Cheat Detection Processing:
A GPU versus CPU Comparison

Héakon Kvale Stensland, Martin @inas Myrseth, Carsten Griwodz, Pal Halvorsen
Simula Research Laboratory, Norway and Department of Informatics, University of Oslo, Norway
Email: {haakonks, martinom, griff, paalh} @simula.no

Abstract—In modern online multi-player games, game
providers are struggling to keep up with the many different
types of cheating. Cheat detection is a task that requires a
lot of computational resources. Advances made within the field
of heterogeneous computing architectures, such as graphics
processing units (GPUs), have given developers easier access
to considerably more computational resources, enabling a new
approach to solving this issue.

In this paper, we have developed a small game simulator that
includes a customizable physics engine and a cheat detection
mechanism that checks the physical model used by the game. To
make sure that the mechanisms are fair to all players, they are
executed on the server side of the game system. We investigate the
advantages of implementing physics cheat detection mechanisms
on a GPU using the Nvidia CUDA framework, and we compare
the GPU implementation of the cheat detection mechanism with a
CPU implementation. The results obtained from the simulations
show that offloading the cheat detection mechanisms to the GPU
reduces the time spent on cheat detection, enabling the servers
to support a larger number of clients.

I. INTRODUCTION

On-line multi-player gaming has experienced an amazing
growth over the last decade. It goes along with cheating as
the most prominent case of malicious behavior performed by
game players [11]. It is therefore in the best interest of game
service providers to eradicate cheating. However, the demand
for a stable service for resource intensive games restricts the
amount of resources that can be dedicated to cheat detection
mechanisms.

Many on-line multi-player games suffer from excessive
cheating in one form or another. However, in many cases,
the existence of cheating is hard to prove [6]. The only part
of a distributed system that a game service provider can trust
is the part of the system running on hardware under their
control. Any other part of the system can and will most likely
be exploited by a cheater. As of now, no existing framework
manages to eliminate all kinds of cheating, so game developers
are forced to either create their own mechanisms or use a
selection of existing solutions to cover the aspects of a game
that a cheater might exploit.

In-game physics, aimed to increase game realism, expe-
riences increased popularity in many kinds of games. Most
games that have implemented in-game physics use it as a major
part of the game-play experience, some even base the entire
game-play around physics alone. In-game physics is therefore
a very likely part of a game to be exploited. To solve this
problem, central servers or other trusted entities must ensure

978-1-4244-8355-6/10/$26.00 ©2010 IEEE

consistency in the movements of all the clients in the game.
With our approach the physics engine can be implemented
on the server together with the cheat detection mechanisms.
This solution frees resources on the game clients. However, it
requires more hardware at the server side.

Adding more hardware to a system can increase its per-
formance, but this serves only as a temporary solution. The
hardware used in commercial game server clusters is expen-
sive, and the performance gained might only be sufficient for
a short period of time. Because of the physical limitations
halting the single-threaded performance increase in normal
CPUs, further performance increase is accomplished by adding
more identical processing cores. The modern GPU is a rel-
atively inexpensive example of such a parallel architecture.
This forces developers to think differently. The process of
adding new and faster hardware is now slowly substituted by
migrating systems to parallel processors. For this change to
be beneficial, serial algorithms must be parallelized.

Our goal in this paper is to determine if graphics processing
units (GPUs) can handle cheat detection mechanisms in a
client-server based game system. We investigate also how
a GPU implementation might scale when compared to the
same mechanisms running on normal CPUs. The results of
our benchmarks show that the GPU scales better than a
CPU when processing cheat detection mechanisms. Offloading
cheat detection to a GPU also frees server resources.

II. BACKGROUND

One of the main challenges in implementing cheat detection
and prevention mechanisms in games is the consumption of
valuable computational resources by the execution of these
detection mechanisms. Game developers strive to create games
with the latest features in the fields of graphical effects, in-
game physics, etc. These features require already most of the
resources available in a computer, both on the server and the
client side of a system. A mechanism for cheat detection is
only usable if its impact on the application is small, both
with regard to performance demands and modifications to the
existing infrastructure.

A. Classification of Cheating

Through the evolution of on-line multi-player games, cheat-
ing has emerged as a serious problem for game providers.
Cheating can ruin in-game economics, turn honest players
into cheating players and in the worst case, lead to players

IEEE Copyright
978-1-4244-8355-6/10/$26.00 ©2010 IEEE

abandoning the game [4]. The diversity of the games being
played on the Internet allows for several means of cheating as
each genre of games have their own unique characteristics and
vulnerabilities. The first important step towards a cheat-free
game is to examine and determine which forms of cheating
are most likely to be attempted.

An early review of the existence of cheating and its pre-
vention was performed by Matt Pritchard [6]. The paper,
aimed at the game development industry, mentions concrete
examples of games which have experienced problems with
cheating, different game communication models and how
cheating applies to these models. The paper also presents
several ideas on solving different cheating cases. However,
cheating problems were largely investigated and dealt with on
a case-by-case basis until Yan and Randell [11] presented an
extensive list of different categories and with it, a taxonomy of
on-line game cheating. This is a three-dimensional taxonomy
based on what are the underlying vulnerabilities, the cheating
consequences and the cheating principals. The taxonomy is
thorough, but unstructured, so GauthierDickey et al [3] present
a more structured taxonomy by categorizing cheats in the
layer in which they occur. Continuing from this work, Webb
and Soh [9] present an updated review and classification of
cheating in networked computer games based on the same
categories defined by [3]:

e Game level cheats are achieved by breaking the rules or
misusing features of the game. Game level cheats do not
require any modifications to the game client or the general
infrastructure.

o Application level cheats include modifications to the
code of the game or the operating system. A common
form of application level cheats are reflex enhancers and
farming bots. Both give the cheater an unfair advantage
by boosting such as the accuracy of the aim or allow
for automation of certain tasks to let the cheater gain
resources while not even playing the game.

e Protocol level cheats are changes to the protocol of a
game like changing packet contents or delaying packets.
Fixed delay cheats are based on introducing a delay be-
fore sending packets from the cheater. This delay appears
only as latency for the other players and the central
server. The delay can allow the cheater to examine all
updates received from the other players before choosing
an appropriate action based on the acquired knowledge.

e Infrastructure level cheats involve modifications and ma-
nipulations of game dependent pieces of infrastructure,
i.e., modifications to driver, libraries, hardware, network,
etc. Information exposure cheats can examine broad-
casted network traffic to give additional information to
a cheater.

B. Existing Cheat Detection Mechanisms

Because of the many existing forms of cheating, there are
many attempted solutions to prevent cheating, both within
academics and the game industry. Different types of cheats
apply to different types of games, therefore some of the

solutions approach different problems with different commu-
nication models. Some are designed for client-server systems,
others for P2P systems and some are usable with whichever
communication model.

There have been several papers suggesting cheat detection
systems. In [12], the authors propose a statistical approach
to cheat detection based on a dynamic Bayesian network
approach. The proposed detection framework relies solely
on the game state, and the proposed solution is designed
to run on the server side to prevent hacks and tampering.
Their experiments show that they are able to effectively detect
cheaters and that the false positive rate is low. However, the
system needs to be trained to detect specific cheats.

A different approach presented by Feng et al. [2] examines
an approach for cheat detection that is based on the use of
stealth measurements via tamper-resistant hardware. This is
a client side modification, and the authors’ solution utilizes
the Intel Active Management Technology platform to access
contents in the physical memory. They present a range of
measurements supported by the hardware that might detect
the methods used by hackers to compromise games. The
challenges with this system are that specialized hardware is
required on all clients and that users might have privacy issues
since this approach requires full access to the physical memory
on their clients.

There are also several anti-cheating systems that have been
put to mainstream use. Three of the most notable are VAC [8],
PunkBuster [1] and Warden [10]. The similarity between the
three mentioned anti-cheat systems is that they are separate
programs that examine programs running alongside the game
being played. They inspect the main memory of the computer,
searching for programs altering or reading the memory used by
the game. Valve reported that over 10.000 cheating players of
"Counter-Strike: Source" were caught within a single week in
late 2006 by running cheating software [7]. However, one issue
with these solutions is that they run in software on the game
clients, and the anti-cheating systems are therefore vulnerable
for hacks and tampering.

Rather than attempting to solve many forms of cheating,
we investigate ways to effectively implement cheat detection
mechanisms in games. We focus on parallel hardware and
how it can be used to make the impact of a cheat detection
mechanism on the game system as transparent as possible. The
cheats that can be exposed by our cheat detection mechanism
could be application, protocol and infrastructure level cheats,
but in particular such cheats that involve modifications to
the client application and network packets to improve game
physics properties. Cheats have also been discovered where
clients increase or decrease the internal clock speed of their
processors, increasing simulation speeds so that objects may
accelerate faster. These kinds of cheats can also be discovered.

C. Nvidia Graphics Processing Units

A GPU is a dedicated graphics rendering device. Modern
GPUs have a parallel structure, making them effective for
general-purpose processing. Previously, shaders were used for

Streaming Multiprocessor

Graphics Processing Cluster [

Shared Memory / Level 1 Cache |

N
[core e ore][core Gore][core e core]
Texture Cache Texture Cache Texture Cache Texture Cache
Constant Cache Constant Cache Constant Cache Constant Cache
..... o
| DRAM DRAM | | DRAM DRAM
Figure 1. Nvidia GF100 Compute Architecture

general-purpose programming, but specialized languages are
now available. Nvidia has released the CUDA framework with
a programming language similar to ANSI C.

The latest generation of GPUs available from Nvidia, il-
lustrated in Figure 1, is the GF100. This generation is often
referred to as the Fermi compute architecture. The GF100
chip is presented to the programmer as a highly parallel,
multi-threaded, multi-core processor. The GF100 architecture
contains up to 512 simple processing cores [5].

GPUs have other memory hierarchies than an x86 proces-
sor. Several types of memory with different properties are
available to the programmer. Each thread has some private
local memory, and the threads running on the same stream
multiprocessor (SM) have access to some shared memory.
Two additional read-only memory spaces called constant and
texture are available to all threads. Finally, there is global
memory that can be accessed by all threads. The GF100
architecture also introduces an L1 cache and a unified L2 cache
for all operations to global and texture memory.

III. EXAMPLE GAME

To show the benefits of using a GPU for cheat detection,
we created a simple space race game simulation, where the
spacecrafts must visit virtual positions, also referred to as
targets. The clients are placed randomly in the virtual world,
giving some clients an advantage as they might be placed
closer to a target. When a target is reached, the clients continue
to the next target. Figure 2 shows a GUI representation of
player objects in the game.

The simulation follows a client-server based game archi-
tecture, where all clients send their position updates to the
server. This approach is chosen for the same reasons as in
consumer market game development: ease of development,
total control of client communication and a centralized control
point. Discrete clients are created within the simulation, and
communication follows the same flow that would be normal
in a networked multi-player game. Furthermore, because we
wanted to design our simulation independent of wallclock
time, we used an artificial timeline based on game ticks. A
tick is a theoretical time duration specified in the configuration
of the system.

To allow reproducible tests, the simulation uses two differ-
ent modes of operation named generation mode and playback
mode. The generation mode uses the principles of the game to
determine random placement of a given number of clients in

Figure 2. Screenshot of the graphical representation of player objects in the
virtual environment.

a virtual environment. From these positions, the clients try
to reach the closest target. After a target is reached, they
continue to the next target. They use a thruster to propel
themselves around. External forces, such as gravity, affect the
clients. While this is happening, the server writes each client’s
location in the virtual environment to several files. These files
are used in playback mode. The generation mode generates
also movement for cheaters. The numbers of cheaters can
be adjusted in generation mode. A cheater behaves in the
same manner as an honest client, but regularly performs
unrealistic motions. Playback mode initializes the clients. The
client state information is read from the files generated in
generation mode, and the states are reported to the server.
The server samples the state information updates from every
client, putting the samples in a sample buffer. The buffer is
read by the cheat detection thread when full.

Because all clients in the game are controlled by the
computer, some rules must be set their behaviour in trying to
reach a target. To reach their targets, the clients require motion
planning. We have not implemented any advanced motion
planning algorithms for this paper. The clients know the targets
that they have reached. After a target is reached, the client
continues to the closest unaccomplished target. The movement
of a client is restricted by the physical model. Honest clients
do not break the rules of the model, while cheating clients do.

In our simulation, the objects experience both linear and
angular acceleration. There is a constant gravitational pull,
affecting the objects, much like the gravity on Earth. All the
other forces are generated by the objects themselves using
thrusters. Figure 3 shows an outline of a game object, with a
main rear thruster and bow thrusters. Objects move forward
with the rear thruster and rotate using the bow thrusters. The
size and thruster power can be modified by parameters.

The physics engine is one of the main parts of the simula-
tion. The engine is responsible for calculating the sum of all
physical forces acting on all objects and updates their positions
accordingly. The physics engine is controlled by configuration
parameters that allow for changing physical properties quickly,

Bow thrusters

<«

\

Main thruster

Figure 3. Illustration of a game object with bow thrusters in the front and
the main thruster at the back.

even during runtime. Game objects are registered with the
physics engine, so it maintains a pool of objects to manage.
Updates of the parameters of an object, such as throttle, are
handled by the individual clients. The integrations of the time
steps from a game tick to the next are done by the engine. The
physics engine does this by updating every game object in the
object pool. The main implementation of the physics engine
runs on the CPU and is only used during generation mode.
During playback mode, the cheat detection mechanisms act as
a reverse physics engine. They try to determine if the position
updates are valid within the current physical model.

The physical model used in this example is a simple model,
with only a couple of physical effects. The most basic of these
effects is linear motion. Basic linear motion is implemented
using Newton’s second law of motion as shown in equation 1:

ZF:ma (1)

The law states that the sum of all forces acting on an object
is the product of the mass and its acceleration. The acceleration
is measured by looking at the change in speed over a known
distance. In our game, there are two linear forces acting on
an object. The first is the acceleration applied by the game
object’s main thruster as illustrated by figure 3. The second
is the vertical gravity that is constant in the entire model.
The total linear force is represented by the sum of these two
vectors.

The second physical effect is angular motion. To allow
object rotation in all dimensions, the properties of the objects
in the game must be extended. Similar to the linear motion
properties of distance, velocity and acceleration, we have
angular motion properties. The equations 2 and 3

dw

Q = n 2
da

w = X 3)

where (2 is the angular displacement of an object in radians,
w is the angular velocity in radians per second, and « is the
angular acceleration in radians per second squared, show how
these relate to each other.

Angular motion is applied to the game objects when the
bow thrusters illustrated in figure 3 are used to change the

course of a object. Support for collisions is implemented in
the model. However, due to the lack of time, it has not been
implemented in the cheat detection mechanisms. It is only
present in generation mode.

There are different ways to perform a cheat in the sim-
ulation. Clients cheat either by modifying the power of their
thruster temporarily or by modifying the values of their current
state: their position, velocity and rotation. If a cheating client
temporarily increases the thrust capabilities of one of its
thrusters, it is able to accelerate faster in a direction to perform
quicker turns or pick up speed faster. Cheaters who change
their state can position themselves closer to a target or change
their rotation to point towards a target. They might also
increase or decrease the magnitude of their velocity vector
when either dashing for a target or slowing down to prevent
passing a target.

IV. IMPLEMENTATION

We have implemented two versions of the cheat detection
mechanism. One is written for the host CPU, while the other
is a CUDA version, written for the GPU device. The cheat
detection mechanism on the GPU is implemented with threads.
The CPU implementation is not threaded and uses a basic
looping structure to simulate the same behavior as the CUDA
version.

The behavior of the mechanisms is illustrated in figure 4. A
single thread works on three consecutive game state samples
for a client, thread one (thl) works on sample s0O, s1 and s2,
while thread two (th2) works on sample s1, s2 and s3 etc. A
sample is the state of the client after a tick in the artificial
timeline.

thl th3 ths th7

I T Ll T Ll T Ll T 1
Samples @s0 ®s ®s2 ®s3 ®s4 ®s5 @56 ®s7
| | | | | | J

th2 tha thé

Figure 4. Sample reading and execution pattern of the threads.

A sample contains the movement of each client and a
positional vector with three values: x, y and z according to
the three-dimensional axes. With three samples the threads can
find the acceleration of the client as a three-dimensional vector.
All external forces added by the physical model can now be
subtracted by applying the calculations of the physical engine
in reverse. The resulting acceleration is the result of the forces
the client has applied to the game object. If the thrust applied
by the client is greater than the maximum thrust allowed by
the game, the client is most likely a cheater.

There are two main node types in our simulation; the server
and the clients. They exchange data as in real networked
games. A packet is either generated by the generation mode or
read from file in playback mode by the clients once for each
game tick.

The server reads all incoming data from the clients. When
a cheater reports erroneous positional data, the cheat detection

©

— 9pu
7H - - Cpu 1

Execution time (s)

10*

Clients

Figure 5. Execution time (in seconds) of the cheat detection mechanism on
the GPU and the CPU.

mechanisms indicates that the movement of the player does
not follow the rules and restrictions of physical parameters of
the game.

Clients act differently depending on the execution mode.
During the generation of movement files, clients write their
locations and other appropriate data to file. In playback mode,
clients read from the generated files and report the data written
in generation mode back to the server. In this way, the system
allows for reproducible tests as the test data is the same for
each test run.

V. EVALUATION

In this section, we describe the performance of our solution
by presenting the experimental results. We investigate both
the total execution time of the cheat detection system and the
total execution time spent on the cheat detection mechanisms.
All tests were run on data generated in generator mode over
100 seconds of "game time". The number of clients used
in the benchmarks ranges from 10 to 6000. The part of the
mechanisms that runs on the GPU in these benchmarks is the
reverse physics engine.

The cheat detection mechanism we tested is implemented
on the following hardware: the CPU used in the benchmarks
was an Intel Core i5 750 processor running at 2.66 GHz with
4.0 GB RAM. The GPU was an Nvidia GeForce GTX 480
with 480 processing cores, 1.5 GB memory and version 3.1
of the Nvidia CUDA framework.

The results of the first benchmark are shown in figure 5. It
shows the total execution time of the cheat detection system.
We can observe that with a low number of clients, the CPU is
faster than the GPU. The reason for this is the added latency
of moving data and code to the GPU. With more than 100
clients in the game, the execution time for the CPU exceeds
that of the GPU, and the performance gap steadily increases
up to 6000 clients, which is the maximum number of tested
clients. This is due to the size of the memory on our test

60

— 9pu

Mechanism execution time % of total execution time

10 .
10° 10° 10°
Clients

Figure 6. Percent of time spent on cheat detection processing on host using
the GPU and the CPU.

machines. When the number of clients increases, the cheat
detection processing on the GPU scales much better than on
the CPU.

When the cheat detection mechanism is processed on the
GPU, the CPU is relieved of performing these tasks and can
work on other game relevant computation.

To determine the offloading effect the GPU has on the CPU,
we have measured how much of the total execution time is
spent on processing cheat detection mechanisms. Figure 6
shows the results of the second benchmark. The results show
that for a small number of clients, the penalty for transferring
data over the PCI Express bus to the GPU is significant,
making the CPU more effective for a small number of clients.
With more than 50 clients, the GPU implementation spends
less time on cheat detection than the CPU implementation.
As the number of clients increases, the time spent on cheat
detection continues to drop to below 15 percent for the GPU
implementation. The CPU version stabilizes around 50 per-
cent. To improve the performance of the GPU implementation
with a low number of clients, it is possible to buffer more
samples before executing the mechanisms on the GPU.

VI. DISCUSSION

We have seen how the CPU and the GPU implementations
of our cheat detection mechanism perform differently when we
increase the numbers of clients in the game. The difference
between the two is smallest when the number of checks
performed on the GPU is small. However, as the number of
clients increases, the increase in execution time of the CPU
implementation is much steeper compared to the increase in
the GPU implementation. This indicates that the GPU imple-
mentation is the more scalable of the two. It is primarily due to
the highly parallel architecture of the GPU. Physics operations
for a large numbers of clients are independent of each other.
They constitute an embarrassingly parallel workload that maps
well to the multi-threaded architecture of the GPU. As further

work, both the CPU and the GPU implementation can be
further optimized. The CPU implementation can be extended
with threading and SIMD operations, and the GPU version can
be extended with asynchronous transfers, optimized access to
global memory accesses and elimination of branching in the
compute kernels.

The cheat detection mechanism we have implemented for
our system is easy to parallelize because physics computations
for clients are independent of each other. Similar systems
with workloads that contain operations that can be performed
simultaneously by a large number of threads can benefit from
using a GPU to offload the processing. When offloading
operations to a GPU, it is important to remember that the
GPU is most efficient if it has enough data to process. It is
also important that the tasks offloaded map well to the multi-
threaded architecture of the GPU. Operations that require only
a few calculations over a small number of threads do not
run very efficiently on a GPU. This is mainly due to the
delay associated with transferring data and code over the PCI
Express bus to the GPU. We can also observe this effect in our
benchmarks when the number of clients playing the game is
reduced to below 50. With the next generation of CPUs from
Intel and AMD, we see a trend with GPUs integrated as a part
of the CPU die. Such solutions might reduce the overhead of
offloading computations to the GPU.

A challenge in implementing parts of a program on a GPU
is that developers have to think differently compared to a
CPU implementation. A GPU implementation requires much
more tweaking and optimization to reap the full benefits of
the architecture.

Although we have experimented with cheat detection in a
game simulation, the GPU can be used for several additional
tasks. If the game uses a physics engine that supports GPU
execution, it might be able to perform all physics calculations
on the server. This will reduce the control of the game clients
and remove the need for a cheat detection mechanism for
consistency of movements for entirely. This can also contribute
to lowering the hardware requirements on the client side of the
game. The cost will however increase on the server side, since
game servers traditionally have not been equipped with GPUs.

VII. CONCLUSION

Even though there is an increasing popularity of on-line
multi-player games, cheating is prevalent. This destructive
behavior degrades the gaming experience of honest game
players. The game industry has always been a step behind the
cheaters, struggling to keep up with new and creative cheating
methods. Although the existing solutions are not sufficient to
eliminate cheating, there is an increasing amount of research
attempting to reduce cheating in on-line multi-player games.
Because of the large diversity of the types of existing on-
line games, the existing cheats and the cheating mechanism
that aim to battle them, are equally diverse. In this paper, we
have investigated how GPUs perform compared to CPUs with
respect to processing cheat detection mechanisms.

Our results show that a system processing a cheat detection
mechanism on a GPU can outperform the same mechanism
running on a CPU, even with only a simple physical model,
but depending on the number of clients due to the GPU
data transfer costs. Although cheat detection mechanisms vary
greatly from game to game, a mechanism that checks for
consistency in physical calculations can be migrated to the
GPU to achieve a performance boost. We have also observed
that it is able to offload the CPU by moving the processing of
a cheat detection mechanism to the GPU allowing the CPU
to perform other tasks while the cheat detection mechanism is
executing.

REFERENCES

[1] Even Balance, Inc. PunkBuster Online Countermeasures. http://www.
evenbalance.com/, Accessed July 2010.

[2] W.-c. Feng, E. Kaiser, and T. Schluessler. Stealth measurements for
cheat detection in on-line games. In NetGames '08: Proceedings of
the 7th ACM SIGCOMM Workshop on Network and System Support for
Games, pages 15-20, Worcester, Massachusetts, USA, 2008.

[3] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr. Low latency
and cheat-proof event ordering for peer-to-peer games. In NOSSDAV
'04: Proceedings of the 14th international workshop on Network and
operating systems support for digital audio and video, pages 134—139,
Cork, Ireland, 2004.

[4] P. Kabus, W. W. Terpstra, M. Cilia, and A. P. Buchmann. Addressing
cheating in distributed mmogs. In NetGames ’05: Proceedings of 4th
ACM SIGCOMM workshop on Network and system support for games,
pages 1-6, Hawthorne, NY, USA, 2005.

[5] NVIDIA. NVIDIA Next Generation CUDA Compute Architec-
ture: Fermi. http://www.nvidia.com/content/ PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf, Accessed Au-
gust 2010.

[6] Pritchard, M. How to Hurt the Hackers: The Scoop on Internet Cheating
and How You Can Combat It. http://www.gamasutra.com/features/
20000724/ pritchard_pfv.htm, Accessed May 2009.

[7] Valve. Steam Message. http://storefront.steampowered.com/Steam/
Marketing/message/837/ ?1=english, Accessed July 2010.

[8] Valve. Valve Anti-Cheat System. https://support.steampowered.com/
kb_article.php ?p_faqid=370, Accessed July 2010.

[9] S. D. Webb and S. Soh. Cheating in networked computer games: a
review. In DIMEA ’07: Proceedings of the 2nd international conference
on Digital interactive media in entertainment and arts, pages 105-112,
Perth, Australia, 2007.

[10] Wikipedia. Warden (software).
(software), Accessed July 2010.
[11] J. Yan and B. Randell. A systematic classification of cheating in online
games. In NetGames ’05: Proceedings of 4th ACM SIGCOMM workshop
on Network and system support for games, pages 1-9, Hawthorne, NY,
USA, 2005.
S. F. Yeung and J. C. S. Lui. Detecting cheaters for multiplayer games:
Theory, design and implementation. In NIME '05: IEEE International
Workshop on Networking Issues in Multimedia Entertainment, pages
1178-1182, Las Vegas, Nevada, USA, 2005.

http://en.wikipedia.org/wiki/ Warden_

[12]

