
Experience Report: Verifying Data Interaction
Coverage to Improve Testing of Data-intensive

Systems
The Norwegian Customs and Excise Case Study

Sagar Sen, Carlo Ieva, Arnab Sarkar
Certus V&V Center

Simula Research Laboratory
Oslo, Norway

Email: {sagar,carlo,arnab}(at)simula.no
Atle Sander, Astrid Grime

Directorate of Norwegian Customs and Excise
Email: {Atle.Sander,Astrid.Grime}(at)toll.no

Abstract—Testing data-intensive systems is paramount to in-
crease our reliance on information processed in e-governance, sci-
entific/medical research, and social networks. A common practice
in the industrial testing process is to use test databases copied
from live production streams to test functionality of complex
database applications that manage well-formedness of data and
its adherence to business rules in these systems. This practice is
often based on the assumption that the test database adequately
covers realistic scenarios to test, hopefully, all functionality in
these applications. There is a need to systematically evaluate
this assumption. We present a tool-supported method to model
realistic scenarios and verify whether copied test databases
actually cover them and consequently facilitate adequate testing.
We conceptualize realistic scenarios as data interactions between
fields cross-cutting a complex database schema and model them
as test cases in a classification tree model. We present a human-in-
the-loop tool, DEPICT, that uses the classification tree model as
input to (a) facilitate interactive selection of a connected subgraph
from often many possible paths of interactions between tables
specified in the model (b) automatically generate SQL queries to
create an inner join between tables in the connected subgraph
(c) extract records from the join and generate a visual report
of satisfied and unsatisfied interactions hence quantifying test
adequacy of the test database. We report our experience as a
qualitative evaluation of approach and with a large industrial
database from the Norwegian Customs and Excise information
system TVINN featuring large and complex databases with
millions of records.

I. INTRODUCTION

Data-intensive software systems are increasingly prominent
in driving global processes such as e-governance, data curation
for scientific and medical research, and social networking.
Large amounts of data is collected, processed, and stored by
these systems in databases. For example, the Directorate of the
Norwegian Customs and Excise (DNCE) uses the TVINN 1

system to process about 30,000 customs declarations a day
coming in from both individuals and enterprises. The live

1http://toll.no/

transaction stream of declarations is processed for confor-
mance to well-formedness rules, customs laws and regulations
by complex batch applications. This scenario is prevalent in
many data-intensive software systems dealing with transac-
tion data which comprises semi-structured/structured data in
medium/high volume.

The typical process to rapidly and effectively test batch ap-
plications (including regression testing [24]) on data-intensive
systems involves usage of input test databases regularly
copied from the live transaction processing stream. Using
test databases is based on the assumption that data from
live transactions represents realistic scenarios. The realistic
scenarios correspond to patterns found in test databases that
are expected to either demonstrate correctness of applica-
tion functionality or uncover bugs in the way transactions
were processed by batch applications. For instance, testing
a customs regulation or business rule in the TVINN system
for value added tax (VAT) on alcohol such as whisky will
require a test database with customs declarations for imports
on a specific type of alcohol, whisky, and specific kind of
tax, VAT. There is often a high probability that declarations
coming into TVINN have exercised and consequently tested
a large number of business rules. However, despite a high
practical reliance on such test databases there exists very few
systematic approaches to verify their adequacy for testing. This
is the problem area we address in the overall testing process.
We believe that verifying test databases in long-running data-
intensive systems with medium/high volume of transactions
will ensure adequate coverage[13] to test batch application.
Verification will also make the overall testing process efficient
as manual testing (such as creating specific declarations by
customs personnel) can be limited to those cases that have not
been covered by data from live streams. Therefore, we ask,
how can we automate and simplify steps in the verification of
a test database to improve testing of data-intensive systems?

This is the general question that intrigues us and the subject
of this paper.
Existing approaches: An obvious approach to verify test
databases would be to create and execute complex SQL queries
representing realistic scenarios. This approach is often tedious,
error-prone [23], database technology specific, fails to capture
high-level testing intentions much needed for documentation,
and consequently hard to maintain [16]. Moreover, studies
assessing human factors have shown that it is not easy to
create such queries, especially when multiple table joins are
involved [38] [23] [18]. The semi-systematic approach of using
spreadsheets as a structured checklist for properties to be found
in test artifacts (such as test databases) has been shown to
be effective in industrial practice [25]. However, documenting
testing intentions in a spreadsheet does not associate clear
computable meaning to the tests making them ambiguous and
a challenge to maintain. Synthesis of databases to test data-
intensive systems is an approach widely explored with several
recent approaches [19] [33] [20] [29]. Having automatically
generated databases readily available can be an effective
approach to test data-intensive systems under development
or freshly deployed. However, in long-running data-intensive
systems such as TVINN (25 years) there is already a large
repository of realistic declarations to help test the system for
most cases. The general consesus at the directorate of customs
and excise of Norway is that manual creation or automatic
generation test databases must be limited to cases not already
covered by real data or automation involving migration of test
databases to the evolving system. This industrial need hence
helped us scope our focus to verify coverage of test databases
in the global testing process of a data-intensive system.
Contributions:
Test Cases as Data Interactions: We propose modelling and
verifying realistic scenarios as data interactions to improve
testing of data-intensive systems. The intuition stems from
the observable interaction between data elements in testing
intentions such as, “If whisky is imported then it needs to
be manually processed by a customs officer” or “ If net
weight is greater than 1/3 gross weight then the item must
have been manually inspected”. The text in bold represents
information stored in fields belonging to different tables in a
database. We model data interactions[28] using the classifi-
cation tree modelling formalism [10] and tool CTE-XL[17].
The classification tree primarily models a domain of data
interactions possible between fields of a test database. A test
case in the classification tree model represents an interaction
between classes (exact values or domains of values) of one
(self-referential), two or more of these fields that are either
simultaneously desirable or undesirable in a test database.
Representing test cases as data interactions is based on the
idea that different fields cross-cutting a relational database
schema have classes that interact or are inter-dependent (due
to operations in a black-box application) and either (a) must
exist together in the database for a fixed number of times
(b) not exist together at all. Testing with interactions and
combinations is not a new idea in software testing [9] [42].

However, the focus on data itself and the possible interactions
between datum in a database is to the best of our knowledge
a less explored direction.
Verification of Data Interactions: How can we verify if
these test cases representing data interactions are in fact
covered in a test database? The principal contribution of
this paper is a human-in-the-loop method implemented in
a tool DEPICT to answer this question. When we model
a data interaction between classes of several fields in a
potentially complex database schema there may be many ways
to establish an interaction between them. Therefore, DEPICT
first queries database meta-data to extract a graph of the
database schema. DEPICT provides an interactive interface
to help a tester specify a connected subgraph between the
different nodes (representing tables) based on relationships
such as: (a) referential integrity (primary key - foreign key
relationships) (b) surrogate and self-referential relationships
based on type matching between one or more fields between
two tables. This connected subgraph is not necessarily the
smallest connected subgraph as often there are many possible
paths between fields of tables in a complex database schema.
Selecting one of different possible connected subgraphs is
domain-specific and is best performed by a human expert in
the loop using the interactive interface. After a valid connected
subgraph is created, DEPICT automatically generates a query
for each test case. Each query results in an inner join between
the tables of the connected subgraph with where clauses to
equate classes (from the test case) to each field. The resulting
interaction table represents test cases that are covered by the
test database, and DEPICT counts the number of occurrences
and produces an HTML report of the coverage. This report
gives comprehensive feedback to testers about the quality of
their test database with regard to covering modelled realistic
scenarios. Having this information helps testers manage testing
redundancy and reduce effort by limiting manual creation
of tests (such as customs declarations) to only uncovered
realistic scenarios. The report provides confidence about the
coverage of a test database accrued from live transactions
which is considered to be an irreplaceable testing asset (by
random generation for example) in the industry. Moreover, we
observe that the classification tree modelling formalism with
test cases is a graphical and intuitive approach to document
tests as data interactions and easily adopted by practitioners.
DEPICT is implemented as a standalone Eclipse [26] rich-
client platform application and uses a non-vendor specific
subset of JDBC [39] for database connectivity rendering the
tool database technology agnostic. We evaluate our method
and tool DEPICT on both a simplified running example and
industrial test databases from the Directorate of Norwegian
Customs and Excise. The industrial test databases have large
and complex database schemas containing millions of real
records.

The paper is organized as follows. In Section II, we describe
both a simplified running case study and industrial case stud-
ies. In Section III, we present modelling data interactions with
classification tree models. Section IV describes the method

EDIFACT CUSDEC
declarations from industries

 FinalDB
Database

LIME
Script

(Business
rules)

Norwegian Toll Customs uses the TVINN system to handle about
30,000 declarations/day

EDIFACT CUSRES
responses to industries

TempDB
Database

EDI Message
Parsing

TVINN System (subset)

Fig. 1. Overview of the TVINN system at the Directorate of Norwegian
Customs and Excise

Fig. 2. (a) Simplified Database Schema TOLLCUSTOMSDEMO at Norwegian
Toll Customs in Crow-Foot Notation (b) Bird’s Eye View of FINALDB and
TEMPDB Database Schemas

and associated tool, DEPICT to verify test databases using
classification tree models as input. We provide a qualitative
evaluation of our approach in Section V. Section VI discusses
the related work and places our contribution in the body of
knowledge. We conclude in Section VII.

II. CASE STUDY

TVINN is a Customs information system for business and
trade developed by and for the Norwegian Customs as shown
in Figure 1. All customs declarations regarding import and
export to and from Norway are processed by this system and
98% of them are received electronically by use of the EDI-
FACT2 standard. Incoming declarations are received as CUS-
DEC (Customs Declaration) messages and outgoing responses
are sent in CUSRES (Customs Response) messages. During
weekdays, the number of incoming CUSDEC messages is
approximately 25-30,000. Each incoming message is subject
to input control, with different checks, such as

• Conformity to the protocol used, EDIfact
• Optional, mandatory and conditional parameters
• Correct values for parameters specified
• Static and dynamic filtering based on message data
• Business rules

Some of these checks will trigger the system to accept the
declaration, but initiate manual control by a customs officer.

2http://www.unece.org/trade/untdid/welcome.html

Other checks might cause the message to be rejected by the
system. If no checks trigger any specific action but approval,
the message is processed automatically by the system. In-
dependent of the outcome from above, a response message
with the result is automatically returned. The response will
always include one or several unique numerical codes (can be
fault code) identifying the result. Parsed EDIFACT messages
from live transactions are stored in the TEMPDB database.
While, customs declarations validated by the principal batch
application LIME (see Figure 1) are stored in the complex and
highly structured FINALDB database. The principal challenge
is to verify that the TEMPDB and FINALDB databases have
correctly executed the above mentioned checks. The challenge
is evergreen since checks in TVINN evolve on a regular basis
(approximately, every six months), depending on new gov-
ernmental policies, sanctions, and change in political parties.
TVINN is also affected with time-bounded rules created by
customs officers. These rules exist for a short period of time
(often 3 months). For instance, a customs officer could decide
to thoroughly check 20 trucks coming from a nation X in civil
war and he/she would create a rule to check all the trucks
from the nation for a fixed period of time. These kinds of
rules are called filter control and can be disabled/deactivated
after a fixed time limit. These rules can change on an everyday
basis, without anticipation, making TVINN a highly dynamic
system.
Testing TVINN has been achieved by a small testing staff
who manually execute the tests and verifies the results.
However, the current practice of using such a test database
presents three crucial problems:
No Coverage Guarantee: Live declarations are expected
to cover a realistic subset of the database’s domain (set of
all possible combination of values in fields and tables of
a database). However, there is no way to guarantee this
coverage in an effective manner.
Very Large Set of Test Records: Accumulating information
from live transactions can easily give rise to an ever-growing
set of data records in a test database. Many of these records
share similarities and hence are redundant for the purpose
of testing. Cost-effective testing will require a verification
of a test database for the number of occurrences and
consequently selecting only a minimal set of records in a
test database. A minimal set will also have modest time and
space requirements for testing efforts.
Constantly Changing Rules: Test databases have a lifetime
and need to be discarded. For instance, this may be needed
due to new governmental policies such as increase in taxes on
imported cheese, or when sanctions are imposed on certain
countries. Legacy test databases may not be used anymore to
test the evolved system. Therefore, they need to be constantly
verified for testing adequacy.

We address the above problems by verifying data interaction
coverage with DEPICT in large test databases from TVINN. In
Section II-A, we describe a simplified version of the TVINN’s
test database that we use as a running example throughout

the paper. In Section II-B, we describe the complex industrial
TEMPDB and FINALDB databases that we evaluate in Section
V to demonstrate the industrial relevance and scalability of our
approach.

A. Simplified Test Database

As a simplified running example, we present a schema
developed along with our industry partner, the Norwegian
Customs and Excise, in Figure 2(a). The database schema for
TOLLCUSTOMSDEMO consists of four tables and is created
on a MySQL server. We describe the tables and some of the
fields in them. The CUSTOMERS table is used to store records
of customers. A customer is identified by a CustomerID which
is a primary key (indicated PK). A customer can make one
or more declarations. These declarations are stored in the
DECLARATIONS table that refer to a customer using a foreign
key (indicated FK). A declaration can have one or more items
that are stored in the ITEMS table. Every item has an item
code and a statistical value of its cost. There can be different
types of taxes on an item which is stored in the TAXES table.
The most common form of tax is the value added tax or VAT.
Taxation rules are often expressed on the country group, tax
fee code group (from the TAXES table) of import and the
item code (from the ITEMS table). The 10,000 items codes,
88 country groups, and 934 tax fee codes can potentially give
rise 12.9 trillion 3-wise possible taxation laws. However, only
195,000 taxation laws are used in practice.
Size: The test database used as a running example contains
about than 363 customers, 8172 declarations, 60591 items,
and 63515 tax records.

B. Industrial Test Database

The schema of the industrial test database is confidential.
However, we present a bird’s eye view of the relational
database schema in Figure 2(b) for the TEMPDB and FI-
NALDB databases.The database TEMPDB contains raw data
from EDIFACT messages. It has 18 tables, 188 fields, of
which 13 are relationships between primary and foreign keys.
The principal tables in TEMPDB are MHEAD (Message Head)
and MDAT (Message Data).

The principal database FINALDB consists of 132 tables,
1335 fields, of which 157 are relationships between primary
and foreign keys. It is the far more complex industrial version
of the simplified schema shown in Figure 2(a). The complex
database reflects more than just one possible path between
two tables complicating the task of selecting a path relevant
to specific scenario. For instance, the tables DECLARATIONS
and CUSTOMERS have three PK-FK associations as shown
in Figure 2(b): (a) A customer is the legal owner of the
declaration (b) A customer is the declarant or importer (c) A
customer is the payer for taxes on the declaration. Establishing
an interaction between a field in CUSTOMERS and a field in
DECLARATIONS will require an informed selection between
the three possible paths. Manually creating an entry into the
FINALDB database requires a specialist who can navigate
his/her way through a large number of dialogue windows. This

complex operation explains that using an existing test database
and knowing exactly what missing information to insert into
a test database can greatly reduce manual effort.
Size: The test databases FINALDB and TEMPDB contain
about 2.5 million customers and 190,000 declarations. In
addition, it contains 93,000 legal documents sometimes used
to justify taxes.

III. MODELLING DATA INTERACTIONS

Modelling data interactions was introduced by the authors in
[28]. Data interactions are modelled on a relational database
schema. We briefly describe a database schema in the fol-
lowing Section III-1. We use the classification tree modelling
formalism to model data interactions as presented in Section
III-2.

1) Database Schema: Databases are typically modelled
using a data model such as a database schema. It specifies
the input domain of a database in an information system. We
briefly describe the well-known concept of database schema.
More information on them can be found in a standard database
textbooks such as [6]. A database schema typically contains
one or more tables. A table contains fields with a domain
for each field. Typical examples for field types/domains are
integer, float, double, string, and date. The value of each field
must be in its domain hence maintaining domain integrity in a
database. A table contains zero or more records, which is a set
of values for all its fields within their domain. A table may also
contain one or more fields that are referred to as primary keys,
which identify each record. In addition, each table may refer
to primary keys of other tables via foreign keys. The value of
foreign keys must match the value of a primary key in another
table. This is known as a referential integrity constraint. We
refer to the combined concepts of referential integrity and
domain integrity as data integrity. Records in a database must
satisfy data integrity as specified by its database schema.
Databases can be queried using Structured Query Language
(SQL) queries. We use queries to create inner-joins, views and
to count number of records. An example of a database schema
from DNCE is shown in Figure 2(b). The schema has four
tables with three referential integrity constraints associating
them, hence creating the possibility of interactions between
these tables.

2) Classification Tree Model: Classification tree models are
typically used to model the input domain or a subset of it for
a software system. They contain the concepts of compositions,
classifications, and classes for each classification to structure
the input domain. We use the tool CTE-XL[17] to model clas-
sification tree models (CTM). CTMs have been used to model
complex input domains such as the one of the Norwegian Tax
Department [24]. We use CTMs to graphically model test cases
for databases. Our use of the CTM is specialized to the need
of specifying data interactions on a database. Hence, we first
assume that a modeller has access to the relational database
schema of the information system for which data interaction
test cases need to be specified. We use the example in Figure
3(a) and (b) to describe the syntax of the specialized model

Database Name

Table Names

Field Names

Field Values

Data Interaction
Test Case[]

Whisky Vodka Rum Beer

(a) (b)

Declarations Items

Fig. 3. (a) Classification Tree Model for Alcohol Imports (b) Classification Tree Model with Special Classes for Domains

as follows:
Root Composition for Database: It is an identifier for a
database on a server. Software that analyzes the classification
tree model can identify a concrete database using this iden-
tifier. In Figure 3 (a), this is represented by the composition
TollCustomsDemo.
Compositions for Tables: The root composition can contain
several compositions representing identifiers for tables. In Fig-
ure 3 (a), this is represented by the compositions Declarations
and Items from the schema shown in Figure 2(b). All or only
a subset of tables maybe be specified depending on the use of
the model.
Classifications for Fields: Fields in tables are classifications
in the third level of the classification tree. For instance, in
Figure 3 (a), we use the fields Category and ItemCode. All
or only a subset of fields for a table might be specified in the
model.
Classes for Fields: A field can have one or more concrete
values or domains of values. We represent these possibilities
as classes. For instance, in Figure 3 (a), the classes MA and FO
are associated with the classification for the field Category.
At a rudimentary level, one may specify individual values for
fields as a class but this often leads to an explosion in the
size of the model. Therefore, we provide special classes for
domains of a field as shown in Figure 4. The most common
special classes include the set operator IN, NOT IN, the pattern
matching operator such as LK, NOT LK. We present an
example with special classes in Figure 3(b) without test cases.
Interactions as Test Cases in Groups: Interactions between
field values across different tables are represented as test cases
in a classification tree model. For instance, in Figure 3(a), pair-
wise.TestCase1 represents the interaction {MA,22086000}.
This is the interaction between a declaration category for
manual processing of an import and for itemcode 2208600
for Vodka. Interactions in CTE-XL can either be generated
automatically such that all pairs or three-wise interactions
between two or three classes are covered. In Figure 3(a), we
present all pairwise interactions between a set of database field
values. Testers can also manually specify them. Test cases
or interactions can be divided into groups to represent test
cases for different aspects of the information system. A good
practice is to create several small classification tree models

Fig. 4. Special Clauses for Data Classes

with a small number of test cases with very specialized testing
intent. This also renders the model-based documentation more
comprehensible.

The tool CTE-XL also allows specification of additional
boolean constraints or dependency rules between classes to
limit the number of interactions or test cases that can be
specified by construction. This topic is out of the scope
of this paper and we suggest that the reader acquires the
documentation for the professional version of CTE-XL. A free
version of CTE-XL is available which was good enough for
the modelling tasks in this article as we did not require the use
of dependency rules and automatic generation of test cases.

We may wish for a test case to exist or not in a test database.
This is exactly what is verified by the tool DEPICT, and
the principal contribution of the paper. The method behind
DEPICT is described in the next section IV.

IV. METHOD

Given a model of data interactions as input our method com-
putes the satisfaction or non-satisfaction of these interactions

Classification Tree Model of Interactions 1. Verify Model with
Schema

Database Server

3. Select Interaction
Path

4. Query Generation
and Execution

Select Connected Subgraph between Tables

Interaction Coverage Results

Human Inputs
Depict

Automation

5. Visualisation of
Coverage

2. Extract Relational
Graph

Fig. 5. Verifying Interaction Coverage

in a test database. An overview of the operational flow of our
method is shown in Figure 5. The method has an automated
part implemented in the Eclipse-based tool DEPICT and also
requires human inputs to guide the process. Note that the
approach shown in Figure 5 is about modelling and verification
of data interaction which is only a subset of the global testing
process associated with TVINN. The global process is out of
the scope of this paper. The different steps of the method are
described below:
Step 1: The input classification tree model (CTM) with test
cases is first specified by a domain expert shown in Figure
3 (a). We use the tool CTE-XL [17] to create the model.
The CTM is then imported into DEPICT. While importing a
CTM, DEPICT requires additional parameters to connect to a
database on a local/remote database server. DEPICT verifies
that the CTM contains valid names for a database, tables,
and field names. This is done by querying and comparing
meta-information from the database schema on a database
server. DEPICT’s connection to a database is implemented
using a non-vendor specific subset of JDBC [39] to facilitate
connecting to different database technologies.
Step 2: DEPICT extracts a relational graph by querying
the meta-data of the database schema using the JDBC class
ResultSetMetaData [39]. For instance, in Figure 6(a) we show
the graph extracted for the simplified schema shown in Figure
2(a). The yellow nodes in Figure 6(a) indicate the tables
specified in the classification tree model of Figure 3 (a).
The other tables are shown as red nodes. The associations
between the tables in the form of primary key and foreign
key relationships are shown as dashed edges in the graph.
The dashed edges highlight potential arcs between tables.
One must manually select an edge to establish a relationship
between nodes. DEPICT uses the JUNG Universal Graph
Library3 to display, perform automatic layout, and enable

3http://jung.sourceforge.net

(a) (b)

Fig. 6. (a) Relational Graph Extracted from Database Schema (b) Selection
of Connected Subgraph

human interaction with the graph.
Step 3: The human domain expert defines a connected sub-
graph between interacting tables or nodes in the relational
graph obtained in the previous step. This is illustrated by the
edge created between yellow nodes for ITEMS and DECLA-
RATIONS in Figure 6(b). The example in the figure represents
the simplest possible interaction where two nodes can interact
due to PK-FK relationships. If two nodes are disconnected,
DEPICT allows the creation of a surrogate relationships (com-
prehensively illustrated in Scenario 2 of Section V) based on a
type match between one or more fields of the two nodes/tables.
For instance, we may create a relationship between the fields
origin country in the ITEMS table and country code in the
DECLARATIONS table for the schema in Figure 2(a). Both
these field have the same type which is an enumeration of
160 country codes. DEPICT also allows specification of self-
referential relationships between fields of a unique node/table
(also illustrated in Scenario 2 of Section V). A surrogate
relationship can also be created between two tables even if
they already have one or more PK-FK associations and are not
completely disconnected. The advantages of creating surrogate
relationships are:

• Creating totally brand new relationships which are not
strictly functional to the data model of the system but hav-
ing a valuable meaning for the testing perspective such as:
better performance avoiding unnecessary complex paths
through a shortcut across tables.

• Fill gaps into the original design of the data model.
Sometimes the PK-FK relationships simply don’t exist.
In that case we are able to fill the gap creating a surrogate
rel.

The principal task of a human-expert is to select edges
from potentially several possibilities to create a connected
subgraph that is meaningful. We present such an example in
the industrial Scenario 1 in Section V.
Step 4: The connected subgraph between all interacting nodes
is used by DEPICT to generate SQL queries to create an inter-
action table for each test case. For instance, we generate 8 in-
teraction tables for the model in Figure 3(a). The query to gen-
erate an interaction table for the test case pairwise.Testcase1
in Figure 3(a) is shown in Listing 1. The interaction table is
stored with new field names f1, f2, ..., fn to avoid conflicts
with tables that may have duplicate names. The table should

Fig. 7. Interaction Coverage for Alcohol Import Example

contain all records where the field values in the CTM match
the selected classes which is declarations.category=’MA’ and
items.itemcode=22086000. Additional queries are also gener-
ated to compute the frequency of the occurrence of a test case.
These queries are executed by DEPICT on the test database to
populate the interaction table, and compute the frequency of
occurrence.
SELECT d e c l a r a t i o n s . c u s t o m e r i d AS f 1 , d e c l a r a t i o n s . date AS f 2 ,
d e c l a r a t i o n s . s e q u e n c e AS f 3 , d e c l a r a t i o n s . v e r s i o n AS f 4 ,
i t e m s . c u s t o m e r i d AS f 5 , i t e m s . date AS f 6 , i t e m s . s e q u e n c e AS f 7 ,
i t e m s . v e r s i o n AS f 8 , i t e m s . l i n e n u m b e r AS f 9

FROM d e c l a r a t i o n s JOIN i t e m s ON d e c l a r a t i o n s . c u s t o m e r i d = i t e m s . c u s t o m e r i d
AND d e c l a r a t i o n s . date = i t e m s . date AND d e c l a r a t i o n s . s e q u e n c e = i t e m s . s e q u e n c e
AND d e c l a r a t i o n s . v e r s i o n = i t e m s . v e r s i o n WHERE d e c l a r a t i o n s . c a t e g o r y = ’MA’
AND i t e m s . i t e m c o d e =22086000

Listing 1. Generated Interaction Table Example

Step 5: We refer to test cases that are not found in the test
database as “holes”. This is indicated by a count of zero for
number of records on an interaction table. If a test case is
found in a test database then the count is non-zero. DEPICT,
provides an HTML report to visualize the results of the queries
executed in Step 4. The report provides a table with test case id
(indicated by a yellow colored box if a hole), test case name,
count, a human-readable expression of the test case, an SQL
query for the test case, and the elapsed time to query the test
database. DEPICT also generates a bar graph produced using
JFreeChart4 to display the count for each test case as shown in
Figure 7 for the CTM in Figure 3(a). The report gives instant
feedback to a tester about interactions that are missing in a
test database and need to be created for complete coverage.

The tool DEPICT is implemented in pure Java as a stan-
dalone Eclipse Rich-client Platform application. We request
the reader to contact the authors for instructions to download,
install and use the tool for databases in their information
systems. DEPICT currently supports MySQL, PostgreSQL,
Sybase, Oracle, Microsoft SQL and can easily be extended to
other relational databases with the appropriate driver. DEPICT
is a generic industry-strength tool, as demonstrated in Section
V, and can handle databases with millions of records in a
stable manner.

V. INDUSTRIAL EVALUATION

We evaluate DEPICT, on the industrial test databases
FINALDB and TEMPDB as described in Section II-B. We
perform a qualitative case study based evaluation [41] to

4http://www.jfree.org/jfreechart/

Fig. 8. Classification Tree Model for Declaration/Legal Document for same
Legal Owner

address the following research questions:
RQ1: Can modelling data interactions effectively represent
realistic scenarios in test databases?
RQ2: What are the features of human-in-the-loop interactive
interface to facilitate accurate specification of data
interactions?
RQ3: Is DEPICT time efficient and scalable in terms of query
execution and report generation?

Scenario 1 : The first scenario presents a simple example
to illustrate some of the features in DEPICT. Some customs
declarations specifies legal documents for either import (I) or
export (E). Such a document must belong to the legal owner
of the declaration.
Solution with Classification Tree Modelling and DEPICT:
Our objective is to verify a test database for presence of
declarations with legal documents for the same legal owner.
The presence of such declarations ensures testing of business
rules pertaining to declarations and their legal documents.
Nevertheless, testing these business rules is out of the scope
of this paper.

First, we model the case in a CTM as shown in Figure
8. The CTM for the test database DB models the interaction
between two tables DOCUMENT and DECLARATIONS. The
fields DOCDIR for DOCUMENT and DECDIR for DECLA-
RATIONS have two possible classes I (import) and E (export).
The different test cases in Figure 8 represent all possible com-
binations of import and export of documents and declarations.
This simple model addresses RQ1, by demonstrating the ease
with which the CTM represents all possibilities pertaining to
Scenario 1. The same test cases can be represented as SQL
queries as shown in Column 5, Figure 10 that are long and
hard to read.

Second, we import the CTM into the tool and extract the
graph of the database schema and select a connected subgraph
as shown in Figure 9. At this point an intervention from
a human expert is necessary in order to specify the correct
association between the nodes for table DECLARATIONS and
DOCUMENT. The interaction between DECLARATIONS and
DOCUMENT is via the node CUSTOMERS. There are three
associations between DECLARATIONS and CUSTOMERS with
three different semantics (as shown in the zoom-in of Figure

Fig. 9. Selecting a Connected Subgraph

Fig. 10. DEPICT Generated Report for Scenario 1

9):

• The legal owner of the declaration
• The declarant (the importer)
• The payer

In this case DEPICT allows the domain expert to choose
the correct association which is legal owner. Once, a con-
nected subgraph is created DEPICT, generates SQL queries
to compute the number of occurrences of each interaction.
This interactive interface in DEPICT, addresses RQ2 on the
simplicity with which interactions can be specified. DEPICT
allows moving nodes and edges, zooming-in/zooming-out into
the graph of the schema, and picking one out of three
possible edges for Scenario 1 and consequently the validation
connectedness of the selected subgraph.

Finally we address RQ3 by generating a visual HTML
report as shown in Figure 10. The HTML report can be
exported from DEPICT, and be used as documentation for
coverage of test cases/data interactions. The report shows the
id of a test case, its name, the number of times the test case
is satisfied in the database, a human readable version of the
interaction, a generated SQL query that can be used separately
to extract records for a test case, and the elapsed/response time
for each query. The elapsed times using our DEPICT demon-
strates its reasonable responsiveness on very large databases
for Scenario 1. For instance, the maximum elapsed time to
count the number of occurrences in about 2.5 million customs
declarations is about 1451 ms as shown in Figure 10. A small

Declaration in
CUSDEC

Declaration in
CUSDEC

NetworkDeliveryPoint

Response
CUSRES

Response
CUSRES

ACCEPTED Batch
process

REJECTED
A

faultcode
is returned

Response
CUSRES

Response
CUSRES

TVINN
Server

Fig. 11. Scenario 2: Fault code in CUSRES due to error in CUSDEC
message

CTM such as in Figure 8 shows reasonably low response
time even for very large databases. However, performance is
likely to deteriorate due to joins between several tables with
several million records. We believe that constructing multiple
small models representing specific testing intentions is a good
practice to maintain understandability of tests.
Scenario 2: Every incoming customs declaration CUSDEC
EDI message is validated by a batch process and a CUSRES
EDI message is sent back to the declarant as shown in Figure
11. If a declaration is rejected then it is sent back with a fault
code to the declarant. The CUSRES message is parsed and
stored in the TEMPDB database as described in Section II-B.
This database TEMPDB also stores the incoming declaration
CUSDEC. The contents of both CUSDEC and CUSRES
messages is stored in tables MHEAD for message header and
MDATA for message data. The testing intention is to verify
if a CUSRES with a given fault code only has been sent if
the incoming CUSDEC has a certain CATEGORY of either
EN,PO,MA or * (don’t care). For instance, a CUSRES with
a fault code 736 should only be found if its corresponding
incoming CUSDEC has a VERSION greater than 1 and the
CATEGORY MA and the previous version of the CUSDEC
has not yet been processed.

This testing intention can be modelled in a CTM as shown
in Figure 12. First, we can take a look at some special and
powerful modelling features derived from industrial needs. The
class REC(CUSRES,CUSDEC) which is encircled indicates
the self-referential relationship that the field MTYPE (mes-
sage type) can have two values CUSRES and CUSDEC. The
sequence of CUSRES and CUSDEC in the class field of
the CTM helps specify expected values for other fields in the
same table for either CUSRES (left) or CUSDEC (right).
For instance, if the MTYPE is CUSDEC then we expect the
value of VERSION to be equal or greater than 2 as shown
in the class REC(*,RNG(2,)). The class LK(%ERC+736%)
of the field MTEXT (message text) refers to a pattern in a
possibly very long message. The fault code number 736 is
present in a text sequence preceded by the identifier ERC.
This pattern matching clause helps DEPICT generate an SQL
query to select CUSRES messages with fault code 736. We
recall that Figure 4, presents more detail about the special
clauses that can be used for classes in the CTM. The data
interaction for the highlighted test case of Figure 12 represents

Self-referential (recursive) construct

MHEAD MDATA

PCATE MTEXTMTYPE

TempDB

VERSION
Fault code in message text

Fig. 12. Classification Tree Model to Verify Fault Codes

MHEAD

MDATA
T1

T2

T3
T4

T5

T6

T7

T8

T9

T10

T11

MDATA

MHEAD

MHEAD MDATA

TIDK (smallint)
PCATE (char)
DECLDAY (char)
DECLKLI(char)
MOTAB (char)
MTYPE (char)
PUNGREF (char)
CUSTID (int)

CUSTID (char)

CUSTID (int)
DECLDATE (int)
DECLEVEN (int)
VERSION (int)

PUNGREF (char)

PrimaryPrimary

Self-referential relationship

Surrogate relationship

Select fields to specify a key

Relational Graph of TempDB

Fig. 13. Self-referential and surrogate relationships for Scenario 2

the testing intention that a declaration has to be processed
manually (class MA for PCATE) when VERSION is greater
than 2 for the incoming customs declaration CUSDEC and
the fault code (found in MTEXT) in the outgoing CUSRES
is 736. The CTM concisely represents the testing intentions
which otherwise are complex and significantly less human
understandable SQL queries as shown in Column 5, Figure
14, hence, addressing RQ1.

In Scenario 2, the tables MHEAD and MDATA have no
prior relationships and are singleton as shown in Figure 13.
In this example, we illustrate how DEPICT allows the cre-
ation of custom or surrogate relationships. DEPICT allows the
specification of a self-referential relationship for the message
head table MHEAD as shown in Figure 13. This is necessary
since CUSDEC and CUSRES messages are both stored in the
same table MHEAD. This is a very common design pattern
in relational database schemas of many industrial information
systems. DEPICT also allows creation of surrogate relationship
between two different tables that have no prior relationship.
This is done by interactively selecting an ordered sequence of
fields from each table, MHEAD and MDATA in this case, that
have matching types. DEPICT automatically verifies the human
selection of fields for a type match and does not proceed unless
the selection is correct-by-construction. A traditional approach
would be in two steps: (a) to query SQL metadata to find fields
that type match followed by (b) creation of large SQL queries
for inner joins on these fields. DEPICT, drastically simplifies
this effort, favourably answering RQ2.

The relationships are checked by DEPICT generation of SQL
queries for data interaction tables as shown in Column 5,

Fig. 14. DEPICT Generated Report for Scenario 2

Figure 14. The results show that the test database contains
a few holes (indicated by highlighted boxes in Column 1,
and a bar with value zero in the coverage bar-graph). For
instance, in 2.5 million declarations, there were no records for
fault code 736 with VERSION greater than 2, and none with
fault code 450. This indicates that the test database TEMPDB
copied from a live transaction stream at a given point in
time did not have any CUSDEC messages messages failing
the check which would have returned fault code 736 or 450
making the database inadequate for testing certain business
rules pertaining to those fault codes.

Scenario 2 presents a complex example with the need for
pattern matching in possibly very large incoming messages.
The elapsed time in Figure 12, shows that no generated query
required more than five seconds to determine if an interaction
existed or not. This shows that DEPICT is time efficient as
required by RQ3.

A. Threats to Validity

We qualitatively validate our method and tool DEPICT on
two diverse industrial case studies from the Directorate of
the Norwegian Customs and Excise (DNCE). A very large
empirical study with the application of DEPICT to databases
from different companies or contexts is out of the scope of this
article. DEPICT is evolving primarily from needs in industrial
data-intensive systems and is validated on real industrial case

studies. Nevertheless, the validity of the approach in DEPICT
can have several threats as discussed below:

Modelling data interactions with CTM is effective, however,
we have not evaluated the scalability of the tool CTE-XL
to very large models. We do recommend building many
small models representing very specific testing intentions.
Large models typically will represent data interactions that
show dependencies between several different fields with many
different classes. We believe that there is a practical limit to the
size and complexity of such dependencies, often linked to the
size and complexity of a business rule that is tested. Another
aspect of modelling with CTM that has not been validated
is its adequacy as a language to model data interactions. We
use CTM primarily due to the availability of a well-supported
industrial tool CTE-XL. However, it may have limitations
as data interaction modelling formalism with growing needs.
DEPICT produces a relational graph from a database schema
that needs to be navigated by a human. For most industrial
systems the number of tables does not exceed a few hundred
(this would make the schema over-complex). However, we do
not test the effectiveness of DEPICT for thousands of tables.
The time efficiency of DEPICT, for a few millions of records
is of the order of a few seconds for all the cases currently
modelled by DNCE. We have not validated DEPICT for case
studies for SQL joins between many tables with a very large
number of records as it was not required by our industrial case
study.

DEPICT emerged out of a collaboration with the DNCE
and primarily addresses the needs of DNCE. Nevertheless, we
have no good reason to believe that DEPICT is not generic
for databases from other companies or application domains.
The combination of CTM and DEPICT, is adequate to model
and verify coverage in any relational database irrespective of
underlying database technology. In future, we intend to apply
DEPICT to develop the field of model-based data quality using
databases at the Norwegian Cancer Registry, StackOverFlow,
and Wikipedia.

VI. RELATED WORK

This article addresses two principal areas of work (a) the
notion of test coverage in data-intensive systems (b) using
high-level models to specify testing intentions. We position
our work in relation to these areas of work.
Test coverage: The coverage of an input domain is an
important topic in testing database applications [13]. Test
coverage in data intensive systems has been the subject of
many studies [21], [27], [34]. These techniques are not appli-
cable to measuring coverage in databases since they do not
handle the structure of a database’s complex schema. The tool
proposed by Suarez et al. [32] measures the coverage of SQL
queries without support monitoring coverage. Halfond et al.
[11] measure coverage of application-database interactions but
do not consider the interactions between database fields. In
[14], the authors present the concept of database-aware test
coverage monitoring that instruments the program and the test
suite to determine how well are database entities covered. The

proposed coverage monitor also captures database interactions
at different levels of interaction granularity: database, relation,
attribute, record, and attribute value. However, it does not
provide high-level modelling of test cases as interactions. Tuya
et al. propose a criterion that assesses the coverage of the
test data in relation to the executed database queries [35].
Still, similarly to the previous approaches, it does not support
modelling the test cases visually nor monitoring the coverage.
There is also large body of work on generating SQL queries
[2] [15] [30] [4] [31] [22] [12] [3] [1] [40] [19] [33] [20]
[29] that by construction aim to cover a database’s input
domain. These approaches are useful when real test databases
are non-existent or automatically generated tests that satisfy
generic constraints such as cardinality [4] can be considered
as effective. In this paper, we consider the specific scenario
where real test databases are already available and need to be
verified for test coverage.
Modelling test intentions: High-level specifications such as
models have been used to either derive tests or simplify
specification of testing intentions. Model-based testing [37]
[36] is an effective approach to use behavioral models such
as state machines to derive test cases. In [40], the authors use
constrained queries to model database states and generate test
records. Constrained queries cannot be seen as models at high-
level of abstraction that significantly reduce human-effort in
specifying testing intentions. In [5], the authors show that com-
binatorial interaction designs are very effective in constraining
the input domain and consequently revealing bugs in software.
We previously extended the notion of (combinatorial) inter-
actions to represent testing intentions as data interactions in
databases [28]. The notion of data interactions proposed in
the paper is similar to the idea of data dependencies proposed
in [7][8]. The authors propose a theoretical framework to
specify conditional functional dependencies to improve data
quality in relational databases. However, there is no mention
of industry strength tool-support or modelling tools that we
deem necessary for industrial impact.

VII. CONCLUSION

In this paper, we present a method and tool DEPICT to verify
coverage of data interactions (test cases) in a test database. The
domain of data interactions and test cases are represented in a
classification tree model. DEPICT, connects to a test database
and verifies if these test cases are covered by the database. We
propose data interactive coverage as a novel coverage criteria
for test databases. We qualitatively validate our approach on
industrial test databases extracted from live transaction streams
at the DNCE. In future, we would like to leverage DEPICT to
promote the general research area of model-based data quality.
We would like to use models to represent high-level properties
of data and use DEPICT to verify these properties in very large
databases (relational, graph XML, JSON).

REFERENCES

[1] IBM DB2 test data generators. http://www.ibm.com/developerworks/data/
library/techarticle/dm-0706salkosuo/index.html.

[2] S. Abdul Khalek and S. Khurshid. Automated sql query generation for
systematic testing of database engines. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, ASE ’10,
pages 329–332, New York, NY, USA, 2010. ACM.

[3] N. Bruno and S. Chaudhuri. Flexible database generators. VLDB, page
10971107, 2005.

[4] N. Bruno, S. Chaudhuri, and D. Thomas. Generating queries with car-
dinality constraints for dbms testing. Knowledge and Data Engineering,
IEEE Transactions on, 18(12):1721–1725, Dec 2006.

[5] D. Cohen, S. Dalal, M. Fredman, and G. Patton. The aetg system: An
approach to testing based on combinatorial design. IEEE Transactions
on Software Engineering, 23(7):437–444, 1997.

[6] C. J. Date. An Introduction to Database Systems. Pearson Addison-
Wesley, Boston, MA, 8. edition, 2004.

[7] W. Fan. Dependencies revisited for improving data quality. In Proceed-
ings of the Twenty-seventh ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS ’08, pages 159–170, New
York, NY, USA, 2008. ACM.

[8] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional
dependencies for capturing data inconsistencies. ACM Trans. Database
Syst., 33(2):6:1–6:48, June 2008.

[9] M. Grindal, J. Offutt, and S. F. Andler. Combination testing strategies:
A survey. Software Testing, Verification, and Reliability, 15:167–199,
2005.

[10] M. Grochtmann and K. Grimm. Classification trees for partition testing.
Software Testing, Verification and Reliability, 3(2):63–82, 1993.

[11] W. Halfond and A. Orso. Command-form coverage for testing database
applications. In Automated Software Engineering, 2006. ASE ’06. 21st
IEEE/ACM International Conference on, pages 69 –80, sept. 2006.

[12] K. Houkjær, K. Torp, and R. Wind. Simple and realistic data generation.
In Proceedings of the 32Nd International Conference on Very Large
Data Bases, VLDB ’06, pages 1243–1246. VLDB Endowment, 2006.

[13] G. M. Kapfhammer and M. L. Soffa. A family of test adequacy criteria
for database-driven applications. In In Proc of 9th ESEC/10th FSE,
pages 98–107, 2003.

[14] G. M. Kapfhammer and M. L. Soffa. Database-aware test coverage
monitoring. In Proceedings of the 1st India software engineering
conference, ISEC ’08, pages 77–86, New York, NY, USA, 2008. ACM.

[15] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid. Query-
aware test generation using a relational constraint solver. In Proceedings
of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, ASE ’08, pages 238–247, Washington, DC, USA,
2008. IEEE Computer Society.

[16] W. Labio, J. Yang, Y. Cui, H. Garcia-Molina, and J. Widom. Perfor-
mance issues in incremental warehouse maintenance. Technical Report
1999-42, Stanford InfoLab, 1999.

[17] E. Lehmann and J. Wegener. Test case design by means of the cte xl. In
Proceedings of the 8th European International Conference on Software
Testing, Analysis Review (EuroSTAR 2000), pages 1–10, 2000.

[18] H. Lu, H. C. Chan, and K. K. Wei. A survey on usage of sql. SIGMOD
Rec., 22(4):60–65, Dec. 1993.

[19] K. Pan, X. Wu, and T. Xie. Guided test generation for database
applications via synthesized database interactions. ACM Trans. Softw.
Eng. Methodol., 23(2):12:1–12:27, Apr. 2014.

[20] K. Pan, X. Wu, and T. Xie. Program-input generation for testing
database applications using existing database states. Automated Software
Engineering, pages 1–35, 2014.

[21] C. Pavlopoulou and M. Young. Residual test coverage monitoring.
In Software Engineering, 1999. Proceedings of the 1999 International
Conference on, pages 277 –284, may 1999.

[22] M. Poess and J. M. Stephens, Jr. Generating thousand benchmark queries
in seconds. In Proceedings of the Thirtieth International Conference on
Very Large Data Bases - Volume 30, VLDB ’04, pages 1045–1053.
VLDB Endowment, 2004.

[23] P. Reisner. Human factors studies of database query languages: A survey
and assessment. ACM Comput. Surv., 13(1):13–31, Mar. 1981.

[24] E. Rogstad, L. Briand, R. Dalberg, M. Rynning, and E. Arisholm.
Industrial experiences with automated regression testing of a legacy
database application. In Software Maintenance (ICSM), 2011 27th IEEE
International Conference on, pages 362 –371, sept. 2011.

[25] K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. R. G. Green, and
G. Rothermel. Wysiwyt testing in the spreadsheet paradigm: an empirical
evaluation. In Software Engineering, 2000. Proceedings of the 2000
International Conference on, pages 230–239, 2000.

[26] D. Rubel. The heart of eclipse. Queue, 4(8):36–44, Oct. 2006.
[27] R. Santelices and M. J. Harrold. Efficiently monitoring data-flow test

coverage. In IEEE/ACM ASE, ASE ’07, pages 343–352, New York, NY,
USA, 2007. ACM.

[28] S. Sen, J. de la Vara, A. Gotlieb, and A. Sarkar. Modelling data inter-
action requirements: A position paper. In Model-Driven Requirements
Engineering (MoDRE), 2013 International Workshop on, pages 50–54,
July 2013.

[29] S. Sen and A. Gotlieb. Testing a data-intensive system with generated
data interactions. In C. Salinesi, M. Norrie, and . Pastor, editors,
Advanced Information Systems Engineering, volume 7908 of Lecture
Notes in Computer Science, pages 657–671. Springer Berlin Heidelberg,
2013.

[30] S. Sen and A. Gotlieb. Testing a data-intensive system with generated
data interactions: The norwegian customs and excise case study. In
CAISE, Valencia, Spain, June 17-21 2013.

[31] D. R. Slutz. Massive stochastic testing of sql. In Proceedings of the 24rd
International Conference on Very Large Data Bases, VLDB ’98, pages
618–622, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers
Inc.

[32] M. J. Suárez-Cabal and J. Tuya. Using an sql coverage measurement for
testing database applications. In Proceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of software engineering,
SIGSOFT ’04/FSE-12, pages 253–262, New York, NY, USA, 2004.
ACM.

[33] K. Taneja, Y. Zhang, and T. Xie. Moda: automated test generation for
database applications via mock objects. In ASE, pages 289–292, 2010.

[34] M. M. Tikir and J. K. Hollingsworth. Efficient instrumentation for code
coverage testing. SIGSOFT Softw. Eng. Notes, 27(4):86–96, July 2002.

[35] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva. Full predicate coverage
for testing sql database queries. Software Testing, Verification and
Reliability, 20(3):237–288, 2010.

[36] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2007.

[37] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based
testing. Technical Report 04/06, New Zealand, April.

[38] C. Welty and D. W. Stemple. Human factors comparison of a procedural
and a nonprocedural query language. ACM Trans. Database Syst.,
6(4):626–649, Dec. 1981.

[39] S. White, Cattell, Fisher, and Hamilton. JDBC API Tutorial and
Reference, Second Edition: Universal Data Access for the Java 2
Platform. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2nd edition, 1999.

[40] D. Willmor and S. M. Embury. An intensional approach to the
specification of test cases for database applications. In Proceedings of
the 28th International Conference on Software Engineering, ICSE ’06,
pages 102–111, New York, NY, USA, 2006. ACM.

[41] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering: An Introduction.
Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[42] H. Yin, Z. Lebne-Dengel, and Y. K. Malaiya. Automatic test generation
using checkpoint encoding and antirandom testing. In Proceedings of the
Eighth International Symposium on Software Reliability Engineering,
ISSRE ’97, pages 84–, Washington, DC, USA, 1997. IEEE Computer
Society.

