as it
becomes available. Thus, the server will experience large flash crowd effects with a huge
competition for the server resources. However, such segment request synchronization leads
to reduced performance in terms of quality and liveness. The negative effects can be seen in
the default configuration of the server where the router queue fills up (Figure [5.14(a)), and

71

éubicI e clubicl—xl—
dist. req. —e— dist. req. —e—

@, @,
[0 - [0 1 -
£ S :f
[[
g 0.5 |- g
_16 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1
90 100 110 120 130 140 150 160 170 180 90 100 110 120 130 140 150 160 170 180
Number of clients Number of clients
(a) Liveness (b) Startup
1e+07 T T T T Ib. T T
cubic —>—
1400 dist. req. —e—
1e+06 e
1200 |
— 2 1e+05 W-
£ o
E1000 g
x 1e+04 4
& 800 al &
(7] Q
o -
Q © 1e+03 | E
E 00 8
£ :
5 a0ol 2 le+02 | E
200 1e+01 F e
1e+00 & 1 1 1 1 1 1
% 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
time [s] Number of clients
(c) RI router queue: 150 clients (d) Number of dropped packets

Figure 5.17: Performance of regular vs. distributed requests (Cubic)

packets are dropped (Figure [5.13(c)), i.e., the performance degrades.

To avoid this synchronization, we propose to distribute the requests over one segment
duration, i.e., the time period between two consecutive segments’ availability times. For
example, after arrival, a client can request a segment every segment duration. This algorithm
requires the clients to check the media presentation description only in the beginning of the
streaming to find out which segment is the most recent. After that they can assume that a
new segment is going to be produced every segment duration. This way the requests stay
distributed over time also beyond the first segment.

In our experiment, the requests are exponentially distributed over the entire segment du-
ration. The results show that distributed requests increase the liveness if the client number is
small (Figure[5.17(a)). If the number of clients is high, clients that get more than one segment
duration behind the stream implicitly build up the possibility for buffering, i.e., they break
the download-and-wait cycle, go over to continuous download and so reduce the effect of dis-
tributed requests until they catch up with the live stream again. We also see that distributed

72

requests lead to less pressure on the router queue (Figure [5.17(c)), which can possibly leave
more space for other traffic, and that the number of packet losses is greatly reduced (Fig-
ure[5.17(d)). In section[5.12.8] we explain that the reason for this is that distributing requests
over time leads to less concurrent downloads (competing connections) at every point in time,
which is the reason for less packet losses.

5.9 Limited Congestion Window

In Video-On-Demand scenarios, clients can download the whole stream as fast as their down-
load bandwidth and their playout buffers permit. On the other hand, in live streaming scenar-
ios, clients are additionally limited by segment availability. In the download-and-wait cycle,
a fast download of a segment prolongs only the wait period. Hence, there is no need for the
client to download a segment as quickly as possible as long as it is downloaded in time for
playout.

TCP’s bandwidth sharing is fair for long running data transfers. However, for short trans-
fers, the sharing is in many cases very unfair. To reduce this unfairness, we experiment with
a limited TCP congestion window. The limited congestion window can lead to longer down-
load times, resulting in a behavior similar to TCP pacing [1035]. To avoid playout stalls due to
congestion window limitation, we chose the congestion window so that a segment can easily
be downloaded in one segment duration. We set the congestion window to 20 TCP segments,
which equals a bandwidth 3 times bigger than the average bitrate of the stream (to account
for bitrate variance). The startup time is low as in the other scenarios tested above, yet the
average liveness is improved (Figure [5.18(a)). Furthermore, from Figure[5.18(b), we observe
a significantly reduced number of dropped packets, which also indicates a lighter load on the
bottleneck router queue, resulting in a more efficient resource utilization. This is because our
TCP congestion window limitation prevents a single connection to grab more bandwidth than
a bit more than what it really needs.

5.10 Varying Parameters with Quality Adaptation

In the previous section, we showed how different changes of default settings have a beneficial
impact on HTTP segment streaming without adaptation. In this section, we look at the impact
of these changes on the adaptive HTTP segment streaming. We chose a classic adaptation
strategy that is very similar to the strategy used by Adobe’s HTTP Dynamic Streaming [20,
106]]. This strategy is known to follow the available bandwidth very closely [62, 63]]. We use
the following formula to estimate the available bandwidth:

segment_sizes

— (11—
bs = s boy + (a) * download_time,

The estimated bandwidth b, after the download of a segment s is the weighted sum with aging
(v was 0.1) of the estimated bandwidth after segment s — 1 and the quotient of the size of
segment s and its download time download_times. After the bandwidth is estimated, the

73

1e+07 T T T T

éubicI e clubic L
lim. cwnd —e— lim. cwnd —e—
T 1e+06 | E
| 2 1e+05
o
i ©
= £ 1e+04
e . 8
F 2 1e+03
i [9)
o
€
3 1e+02
i 1e+01
'16 1 1 1 1 1 1 1 1 1e+00 1 1 1 1 1 1 1 1
90 100 110 120 130 140 150 160 170 180 90 100 110 120 130 140 150 160 170 180
Number of clients Number of clients
(a) Liveness (b) Number of dropped packets

Figure 5.18: Performance of a limited TCP congestion window (Cubic)

strategy finds the sizes of the next segment using an HTTP HEAD request and chooses to
download the segment in the highest bitrate (quality) possible so that the estimated download
time does not exceed one segment duration.

In the following subsections, we compare a quality adaptive scenario using a system with
the default settings from Section[5.5|(unmodified) with systems that include modified settings
over a 30 minute playback. Here, the startup times are in general lower than in the previous
section since the first segment is downloaded in a low quality to ensure a fast startup like
in most of the commercial systems. We focus therefore only on the user experience metrics
liveness (smooth playout) and segment bitrate (video quality). Note that a segment can only
be encoded when all (video) data in it is available, i.e., the best achievable liveness is one
segment duration.

5.10.1 Alternative Congestion Control Algorithms

In the previous sections, we saw that the Vegas congestion control is slowing down con-
nections’ throughput to reduce packet losses, which leads in general, as observed in Figure
to much lower quality than that achieved with Cubic (for quality coding see Fig-
ure [5.19). However, because of its very careful congestion control, Vegas is not causing the
clients to have many late segments. The liveness (and thus video playout) is therefore almost
perfect without any hiccups. On average, clients lag only about 2 seconds behind the live
stream independent of their number. In case of Cubic, the clients "risk" more to download
higher quality segments and therefore would need to buffer at least 12 seconds for a smooth
playout for small client numbers. When the number of clients rises, the competition for
resources increases, forcing every client to select a lower quality and thereby improving live-
ness. Thus, Vegas should be considered if liveness is the goal, and the quality is secondary,
or if clients cannot afford buffering.

74

100

80 | |

S
@ L
& 60 | B @ 15T]
g : w 15
54 w g
%] I =
5 ‘ F 20 g
B 40 [: B
| 1
5 25 g
=4
20 - - 30 i
unmodified ~ —x—
vegas ——
.35 1 1 1 1 1 1
J 80 100 120 140 160 180 200 220
90 100 110 120 130 140 150 175 200 210 Number of clients
(a) Segment quality (unmodified left bar) (b) Liveness

Figure 5.20: Alternative congestion control: Cubic vs. Vegas

5.10.2 Increased Segment Duration

In Section we compared short segments with long segments from the system perspec-
tive where longer segments give TCP more time to reach its operating state. However, the
results showed that 2-second segments lead in general to better performance than 10-second
segments. The question answered in this section is how this impacts the video quality. In
this respect, Figure shows that the relative number of high quality segments is lower
than in the 2-second case. The liveness seems also worse, but it is actually quite good for
10-second segments. The clients are just one 10-second segment behind the live stream. This
means that the clients need to buffer only one segment, that is 10 seconds long, for a smooth
playout. Nevertheless, it seems to be more efficient to use 2-second segments — both from
the system and the user perspective. This raises the question if even shorter segments should
be used, but this is discouraged by current research [107] that states that a very frequent
changing of quality leads to unpleasant visual artifacts in the playout.

5.10.3 Requests Distributed over Time

Section[5.8]showed a better system performance when distributing the requests for a segment
over an entire segment duration. Figure shows the respective quality improvement
when the requests are distributed as in the previous section. The quality improvement is
obvious, especially, when the number of clients is high. However, we need to point out that

75

100 = W 0 T T T T T T
i
| 5 1
80 :
g -10 —
ﬂ 1 1
c P
g 60 - w 15 .
()] [0
& E
5 F 20 -
5 40 :
Qo
S -25 - .
z
20 E 30 i
unmodified ~ —x—
10sec. ——
.35 1 1 1 1 1 1
w 80 100 120 140 160 180 200 220
90 100 110 120 130 140 150 175 200 210 Number of clients
(a) Segment quality (unmodified left bar) (b) Liveness
Figure 5.21: Segment lengths: 2 vs. 10 seconds
100 e 0 T T T T T T
‘ 5 b
80 M
g -10 1
é 60 w -15 |
(o)} ()
& £
s = -20 | —
5 40
e}
g 25 - .
=z
20 30 i
unmodified ~ —x—
dist.req. ——
.35 1 1 1 1 1 1
80 100 120 140 160 180 200 220
90 100 110 120 130 140 150 175 200 210 Number of clients
(a) Segment quality (unmodified left bar) (b) Liveness

Figure 5.22: Request distribution (1 segment buffer)

the liveness suffers. Figure[5.22(b) shows that because of lower quality, the strategy without
any modifications is able to provide the clients with a more ’live’ stream.

In practice, however, this would be handled by allowing buffering, which does affect
liveness, but fixes interruptions in playout. Thus, a observed liveness of -16 seconds means
the client would require at least a 14 seconds buffer in order to play the stream smoothly
without any pauses. For live streaming, this means that a client cannot request the most
recent segment from the server when it joins the stream, but has to request an older segment
to have a chance to fill its buffer before catching up with the live stream and so entering the
download-and-wait cycle.

Figure [5.23] shows the quality improvement and liveness when clients use 5 segment
(10 second) buffers. We observe that the quality gain of request distribution is preserved

76

100 0 T T T T T T
5 F -
80 -
g -10 —
o BRI w
()] [0
@ E
5 F 20 e
5 40
Qo
S -25 - .
p=4
20 30 i
unmodified =~ —>—
dist.req. ——
.35 1 1 1 1 1 1
et 80 100 120 140 160 180 200 220
90 100 110 120 130 140 150 175 200 210 Number of clients
(a) Segment quality (unmodified left bar) (b) Liveness
Figure 5.23: Request distribution (5 segment buffer)

100 0 T T T — T
unmodified =~ —>—
dist.req. ——

5} 4

80

g -10 1
2 8 i

EGO *:‘r" | @ 15 _
(o)} (0]

& £

5 = -20 | —
5 40

Qo

5 -25 - .
b4

20 8o e i

35 1 1 1 1 1 1
80 100 120 140 160 180 200 220

90 100 110 1%‘%”116390"0‘(1”6”1@0 175 200 210 Number of clients

(a) Segment quality (unmodified left bar) (b) Liveness

Figure 5.24: Request distribution (15 segment buffer)

while also improving the liveness. Moreover, Figure [5.24] shows that the trend of improved
quality continues with a buffer of 15 segments (30 seconds) and additionally the liveness
stays almost constant. We conclude therefore that distributing requests is important espe-
cially when client buffers are already in place.

5.10.4 Limited Congestion Window

Restricting the client’s TCP congestion window and so distributing the download over a
longer time has positive effects not only on the server and bottleneck resources (Section[5.9)),
but also on quality as shown in Figure The interesting thing about reducing the con-
gestion window is that for small numbers of clients both the liveness and the quality improve.
As the number of clients grows, the quality of an unmodified adaptation strategy degrades

77

quickly, improving the liveness as shown in Figure The modified settings prevent a
single client to steal too much bandwidth from other clients and so cause their downloads to
finish too late (thus decreasing their liveness). The liveness is kept about the same irrespec-
tive of the number of clients, which is a good thing for practical implementations when the
client buffer size must be chosen upfront.

100

80 [it

<y -10 1

% ‘

c o

o 60 = -15 | i

g rY

& £

s = -20 | —

5 40

Ke)

S 25 .

=z

20 30 i
unmodified ~ —>—
lim.cwnd ——
.35 1 1 1 1 1 1
80 100 120 140 160 180 200 220
90 100 110 120 130 140 150 175 200 210 Number of clients
(a) Segment quality (unmodified left bar) (b) Liveness

Figure 5.25: Limiting the congestion window (Cubic)

5.11 Combination of Alternative Settings

In this section, we outline and compare the effect of 16 different setting combinations (see
Figure [5.26)) using 140 clients as a representative example for segment quality distribution.
It is again important to note that the graphs must be evaluated together, i.e., a gain in quality
(Figure often means reduced liveness (Figure and increased packet loss
(Figure [5.26(c)).

As seen above (Section [5.10.T)), changing congestion control, i.e., replacing Cubic with
Vegas, results in no or very mild loss that leads to much better liveness. We can observe
that Vegas is able to avoid queue overruns also in combinations with the other modifications,
which is good. On the other hand, using Vegas the clients do not probe for higher quality as
aggressively as when using Cubic and therefore the quality suffers when Vegas is used.

Furthermore, 10-second segment combinations show lower quality than the same combi-
nations with 2-second segments. The only exception is Vegas used with distributed requests,
but it is still worse than other combinations. So even in combinations, 10-second segments
do not show superior performance over 2-second segments as could be guessed based on the
fact that the on periods are longer. Additionally, the liveness is naturally smaller using longer
segments because of longer startup times.

Moreover, in general, combinations with distributed requests result in higher quality, how-
ever, the higher quality is paid by decreased liveness in most of the cases. Finally, a conges-
tion window limitation does not seem to have influence on liveness or quality apart from the

78

100

80 [

40 |

Number of segments [%]

20 |-

Orig. A B C D AB AC AD BC BD CD ABC ABD ACD ABCD

(a) Quality - 140 clients

1e+07 F T T T T T T
B s . o 1e+06 =
=+ 2 16405 | i
e L
20 2 3 Orig. —»—
o0 k . 3 A o
@ < 1e+04 F E B
2 g c
= u= r D P
= ° - E
30 | a 5 1e+03 F 1 AB
Q AC ——
£ I AD ——
2 le+02 | 4 BC v
“f : - %
1e+01 E ABC
r ABD
3 1 ACD —e—
-50 L L 1 1 1 1 1e+00 —o—6—eo6e6o—_—o'! oo BCD —
80 100 120 140 160 180 200 220 80 100 120 140 160 180 200 220 ABCD —e—
Number of clients Number of clients
(b) Liveness (c) Drops

Figure 5.26: Performance of combined settings
(A=Vegas, B=10 second segments, C=distributed requests, D=CWND limitation)

case when it is the only setting modified, or when used with distributed requests in which case
it performs better in terms of liveness, especially for small client numbers. Thus, there are
several combinations that can be used, but it is usually a trade-off between liveness (which
can be fixed by buffering and a startup latency) and video quality.

5.12 Client Request Strategies

A client request strategy is the way in which a client requests segments. The choice of a
strategy is a client-side decision only. In this section we investigate the impact of different
client request strategies on the server performance when the bottleneck is at the server.

The content of this section is based on [98]]. Please note that paper uses the alternative
term for liveness, e2e delay. For consistency with previous discussions we replaced the e2e
delay term with liveness: e2e delay = —liveness

79

5.12.1 The Segment Streaming Model

Figure depicts the essentials of the model used in the following sections. At time %;,
a segment ¢ has been encoded, uploaded and made available. Like in several commercial
systems, the segment playout duration [58]] is constant and equals t;,; — t;. The letter A
denotes the point in time when a user starts streaming. We call this time the client arrival
time.

t; A tiv1 tis2
| : | I

é

Segment f)layout duration Segment playout duration .
time

Figure 5.27: The segment streaming model

5.12.2 The Option Set of a Strategy

We considered four important options for a segment request strategy.

First Request Option (P;,)

At client arrival A, the client requests segment 2, which can be the latest available segment or
the next that will become available, i.e., t =0 or 1 in Figure ‘We do not consider ¢ < 0
because it implies low liveness and 7 > 1 because it implies high start up delay (the client
needs to wait until the segment becomes available).

Playout Start Option (F,,,0ut)

A client can start the playout immediately after the first segment is downloaded or delay the
playout. To avoid low liveness already in the design of a request strategy, we limit the playout
delay to at most one segment duration.

Next Request Option (F,,,.)

A client can request the next segment at several points in time. We consider two of them. A
client can send the request some time before the download of the current segment is com-
pleted (download-based request) or send the next request some time € before the playout of
the currently played out segment ends (playout-based request).

Deadline Miss Handling Option (7,,,;ss)

When a segment is downloaded after the previous segment has been played out completely (a
deadline miss), the client can skip the first part of the downloaded segment equal to the dead-
line miss and keep the current liveness or start the playout from the beginning of the segment

80

Figure 5.28: Immediate playout start with video skipping

decreasing the liveness. To reduce the complexity and make the results easily comparable,
we decided to use only one quality adaptation algorithm. Here, the first segment is retrieved
at lowest quality, and the quality of all other segments is based on the download rate of the
previous segment and the time available until segment’s deadline. To compensate for small
bandwidth variations, the algorithm chooses the quality so that the download ends some time
before the segment’s deadline.

5.12.3 Reduction of Option Combinations

Each option (P, Puayouts Pnrs Prmiss) has two possibilities, resulting in 16 possible combi-
nations. However, some combinations can be eliminated.

Figure illustrates a case when Py 0. 18 set to immediate playout and P, to video
skipping. Segment 0 is requested at 1, and the download is finished at dy. The playout starts
at po = dp, and py sets all consecutive deadlines (p1, po, ..) implicitly. The time it takes to
download the first segment which is downloaded at the lowest quality is given by dy — 7.
We see that dy — g =~ p; — t; which means that, under the same network conditions, the
second segment can only be downloaded at the lowest quality, and the server is going to be
idle between d; and ¢,. This applies to all consecutive segments because PF,,; s is set to video
skipping. We therefore ignore combinations where F,,,;,s 1s set to video skipping and Py 0ut
is set to immediate playout.

By design, every deadline miss leads to a liveness lower than one segment duration, if
Ppiayout 18 set to delay the playout to the next ¢; and P, is set to liveness decrease. Because
these options lead to a very low liveness, we ignore combinations that have F,,;ss set to
liveness decrease and Pjq 00 S€t to playout delay.

Figure 5.29: Delayed playout, video skipping and playout based requests

Figure[5.29]illustrates a scenario where P, is based on the playout time, P,,;s, is handled
by video skipping, and Py, 1s delayed until the time next segment becomes available. All

81

clients that download their first segment between ¢, and ¢; start their playout at ¢;. Given this,
all consecutive deadlines are fixed at ¢;, ¢ > 2. All clients request the next segment at the
same time (P,,), e.g., 1 in Figure [5.29] Consequently, the server is idle between ¢; and 7.
The resources wastage is apparent, and therefore, we ignore combinations with these options.

Out of the 6 remaining strategies, 4 decrease the liveness in case of a deadline miss (F;,;ss
set to the liveness decrease). 2 of these 4 strategies wait with the first request until a new
segment becomes available (P}, set to delay the first request). Even though this leads to a
very high initial liveness, it leads also to many deadline misses in the beginning of a streaming
session, because the clients essentially synchronize their requests at ¢;. This leads to bad
performance, as we show later and the result are many user annoying playback stalls. We
therefore do not further evaluate these two strategies.

We discuss the 4 remaining strategies in the following section, which we later evaluate
with respect to the streaming performance.

Table 5.2: Evaluated strategies

| Stategy [Prr | Potagour | Par Priss
MoBy | immed. | immed. | download b. | decrease liveness
MoVi | immed. | immed. playout b. | decrease liveness
Coln | immed. | delayed | download b. skip video
CoDe | delayed | delayed | download b. skip video

5.12.4 Liveness Decreasing Strategies

The two remaining liveness decreasing strategies focus on keeping the liveness as high as pos-
sible, but do not delay the first request. We call them Moving Liveness Byte Based Requests
(MoBy) and Moving Liveness Playout Based Requests (M oV'7).

MoBy is illustrated in Figure[5.30] A client requests the latest segment that is available
at the time of its arrival A, i.e., segment ¢, in Figure The playout starts immediately
after the segment download is finished, po = d,. The next segment request is sent to the
server when all but link delay * link bandwidth bytes of the currently downloaded segment
are fetched. This pipelining of requests ensures that the link is fully utilized [70]. Please
note, that in Figure[5.30] the next segment is not available at a time that would allow request
pipelining. Therefore, it is requested later when it becomes availableﬂ

to A t; 5
| : : | :
| : : | : | time
ro do b di
I l
pPo playout O P1 playout 1

Figure 5.30: Strategy MoBy

"Segment availability can be checked by consulting the manifest file [58].

82

Figure[5.31]illustrates the M oV/i strategy. The only difference between M oV'i and MoBy
is that MoVi sends the next request when there are 5> seconds of playout left. This leads
to a more evenly distributed requests over [¢;, ;1] as shown in the result section.

to A t; t
. . l: .
| : : l: : | time
ro do r di
} l
pPo playout O pP1 playout 1

Figure 5.31: Strategy MoV'i

5.12.5 Constant Liveness Strategies

The last two strategies of the remaining 4 strategies keep a constant liveness of one segment
duration throughout a streaming session. If a deadline is missed, the first part of the segment
equal to the deadline miss is skipped. Both of these strategies request a segment when it
becomes available and their request synchronization leads, in theory, to fair bandwidth distri-
bution among all clients. We call these two strategies Constant Liveness Immediate Request
(CoIn) and Constant Liveness Delayed Request (C'oDe).

Strategy C'oln is illustrated in Figure A client first requests the latest segment on
the server at 1y = A. The next segment is requested at ¢;. The liveness is fixed and equals
tir1 — t;, 1.e., a segment that becomes available at ¢; is presented at ¢;.1. This means that the
client has ¢; 1 — ¢; seconds to download the next segment.

t|0 A _ tll _ t|2
| : : | : | time
ro do " di
| |
I 1
Po playout O Py playout 1

Figure 5.32: Strategy Coln

Figure illustrates strategy C'oDe. The difference between C'oln and C'oDe lies in
the first request. C'oDe delays the first request until the next segment becomes available, i.e.,
r1 # A. CoDe forces all clients to send their requests at the same time starting with the
first segment (in contrast to C'o/n). All the strategy properties are summarized in Table
These properties only apply when there are no deadline misses.

ty A t; t
— i :

: I time
ry dy

Py playout 1

Figure 5.33: Strategy C'oDe

83

Table 5.3: Strategy summary (s = segment duration)

Strategy | Startup delay | Liveness | Available download time
MoBy do — to do — to dy — to
MoV do — to do — to < 0.5s
Coln | p=05xs s s
CoDe | p=15xs 5 5

5.12.6 Emulation Setup

Since large-scale real-world experiments require both a lot of machines and users, we per-
formed experiments in our lab using an emulated network with real networking stacks. Our
hardware setup is shown in Figure We used Linux OS (kernel v2.6.32) with Cubic TCP
congestion control with SACK and window scaling on. For traffic shaping, we used the HTB
qdisc [[73] with a bfifo queue on the egress interfaces of the client and server machine. The
queue size was set to the well known rule-of-thumb RTT x bandwidth [108]. The queue rep-
resented a router queue in our approach. The client machine emulated requests from clients
and the server machine emulated a webserver®l

S 1 Gbps S
= =
Cller_1t +15 ms delay Servgr
machine machine

Figure 5.34: Emulation setup

For video quality emulation, we used low, medium, high and super segment qualities with
fixed segment sizes of 100 KB, 200 KB, 300 KB and 400 KB, respectively (see Table .
The segment duration was 2 seconds as proposed by [38, [107].

We ran two sets of experiments. The first set, called short sessions scenario, included
1000 clients, each downloading 15 segments, which equals approximately the duration of a
short news clip. The client interarrival time was modeled as a Poisson process with 100 ms
interarrival time (equals 600 client arrivals per minute). The second set included 300 clients
each downloading 80 segments, which represent an unbounded live stream. We used the same
Poisson process for interarrival times. This set is called long sessions scenario. To examine
the influence of arrival time, we reran all experiments also with constant interarrival time of
100 ms.

The server served a peak of about 300 concurrent clients in both scenarios. The short
sessions scenario was limited by the interarrival time of 100 ms and the number of segments
per client. The long sessions scenario was limited by the number of clients.

8 All data was served from memory to avoid non-networking factors like disk I/O speed.

84

The emulation program logged for each client the time the client joined the stream and
left the stream, as well as for each segment, its quality and its presentation time. Further,
it also logged the bandwidth consumption between the server and the client machine with a
resolution of 100 ms.

We evaluated four bandwidth limitations restricting the maximal quality clients could
download for both scenarios: 40 MB/s, 55 MB/s, 65 MB/s and 80 MB/s. The examined
bandwidths provided each client (under optimal and fair conditions) with 133 KB/s, 173
KB/s, 217 KB/s and 267 KB/s respectively.

We repeated each experiment 20 times and we collected our results when the system was
in a stable state. We consider the system to be in a stable state when the number of active
clients over time is about constant, i.e., client arrival rate equals client departure rate. For the
short sessions scenario, this means examining segments 30 to 50, and for the long sessions
scenario, segment 20 and beyond.

5.12.7 Request Strategies Impact on HT'TP Segment Streaming

We were interested in the interaction of concurrent segment downloads and its impact on
video quality and liveness. We therefore analyzed the goodput (and the corresponding video
quality) of each strategy as well as the parallelism induced by each strategy.

Strategy goodput

Figure [5.35]and Figure [5.36]show the collected goodput statistics for short and long sessions
scenarios. Each box plot valueﬂ represents the sum of bytes received by all clients during one
experiment divided by the stream’s duration.

The goodput is, like a regular bulk download, reduced by the protocol header overhead,
and additionally by the time the client spends waiting until the next segment becomes avail-
able. For short sessions, Figure |5.39'"| shows the number of concurrently active clients over
time. We see that the number of clients drops (clients are idle waiting) towards the end of
each 2-second interval. In the next section, we further discuss the effects and consequences
of parallelism.

The goodput of strategies C'oIn and C'oDe increases as more bandwidth becomes avail-
able. The reason for this behaviour is that these strategies keep a constant liveness and so
provide a full segment duration of time for segment download.

Figure [5.40] and Figure [5.41] show the improvement in terms of segment quality. The
height of the graph corresponds to the total number of segments downloaded. The number of
segments of each quality is represented by the grey scale starting at the top with the lightest
color representing the super quality. The trend is clear: the more bandwidth, the higher the
quality.

Strategies MoBy and MoV do not quite follow the same trend as C'oln and C'oDe
though. MoBy and MoV'7 increase the goodput up to the bandwidth limitation of 55 MB/s.

Minimum, maximum, quartiles, median and outliers are shown. Please note that in many cases, these
overlap in the graphs.
10The same pattern was observed also for long sessions scenario.

85

Goodput Goodput
o | o |
N~ N~
o | o |
© ©
@ @
n n
= =
5 8+ 5 31 —_—
Q Q — I -
8 E—— 8
o e —— o
o | o | N
< ——— < =
o | o |
«® T T T T «® T T T T
40 55 65 80 40 55 65 80
Bandwidth limit [MB/s] Bandwidth limit [MB/s]
(a) MoBy (b) MoVi
Goodput Goodput
o | o |
~ ~
o | o |
© ©
@ @
i) —— i)
38 o 38 —
ko] ko] __
Q o —_—
o o
5 5
o | o |
< - <
—_—
o | o |
@ T T T T @ T T T T
40 55 65 80 40 55 65 80

Bandwidth limit [MB/s]

(c) Coln

Bandwidth limit [MB/s]

(d) CoDe

Figure 5.35: Short sessions scenario goodput

The goodput increases slowly or stagnates for higher bandwidths. We can observe the same
for segment quality. Figure[5.42]and Figure[5.43]indicates that these two strategies are trading
goodput for higher liveness, i.e., the stream is more "live".

It is clear from Figure [5.40] and especially Figure [5.41] that strategy MoV'i is able to
achieve high quality quickly and still keep a high liveness. The reason lies in parallelism,
which we discuss in the next section.

5.12.8 Parallelism and its Consequences

Figure [5.39] shows a representative 20 second snapshot of the number of concurrently ac-
tive clients. The strategy that stands out is MoVi. The maximum number of concurrently
downloading clients is about one third compared to the other strategies. Yet, as discussed
in Section MoVi does not suffer severe quality degradation (and it does not discard
segments).

86

Goodput

70

Goodput [MB/s]
50
Il

40

40

55 65
Bandwidth limit [MB/s]

(a) MoBy

Goodput

80

Goodput [MB/s]
50 60 70
Il Il

40

30
L

40

55 65
Bandwidth limit [VB/s]

(c) Coln

80

Goodput [MB/s]

Goodput [MB/s]

70

60

50

40

30

70

60

50

40

30

Goodput

40

55 65
Bandwidth limit [MB/s]

(b) MoVi

Goodput

80

40

55 65
Bandwidth limit [MB/s]

(d) CoDe

80

Figure 5.36: Long sessions scenario goodput

The mixture of P, based on playout and Py, Set to immediate playout makes MoV'i
requests distributed according to client arrival distribution, i.e., the requests are distributed
over each interval. This is an important difference to the other strategies.

We found that the reason for MoV'i’s good overall performance is the number of dropped
packets by traffic shaping. Figure[5.38|shows a representative plot of the number of packets
dropped by the emulated router queue. The queue size is set to RT'T x«bandwidth and accepts
therefore only a certain number of packets. We observed that synchronized requests overflow
the router queue much more often than requests distributed over time as is the case for MoV's.

Because the P, option of MoV is based on playout time, more specifically a client
requests the next segment »52° seconds before the playout of the previous segment ends
(Section 2.3), MoVi clients have at most half of the time available to download a segment
compared to C'oln and CoDe. Yet, they are still able to download the same or higher quality
segments (Figure and Figure [5.41)). Moreover, the liveness is in many cases very high
(above a segment duration) (Figure [5.42] and Figure [5.43)). The only time the strategy has

87

Deadline misses ECDF Deadline misses ECDF

e RS 2 S
(o) o L= 2
S .- = S
@] ®] N
L 1L ©
=) =)
O o]
TG TG
S Sl
© | © |
R 40MB/s R 40MB/s
55MB/s 55MB/s
-+ 65MB/s ------- 65MB/s
0 | ———— B8OMB/s 0 | ——-— B80MB/s
e T T T T T T © T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Deadline miss length [ms] Deadline miss length [ms]
(a) MoBy (b) MoVi
Deadline misses ECDF Deadline misses ECDF
e
o
o
[c) ©
L S L S
=) o)
O O
TG 4~
S | S
©] © |
A e 40MB/s R 40MB/s
55MB/s 55MB/s
--- 65MB/s ------- 65MB/s
0 | ——-— B80MB/s 0 | ———— B80MB/s
i T T T T T T i T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Deadline miss length [ms] Deadline miss length [ms]
(c) Coln (d) CoDe

Figure 5.37: Short sessions scenario deadline misses’ empirical distribution function (ECDF)

a problem is when there is not enough bandwidth available to sufficiently distribute client
downloads and the downloads start to overlap too much.

Figure shows a box plot of segment download speed as experienced by the clients.
The graph includes all bandwidths experienced by all clients for every segment in every
experiment run. Because of the small number of concurrent clients, MoVi is able to make
more out of the available bandwidth. The other strategies loose more data in competition for
space in the router queue.

If a MoVt client determines that enough time is available for downloading higher quality
segments, it probes by downloading a higher quality segment at the next opportunity. It
then experiences more competition because it enters the download slots of other clients, and
withdraws immediately if there is not enough bandwidth. This approach reduces the number
of concurrent clients and thus, the pressure on the router. The other strategies can never probe.
The requests of active clients are always synchronized. The increased competition leads to
more unpredictable bandwidth distribution among clients and makes it harder for the clients

88

0.5
I}

0.4

% dropped packets
0.2

0.1

]

MoBy MoVi Coln CoDe

0.0

Figure 5.38: Packets dropped by the emulated router queue for 55 MB/s bandwidth limitation

to estimate available bandwidth based on the download of the previous segment.

5.12.9 Deadline Misses and the Bandwidth Fluctuations

There is, theoretically, only one factor that influences the deadline misses, i.e., bandwidth
fluctuation. Under perfect conditions without bandwidth fluctuations, clients never overesti-
mate the bandwidth available, and a deadline miss never occurs.

However, the large number of concurrent streams combined with TCP congestion control
creates fluctuations. In the case of MoV, the fluctuations do not have such a big impact
because the number of concurrent clients is small (Figure , and the download bandwidths
are high compared to the other strategies. The deadline-miss graphs in Figure (long
sessions scenario results are very similar) indicate that the M oV'7 strategy is able to estimate
the bandwidth as well or better than the other strategies.

In general for all strategies, the number of deadline misses shown in Figure indi-
cates that the bandwidth estimation, and therefore also the quality adaptation, is not always
perfect. However, we see that with more bandwidth available, the number of deadline misses
decreases.

We believe that the reason for deadline miss improvement is the usage of time safety. The
adaptation algorithm chooses segment quality so that the download ends at least ¢s seconds
before segment’s deadline. The minimal value of ¢s is the time safety{ﬂ A deadline miss
occurs only if the download time proves to be longer than the estimated download time plus
the time safety. To make the impact of the time safety on results as small as possible we
used a small value of 150 ms for all scenarios. However, the number of bytes that can be
downloaded within the time safety increases with available bandwidth. This way the safety
basically grows with bandwidth, which results in fewer deadline misses as the bandwidth
grows. In this respect, one should choose a larger time safety if more bandwidth fluctua-
tions are expected. One could also adjust the time safety dynamically based on the observed
bandwidth fluctuations.

"'"The function of the time safety is similar to the function of the "slack parameter" in [96]]

89

MoBy MoVi

o o
o o A
(¢2) (s2]
o o
w0 - n -
(e} N
L o 8 o
£ & £ &
3 3
53 53
o o
o Qo
E8 Eg.
c c
o | o |
0 0
o A o A
T T T T T T T T T T
40 45 50 55 60 40 45 50 55 60
time [s] time [s]
(a) MoBy (b) MoVi
Coln CoDe
o o
o o
o ()
o o
0 w0
[aV] [aV]
2 o @9 o
£ & £ &
3 3
5 34 5 34
o~ o~
o o
E 8] Eg]
c c
o o |
Yol Yol
o o 4
40 45 50 55 60 40 45 50 55 60
time [s] time [s]
(c) Coln (d) CoDe

Figure 5.39: Concurrent downloads in the short sessions scenario (55MB/s)

5.12.10 Influence of Client Interarrival Times Distribution

For reference to the naturally, exponentially distributed interarrival times we reran short and
long session scenarios with constant client interarrival times. Our results showed no major
differences. We observed very similar results for segment quality distribution, number of
concurrent clients over time, liveness and deadline misses.

5.12.11 Implications for Multi-Server Scenarios

There are implications of our findings for[CDNk based on[Domain Name System (DNS)]load
balancing. Figure [5.45]shows the principle of load balancing in [CDNk. When a client
wants to download a segment, it issues a request to its local server. If the information is
not cached, the request is forwarded to the root server. The root server redirects

the local server to a provider’s server. This server finds the best server

90

100000
100000

Number ot segments
60000
1
Number ot segments
60000
1

0 20000

0 20000

40MB/s 55MB/s 65MB/s 80MB/s 40MB/s 55MB/s 65MB/s 80MB/s

(a) MoBy (b) MoVi

100000
Il
100000
Il

Number ot segments
60000
1
Number ot segments
60000
1

0 20000
Il

0 20000

40MB/s 55MB/s 65MB/s 80MB/s 40MB/s 55MB/s 65MB/s 80MB/s

(c) Coln (d) CoDe

Figure 5.40: Short sessions quality distribution of downloaded segments (from super quality
at the top to low quality at the bottom)

available and replies with the server’s[[P|address. The local server caches and forwards
the information to the client. The client downloads the data from the provided server.

A small time to live (TTL) of the[DNS|cache entry leads to frequent[DNS|requests. On the
other hand, a large TTL leads to less load balancing opportunities for the CDN] Therefore,
a compromise between granularity of load balancing and the DNS] server load is required.
Akamai@ for example, uses a default value of 20 seconds [109]. In fact, the TTL value is
not enforcible, and providers might choose a higher value in order to provide faster response
times or to reduce the risk of DNS]|spoofing [110].

[DNS]load balancing relies on separate connections for each web object. However, sepa-
rate connections are inefficient in case of live HT TP segment streaming. To save the overhead
associated with opening a new TCP connection, it is reasonable for a client to open a persis-
tent TCP connection to a server and reuse it for all segment requests. Requests are sent over
this connection as segments become available. This differs from a persistent connection used

91

o o
o o
o _ o _
o o
Yol Yol
™ ™
1S 1S
2 3 2 3
S S S o
[CaTe] [CaTe
E E
(@] (@]
Q - Q -
w w
= O = o
o o o o
» O | - O |
O O O O
o n o 0
[c
> | > |
Z P
o o
o o
o o
o o
- - - —
o e o .
40MB/s 55MB/s 65MB/s 80MB/s 40MB/s 55MB/s 65MB/s 80MB/s
(a) MoBy (b) MoVi
o o
o o
o _ o _
o o
Yol Yo}
[sp] [ep]
o o
28 28
S S S S
D n D n
E E
(@] [e2]
Q - Q -
(] (]
o o
SRS SRS
- O - O
O O o O
o 0 o 0
£ - E -
> a > a
Z Z
o o
o o
o A o
o o
2 - 2 -
o J [o J [
40MB/s 55MB/s 65MB/s 80MB/s 40MB/s 55MB/s 65MB/s 80MB/s
(¢) Coln (d) CoDe

Figure 5.41: Long sessions quality distribution of downloaded segments (from super quality
at the top to low quality at the bottom)

by web browsers. Firstly, the connections last longer (a football match takes 90 minutes).
Secondly, clients do not download data continuously (Figure [5.39). This makes it difficult
to estimate the server load by algorithms that assume that all clients download data continu-
ously. Moreover, the adaptive part of the streaming leads to jumps in bandwidth requirements
rather than to smooth transitions. These are all reasons that make it harder for conventional
[DNS] load balancing to make an accurate decision. An HTTP redirection mechanism in the
data plane could solve this. However, to the best of our knowledge, this mechanism is not
implemented by current [CDNk. The insufficiencies of server-side load balancing for live
adaptive segment streaming can be overcome by client-side request strategies.

92

g_ — A R e o
. d —]
£ 3 — E o
— N — O
& (\Il n N
o oo
S &7 c RN
= z
o - 8
T oy
3| = '
=8 !
ﬂ? —_— —
40 55 65 80 40 55 65 80
Bandwidth limit [MB/s] Bandwidth limit [MB/s]
(a) MoBy (b) MoVi

Figure 5.42: Short sessions scenarios liveness (note: liveness y-axes have different scale)

o
o
O
o - = —_—
S 3
_ Sr_ —— _ 8[— eoE—
£ £
L o =
n S 0 3
o < 0 8
c S
:8 B
— 8_ - 8
. 5
Q i
<5 —
D =
40 55 65 80 40 55 65 80
Bandwidth limit [MB/s] Bandwidth limit [MB/s]
(a) MoBy (b) MoVi

Figure 5.43: Long sessions scenarios liveness (note: liveness y-axes have different scale)

5.13 Conclusions

We have first studied the performance of HTTP segment streaming in a multi-user server-side
scenario. It turns out that because of the different traffic pattern of HTTP segment stream-
ing, the server is able to handle much fewer clients than its network bandwidth would al-
low. We proposed and tested four different methods (and their combinations) ranging from
network-layer to application-layer modifications to improve the situation. Additionally, we
re-evaluated these methods also in a scenario where clients used a quality adaptation strategy.

Our results show that other congestion control algorithms like Vegas avoid queue over-
runs, also in case of short (up to 2 seconds) connections. Therefore, the use of Vegas leads
to very few late segments, which means an increased liveness with less buffer underruns. On
the other hand, Vegas’s careful approach leads to lower the quality. Moreover, we do not find

93

o o

o | o |]

o o ° 8

[aV] A I

o o '

S | 8 S | ! '
) _ 3 | !
o~ ° o - : .
0 o n . . |
2 2 | |
s 8 : I 3 3 g
RN RN ‘

° o ! '
C c ' !
© © T ' ,
n o n o ' 1 .

S l S 4 ! |

) l i 3 |

O o

4b 5‘5 6‘5 80 40 55 65 80
Bandwidth limit [MB/s] Bandwidth limit [VB/s]
(2) MoBy (b) MoVi

o o

o | o

o o

[aV] [V}

o o

o | o |
_ B _ B
o & -

b)
2 2 .
£8 £8
CR=N RN o
s - l i s - l
ie] © 8
c C
© © H
1 o i 1o |
S S
Te) Yo} ' '
== — E e] —
T = 1 1 —
o —— o 4 5
40 55 65 80 40 55 65 80
Bandwidth limit [VB/s] Bandwidth limit [MB/s]
(c) Coln (d) CoDe

Figure 5.44: Client segment download rates in the long sessions scenario

Root DNS

Content™ /7, E@?l
c

Client Local DNS CDN DNS

Figure 5.45: CDN DNS load balancing

a convincing reason for using 10-second segments. In a single-user scenario, it uses the con-
gestion window better, but in a multi-user scenario with competition for the resources neither
the video quality nor the liveness are improved over 2-second segments. We further observe
that the distribution of requests over time leads to very good results in terms of quality and

94

in case of client-side buffers also liveness. Limiting the congestion window contributes to
better fairness among the connections and gives a better bandwidth estimation. This results
in good quality and stable liveness for different numbers of clients, but only if used as the
only modification.

Our evaluation of client-side request strategies for live adaptive HTTP segment streaming
shows that the way the client requests segments from a server can have a considerable impact
on the success of the strategy with respect to achievable liveness and video quality. The
chosen strategy influences not only the video quality and liveness, but also the efficiency of
bandwidth usage.

Starting with the assumption that it is desirable for clients to request video segments
from a server that provides live content as soon as they become available, we examined three
strategies that do request segments as soon as they become available and a fourth strategy
that requests them later. The request pattern of the synchronized strategies leads to synchro-
nized requests and server responses. The unsynchronized strategy does not initiate downloads
based on segment availability but on the playtime of earlier segments.

While it was obvious that synchronized requests lead to competition for bandwidth, we
have shown that this competition leads to a severe amount of bandwidth wastage. Synchro-
nized clients can only base their adaptation decision on average goodput in a complete seg-
ment length, because they can never avoid competition with other clients. With strategies
that do not synchronize requests, on the other hand, bandwidth wastage is avoided because
the number of concurrently active clients is much lower. Clients can probe for higher qual-
ities, and withdraw when their bandwidth demands increase the amount of competition and
therefore the segment download time. We have finally considered how these observations
could help scheduling decisions in a multi-server scenario.

95

Chapter 6

Conclusion

In the recent past, video streaming delivery went from using unreliable protocols like [UDP)
to using a reliable transport protocol, TCP. The first approach using TCP for video delivery
was progressive download. Progressive download means that the client downloads and plays
a video at the same time. The problem that arises is when the download is too slow and
the playout caches up with the download and must be interrupted until more data is down-
loaded. This problem can be avoided if the video bitrate can be adjusted according to the
varying network bandwidth. The solution to this problem is adaptive HTTP segment stream-
ing, which splits a video into multiple video segments and encodes each of these in different
bitrates (qualities). The client then chooses, based on its currently available bandwidth, at
which bitrate it can download a segment. The segments are encoded in a way that enables
the client to combine them seamlessly without the user noticing the transitions between seg-
ments. Recently, adaptive HTTP segment streaming has grown to be the dominant streaming
technology for live and on-demand video delivery in the Internet. The technology has poten-
tial far beyond the traditional linear delivery, but there are still performance issues to address.
It is the potentials and the performance issues related to adaptive HTTP segment streaming
that this thesis explored.

6.1 Summary and Contributions

When searching with nowadays popular video search engines like YouTube [10] or Daily-
motion [111] only complete videos are returned. For more fine-grained results the user must
search the videos manually. This is partly a limitation of the search engines, which do not
return sub-video level results. However, it is also a limitation of the streaming technology,
progressive download, that cannot deliver videos combined from multiple video parts in an
efficient and seamless manner. Adaptive HTTP segment streaming removes this limitation. In
Chapter[2] we described how to encode video segments in a way that allowed video segments
to be played out seamlessly (without interruption in playout) even if the video segments came
from different videos or had a different bitrate. As a proof of concept we implemented two
prototypes. The first prototype enhanced the search results of Microsoft Enterprise Search
Platform (ESP) [112] with video. In the enhanced version called VESP [54]], the user not
only got to browse through the presentation slides that matched the search query, but could

97

also watch video clips of the presenter synchronized with the slides. Particularly, the need
to manually search through the video of the whole presentation was removed. Additionally,
the user had the possibility to put slides on a deck and play an automatically generated video
playlist for the deck of slides. We performed user studies to evaluate the user response to the
new video feature of the system. Our user study showed that the new feature significantly
improved the user experience (Section compared to the original system with only the
slide preview. Our second prototype enhanced the results of a football clips search engine.
The search engine delivered precise timing of events like "sliding tackle" or "goal" within a
football game video, however, the video streaming component was not able to deliver parts
of the video (similarly to a YouTube like system). This changed with our adaptive HTTP
segment streaming integration. Instead of showing the entire 90 minute video of the game,
only the precise moment of interest was presented. Furthermore, we noticed that the au-
tomatic analysis of a football game video sometimes resulted in imprecise clip boundaries,
e.g., a goal clip did not begin at a time suitable for the viewer who would like to see the ac-
tion. Therefore, we implemented an uncomplicated learning algorithm based on exponential
averaging that was able to learn the preferred event boundaries taking into account previ-
ous (historic) user actions (rewind, fast forward). Similarly to vESP, we also evaluated the
user experience gains with a user study and observed that the improvement was statistically
significant (Section [2.3.3).

Even though non-linear video playout systems like the VESP are interesting, already the
linear playout systems are challenging to designed and scale up. To get a better idea of the
scaling of a real-world adaptive HTTP segment streaming system, we analysed logs provided
by a Norwegian streaming provider Comoyo [16] (Chapter[3). Our analysis shown that about
3% of the network data could have been saved if more HTTP proxy caches or a different
bitrate adaptation strategy were used. We also observed that the amount of downloaded data
as reported by the clients was much higher (more than 2 times) than the amount of data
served by the origin server. Moreover, the number of distinct IP addresses as seen by the
origin server was significantly lower than the number of distinct IP addresses as reported
by the analytics server, which all clients report to. This means that a significant percentage
of clients downloaded their segments from places different than the origin server. In other
words, this means that the caching of segments really happens and works, because the video
segments did come from somewhere and it was not the origin server. Our next observation
was that about 90% of the same segment requests happened within a 10 second time window
(note that we analysed live streaming of football games). This gives a great potential for
caching, i.e., an HTTP proxy cache needs to cache a segment only a very short time to
achieve a good cache hit ratio. The temporal dependency of requests also means that servers
serving live content like this can keep a few segments in memory and so almost completely
eliminate expensive I/O to disk. The elimination of disk I/O as a performance bottleneck,
leaves the network throughput as a possible bottleneck.

In Chapter f] we proposed a way to eliminate a client-side network bottleneck through
the use of multiple client interfaces. Particularly, we described a new pull-based download
scheduling algorithm for using multiple interfaces (e.g., WLAN and 3G) to increase the bi-
trate (quality) of segments that the client can download. The proposed scheduling algorithm

98

efficiently distributed the download of partial segments over multiple interfaces and so in-
creased the effective total bandwidth available to the client. The assignment of partial seg-
ments to interfaces happened based on the current utilization of each available interface. Our
experiments showed that the scheduler was able to achieve next to perfect throughput aggre-
gation, at least in a controlled testbed environment. For real-world networks, we observed
that if the bandwidth of the interfaces differed too much (more than a factor of 4), a tradeoff
between achievable video liveness and the efficiency of throughput aggregation (achievable
bitrate) had to be made, i.e., the client buffer had to be increased to balance out the slower
interface. We found for example that a liveness of -10 seconds (the client was 10 seconds
behind the live stream) must be accepted for good quality in case of WLAN and HSDPA
aggregation where the bandwidth difference is high.

Furthermore, we proposed in Chapter [5] modifications that can help increasing the per-
formance in terms of bitrate and liveness when the network bottleneck is at the server. A
bottleneck on the server-side results from multiple streams being active at the same time. In
this thesis, we investigated such a set of live streams streaming the same content. We ob-
served that each live stream behaves as an on-off source. Particularly, most of the time a
stream is actively sending data when a segment is being downloaded and after that waits for
the next segment to become available on the server or for the playout to "consume" a segment
from the client buffer to make room for the next segment. With such a stream behavior in
mind, we evaluated the impact of different modifications on the client-side and some light
modifications on the server-side. We evaluated these with simulation and some with emula-
tion. The results showed that TCP Vegas, a delay based congestion control algorithm, is still
able to slow down its TCP growth before causing congestion and does therefore not
overrun the bottleneck queue even though the connections are short, i.e., 2 seconds. However,
the clients that use Vegas are very conservative in their bandwidth estimation and therefore
do rarely request high quality segments. We also tried increasing the segment duration from
2 seconds to 10 seconds. Even though our intuition told us that the longer a segment is, the
easier it is for TCP to estimate the available bandwidth, we could not find a persuasive reason
for the use of 10-second segments over the 2-second segments. The problem with loss based
TCP congestion control algorithms (e.g. Cubic or Reno) is that their fairness is first estab-
lished after some time [82]], i.e., even if two TCP connections are started at about the same
time, one of them often gets an considerably better throughput during the first seconds. We
therefore tried limiting the TCP[CWND|and so enforce a bandwidth cap on each connection.
We saw that the TCP limitation does contribute to better fairness and bandwidth es-
timation, which in turn results in good quality and stable liveness when the number of clients
increases (but only if this modification is used alone). Furthermore, we found that in case of
live streaming the clients have a tendency to synchronize their request. This is because every
client waits for a new segment to become available and then they all request it at about the
same time. We therefore proposed and evaluated a simple, yet effective method to distribute
the client requests over time (even more than they are naturally distributed by different RTTs
to the server). Using this method, the client remembers the time difference between the time
it requested the first segment and the time the segment was uploaded to the server (file modi-
fication time). For example, if a segment was uploaded at time 2.0 s and the client requested

99

it at time 2.1 s, the time difference is 0.1 s. Note that this time difference is different for every
client. The client then uses this time difference to offset all of its future requests. Because
each client has a different offset the requests stay distributed over time. We found that re-
quest distribution leads to improved results in terms of segment bitrate and, if the client has
sufficient buffers, also liveness.

The idea of distributing requests came from our evaluation of different ways clients re-
quest segments. For example, a client can request the latest segment on the server, or it can
wait with the request. It can also request a segment when it becomes available or wait a bit.
We proposed another simple algorithm for request distribution, which is based on playout
time. Using this algorithm, the client requests a segment when there is only a certain amount
of playout data left. In this case, when clients are in different stages of playout, a natural
good request distribution follows. We found that strategies that do not lead to client request
distribution overflow the router queue more. The overflowing of router queue then leads to
packet loss, inefficient bandwidth usage and therefore smaller segment bitrate (quality) and
decreased liveness and thus should be avoided.

6.2 Future Research Directions

We presented two non-linear video streaming HTTP segment streaming applications, but
there are certainly more application domains that can benefit from the flexibility of video
segments. Even though the basic principles are the same, per domain solutions and benefits
do vary, and more research, development and standardization is needed.

From the networking perspective, HTTP segment streaming seems to be a good solution,
but more empirical data is needed from the streaming providers to better understand the chal-
lenges that they are facing. We find that most of the data available is based on performance
measurements with single or multiple clients, but there is, to the best of our knowledge, no
aggregated data from a streaming provider available, i.e., data that would show how thou-
sands of clients behave when streaming the same content. When such data is available, more
accurate models and assumptions can be made about the client arrival times, client request
behaviour, bitrate switching etc. With the help of this information, theoretical models can
be built that can quickly evaluate the impact of new bitrate adaptation and request strategies,
benefiting not only the streaming providers through a higher income to expense ratio, but also
their customers.

Last, but not least, the list of modifications evaluated in this thesis to target potential
bottlenecks is not exhaustive. There are new technologies appearing which may have a pos-
itive impact on HTTP segment streaming and bring more possibilities on how to retrieve
segments. Examples include SPDY [113]] and TCP Fast Open [77]. SPDY is a new way to
improve download speed in the Internet. Among other things, it supports the multiplexing
of requests over one TCP connection as well as request prioritization and cancellation. This
functionality is interesting for HTTP segment streaming, which may take advantage of it.
The client can, for example, request the same segment in two bitrates at the same time giving
the higher bitrate low priority. Then, when it is clear that there is enough bandwidth, it might
cancel the low bitrate segment and focus only on the high bitrate segment. However, more

100

importantly the cancellation of requests can eliminate the on-off traffic pattern keeping the
connection busy at all times (unless the bandwidth is sufficient for the highest bitrate). Elim-
ination of the on-off traffic pattern makes the connection bulk again and TCP optimizations
for bulk download can be fully effective again. TCP Fast Open allows data to be sent already
during the 3-way TCP handshake. This eliminates the initial delay, and if the CWND]is large
from the beginning of the connection based on historical data, the client can request each
segment over a new TCP connection without any delay or a throughput penalty. This makes
it for example possible for a load balancer to send each segment request (TCP connection) to
a different server.

101

Appendix A

Publications

This appendix lists all the scientific publications that were produced in the course of this PhD
project. Each publication is briefly described, and the individual contributions of the different
authors are explained.

A.1 Conference Publications

NOSSDAYV 2010 Kiristian R Evensen, Tomas Kupka, Dominik Kaspar, Pal Halvorsen, and
Carsten Griwodz. Quality-adaptive scheduling for live streaming over multiple access net-
works. In Proc. of ACM NOSSDAY, pages 21-26, 2010. [69]

This paper describes and evaluates a practical implementation of the multilink frame-
work developed by Kristian Evensen and Dominik Kaspar [72]]. Tomas Kupka with Kristian
Evensen developed the scheduling algorithm and did most of the programming. Kristian
Evensen carried out all the performance experiments, and Dominik Kaspar contributed by
writing the related work section and parts of the architectural section. All authors took part
in the technical discussions and provided feedback on the textual content and structure.

ICDKE 2010 Pal Halvorsen, Dag Johansen, Bjgrn Olstad, Tomas Kupka, and Sverre Ten-
nge. vesp: A video-enabled enterprise search platform. In Proc. of IEEE ICDKE, pages
534-541, 2010. [54]

This paper describes our efforts of integrating our existing video solution based on HTTP
segment streaming with the FAST Enterprise Search Platform. The integration was performed
by Sverre Tennge and Tomas Kupka. The user evaluation was carried out at and by Microsoft.
All authors took part in the technical discussions and provided feedback on the textual content
and structure.

LCN 2011 Tomas Kupka, Pal Halvorsen, and Carsten Griwodz. An evaluation of live adap-
tive HTTP segment streaming request strategies. In Proc. of IEEE LCN, pages 604—612,
2011. [98]

This paper describes possible client request strategies for HTTP segment streaming. The
paper also evaluates the strategies by emulation. Tomas Kupka designed the request strategies

103

and wrote the emulation software as well as carried out all the experiments. All authors took
part in the technical discussions and provided feedback on the textual content and structure.

LCN 2012 Tomas Kupka, Pal Halvorsen, and Carsten Griwodz. Performance of On-Off
Traffic Stemming From Live Adaptive Segmented HTTP Video Streaming. In Proc. of IEEE
LCN, pages 405-413, 2012. [99]

This paper evaluates different client and server modifications in terms of HTTP segment
streaming metrics (Section 4.2)). Modifications are evaluated by simulation. The simulation
framework was designed and written by Tomas Kupka. The simulation was performed by the
same person. All authors took part in the technical discussions and provided feedback on the
textual content and structure.

A.2 Demos at International Venues

ACM MM 2010 Pal Halvorsen, Dag Johansen, Bjgrn Olstad, Tomas Kupka, and Sverre
Tennge. vesp: Enriching enterprise document search results with aligned video summariza-
tion. In Proc. of ACM MM, pages 1603-1604, 2010. [535]

Sverre Tennge and Tomas Kupka integrated an existing video streaming in house solu-
tion with the FAST Enterprise Search Platform (ESP). The user study was carried out by
Microsoft. All authors took part in the technical discussions and provided feedback on the
textual content and structure.

A.3 Journal Articles

Multimedia Tools and Applications Dag Johansen, Pal Halvorsen, Havard Johansen, Haakon
Riiser, Cathal Gurrin, Bjgrn Olstad, Carsten Griwodz, Age Kvalnes, Joseph Hurley, and
Tomas Kupka. Search-based composition, streaming and playback of video archive content.
Multimedia Tools and Applications, 2011. [S6]

This journal article is a summary of our work in the domain of HTTP segment streaming
applications. All authors took part in the technical discussions and provided feedback on the
textual content and structure.

104

Glossary

AUD NAL Access Unit Delimiter NAL [42].

CDN Content Delivery Network.

CWND TCP congestion window [1]].

DCCP Datagram Congestion Control Protocol [34].

DNS Domain Name System.

HTB Hierarchical Token Bucket [[73]].

HTTP Hypertext Transfer Protocol [[19].

IP Internet Protocol [61].
ISP Internet Service Provider.

IW TCP initial congestion window [1].

MDC Multiple Description Coding [38].

MTU The largest protocol data unit that can still pass through the link in one piece.

NAL Network Abstraction Layer [42].

NAT Network Address Translation.

PCR Program Clock Reference [4]].

PES Program Elementary Stream [4].
QoS Quality of Service.

RTCP RTP Control Protocol [32].
RTO Retransmission Time-Out [95]].

RTP Real-time Transport Protocol [32].

105

RTSP Real Time Streaming Protocol [33]].

RW TCP restart congestion window after an idle period [/1]].

SCTP Stream Control Transmission Protocol [35]].
SPEG Scalable MPEG [40].

SVC Scalable Video Coding [39].
TCP Transport Control Protocol [18]].
UDP User Datagram Protocol [17].

VoD Video on Demand.

106

Bibliography

[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control.” RFC 2581 (Pro-
posed Standard), Apr. 1999. Obsoleted by RFC 5681, updated by RFC 3390.

[2] Cisco Systems, Inc., “Visual Networking Index.” http://www.cisco.com/en/US/netsol/-
ns827/networking_solutions_sub_solution.html, May 2013.

[3] “Altus vSearch.” http://www.altus365.com/altus_vsearch.php, May 2013.

[4] “H.222.0: Information technology - Generic coding of moving pictures and associated
audio information: Systems,” ITU-T recommendation, June 2012.

[5] “RealPlayer.” http://en.wikipedia.org/wiki/RealPlayer, May 2013.

[6] “ActiveMovie.” http://www.microsoft.com/en-us/news/press/1996/mar96/actmovpr.aspx,
May 2013.

[7] “QuickTime.” http://www.apple.com/quicktime, May 2013.
[8] “Windows Media Player.” http://www.microsoft.com/mediaplayer, May 2013.

[9] S. Mccanne and V. Jacobson, “vic: A Flexible Framework for Packet Video,” in ACM
MM, pp. 511-522, 1995.

[10] ““YouTube statistics.” http://www.youtube.com/yt/press/statistics.html, May 2013.
[11] “HBO.” http://www.hbo.com, May 2013.

[12] “Viasat.” http://www.viasat.no, May 2013.

[13] “TV 2 Sumo.” http://sumo.tv2.no, May 2013.

[14] “NRK.” http://tv.nrk.no, May 2013.

[15] “Netflix.” http://www.netflix.com, May 2013.

[16] “Comoyo.” http://www.comoyo.com, May 2013.

[17] J. Postel, “User Datagram Protocol.” RFC 768 (Standard), Aug. 1980.

[18] J. Postel, “Transmission Control Protocol.” RFC 793 (Standard), Sept. 1981. Updated
by RFCs 1122, 3168, 6093, 6528.

107

[19] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee, “Hypertext Transfer Protocol — HTTP/1.1.” RFC 2616 (Draft Standard), June
1999. Updated by RFCs 2817, 5785, 6266, 6585.

[20] “HTTP Dynamic Streaming on the Adobe Flash Platform.” http://www.adobe.com/-
products/httpdynamicstreaming/pdfs/httpdynamicstreaming_wp_ue.pdf, May 2013.

[21] R. Pantos (ed), “HTTP Live Streaming.” http://tools.ietf.org/html/draft-pantos-http-
live-streaming-10, October 2012.

[22] A.Zambelli, “Smooth Streaming Technical Overview.” http://learn.iis.net/page.aspx/-
626/smooth-streaming-technical-overview/, March 2009.

[23] T. Stockhammer, “Dynamic Adaptive Streaming Over HTTP - Standards and Design
Principles,” in Proc. of ACM MMSys, pp. 133-144, 2011.

[24] M. E. Crovella and A. Bestavros, “Self-Similarity in World Wide Web Traffic: Evi-
dence and Possible Causes,” in Proc. of ACM SIGMETRICS, pp. 160-169, 1996.

[25] “HSDPA.” http://en.wikipedia.org/wiki/High-Speed_Downlink_Packet_Access, May
2013.

[26] D.E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R. Young, “Com-
puting as a Discipline,” ACM CACM vol. 32, pp. 9-23, 1989.

[27] “VG Nett Live.” http://vglive.no, May 2013.

[28] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 Headers.” RFC 2474 (Proposed Standard), Dec.
1998. Updated by RFCs 3168, 3260.

[29] F. Baker, C. Iturralde, F. L. Faucheur, and B. Davie, “Aggregation of RSVP for [Pv4
and IPv6 Reservations.” RFC 3175 (Proposed Standard), Sept. 2001. Updated by RFC
5350.

[30] “Microsoft Media Server (MMS) Protocol.” http://msdn.microsoft.com/en-us/library/-
cc234711, May 2013.

[31] “Real-Time Messaging Protocol (RTMP) specification.” http://www.adobe.com/-
devnet/rtmp.html, May 2013.

[32] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol
for Real-Time Applications.” RFC 3550 (Standard), July 2003. Updated by RFCs
5506, 5761, 6051, 6222.

[33] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol (RTSP).”
RFC 2326 (Proposed Standard), Apr. 1998.

108

[34] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control Protocol
(DCCP).” RFC 4340 (Proposed Standard), Mar. 2006. Updated by RFCs 5595, 5596,
6335.

[35] R. Stewart, “Stream Control Transmission Protocol.” RFC 4960 (Proposed Standard),
Sept. 2007. Updated by RFCs 6096, 6335.

[36] E. Birkedal, C. Griwodz, and P. Halvorsen, “Implementation and Evaluation of Late
Data Choice for TCP in Linux,” in Proc. of IEEE ISM, pp. 221 — 228, 2007.

[37] B. Wang, J. Kurose, P. Shenoy, and D. Towsley, “Multimedia Streaming via TCP: An
Analytic Performance Study,” in Proc. of ACM MM, pp. 16:1-16:22, 2004.

[38] V. K. Goyal, “Multiple Description Coding: Compression Meets the Network,” IEEE
Signal Processing Magazine vol. 18, pp. 74-93, 2001.

[39] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Video Coding
Extension of the H.264/AVC Standard,” in IEEE Trans. on Circuits and Systems for
Video Technology, pp. 1103—-1120, 2007.

[40] C. Krasic and J. Walpole, “Quality-Adaptive Media Streaming by Priority Drop,” in
Proc. of ACM NOSSDAV, pp. 112-121, 2002.

[41] F. H. P. Fitzek, B. Can, R. Prasad, and M. Katz, “Overhead and Quality Measurements
for Multiple Description Coding for Video Services,” in IEEE WPMC, pp. 524-528,
2004.

[42] “H.264: Advanced video coding for generic audiovisual services,” ITU-T recommen-
dation, April 2013.

[43] S. Carmel, T. Daboosh, E. Reifman, N. Shani, Z. Eliraz, D. Ginsberg, and E. Ayal,
“Network media streaming,” in US Patent Number 6,389,473, May 2002. Filed: Mar.
1999. Assignee: Geo Interactive Media Group Ltd.

[44] “Coding of audio-visual objects: ISO base media file format, ISO/IEC 14496-
12:2005,” ITU ISO/IEC, 2010.

[45] D. Nelson, “Internet Information Services.” http://www.iis.net/learn/media/live-
smooth-streaming, May 2013.

[46] Nullsoft Inc., “The M3U Playlist format, originally invented for the Winamp media
player.” http://wikipedia.org/wiki/M3U, May 2013.

[47] H. Riiser, P. Halvorsen, C. Griwodz, and D. Johansen, “Low Overhead Container For-
mat for Adaptive Streaming,” in ACM MMsys, pp. 193—-198, 2010.

[48] S. Sagrov, A. Eichhorn, J. Emerslund, H. K. Stensland, C. Griwodz, D. Johansen, and
P. Halvorsen, “BAGADUS: An Integrated System for Soccer Analysis (Demo),” in
Proc. of ACM/IEEE ICDSC, 2012.

109

[49]

[50]
[51]
[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

P. Halvorsen, S. S@grov, A. Mortensen, D. K. C. Kristensen, A. Eichhorn, M. Sten-
haug, S. Dahl, H. K. Stensland, V. R. Gaddam, C. Griwodz, and D. Johansen,
“BAGADUS: An Integrated System for Arena Sports Analytics - A Soccer Case
Study,” in Proc. of ACM MMSys, 2013.

“libx264.” http://www.videolan.org/developers/x264.html, May 2013.
“MPlayer - The movie player.” http://www.mplayerhq.hu, May 2013.
“FFmpeg.” http://www.ffmpeg.org, May 2013.

“VLC.” http://www.videolan.org/vlc/, May 2013.

P. Halvorsen, D. Johansen, B. Olstad, T. Kupka, and S. Tennge, “vESP: A Video-
Enabled Enterprise Search Platform,” in Proc. of ICDKE, pp. 534-541, 2010.

P. Halvorsen, D. Johansen, B. Olstad, T. Kupka, and S. Tennge, “vESP: Enriching
Enterprise Document Search Results with Aligned Video Summarization,” in Proc. of
ACM MM, pp. 1603-1604, 2010.

D. Johansen, P. Halvorsen, H. Johansen, H. Riiser, C. Gurrin, B. Olstad, C. Griwodz,
A. Kvalnes, J. Hurley, and T. Kupka, “Search-Based Composition, Streaming and
Playback of Video Archive Content,” Multimedia Tools and Applications, 2011.

TalkMiner, “FXPAL TalkMiner.” http://talkminer.com, May 2013.

D. Johansen, H. Johansen, T. Aarflot, J. Hurley, A. Kvalnes, C. Gurrin, S. Sav, B. Ol-
stad, E. Aaberg, T. Endestad, H. Riiser, C. Griwodz, and P. Halvorsen, “DAVVI: A

Prototype for the Next Generation Multimedia Entertainment Platform,” in Proc. of
ACM MM, pp. 989-990, 20009.

“Tippeligaen.” http://en.wikipedia.org/wiki/Tippeligaen, May 2013.

“Internet Information Services Smooth Streaming Extension.” http://www.iis.net/-
downloads/microsoft/smooth-streaming, May 2013.

J. Postel, “Internet Protocol.” RFC 791 (Standard), Sept. 1981. Updated by RFCs
1349, 2474.

C. Miiller, S. Lederer, and C. Timmerer, “An Evaluation of Dynamic Adaptive Stream-
ing over HTTP in Vehicular Environments,” in Proc. of ACM MoVid, pp. 37-42, 2012.

H. Riiser, H. S. Bergsaker, P. Vigmostad, P. Halvorsen, and C. Griwodz, “A Compar-
ison of Quality Scheduling in Commercial Adaptive HTTP Streaming Solutions on a
3G Network,” in Proc. of ACM MoVid, pp. 25-30, 2012.

R. Houdaille and S. Gouache, “Shaping HTTP Adaptive Streams for a Better User
Experience,” in Proc. of ACM MMSys, pp. 1-9, 2012.

110

[65] S. Akhshabi, S. Narayanaswamy, A. C. Begen, and C. Dovrolis, “An Experimen-
tal Evaluation of Rate-Adaptive Video Players over HTTP,” Image Communication,
vol. 27, pp. 271-287, 2012.

[66] L. De Cicco and S. Mascolo, “An experimental investigation of the Akamai adaptive
video streaming,” in Proc. of USAB, pp. 447-464, 2010.

[67] L. De Cicco, S. Mascolo, and V. Palmisano, “Feedback Control for Adaptive Live
Video Streaming,” in Proc. of ACM MMSys, pp. 145-156, 2011.

[68] “Squid.” www.squid-cache.org/, 2013.

[69] K.R. Evensen, T. Kupka, D. Kaspar, P. Halvorsen, and C. Griwodz, “Quality-Adaptive
Scheduling for Live Streaming over Multiple Access Networks,” in Proc. of ACM
NOSSDAV, pp. 21-26, 2010.

[70] P. Rodriguez and E. W. Biersack, “Dynamic Parallel Access to Replicated Content in
the Internet,” IEEE/ACM Trans. on Networking, pp. 455-465, 2002.

[71] G. G. Feng Wu and Y. Liu, “Glitch-free media streaming,” Patent Application
(US2008/0022005), January 24, 2008.

[72] D. Kaspar, K. Evensen, P. Engelstad, and A. F. Hansen, “Using HTTP Pipelining to
Improve Progressive Download over Multiple Heterogeneous Interfaces,” in Proc. of
IEEE ICC, pp. 1-5, 2010.

[73] M. Devera, “Princip a uziti HTB QoS discipliny,” in SLT, pp. 149-158, 2002.

[74] Move Networks, “Internet television: Challenges and opportunities,” tech. rep.,
November 2008.

[75] V. G. Cerf and R. E. Kahn, “A Protocol for Packet Network Intercommunication,”
ACM SIGCOMM CCR, pp. 71-82, 2005.

[76] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. B. Pos-
tel, L. G. Roberts, and S. S. Wolff, “A Brief History of the Internet,” ACM SIGCOMM
CCR, pp. 22-31, 2009.

[77] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan, “TCP Fast Open,” in
Proc. of ACM CoNEXT, 2011.

[78] V.Jacobson and M. J. Karels, “Congestion Avoidance and Control,” 1988.
[79] J. Nagle, “Congestion Control in IP/TCP Internetworks.” RFC 896, Jan. 1984.

[80] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification to TCP’s Fast
Recovery Algorithm.” RFC 3782 (Proposed Standard), Apr. 2004. Obsoleted by RFC
6582.

111

[81] S.H. Low, L. L. Peterson, and L. Wang, “Understanding TCP Vegas: a Duality Model,”
ACM SIGMETRICS, pp. 226-235, 2001.

[82] S. Ha, I. Rhee, and L. Xu, “CUBIC: a New TCP-Friendly High-Speed TCP Variant,”
ACM SIGOPS Oper. Syst. Rev., pp. 64-74, 2008.

[83] S. Floyd, “HighSpeed TCP for Large Congestion Windows.” RFC 3649 (Experimen-
tal), Dec. 2003.

[84] C. Caini and R. Firrincieli, “TCP Hybla: a TCP Enhancement for Heterogeneous Net-
works,” International Journal of Satellite Communications and Networking, 2004.

[85] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control (BIC) for Fast
Long-Distance Networks,” in Proc. of IEEE INFOCOM, pp. 2514-2524, 2004.

[86] S. Bradner, “The Internet Standards Process — Revision 3.” RFC 2026 (Best Current
Practice), Oct. 1996. Updated by RFCs 3667, 3668, 3932, 3979, 3978, 5378, 5657,
5742, 6410.

[87] M. Handley, J. Padhye, and S. Floyd, “TCP Congestion Window Validation.” RFC
2861 (Experimental), June 2000.

[88] C. Casetti and M. Meo, “A New Approach to Model the Stationary Behavior of TCP
Connections,” in Proc. of IEEE INFOCOM, pp. 367-375, 2000.

[89] M. A. Marsan, C. Casetti, R. Gaeta, and M. Meo, ‘“Performance Analysis of TCP
Connections Sharing a Congested Internet Link,” Performance Evaluation vol. 42,
pp- 109-127, 2000.

[90] A. Wierman, T. Osogami, and J. Olsen, “A Unified Framework for Modeling TCP-
Vegas, TCP-SACK, and TCP-Reno,” in Proc. of IEEE MASCOTS, pp. 269-278, 2003.

[91] W. Elkilani, “An Analytical Model of Non-Persistent TCP Sessions Sharing a Con-
gested Internet Link,” in Proc. of ICNM, pp. 76 —82, 2009.

[92] H.-P. Schwefel, “Behavior of TCP-like Elastic Traffic at a Buffered Bottleneck
Router,” in Proc. of IEEE INFOCOM, pp. 1698-1705, 2001.

[93] I. Hofmann, N. Farber, and H. Fuchs, “A Study of Network Performance with Appli-
cation to Adaptive HTTP Streaming,” in Proc. of IEEE BMSB, pp. 1-6, 2011.

[94] J. Esteban, S. Benno, A. Beck, Y. Guo, V. Hilt, and I. Rimac, “Interaction Between
HTTP Adaptive Streaming and TCP,” in Proc. of ACM NOSSDAV, 2012.

[95] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s Retransmission
Timer.” RFC 6298 (Proposed Standard), June 2011.

[96] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen, “What Happens When
HTTP Adaptive Streaming Players Compete for Bandwidth,” in Proc. of ACM NOSS-
DAV, 2012.

112

[97] L. Kontothanassis, “Content Delivery Considerations for Different Types of Internet
Video.” http://www.mmsys.org/?q=node/64, May 2013.

[98] T. Kupka, P. Halvorsen, and C. Griwodz, “An Evaluation of Live Adaptive HTTP
Segment Streaming Request Strategies,” in Proc. of IEEE LCN, pp. 604-612, 2011.

[99] T. Kupka, P. Halvorsen, and C. Griwodz, ‘“Performance of On-Off Traffic Stem-
ming From Live Adaptive Segment HTTP Video Streaming,” in Proc. of IEEE LCN,
pp. 405-413, 2012.

[100] NS-2, “The Network Simulator ns-2.” http://www.isi.edu/nsnam/ns/, May 2013.

[101] L. Plissonneau and E. Biersack, “A Longitudinal View of HTTP Video Streaming
Performance,” in Proc. of ACM MMSys, pp. 203-214, 2012.

[102] W3techs, “Usage statistics and market share of unix for websites.”
http://w3techs.com/technologies/details/os-unix/all/all, May 2013.

[103] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Video Stream-
ing Using a Location-based Bandwidth-Lookup Service for Bitrate Planning,” ACM
TOMCCAP, accepted 2011.

[104] L. A. Grieco and S. Mascolo, “Performance Evaluation and Comparison of West-
wood+, New Reno, and Vegas TCP Congestion Control,” ACM SIGCOMM Comput.
Commun. Rev. vol. 34, pp. 25-38, 2004.

[105] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the Performance of TCP
Pacing,” in Proc. of IEEE INFOCOM, pp. 1157-1165, 2000.

[106] T.Lohmar, T. Einarsson, P. Frojdh, F. Gabin, and M. Kampmann, “Dynamic Adaptive
HTTP Streaming of Live Content,” in Proc. of IEEE WoWMoM, pp. 1-8, 2011.

[107] P. Ni, A. Eichhorn, C. Griwodz, and P. Halvorsen, “Fine-Grained Scalable Streaming
from Coarse-Grained Videos,” in Proc. of ACM NOSSDAV, pp. 103—108, 2009.

[108] G. Appenzeller, 1. Keslassy, and N. McKeown, “Sizing router buffers,” Comput. Com-
mun. Rev. vol. 34, pp. 281-292, 2004.

[109] A.jan Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante, “Drafting Behind
Akamai (Travelocity-Based Detouring),” in Proc. of ACM SIGCOMM, pp. 435-446,
2006.

[110] A. Hubert and R. van Mook, “Measures to prevent DNS spoofing.”
http://tools.ietf.org/html/draft-hubert-dns-anti-spoofing-00, 2007.

[111] “Dailymotion.” http://www.dailymotion.com/, May 2013.

[112] “FAST Search Server 2010 for SharePoint.” http://sharepoint.microsoft.com/en-us/-
product/capabilities/search/Pages/Fast-Search.aspx, May 2013.

113

[113] M. Belshe and R. Peon, “SPDY Protocol.” http://tools.ietf.org/id/draft-mbelshe-
httpbis-spdy-00.txt, May 2013.

114

	Introduction
	HTTP Segment Streaming
	Problem Description and Statement
	Research Method
	Main Contributions
	Thesis Outline

	Beyond Basic Video Streaming with HTTP Segment Streaming
	The (not so) Historical Background
	Video Segmentation
	Commercial Systems
	Segment Encoding
	MPEG-2 Overhead when Segmentation is Employed

	Segment Playlists
	Related Work
	vESP
	Davvi

	Conclusions

	Analysis of a Real-World HTTP Segment Streaming Case
	Related Work
	Server Log Analysis
	Client Log Analysis
	Conclusions

	Improving the HTTP Segment Streaming with Multilink
	Parallel Scheduling Algorithm
	HTTP Segment Streaming Metrics
	Experimental Results
	Bandwidth Heterogeneity
	Latency Heterogeneity
	Dynamic Bandwidth Links

	Conclusions

	Enhancing the Server Performance
	Transmission Control Protocol
	Congestion Control
	TCP's State after an Idle Period

	Traffic Patterns
	Related Work
	Continuous Download
	HTTP Segment Streaming's On-Off Traffic Pattern

	HTTP Segment Streaming Performance
	Simulation Suite
	Simulation Setup
	Varying Parameters without Quality Adaptation
	Varying TCP Congestion Control

	Increased the Segment Duration
	Requests Distributed over Time
	Limited Congestion Window
	Varying Parameters with Quality Adaptation
	Alternative Congestion Control Algorithms
	Increased Segment Duration
	Requests Distributed over Time
	Limited Congestion Window

	Combination of Alternative Settings
	Client Request Strategies
	The Segment Streaming Model
	The Option Set of a Strategy
	Reduction of Option Combinations
	Liveness Decreasing Strategies
	Constant Liveness Strategies
	Emulation Setup
	Request Strategies Impact on HTTP Segment Streaming
	Parallelism and its Consequences
	Deadline Misses and the Bandwidth Fluctuations
	Influence of Client Interarrival Times Distribution
	Implications for Multi-Server Scenarios

	Conclusions

	Conclusion
	Summary and Contributions
	Future Research Directions

	Publications
	Conference Publications
	Demos at International Venues
	Journal Articles

	Glossary

