A Comparison of Model-based and Judgment-based
Release Planning in Incremental Software Projects

Hans Christian Benestad
PREPARE Group, Simula Research Laboratory
Pb. 134, NO-1325 Lysaker, Norway
benestad@simula.no

ABSTRACT

Numerous factors are involved when deciding when to imple-
ment which features in incremental software development.
To facilitate a rational and efficient planning process, release
planning models make such factors explicit and compute re-
lease plan alternatives according to optimization principles.
However, experience indicates that industrial use of such
models is limited. To investigate the feasibility of model and
tool support, we compared input factors assumed by release
planning models with factors considered by expert planners.
The former factors were cataloged by systematically survey-
ing release planning models, while the latter were elicited
through repertory grid interviews in three software organi-
zations. The findings indicate a substantial overlap between
the two approaches. However, a detailed analysis reveals
that models focus on only select parts of a possibly larger
space of relevant planning factors. Three concrete areas of
mismatch were identified: (1) continuously evolving require-
ments and specifications, (2) continuously changing priori-
tization criteria, and (3) authority-based decision processes.
With these results in mind, models, tools and guidelines
can be adjusted to better address real-life development pro-
cesses.

Categories and Subject Descriptors

D.2.9.d [Software Engineering]: Management— Produc-
tiity; D.2.9.g [Software Engineering]: Management—
Software process models

Keywords

Agile, Large Development Projects, Scrum, Practitioners’
Mental Models, Repertory Grid, Case study

1. INTRODUCTION

A common best practice in software development is to de-
liver new functionality to the customer in an incremental
fashion according to the customer’s business priorities [5,
31]. One of the core management tasks in software develop-
ment is therefore to make decisions about which features to
prioritize for delivery in upcoming releases [3]. The activity
of assigning features to subsequent releases under technical,
resource, risk, and budget constraints is referred to as release
planning [1].

ICSE 2011, May 21-28, 2011 Honolulu, Hawaii
Copyright 2011 ACM xxx-x-xxxx-X ...$10.00.

Jo E. Hannay
PREPARE Group, Simula Research Laboratory
Pb. 134, NO-1325 Lysaker, Norway
johannay@simula.no

In this paper, we compare formal release-planning with
judgment-based release-planning. A formal release planning
model purports to make explicit and prescribe the data and
the analyses needed to generate well-founded release plan
alternatives. Tools based on such models are then designed
to aid in various stages of a more formal release planning
process according to a given model. A systematic review by
Svahnberg et al. [32] summarizes existing research on for-
mal release planning. On the other hand, judgment-based
planning (referred to as ad hoc planning in Svahnberg et
al’s review), is based on human judgment and assumes that
a project is able to handle a sufficient amount of release
planning concerns and tradeoffs through project members’
mental processes and through more or less informal negoti-
ations between stakeholders.

Despite the last decade’s research efforts into release plan-
ning models and the availability of mature tools to support
release planning, our clear impression is that most soft-
ware organizations today employ pure judgment-based re-
lease planning. The situation seems analogous to the re-
lated field of software cost estimation: Despite extensive
efforts in developing formalized effort estimation models, by
far the most widely used estimation method today is human
judgment-based estimation [10].

We assume that a critical factor for the acceptance of a
release planning model is the degree of match between the
concerns accounted for by expert planners, and the input
prescribed by the model. If a model does not account for the
most important concerns of the expert planners, a model is
unlikely to be accepted. Likewise, if a model requires input
data that is difficult to collect, or the input is considered
irrelevant by the experts, model acceptance is unlikely. Our
research question, posed in the context of large, bespoke
software development projects, is:

To what extent do the concerns accounted for by
experts in judgment-based release planning match
the prescribed input to release planning models?

There are many drivers in successful technology transfer
[23], several of which go beyond a solution being techno-
logically superior (e.g., whole product thinking [17]). In-
vestigating the degree to which a model and tool addresses
actual practices is a first step in identifying inhibitors and
promoters in technology transfer [21]. Further, it is impor-
tant to identify the target practitioners for the technology
and to balance a supportive versus a normative agenda: A
mismatch between tool and practice could indicate a need
to improve release planning models so as to better accom-
modate planning situations, but could also be attributed to

deficiencies in judgment-based planning practices. With the
research question answered, we expect to understand better
the causes for the perceived sparse usage of release planning
models, and to be able to point to specific areas of improve-
ment for existing practices and tools that purport to support
release planning.

2. RELATED WORK

Our research question has been touched upon in studies that
typically evaluate a given new model against some bench-
mark judgment-based process. The following papers covered
in Svahnberg et al.’s systematic review on release planning
models [32] are relevant in this respect.

Karlsson and Ryan [11] conducted a study at Ericsson
Radio Systems. They reported positive user feedback for a
model based on the Analytic Hierarchy Process [29] that sys-
tematically compares pairs of features with respect to cost
and value. Two areas for model improvement were identi-
fied: The pair-wise comparisons were perceived as laborious
by the involved stakeholders, and interdependencies between
requirements were not accounted for.

Amandeep et al. [2] reported from a study at Corel Cor-
poration. In judgment-based planning, requirements were
insufficiently described, requirement interdependencies were
not clarified, and effort estimates arrived late and were in-
accurate. The authors reported that introducing systematic
release planning remedied these alleged process deficiencies.

Ruhe and Momoh [27] reported from a study at Trema
Group that judgment-based release planning was inefficient
due to continuously changing requirements and the costs of
stakeholder negotiations. After introducing model-based re-
lease planning, the planning process required significantly
less effort and stakeholders were more satisfied. These pos-
itive effects were attributed to tool support for handling
changing requirements and for facilitating the involvement
of all stakeholders in the decision process.

The model proposed by Regnell et al. [22] requires that
quality indicators, benefit breakpoints, and cost barriers can
be identified for particular product domains. In a case study
at a vendor of mobile handsets, the feasibility of collecting
these parameters was verified for six sub-domains. A draw-
back with the model was that it did not directly support
selection and tradeoffs between multiple quality indicators.

Heikkild et al. [8] proposed a five step process on top of
an existing release planning model and tool ([24]), and con-
ducted a survey to collect feedback from a case study of
this process. One of the survey questions “This method of
prioritization allows me to express my needs” resembles our
research question, and received a score of 4.5 on a 6-point
Likert scale. Three of the stakeholders expressed that they
“had difficulties differentiating between the criteria”.

In summary, while some of these studies indicate a reason-
able match between the concerns accounted for by experts
and the input prescribed by release planning models, there
also seems to be room for substantial improvement. Apart
from Heikkilé et al.’s survey, we are not aware of attempts
to systematically collect empirical evidence on this topic.

Our study had three stages. First, we investigated fac-
tors considered in release planning practices. Second, we
catalogued the input factors that are prescribed by release
planning models. Third, we compared factors obtained in
the first stage with those obtained in the second stage.

3. JUDGMENT-BASED RELEASE PLANNING

In this section, we describe the methodology used and the
results of the first stage of our study.

3.1 Study design

To describe concerns considered by experts in judgment-
based release planning, we investigated release planning prac-
tices in three projects in three different organizations in the
Norwegian public sector. One of the projects is, at the time
of writing, the largest software development project in the
country in this sector. We chose this project, Project A, as
the primary representative for judgment-based release plan-
ning. The two other projects may be described as variations
and extensions to the reference project.

Project A is characterized by extensive parallel develop-
ment due to time pressure, complex business rules, and fixed
price elements in vendor contracts [7]. The functional scope
is defined by about 300 user stories [4], acting as short de-
scriptions and placeholders for development tasks requiring
effort in the magnitude of one person-year. The project
selects, designs, builds, and deploys a subset of the user sto-
ries every four months, giving three releases per year. Ten
Scrum teams [30] consisting of eight developers on average,
deliver production-ready code in three-week iterations be-
tween these release points. A six-week planning period pre-
cedes each release period, wherein user stories are elaborated
upon, possible interdependencies between development tasks
are clarified, priorities are set, development effort is esti-
mated, and release plans are created.

The project subcontracts three different vendors to staff
the Scrum teams. FEach vendor works with a designated
Product Owner, which is the business side’s representative
for the relevant system areas. We interviewed the three
Product Owners, the development manager and the lead
architect. These people were perceived as possessing central
roles in the planning process.

Projects B and C have similar characteristics, both being
bespoke development projects in the public sector and us-
ing Scrum practices and periodic releases. However, these
projects are smaller, around twenty participants, and are in
a phase of maintenance and evolution. The development
project managers of these projects were interviewed.

3.2 Repertory grid interviews

The interviews were conducted according to the repertory
grid interviewing technique [6, 9]. This technique is well
suited when the goal is to obtain insights in people’s current
understanding and beliefs. The technique is based on Kelly’s
personal construct theory [12] which implies that people try
to understand concepts and relationships in the world in
terms of bipolar constructs. It is an open interview tech-
nique, which minimizes interviewer bias and enables efficient
analysis using a combination of qualitative and quantita-
tive methods. In a repertory grid session, the interviewer
presents the interviewee with a topic. The topic presented
orally to the interviewees in our case was

Things you take into consideration when assign-
ing priorities to development tasks

The interviewee is then asked to give concrete, self-experi-
enced examples to paint a picture of his or hers view of the
topic. Each example, dubbed an element in the repertory

Figure 1: Rating mat with elements (white) and
bipolar construct (colored).

grid technique, was written down on a cue card. It is recom-
mended that the granularity of the examples should be such
that 7-12 elements can be retrieved from the interviewee.
This number was suggested to the interviewees.

When the retrieval of elements has come to an end, the
repertory grid technique prescribes a session where three
random elements are selected at a time. For each three el-
ements, the interviewee is asked to give a characteristic of
two elements that contrasts them to a characteristic of the
third. For example, if the three elements “interdependen-
cies”, “user would suffer if feature is left out”, and “target
architecture” were to be compared, the interviewee might
characterize the first and the third elements as “technical”,
while characterizing the second element as “functional”. The
resulting contrast pair “Technical-Functional” is said to con-
stitute a bipolar construct in the interviewee’s mental model.
The technique assumes that it is possible to rank all elements
on a scale defined by such a bipolar construct. Hence, to
clarify how the interviewee thinks about each element, he
is asked to place the elements relatively to each other ac-
cording to how much he perceives they relate to one or the
other contrast; see Fig. 1. The procedure of selecting three
random elements is repeated until no further constructs can
be identified.

It is often sensible to ask the interviewee to rate the el-
ements according to a number of researcher supplied con-
structs of special interest to the researchers [6, 9]. At the
end of each session, we asked the interviewees to rate each
element according to the following supplied constructs:

e Easy to assess — Difficult to assess

e Can be assessed early — Must be (re)assessed late

e Not so important factor — Important factor
These constructs were provided to translate the intervie-
wees’ perceptions into immediate improvement initiatives:
It makes sense to start with elements that are classified as
Important factor, Can be assessed early, and Fasy to assess.

3.3 Aggregation of grids

When the construct system of more than one person is to
be analyzed, individual grids must be aggregated. A spe-
cial form of content analysis is recommended for this pur-
pose [9, 13]. To aggregate the elicited elements, each of
the authors grouped the elements into inductively defined
categories, and assigned a descriptive name to each cate-
gory [9]. We then compared the two resulting categoriza-
tion schemas and identified any categories that had similar
meaning between the two authors. The proportion of ele-
ments categorized equally with regards to these categories
to the total number of elements belonging to matching cat-

Table 1: Agreement scores

Element categories Construct categories

RE1 92% RC1 7%
RE2 88% RC2 75%
RE3 86% RC3 80%

egories was tracked as reliability measure RE1. The propor-
tion of matching elements to the total number of elements
was tracked as RE2. RE2 will always be less or equal to
RE1, because RE1 only regards the elements that are in-
cluded in the matching categories, while RE2 includes the
total number of elements.

To produce a final categorization schema, the authors ne-
gotiated the meaning of each remaining category. Disjoint
categories were either merged into the already agreed cate-
gories (and the semantics adjusted accordingly), or new cat-
egories were agreed upon. The elements were then placed
accordingly.

To measure the reliability of the finalized categorization
schema, each of the authors repeated the categorization of
elements into the agreed categories, after three months of
elapsed time, and the proportional agreement (number of
matching assignments to total number of elements) was tracked
as RE3.

To aggregate the elicited constructs, the procedure was
repeated, this time using the constructs as the basis for cat-
egorization. The corresponding reliability was measured and
denoted RC1, RC2 and RC3.

Table 1 gives the agreement measures defined above. The
numbers indicate reasonably well-defined and disjoint cate-
gories.

3.4 Results: Categories

A total of 42 elements were elicited in Project A, and content
analyzed into the following seven categories:

e Design specification’s clarity and linkage to overall sys-
tem goals

e Benefit for user
e Dependencies within solution

e Resource availability and project roles
e Costs

e External requirements

e Technical and functional sustainability

A total of 22 constructs were elicited in Project A, and con-
tent analyzed into the following five construct categories:

Self-imposed vs. externally imposed concerns
Engineering vs. soft concerns
Functional vs. technical concerns

[]
[]
e Execution vs. goal-oriented concerns
[]

Agile vs. plan-based concerns

The construct categories constitute a five-dimensional space
of concerns accounted for by expert planners in Project A,
while the element categories summarize the concerns they
focused on in the project.

Project B and C' resulted in 8 elements and 5 constructs
in each of the two projects. These were not included when
generating the categories above, but are discussed separately
in cases where they represent variations from the categories.

Hard constraints Technical constraint Requirement dependencies

Quality constrains

Budget and Cost constraints

Resource constraints

Effort constraints

Time constraints

Soft factors Stakeholders influence factors

Value factors

Risk factors

Resource consumption factors

Table 2: Taxonomy[18]

4. FACTORS PRESCRIBED BY MODELS

The second stage of our study was to catalog input factors
that are prescribed by release planning models. We com-
piled such factors from the primary papers included in a
recently published systematic literature review on release
planning models by Svahnberg et al. [32]. The factors were
then organized according to a taxonomy developed as part
of Svahnberg et al.’s review, see Table 2. Section 5 discusses
these concrete factors in more details.

We selected the most comprehensive release planning model
in the review as a reference model, to which other models
may be described as variations and extensions. The spe-
cific reference model chosen was the model underpinning the
most recent (2010) version of the tool ReleasePlanner [24].
This model most comprehensively covers the categories of
Svahnberg et al’s taxonomy. It represents the EVOLVE-
family of release planning models, treated in 16 out of 24
primary papers in [32].

5. COMPARISON

The third stage of our study compared the factors prescribed
by models (Stage 2) and the factors elicited from actual
projects (Stage 1). The following discussion is organized
from the point of view of the categories generated from
the elicited elements of Stage 1. This gives the empirically
elicited factors precedence over those derived from models.
This is a deliberate position in our current study.

In the following, we will discuss each category in turn.
For each category, we plot the elements according to their
ranking on our supplied Easy to assess — Difficult to as-
sess and Important — Less Important constructs (Figures 2
through 8). It is reasonable to assume that important plan-
ning factors that are also difficult to assess constitute areas
that deserve particular focus in release planning practices.
For clarity of presentation, we omit the third supplied con-
struct from this discussion.

5.1 Design specification’s clarity and linkage
to overall system goals

Items to be scheduled for future releases go under several
names: features, user stories, use cases, tasks etc., and vary
between different development methodologies and projects.
In any event, an item to be scheduled represents a cohe-
sive unit of work that improves some functional or technical
quality of the system.

In Project A, items to be scheduled are briefly described
user stories requiring an average development effort of one
person-year. During release planning, user stories are elab-
orated upon and some are divided into a few smaller stories.
In the project, concerns were raised as to the degree of elabo-

54 Linkage fo vision and adequate specification detail
55 Align tasks with system vision

Important
54 Sufficient detail in specification «

« 53 Completeness of solution descriptions

55 Adequate specification detail = 54 Focus on contents rather than estimates&capasity

Possible to assess early Must be (re)assessed late

55 Timely solution description

Less important

Figure 2: Category: Design specification’s clarity
and linkage to overall system goals

ration and specificity of the user stories. These concerns are
what ended up in the category Design specification’s clarity
and linkage to overall system goals. All concerns belonging
to this category were thought to be important; see Fig. 2.
If user stories were not specified and designed at a sufficient
level of detail, user benefits and costs were difficult to as-
sess, and appropriate release scheduling became difficult. To
achieve sufficient throughput, the scheduling activity had to
be performed in parallel with the specification process. The
expert planners therefore had to accept a degree of uncer-
tainty associated with the understanding of user stories to be
scheduled, and had to update the plan as new information
and understanding emerged.

In the reference model, planning items may be named
freely to cater for different methodologies. They are as-
sumed to be described at a level of precision that enables
the stakeholder to evaluate facets of added value implied by
the feature. It is also assumed that realistic resource esti-
mates can be given and that dependencies with other tasks
can be identified.

These observations suggest the following possible mismatch:

e 1. Release planning models assume a shared understand-
ing of features and tasks between stakeholders, while in re-
ality, such understanding may evolve through a continuous
process of knowledge generation and sharing.

For Project B and C, no issues with task descriptions were
mentioned. It is reasonable to believe that this difference
is due to these systems being in a phase of maintenance
and evolution, where development tasks could be described
relative to an existing, tangible system.

5.2 Benefit for user

The extent to which user stories contributed to core func-
tionality and added value were prime concerns with the in-
terviewees in Project A. In our content analysis, such con-
cerns ended up in the category Benefit for user. The high-
level user stories had been assigned a preliminary priority
during the project inception phase. This initial priority was
guiding, but not binding during the actual release planning.

Being familiar with the overall release goals was essential
to the stakeholders when they assessed benefits and priori-
ties. The overall goal of a release ranges from business-level
requirements to architectural restructuring, and a user story
was deemed beneficial to the extent that it contributes to the
fulfillment of these goals. Once the link to release goals was
established, concerns of users’ productivity were considered.
Fig. 3 summarizes the concerns mentioned by the subjects.

53 Value for user
=54 Value for end user

51 Importance wrt. overall release goal

T Important
52 Operation according to new legisiation »

51 Contribution to overall release goal
52 Penalty in operation if not implemented
52 Technology should support current functionality «

Easy to assess

S1 Total throughput of operation

S2 Efficiency in officials\ work flow'

Figure 3: Category: Benefit for user

For project B and C, which were both in a phase of mainte-
nance and evolution, reducing cost of IT operation was an
additional, important aspect of benefice.

To prioritize user stories, the product owner in Project A
uses an ordinal assignment scheme [3], with three levels: A
user story is critical if a release goal cannot be reached with-
out it (but initial design may be simplified to achieve accept-
able cost), desired if the users story implies that the users
can increase their productivity, and optional if the user story
is useful, and not directly characterized by the former two
criteria.

In the reference model, value and benefits are encom-
passed by the notion of walue criteria. Value criteria are
at the core of assessing or maximizing the value of a release.
Indeed, the goal of release planning models is to schedule
features so that value is optimized under given constraints.
The reference model allows for any number of value criteria
to be defined by the model user. Stakeholders are invited to
use a 9-point scale to rate each feature on each value crite-
rion. Each criterion can be weighted to allow the scheduling
algorithm to put more or less emphasis on certain criteria.
In [28], the value criteria are handled as individual opti-
mization criteria, and the trade-off between the individual
optima is left to the expert planner. Other methods than
9-point scales have been used; e.g., the analytic hierarchical
process (AHP) and pair-wise comparisons to come up with
a total ranking of the features [11].

Other variants over the reference model include the model
in [22] which differentiates between useless, useful, competi-
tive, and excessive benefit. Stakeholders can be asked about
their judgment on when the benefit reaches a market break-
through. Financial measures, such as net present value [16]
and revenue [33] have been proposed as value and optimiza-
tion criteria. Note that all these methods, including that of
the reference model, assume non-trivial human judgments
as input.

These observations suggest the following possible mismatches:

e 2. Release planning models assume stable criteria over
all releases for value assessment, while in reality, the value
of a feature may be tied to goals stated for each release.

e 3. Release planning models assume that the inclusion
of a feature is negotiable, while in reality, critical features
may always have to be included, and then possibly with an
on-the-fly modification in the design to reduce cost.

The latter point could partly be accounted for by the refer-
ence model through pre-assignment of features to releases.
However, the possibility for dynamically reducing feature
cost is not integrated into the scheduling algorithm.

Difficult to assess

Imuur‘?aﬁl‘r“k order due o technical dependencies

54 Coordination between functional areas&vendors « « 55 Technical and functional dependencies

Easy o assess Difficult io assess

« 51 Task order implied by dependencies’
53 Synergy effects by combining tasks

Less important

Figure 4: Category: Dependencies within solution

5.3 Dependencies within solution

The interviewees mentioned that various types of depen-
dencies between the user stories influence priorities. Such
concerns were placed in the category Dependencies within
solution. Fig. 4 summarizes the concerns mentioned for
this category. Clarifying dependencies was intertwined with
the design process (Section 5.1), and was perceived partic-
ularly challenging because interdependencies normally in-
volved several competence areas within the system.

In release planning models, requirement dependencies re-
fer to constraints on the order with which features can or
should be developed. In the reference model, a coupling
dependency refers to a situation where two features must
be developed in the same release, while a precedence de-
pendency entails that the development of one feature must
precede the other. In [15] the authors use a “not later than”-
dependency, which is equivalent to stating a disjunction be-
tween a coupling dependency and a precedence dependency.
In [33] one adds an exclusion dependency, signifying that two
features cannot be developed in the same release. These
authors also allow for explicitly modeling synergy effects
and added costs implied by two features being developed
together.

More direct variants to the reference model include [20]
where fuzzy logic is used to allow stakeholders to express a
degree of dependency; for example, to express the strength
of a synergy effect if two features were to be developed to-
gether, or the degree of a stakeholder’s belief that a depen-
dency actually exists. In [33], synergy effects between pairs
of features are modeled explicitly.

These observations suggest the following possible mismatch:

e 4. Release planning models assume clearly defined, pair-
wise interdependencies, while clarifying interdependencies in
reality may involve substantial creation and interchange of
system knowledge, the need for which is only apparent dur-
ing the more detailed elaboration phases.

5.4 Resource availability and project roles

In Project A, it is apparent that people possessing deep
domain knowledge and system knowledge quickly become
critical resources. It was also perceived that there are not
enough people with this competence to serve the demands of
the other actors in the project. These concerns were grouped
into the category Resource availability and project roles.
The reference model requires estimates of resources needed
to develop new features. Several resource types can be spec-
ified and each of them can be estimated separately.
Variants relative to the reference model include [26], where

Important

S4 Timely allocation of resources for specification « 5 Functional resources are bottlenecks

54 Sufficient key resources
53 Compentencees « v

Easy to assess Difficult to assess

S5 Distribution of tasks according to competencees - -
55 Coherence between tasks in a release

Less important

+ 54 Balance overall control against information overioad

Figure 5:
project roles

Category: Resource availability and

effort estimates are generated by an integrated simulation
model, taking parameters such as product size and com-
plexity as input. In [19], one allows for uncertainty in the
resource estimates, by letting the user define a triangular
probability function for the resource estimates. Again, [11]
uses AHP and pair-wise comparisons to assess the resource
requirement for each feature. In [22] one elicits stakeholders’
cost barriers, i.e., the level of quality at which costs start to
rise quickly with further improvements to the quality level.

Models can account for different resource types, but they
focus on development capacity. Interestingly, although it
was perceived in Project A that a lack of personnel with
domain and system knowledge presented serious bottlenecks
in the project, needed capacity and resources were, in fact,
estimated with respect to development effort, only. It would
seem that both models and practices should broaden their
scope beyond capacity for development. These observations
suggest the following tentative mismatch:

e 5. Models focus on development capacity as the key re-
source constraint, while in reality, combined domain and
system knowledge is a critical resource throughout planning
and development. Effort required by various resource types
may be perceived as being difficult and time consuming to
estimate, especially at the granularity of individual features.

5.5 Costs

In Project A, the release dates were fixed and absolute, and
development capacity was estimated for each of the three
development vendors. Concerns around the constraints this
incurred in terms of e.g., fitting budgets, time, and con-
tracts were categorized in the category Costs. Fixed de-
ployment dates and estimates of development capacity were
major planning constraint in Project B and C as well.

In the reference model, the model user can define any
number of resource types, and assigns the capacity for each
resource type in each release. The scheduling algorithm
aligns these constraints with estimates of resources needed
per feature. In the reference model, a feature can be pre-
allocated to a certain release, hence accounting for specific
timing requirements. The projects empirically investigated
in this study are well catered for in this respect. For exam-
ple, by defining the capacity of each vendor as a resource
type, the cost structure for Project A’s releases may easily
be expressed in the reference model.

Variants of the reference model include [33], which allows
for a capacity penalty to be incurred if resources are moved
between resource types (team transfer). In [19] one allows

R Important
51 Fixed release date «

54 Commercial concerns limit agility «

Easy mass%s.s Difficult to assess

3 Size of task

- 51 Assess simpler solutions for expensivedcritical tasks

51 Development capacity for release « -
Less important

Figure 6: Category: Costs

Important

53 Formal requirements from the government « « 53 Keep legacy system alive

53 Integration to external systems -

Easy to assess ifficylt to assess
i ORI SRE8SS invertace

Less important

Figure 7: Category: External requirements

for uncertainty in the assessment of resource capacity by
letting the user define three-point estimates of capacity. In
[26], the authors allow for a constraint on duration of each
release. This constraint should then be balanced against
constraints on effort and quality.

5.6 External requirements

In Project A, there is one product owner for each of the three
vendors, and each product owner is made fully responsible
for priorities and scheduling of tasks across a vendor’s teams.
The interviewees made a clear distinction between external
and internal stakeholders. Most requirements from exter-
nal stakeholders were perceived as mandatory. Likewise, in
Project B, requirements from a certain external stakeholder
always received highest priority. These concerns of require-
ments that come from outside the project and which often
conflict with the flow of the project were rather pronounced
and got classified in the category Ezternal requirements.

In the reference model, value estimates from certain stake-
holders may be given more weight so that the scheduling
algorithm emphasizes the opinions of more important stake-
holders. In addition, different stakeholders can be invited
to assess different sets of features, and different stakehold-
ers can be invited to assess different aspects of value. Thus
models support rather elaborate patterns of how stakehold-
ers influence release planning.

These observations suggest the following possible mismatch:

e 6. Models assume that several stakeholders may have an
explicit impact (through voting) on the release plan, while in
actuality, planning decisions may follow a hierarchical pat-
tern.

5.7 Technical and functional sustainability

In Project A, development tasks describing improvements

Important

51 Overall priority given to technical qualities
=54 Sustainability of solution

Easy to assess = Difficylt to assess
§2 Uniform and changgable Solution

52 IT depariments technical guidelines'
Less imporiant

= S2 Performance, stability and scaleability

Figure 8: Category: Technical and functional sus-
tainability

to technical qualities are defined as separate planning items
entering the same prioritization procedure as do functional
requirements. This approach is consistent with the reference
model; see below. However, at the time of study, the devel-
opment groups were under pressure to deliver the required
functionality for the next release. The project explicitly
expressed a policy where technical qualities had to be de-
emphasized in this period, but made it clear that such qual-
ities should receive more attention in later releases. Hence,
constraints on quality were stated qualitatively, as part of
clarifying the release goals. In Projects B and C, the sit-
uation was similar. For some releases, the improvement of
technical qualities was stated as an important release goal,
and development tasks to increase such qualities received
high priority. Such concerns were categorized under the cat-
egory Technical and functional sustainability.

In general, quality constraints are requirements on quali-
ties such as dependability, usability, performance, and main-
tainability. The reference model does not explicitly allow for
quality constraints. However, the improvement of a given
technical quality can be treated as any other feature, and
traded off against other features.

Variants to the reference model include [26], where qual-
ity is measured as the number of defects per KLines of code,
and the model allows for an upper limit on this measure
for a specific release. This quality constraint must then be
balanced against constraints on effort and duration. A sim-
ulation model is employed to estimate the quality for a given
release plan alternative.

These observations suggest the following possible mismatch:

e 7. Release planning models suggest that the quality of
a new version can be predicted, and checked against quan-
titative quality constraints. In reality, a project might not
have the required resources and measurement infrastructure
to do so, and may instead employ qualitative descriptions of
quality goals.

5.8 Risk factors

Risk factors assess the likelihood of undesired events and
their consequences in release plan alternatives. In the refer-
ence model, risk can be dealt with by quantifying the neg-
ative value of an undesired event inherent in a feature and
defining a total amount of acceptable risk per release. The
method in [15] lets the stakeholder assess the risk associated
with each release plan alternative, using a qualitative risk
assessment framework.

In Project A, none of the interviewees explicated risk as

a concern during release planning. However, from informal
discussions we were made aware that the project had clear
procedures for dealing with threats that could lead to un-
desired events and therefore present risks. Nine different
types of threats were identified in the project. If a particu-
lar risk was identified, it was assigned to one of these nine
pre-defined threat types, and a most likely cost estimate
for the risk was obtained. This method of quantifying risk
closely matches the reference model: The types of threats
may be identified as resource types, and a maximum accept-
able risk per release may be assigned. In Projects B and C
risk factors were not mentioned by the interviewees.

5.9 Analysis of constructs

We now turn to the 9 construct categories. As for individual
constructs, construct categories are interpreted as ordinal
scales, on which elements can be ranked. For our compari-
son of planning models with actual planning, we discuss the
extent to which model-based release planning reflect release-
planning concerns along these scales.

Self-imposed vs. externally imposed concerns. Some con-
cerns originated from the project itself, while others had
been imposed on the project by external parties. Externally
imposed concerns usually took priority over self-imposed
concerns. In the reference model, priority differences can
be accounted for by assigning different priorities to different
stakeholders, and by pre-allocating certain tasks to specific
releases. However, it is not obvious how to appropriately
take account for the instability and unpredictability of these
externally-imposed concerns.

Engineering vs. soft concerns. Some concerns mainly re-
lated to the efficient and rational engineering of the software
system, while some related to the psychosocial and collab-
orative working conditions in the project. The model tax-
onomy (Table 2) distinguishes between soft and hard con-
straints; however the soft factors in this dichotomy are still
engineering type factors in terms of our construct category.

Functional vs. technical concerns. Expert planners distin-
guished between priorities for functional qualities and prior-
ities for technical qualities. Trading off between the two was
a continuous challenge. Although technical qualities can be
accounted for by release planning models, as described in
Section 5.7, the models provide little support in making ac-
tual trade-offs.

Ezecution vs. goal-related concerns. Some concerns were
related to the alignment of tasks with the system vision and
release goals, while others were concerned with preparing
for efficient development. This construct category is simi-
lar to the distinction between strategic vs. operational re-
lease planning, where, according to the definition provided
in [32], the former is input to a series of the latter. How-
ever, an observation from our study is that goal-oriented and
execution-oriented concerns were not easily separated.

Agile vs. plan-based concerns. Some concerns originated
mainly from agile principles while some originated mainly
from plan-driven principles. For example, a key concern
related to agile-based principles was to timely describe fea-
tures and designs to a sufficient level of detail for prioritiza-
tion and effort estimation. As described in Section 5.1, the
concern of evolving feature descriptions and design specifica-
tions are not well accounted for by release planning models.

6. DISCUSSION

By its focus on contrasts, the repertory grid technique aids
in putting issues into a larger perspective. We found that
release-planning models focus their strengths within limited
areas of the space defined by the construct categories that we
elicited: Models tend to focus on internally rather than ex-
ternally imposed concerns, on engineering-type rather than
soft concerns, and on plan-based rather than agile-based
concerns. Accounting for both functional and technical re-
quirements in the planning process is not well supported,
and neither is accommodating for both strategic and opera-
tional concerns. Some of these limitations constitute possi-
ble improvement areas for release planning models and as-
sociate tools, while others might be beyond the scope of
such tools. In the latter case, we believe it is important
that model and tool users are aware of concerns that are
not covered to be able to compensate when determining the
eventual release plans.

From the analysis of element categories, we summarize
the following to be areas that both expert-based and model-
based planning consider: costs, resource capacities, interde-
pendencies between features, risk, and multiple aspects of
value. The fact that factors coincide at this level of abstrac-
tion indicates that it can be useful to study detailed planning
factors for one approach in view of the other. When detailing
such factors, our study pinpoints specific issues that require
attention:

Evolving requirements and design. While model-based re-
lease planning presumes crisp definitions of candidate fea-
tures, the planning phase in Project A included substantial
effort to understand the features, their design specifications
and their interdependencies. One viewpoint might be that
such activities should precede the release planning activity.
However, there are reasons why release planning must some-
times occur in parallel with analysis and design activities.
First, projects may, pragmatically, allow designs of “manda-
tory features” to be simplified if capacity is about to be
reached. The need for such redesign activities will only sur-
face during the planning activity. Second, to achieve the re-
quired throughput of design specifications and release plans,
letting the two activities occur in parallel may be the only
option. An insight from this discussion is that continuous re-
planning may be necessary both with judgment-based and
model based release-planning; cf. [25].

Ruhe and Momoh [27] reported from an organization ex-
periencing late and unclear requirements, where the intro-
duction of model-based release planning led to improvements
in the requirements process. That such favorable biproducts
occur is probably situation dependent, and probably also
depends on the organization’s willingness to change require-
ment analysis practices. Even with positive side effects like
those reported by Ruhe and Momoh, we believe that being
able to handle evolving requirements and designs is likely
to constitute a challenge when introducing more structured
release planning in organizations that use incremental de-
velopment methods.

Authority-based decision processes. Planning models take
into account priorities from several stakeholders, and at-
tempt to balance satisfaction among the stakeholders. In
Project A, the Product Owner of a given system area col-
lects input from stakeholders, but is given the authority
and responsibility for setting priorities. Possible advantages
with an authority-based approach are that a steady path to-
wards an ultimate vision for the system can be maintained

more easily, and that responsibilities are more clearly de-
fined. With a more democratic process, stakeholder satisfac-
tion might be higher overall, due to more direct influence on
the planning outcome. Although model-based release plan-
ning can be tailored to an authority-based decision process
through stakeholder weights, we believe that organizations
should be prepared to explicate, and challenge, their cur-
rent authority systems when model-based release planning
is introduced.

Priorities in the face of continuously changing criteria.
Release planning models presume that criteria such as im-
portance and wurgency are properties inherent to a given
feature. Hence, values assigned to these properties are as-
sumed to remain relatively stable over several releases. In
Project A, the goals stated for the upcoming release were
heavily taken into account when setting the urgency for a
given feature. For example, a refactoring task might be con-
sidered not urgent (low priority) for a release because tech-
nical qualities were down-prioritized in this release. The
situation could be reversed in the next release, giving high
priority to refactoring tasks.

From this, it seems that a new concept of release focus
in release planning models would help in achieving a better
conceptual match with release planning in practice. Project
management and product owners could decide upon foci for
the upcoming releases, while other stakeholders could as-
sign release-independent assessments of system-specific as-
pects of value. With different settings for release focus, the
proposed plans would also differ.

A clearer conceptual separation between value inherent to
features, and focus decided for each release would probably
be beneficial to resolve the ambiguity in the concepts of pri-
oritization and priority. For example, priority is sometimes
considered as the value inherent to a feature, while other
times it might express the decided sequence of features in
the development plan. We observed this in Project A, and
the ambiguity is also described in [14]. Resolving such am-
biguities is important in order to achieve an efficient and
rational release planning process.

6.1 Future work

This study has given some insight into how experts think
about costs, benefits, and resulting prioritizations. An area
for future research is to understand more about how expert
planners employ a multitude of criteria, coupled with un-
certain information, to come up with “value” or “benefit”
assessments for a given task. With a better understanding
of this essential step of release planning, existing models and
tools could be further improved.

6.2 Threats

The reliability in the researchers’ interpretation of interview
data is an obvious threat to validity in this study. In spite of
audio recording, double, independent analysis and member
checking, it is clear that the inductive process of generating
classifications could be colored by preexisting knowledge and
opinions within the researchers own belief systems. How-
ever, it is reasonable to expect that this bias would have
a conservative effect, leading to the discovery of fewer dis-
crepancies between actual planning and planning according
to “the book”. Hence, it is reasonable to treat the discovered
discrepancies as substantive.

The validity of the study beyond the immediate study

context is problematic for all empirical studies within soft-
ware engineering, and for case studies in particular, due to
the lack of validated constructs and theory. In this study,
we attempted to shed some light on the generalizability by
generating the classification in one study, and checking its
robustness in two additional projects. However, the three
projects were similar in many respects, but varied a great
deal in size. We believe the size factor, in terms of number
of people and organizational units involved in the prioriti-
zation process, is an important discriminator with respect
to how release planning is and should be performed. Addi-
tional situational factors that might have influenced the re-
sults are development type (bespoke), delivery rate (frequent
deliveries) and criticality (business critical). Arguments of
generalizability findings are therefore suggestive only.

7. CONCLUSION

We have compared the concerns accounted for by experts in
judgment-based release planning with prescribed input to
formal release planning models.

We found that the two approaches cover common ground
when it comes to inputs to the planning activity. Concerns
related to costs, resource capacities, interdependencies, risk
and value were important in both approaches. By analyzing
these areas in more detail, we identified three major sources
of mismatch between the two approaches to release planning

e Evolving requirements and design
e Authority-based decision processes
e Priorities in the face of continuously changing criteria

Our study indicates that developing a shared understand-
ing of features and their possible interdependencies requires
the most effort in the planning process, and that the allo-
cation of features to releases constitute a less complex task.
Nevertheless, this allocation process can require substantial
resources, and it is probable that the introduction of re-
lease planning tools, in their current state, would make the
planning process more efficient. However, we believe that
it is possible to harmonize release planning models better
with the mental models of expert practitioners, and that
this closer match will increase the usability positive impact
of release planning tools.

Our hope is that findings from this study can be taken
into consideration by practitioners, tool developers, and re-
searchers who are working on new or improved methods
for release planning. The three areas of concern mentioned
above constitute a starting point for such efforts.

Acknowledgments

The authors are grateful to the project managers and inter-
viewees of Projects A, B, and C for giving us their valuable
time and for their enthusiasm and openness during the inter-
views. The authors are also grateful to Giinther Ruhe who
provided us with access to the ReleasePlanner tool and to
Dietmar Pfahl who explained the fundamentals of the tool
to us.

References

[1] A. Al-Emran and D. Pfahl. Operational planning, re-planning
and risk analysis for software releases. In J. Miinch and
P. Abrahamsson, editors, Proc. Int’l Conference on Product-
focused Process Improvement (PROFES 2007), pages 315-329.
Springer, 2007.

(2]

(3]

4]
5]
6]
(7]

8

19l
(10]

(11]
(12]
(13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

28]

[26]

(27]

(28]

(29]

G. R. Amandeep and M. Stanford. Intelligent support for
software release planning. In 5th Int’l Conf Product-Focused
Software Process Improvement (PROFES 2004), page 248.
Springer, 2004. Product focused software process improvement:
5th international conference, PROFES 2004, Kansai Science
City, Japan, April 5-8, 2004; proceedings.

P. Berander and A. Andrews. Requirements prioritization. In
Engineering and Managing Software Requirements, chapter 4,
pages 69-94. Springer, 2005.

M. Cohn. User stories applied: For agile software development.
Addison-Wesley Professional, 2004.

M. Cohn and R. Martin. Agile Estimating and Planning. Pren-
tice Hall, 2005.

F. Fransella, R. Bell, and D. Bannister. A Manual for Repertory
Grid Technique. John Wiley & Sons, Ltd., 2004.

J. E. Hannay and H. C. Benestad. Perceived productivity
threats in large agile development projects. In Proc. 4th
Int’l Symp. Empirical Software Engineering and Measurement
(ESEM), pages 1-10. IEEE Computer Society, 2010.

V. Heikkild, A. Jadallah, K. Rautiainen, and G. Ruhe. Rigorous
support for flexible planning of product releases—a stakeholder-
centric approach and its initial evaluation. In Proc. 43rd Hawati
Int’l Conf. System Sciences (HICSS 2010), pages 1-10. IEEE
Computer Society, 2010.

D. Jankowicz. The Easy Guide to Repertory Grids. John Wiley
& Sons, Ltd., 2004.

M. Jgrgensen. A review of studies on expert estimation of soft-
ware development effort. J. Systems and Software, 70(1-2):37—
60, 2004.

J. Karlsson and K. Ryan. A cost-value approach for prioritizing
requirements. IEEE Software, 14(5):67-74, 1997.

G. A. Kelly. The Psychology of Personal Constructs. Norton,
1955.

K. Krippendorff. Content Analysis: An Introduction to its
Methodology. Sage, second edition, 2004.

L. Lehtola, M. Kauppinen, and S. Kujala. Requirements prioriti-
zation challenges in practice. In Proc. Product-Focused Software
Process Improvement (PROFES 2004), volume 3009 of Lecture
Notes in Computer Science, pages 497-508. Springer, 2004.

M. Li, M. Huang, F. Shu, and J. Li. A risk-driven method for eX-
treme programming release planning. In Proc. 28th Int’l Conf.
Software Engineering (ICSE 2006), pages 423-430. IEEE Com-
puter Society Press, 2006.

S. Maurice, G. Ruhe, O. Saliu, and A. Ngo-The. Decision sup-
port for value-based software release planning. In Value-Based
Software Engineering, pages 247-261. Springer, 2006.

G. A. Moore. Crossing the Chasm. Harper Business, revised
edition, 2002.

A. Ngo-The and G. Ruhe. Optimized resource allocation for soft-
ware release planning. IEEE Trans. Software Eng., 35(1):109—
123, 2009.

A. Ngo-The, G. Ruhe, and S. Wei. Release planning under fuzzy
effort constraints. In Proc. 3rd IEEE Int’l Conf. Cognitive In-
formatics, pages 168-175. IEEE Computer Society, 2004.

A. Ngo-The and M. O. Saliu. Fuzzy structural dependency con-
straints in software release planning. In Proc. 14h IEEE Int’l
Conf. Fuzzy Systems, pages 442-447. IEEE Computer Society
Press, 2005.

S. L. Pfleeger. Albert Einstein and empirical software engineer-
ing. IEEE Computer, 32(10):32-38, Oct. 1999.

B. Regnell, M. Host, and R. B. Svensson. A quality performance
model for cost-benefit analysis of non-functional requirements
applied to the mobile handset domain. In Proc. 13th Int’l Work-
ing Conf Requirements Engineering: Foundation for Software
Quality (REFSQ 2007), volume 4542, pages 277-291, 2007.

E. M. Rogers. Diffusion of Innovations. Free Press, fifth edition,
2003.

G. Ruhe. Product Release Planning Methods, Tools and Ap-
plications, chapter 10, pages 201-224. Auerbach Publications,
2010.

G. Ruhe. Product Release Planning Methods, Tools and Appli-
cations, chapter 7, pages 125-143. Auerbach Publications, 2010.
G. Ruhe, A. Eberlein, and D. Pfahl. Trade-off analysis for re-
quirements selection. Int’l J. Software Engineering and Knowl-
edge Engineering, 13(4):345-366, 2003.

G. Ruhe and J. Momoh. Strategic release planning and eval-
uation of operational feasibility. In Proc. 38th Annual Hawati
Int’l Conf. System Sciences (HICSS 2005), volume 5, page 313.
IEEE Computer Society, 2005.

G. Ruhe and A. Ngo. Hybrid intelligence in software release
planning. Int’l J. Hybrid Intelligent Systems, 1:99—110, 2004.
T. L. Saaty. Multicriteria Decision Making: The Analytic Hi-
erarchy Process: Planning, Priority Setting, Resource Alloca-

(30]
(31]

(32]

(33]

tion. RWS Publications, 1990.

K. Schwaber. Agile Project Management with Scrum. Microsoft
Press, 2004.

M. Sliger and S. Broderick. The Software Project Manager’s
Bridge to Agility. Addison Wesley, 2008.

M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. Bin Saleem,
and M. U. Shafique. A systematic review on strategic re-
lease planning models. Information and Software Technology,
52:237-248, 2010.

M. Van den Akker, S. Brinkkemper, G. Diepen, and
J. Versendaal. Software product release planning through opti-
mization and what-if analysis. Information and Software Tech-
nology, 50(1-2):101-111, 2008.

