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Abstract. Given the challenges of testing at the system level, only a fully automated approach can
really scale up to industrial real-time embedded systems (RTES). Our goal is to provide a practical
approach to the model-based testing of RTES by allowing system testers, who are often not familiar
with the system’s design but are application domain experts, to model the system environment in such
a way as to enable its black-box test automation. Environment models can support the automation of
three tasks: the code generation of an environment simulator to enable testing on the development
platform or without involving actual hardware, the selection of test cases, and the evaluation of their
expected results (oracles). From a practical standpoint—and such considerations are crucial for
industrial adoption—environment modeling should be based on modeling standards (1) that are at an
adequate level of abstraction, (2) that software engineers are familiar with, and (3) that are well
supported by commercial or open source tools. In this paper, we propose a precise environment
modeling methodology fitting these requirements and discuss how these models can be used to
generate environment simulators. The environment models are expressed using UML/MARTE and
OCL, which are international standards for real-time systems and constraint modeling. The presented

techniques are evaluated on a set of three artificial problems and on two industrial RTES.
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1. Introduction
Real-time embedded systems (RTES) are widely used in many different domains, as for example
from integrated control systems to consumer electronics. Already 98% of computing devices are

embedded in nature and it is estimated that, by the year 2020, there will be over 40 billion embedded

! This paper is an extension of a conference paper “Environment Modeling with UML/MARTE to Support Black-Box
System Testing for Real-Time Embedded Systems: Methodology and Industrial Case Studies” published in proceedings of
ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS), 2010 [1]
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computing devices worldwide [2]. Testing these systems such that they are functionally correct and do
not lead their environment into critical states (e.g., unsafe) is vital. RTES environments typically
comprise a number of physical components (e.g., sensors and actuators) and possibly other RTES
systems (e.g., in systems of systems). Typically, there is a large number and variety of stimuli to the
RTES with different patterns of arrival times. These characteristics make the testing of RTES
challenging and increase the need for automated, systematic testing strategies.

Because RTES are developed for diverse domains presenting different constraints (e.g., different
timing, safety, security requirements), different testing approaches are required to handle the varying
set of characteristics required by these domains [3]. Our main target RTES in this paper are soft-real
time systems with time deadlines in the order of hundreds of milliseconds with an acceptable jitter of
a few milliseconds in response time. Our testing approach (black-box system level testing) not only
encompasses functional correctness of the system under test (SUT), but also enable to focus testing on
particularly critical aspects of the RTES, i.c., potentially hazardous situations.

Typically, large scale testing of RTES software in real environments and on actual deployment
platforms is not a viable option. It would be expensive, the consequences of failures might be
catastrophic (e.g., in safety critical systems), and the number of variations in the environment that can
be exercised within a reasonable time frame are small. Moreover, some of the environment
components might not be available at the time of testing, since hardware and software components are
typically developed concurrently. To test RTES software in this kind of situations, a common strategy
is to develop a simulator for these environment components.

When testing RTES, the simulation of three concepts (or their combinations) is typically
considered: the SUT, its hardware platform, and the environment with which the SUT interacts.
Depending on the goal of testing, different combination of these three concepts can be simulated [3]:
(i) at early stages of the development process, a typical approach is to model and simulate the SUT, its
hardware and its environment to ensure that the specifications of the SUT do not violate the
environment assumptions; (ii) the embedded software is tested on the development platform with a
simulated environment to ensure that the developed software works according to the environment
assumptions and can handle possible environment failures. This is done with either an adapter for the
hardware platform that forwards the signals from the SUT to the simulated environment or a
simulation of the hardware platform; (iii) another level of simulation is when the actual software is
deployed on the hardware platform (or part of the platform, e.g., only the processor) and testing is
done with a simulated environment.

The focus of this paper is on the second type (ii) of modeling and simulation in which the actual
SUT is used, the environment is simulated, the hardware platform is simulated or bypassed through an
adapter communicating with the environment simulator. In our experience of working with two

industrial organizations, which were developing RTES for different domains (seismic acquisition



Simula Research Laboratory Technical Report (2011-04) Version 3.0

systems and automated bottle recycling machines), this form of testing was highly critical as it
enabled early verification of the RTES.

To address the above objective, in this paper, we propose an automated methodology for RTES
based on environment behavioral models developed using software modeling standards: Unified
Modeling Language (UML) [4], UML Profile for Modeling and Analysis of Real-time and Embedded
Systems (MARTE) [5], and Object Constraint Language (OCL) [6]. The main contributions of this
paper include an environment modeling methodology and an approach to generate a simulator of the
environment from the environment model in a way to enable the automated testing of industrial
RTES. As further discussed below, our focus is to devise a practical approach in a system testing
context, and we evaluate both the modeling methodology and simulation generation on two industrial
case studies.

Environment models describe both the structural and behavioral properties of the environment.
Given an appropriate level of detail, defined by our methodology, they enable the automatic
generation of the environment simulator. These models can also be used to generate automated test
oracles, which are typically modeled as “error states” that should never be reached by the
environment during the execution of a test case. Moreover, the models can further be used to
automatically select test cases and sophisticated heuristics are used to automatically do so from the
models without any intervention of the tester. To summarize, the only required artifacts to be
developed by testers is the environment model and the rest of the process is expected to be fully
automated. Incidentally, by using this automated Model-Based Testing (MBT) technology, one of our
industrial partners was able to find new critical faults in their RTES.

To support environment modeling in a practical fashion, we have selected standard and widely
accepted notation for modeling software systems, the UML and its standard extensions. We use the
MARTE [5] extensions for modeling real-time features and OCL for specifying constraints. We have
also provided lightweight extensions to UML to ease its use in our context. As we will discuss later,
environment modeling is not a new concept. But, most of the approaches use non-standardized
notations or grammars for modeling, which makes them difficult to apply from a practical standpoint.
Modeling the environment of industrial RTES systems using a combination of UML, MARTE, and
OCL has not been addressed in the literature. By using the proposed methodology, the software
testers (who are primarily software engineers) can model the environment with a notation that they are
familiar with, using commercial or open source tools, and at a level of precision required to support
automated MBT. The importance of relying on standards for modeling was confirmed on the two
industrial case studies across entirely different domains.

Although code generation from models has been widely studied, the context of black-box RTES
system testing poses specific challenges and problems that are not fully discussed and addressed in the

literature. For this purpose we present extensions to the state pattern [7] specifically aimed at
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enabling environment simulation for system testing and define rules for transforming environment
models to Java code (the simulator).

To summarize, the fundamental motivation here is that system testers, in many industry sectors,
are usually application domain experts but have little or no knowledge of the system design and
implementation. Our approach is therefore black-box and does not require the RTES itself to be
modeled. It only requires its environment to be modeled at the right level of abstraction and in such a
way as to enable effective test automation. The reliance on software modeling standards offers
significant advantages, such as the possibility of using (1) different commercial and open source
modeling tools (e.g., IBM Rational Software Architect (RSA)?, Papyrus’, or Enterprise Architect®),
(2) notations that many software engineers—including system testers—might already be familiar with
and that can be used to also model the SUT, and (3) existing analysis tools (e.g., [8]) that can take
such models as input.

The paper is organized as follows: Section 2 shed light on the practical motivations and aspects of
the work presented in this paper, setting the context to better justify our approach; Section 3 discusses
the related work. Section 4 presents the motivating example that we use throughout the paper to
explain various concepts. Section 5 discusses the proposed environment modeling methodology.
Section 6 goes into the details of the most important decisions regarding the transformation of models
to simulation code, whereas Section 7 presents the case studies. Section 8 discusses the limitation of

the proposed work and finally, Section 9 concludes the paper.

2. Practical Aspects

The work discussed in this paper was motivated by the problems faced and practices followed by
two industrial organizations that we worked with, namely WesternGeco AS, Norway and Tomra AS,
Norway. These two organizations were developing RTES for two different domains; WesternGeco
was developing a seismic acquisition system and Tomra was developing automated recycle machines.
Both the RTES were developed to run in an environment that enforces time deadlines in the order of
hundreds of milliseconds with an acceptable jitter of a few milliseconds in response time. In one of
the organizations, testing the SUT on the development platform with a simulated environment was
considered to be mandatory before deploying the software on the operational hardware. To achieve
this, software engineers were writing application specific simulators directly in Java. Test cases for
system level testing were written by hand by the software test engineers and were executed on the
SUT with the environment simulator. The research presented in this paper was strongly driven by our
investigation of the practical needs of our industry partners which, based on our experience, are
shared by many others in numerous industry sectors. Our understanding of these needs is presented in

the remainder of this section.

2 Webpage: http://www.ibm.com/developerworks/rational/products/rsa/, date last accessed: 05/02/2012
3 Webpage: http://www.papyrusuml.org/, date last accessed: 05/02/2012
4 Webpage: http://www.sparxsystems.com.au/, date last accessed: 05/02/2012
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Manually writing an environment simulator using a programming language (e.g., Java or C)
appeared to pose a number of issues, the main one being that software engineers have to develop such
simulator at a low-level of abstraction while simultaneously focusing on the logic of the simulator,
complex programming constructs (e.g., multiple threads, handling timers), and the handling of test
case configurations (when the simulator is used for testing). Making this problem even more acute,
over the course of the RTES development, these simulators frequently change due to changes in the
specifications of the hardware components.

Typically, modeling and simulation (M&S) approaches focus on simulating hardware components,
execution platforms, and natural phenomena in the RTES environment using various simulation tools,
such as DEVS [9] and Modelica [10]. These M&S tools support precise simulations of both discrete
and continuous system behaviors and are typically based on mathematical models. However, in our
context, such M&S tools are not practical, for a number of reasons: (i) Software engineers, who are
typically in charge of system testing at this level, are often not familiar with such simulation
languages. To enable technology transfer in industrial practice, it would be more convenient for them
to develop or generate the simulator using a language that they are familiar with, as for example the
languages used to program and model the SUT; (ii) These simulation tools do not support automated
environment-based testing of RTES software. A number of features must be modeled to enable this
kind of testing. For example, the models need to provide information for the automated generation of
oracles (to verify whether test cases pass or fail). Furthermore, the simulator needs to interact with a
test harness to get appropriate values for various non-deterministic events. The exact occurrences of
such events in the environment cannot be determined. These events may follow different probability
distributions (e.g., probability of failure of a sensor) or may occur at any time within a given time
interval (e.g., a gate at a railroad intersection may take from 5 — 7 seconds to close); (iii) Another
issue is that in simulation languages such as ModelicaML [11] and DEVS [12], since they were
developed for a different purpose, there are limitations regarding the interactions of the simulator with
the production code of the RTES (e.g., handling of operating system resources, such as inter-process
communication with the production code over TCP/UDP). Such an interaction is a requirement for the
type of testing we deal with in this paper, since the environment simulator has to interact with the
actual RTES production code to receive stimuli and to send responses. In dealing with such
interactions, we do not want any constraint regarding the programming language in which the RTES
is written.

The modeling methodology presented here provides an automated model-based approach to
derive environment simulators, test cases, and test oracle, taking into consideration all the practical
aspects described above, which are common place in many industrial environments. The only major
input required are the environment models describing the structure and behavior of the environment.
Since the intended users are software engineers, we chose standard software modeling languages for

environment modeling with the aim to make the modeling methodology as simple as possible. This
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paper discusses the methodology for modeling the environment based on the selected modeling
standards and a specific profile and furthermore describes the process of simulation generation from

those environment models. It does not, however, address in detail test generation and test oracles.

3. Related Work

In this section we discuss the related literature in the areas of (1) modeling and simulation for
RTES Testing, (2) environment modeling and environment model-based testing of RTES, and finally

(3) code generation approaches from UML state machines and class diagrams.

3.1. Modeling & Simulation for RTES Testing
As discussed earlier, based on the goals of testing of RTES, the SUT, the hardware platform, the

environment, or their combinations can be modeled and simulated.

At the ecarly stages of the development process for RTES, a typical approach is to model and
simulate the SUT, its hardware and its environment. The aim is to ensure that the model of the SUT
complies with the requirement specifications and does not violate the environment and hardware
assumptions. This approach is sometimes also referred as “model-in-the-loop” simulation [3, 13, 14].

Another level of simulation for testing is when the actual executable software is deployed on the
real hardware platform (e.g., electronic control unit) and their combination is tested with a simulated
environment (e.g., with the simulation of plant model [3]). This approach is generally referred to as
hardware-in-the-loop testing [15, 16]. Typically, a prototype of the hardware platform is used at this
stage. A variation to hardware-in-the-loop testing is the case where only the actual processor is used
during testing and rest of the hardware and environment are simulated. This variation is referred to as
processor-in-the-loop testing [17].

Before the hardware or the processor is available, the embedded software can also be tested on the
development platform (e.g., Linux or Windows-based machine) with a simulated environment and
hardware platform. This is typically done to ensure that the developed software works according to
the environment assumptions and behave appropriately in hazardous or abnormal situations. This is
mostly referred to as software-in-the-loop simulation [3, 13].

Existing modeling and simulation languages have been developed and are widely used for the first
three types of simulations. In these cases the environment simulation needs to interact with the actual
hardware or its simulation. In such cases, precise simulation of both discrete and continuous
phenomena is required and is typically based on mathematical models.

In this paper, we target a slight variation to the typical software-in-the-loop simulation. We only
model and simulate the environment and use an adapter for the hardware platform that forwards the
signals from the SUT to the simulated environment. Our research problem definition is motivated
primarily by the practical needs of our industrial partners (Section 2) but it is expected to be relevant
in many other industrial environments developing similar RTES. Other approaches that do testing

with a similar focus are discussed next.
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3.2. Environment Modeling and Environment Model-based Testing
In this subsection, we will discuss various environment modeling and model-based testing

approaches discussed in the literature. Kishi and Noda [18] present an approach for modeling the
environment of an embedded system using an aspect-oriented modeling technique. Karsai et al. [19]
propose a new language for modeling the environment of an embedded system. Choi et al. [20] use
annotated UML class and sequence diagrams for modeling and simulation of environment. Kreiner et
al. [21] present a process to develop environment models for simulation of automatic logistic systems
and its environment. Axelsson [22] evaluates how UML can be used to model real-time features and
provides extension to UML for modeling of real-time systems and their environments. Gomaa [23]
discusses the use of a context diagram for modeling the relationship between an RTES and its external
entities. Friedentahl et al. use the concept of SysML block diagram and activity diagrams to represent
the system and its interfaces with environment components [24].

There are a few works reported in literature that discuss testing of RTES based on its environment
and without considering the hardware platform or its simulation. Auguston et al. [25] discuss the
development of environment behavioral models using Attributed Event Grammar for testing of RTES.
The behavioral models contain details about the interactions with the SUT and possible hazardous
situations in the environment. These models are then traversed to obtain various test scenarios. The
approach is applied on a simulation of the RTES specifications. Heisel et al. [26] propose the use of a
requirement model and an environment model using UML state machines along with the model of the
SUT for testing. Adjir et al. [27] discuss a technique for testing RTES based on a model of the system
and intended assumptions in the environment in Labeled Prioritized Timed Petri Nets. Larsen et al.
[28] propose an approach for online testing of RTES based on time automata to model the SUT and
environmental constraints. Bousquet et al. [29] present an approach for testing of synchronous
reactive software by representing the environmental constraints using temporal logic.

To summarize, there are approaches in literature that deal with modeling the environment of a
system for various purposes. Most of these approaches are only limited to modeling the static
structure of the environment, as they do not focus on test automation. The approaches that deal with
modeling of behavioral aspects either use notations with which software engineers are not familiar, or
provide extensions for environment modeling that in a non-standard way.

All environment modeling approaches aimed at supporting testing in literature, except the one by
Heisel ef al. [26], use non-standard languages for modeling. This work, however, models the concepts
of probabilities and time using non-standard notations, without relying on UML extension
mechanisms. Furthermore, most of the works on environment model-based testing, model both the
SUT and the environment, which does not fit our purpose: black-box, system testing. Moreover, none
of these works simulate the behavior of the environment. To be able to execute different possible
behaviors of the environment based on its interaction with SUT for system testing, a simulator is

essential. Generating a random set of scenarios from the environment models, as done by Auguston et
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al., [25] provides a limited coverage of the environment model. Last but not least, none of the relevant
works assess their environmental methodology on an actual RTES system, which we believe is a

requirement to assess the credibility and applicability of any MBT approach.

3.3. Code Generation from UML Classes and State Machines
There is no reported approach in the literature that generates RTES environment simulators from

UML models or their extensions. As we discussed in Section 3.2, though modeling and simulation
languages and environments have been proposed, they do not fit our purpose of black-box system
testing (Section 2).

Generating code from state machines is not a new problem. Even though a number of works are
reported in the literature (e.g., [30], [31]) and a number of tools are available that generate code from
state machines (e.g., SmartState [32], IBM Rhapsody [33]), no technology was developed having the
required features for black-box testing based on environment models, such as non-determinism (a
common feature of the environment) and test-specific behavior (e.g., modeling illegal or unsafe
environment states). The use of standards is also an important requirement for our modeling
methodology, as discussed earlier. The modeling standards that we selected for our methodology are
supported by a wide range of tools and support is available for training. The existing code generation
tools and techniques discussed in the literature are focused on generating system code and not
environment simulators. They are not applicable to our purpose because of several reasons.
Following, we discuss the most important ones:

1) The models need to capture specific states of failures in the environment components (the “failure
states”, e.g., a sensor break down). The environment simulators then must be able to simulate these
situations, which occurrences can be controlled by the test cases. Similarly, the models need to
capture information of situations in the environment that should never happen if the SUT is correct
(which we call the “error states™). Such information is required to derive test oracles and to guide
testing strategies.

2) Since we simulate the environment for testing, the generated code is strongly coupled with the test
harness, which is not the case with existing simulators.

3) The generated simulator includes code that collects execution information to guide testing
strategies. Such information is used in heuristics to generate test cases that are effective to reveal
faults. The heuristics that we use are specific to our modeling and testing methodology, existing
tools for code generation do not provide this support.

4) Extensions to existing tools are not feasible in most cases as some of them are proprietary and
others are not based on model-driven engineering standards, such as the Eclipse Modeling
Framework.

The original state pattern, discussed in [7], provided a design pattern to implement state-driven
behavior but did not address a number of important features present in UML 2.x state machines, e.g.,

concurrency, time events, change events, and actions. A number of extensions for the pattern have
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been discussed over time to handle missing features (e.g., [34, 35]). Most of these extensions are
focused on increasing the understanding and usability of the code obtained using the state pattern to
support programmers (e.g., [35]) and are not very useful in our context where the code is
automatically generated from the models. Chin and Millstein [36] propose an extension to the state
pattern for handling state behavior in inherited sub-classes. Holt et al. [37] propose an extension for
handling state and transition actions and report its application on an industrial case. Palfinger [38]
provides an extension to the state pattern that allows extension of object’s behavior at runtime by
using a mapper class. In our approach, this was not applicable as we do not require the addition of
new behavior during the execution of environment components. The work in [39] extends the state
pattern to supports hierarchical state machine and time events. We handle time in a similar way, i.e.,
by using a separate timer class that calls timeout ( ) on the context object in case of a timeout. The
approach in [39] does not handle parallel regions and change events, does not provide details on
handling actions, and does not provide support for the test-related features required by our approach.
Overall, none of the extensions of the state pattern in the literature completely meets the needs for
RTES environment simulation to support system testing.

We could have used some optimizations to improve ease of understanding and modification, and
cleaner code generation, but these would not have had a large impact as the generated source code is
not visible to the end-user and is only provided as an executable archive. Furthermore, there are
optimizations in the literature to improve the performance of the generated code (e.g., minimizing the
number of running threads to avoid overheads due to context switching). However, in our framework
(as we have explained in details throughout the paper) we do not need to optimize performance. The
generated simulators are used only for testing purposes, and each test case runs on a different process,
lasting from a few seconds to a few minutes (depending on the RTES). As long as the environment
simulators can behave as expected (e.g., providing the right stimuli at the right time), this would be

sufficient for our testing purposes. This was the case for all our case studies.

3.4. Summary

To summarize, this paper differs from existing works in several of the following ways: (1) It
provides an environment modeling methodology based on international software engineering
modeling standards (UML 2.x, MARTE, OCL) that is dedicated to black-box, RTES system testing.
The targeted RTES have complex environments and have soft-real time constraints in the order of
hundreds of milliseconds pertaining to the response time of the SUT and operations of the
environment. This is the first work focusing on such methodology, allowing the modeling of
important concepts for testing such as modeling non-determinism and oracle information, while
relying only on light-weight, standard extensions of UML (i.e., by defining a UML profile); (2) It
provides an approach to generate simulators, based on environment models developed using the

proposed environment modeling methodology, addressing the specific needs of black-box system
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testing; (3) Regarding simulator generation, the paper provides extensions to the state pattern that
handle time-related features and various UML 2.x features that were not previously discussed in the
literature, including handling of change events and concurrency; (4) Unlike most of the works
reported in the literature, this paper assesses the proposed methodology and simulator generation on
two industrial RTES, which we believe is a requirement to assess the applicability of any test

automation approach.

4. Motivating Example

To motivate and explain our modeling methodology and simulator generation strategy for RTES,
we take as example a subset of one of our industrial case studies. Note that we have sanitized the
information due to confidentiality restrictions. This example is an Automated Bottle Recycling
System developed by Tomra AS, Norway. It is representative of the type of RTES we are targeting in
this paper: it has soft-real time constraints in the order of hundreds of milliseconds pertaining to the
response time of the SUT and operations of the environment (e.g., the sorting of item should be done
within a couple of minutes after an item is inserted).

The portion of the case study considered in this paper is focused on the important functionality of
sorting the recycled items to their proper storage locations (or destinations). Users insert the items to
be recycled inside the front-end of the recycling system, called the Reverse Vending Machine (RVM).
The items can be of three different types for the subset we are discussing: plastic bottles, cans, or
glass bottles. The RVM forwards the items to the Sorter, which is a sorting arm (we only consider a
simplified backroom with a single sorting arm). On its way from an RVM to Sorter, an item can be
lost if it is not detected in time or if it falls from the moving belt. The Sorter can move in three
directions (each leading to a specific destination) and its movement is controlled by a Sorting
Controller.

The Sorting Controller is the system under test in our case study. The Sorting Controller receives
information of the type of the item inserted from the RVM and when it is supposed to reach the Sorter.
The Sorting Controller is responsible for moving the Sorter in a position that leads the items to their
appropriate destinations. There can be different destinations based on the type of items. Plastic bottles
and cans are placed in their appropriate bins, whereas the glass bottles are placed in the crates. The
Sorting Controller should prevent certain erroneous situations from happening. For the subset of the
case study discussed in this paper, we consider two such situations: (i) when an item is not correctly
sorted and it goes to a wrong destination (for example, a plastic bottle going into a bin of cans) (ii)

when an item reaches the Sorter while it is still moving.

5. Environment Modeling Methodology
If environment models are to be used for testing RTES, they should not only be sufficiently
detailed, but should also be easy to understand and modify as the environment and RTES evolve. To

handle the complexity of realistic RTES environments, the modeling language should have provision

10
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for modeling at various levels of abstraction. The modeling language should also be well-defined for
the tools to analyze the models and for the humans to accurately understand them. The language
should also provide features (or allow possible extensions) for modeling real world concepts, real-
time features, and other concepts, such as non-determinism, required by the environment components.
The UML, MARTE profile, and the OCL together fulfill the important requirements of an
environment modeling language.

Even though we are using the same notations to model the environment that are used for modeling
software systems, it is important to note that the methodology for environment modeling is
significantly different from system modeling. While modeling our industrial cases, we abstracted the
functional details of the environment components to such an extent that only the details visible to the
SUT were included. An environment of a RTES typically features a number of non-deterministic
events (e.g., breakdown of a sensor), which must be modeled. Such events are not common when
modeling the internal behavior of a system.

To model RTES environments, we have developed a profile that provides support for modeling
various concepts central to our methodology and highlights the subset of UML/MARTE that is
required for such modeling. For testing the system based on its environment, the behavioral details of
the environment are as important as its structural details. Structural details of the RTES environment
are important to understand the overall composition of the environment (e.g., number and
configuration of sensors/actuators), the characteristics of various components, and their relationships.
We choose to model these details in the form of a Domain Model developed using UML class
diagrams annotated with our defined profile. The behavioral details of environment components are
required to specify the dynamic aspects of the environment, for example, to determine the possible

environment states, before and after its interactions with the SUT, and to specify the possible

11
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interactions between the SUT and its environment. For behavioral details, we used the UML State
Machines augmented with the MARTE profile and our defined profile.

In the kind of testing this paper addresses, the focus is on the interactions of the RTES with the
components in its environment, i.e., what are the possible inputs/outputs to/from the RTES from/to
these components at any given point in time? How does the RTES behave in abnormal situations,
such as a hardware failure in any of the environment components? A test case for a RTES would
typically consist of a sequence of actions from the user(s), signals from/to sensors/actuators, and
possibly hardware component breakdowns. This would correspond, in our context, to non-
deterministic events that can happen during the environment simulations.

In the following sub-sections, we discuss the environment modeling profile that we developed
followed by the guidelines for modeling domain and behavioral models that were developed based on
our experience of modeling two large-scale industrial RTES - a marine seismic acquisition system and
an automated bottle recycling system.

5.1. Environment Modeling Profile

Our goal was to model the environment based, to the extent possible, on the standard UML and its
existing extensions. We applied the standard notations and based on our needs for those case studies,
where required, we provided light weight extensions to UML. In this section we will discuss the
subsets of UML and MARTE that we used and the lightweight extensions that we have provided for
environment modeling. From a practical standpoint, it was important to identify these subsets for the
methodology, since the UML and MARTE standards are very large and most organizations would be
reluctant to adopt such large notations.

Developing UML profiles is a way to provide lightweight extensions to UML that do not conflict
with its original semantics. To model an RTES environment, generate its simulator, test cases, and
obtain test oracle from these models, we need more specific notations than what the standard UML
provides. We provided extensions to the standard UML class diagram and state machine notations in
the form of a profile. The profile also resolved various semantic variation points left open by the
standard (discussed later in Section 6.5) to address our specific needs. Fig. 1 depicts a profile diagram
for our proposed RTES environment modeling profile. The profile defines a set of stereotypes for
modeling our methodology specific features on UML classes and state machines. It also shows the
subset of MARTE that the profile is using, i.e., the Time package and the concept of GaStep from the
Generic Quantitative Analysis Modeling (GQAM) package. The Time package allows the software
engineers to model various time related features, such as timed events and action durations [5]. This
small subset of UML and MARTE was sufficient for modeling our two industrial case studies for the

purpose of automated black-box testing.

5.2. Domain Modeling
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Fig. 0. Domain Model of Sorting Machine Case study

Our environment modeling methodology for system testing requires the modeler to create an
environment domain model that captures relevant structural details of the environment including the
various components of the environment, their cardinalities, characteristics, and relationships. The
domain model is developed using the UML class diagram notation.

The various components modeled in the domain model together form the overall environment of
the SUT. This means that all these components (their instances) will run in parallel with each other.
The domain model represents various possible forms that the environment of RTES can take. Each
component in the domain model can have a number of instances in the RTES environment. The
information about the number of possible instances of a component in the environment is modeled as
cardinalities on the associations between different components in the domain model. Therefore, the
domain model can be used to obtain a number of potential configurations of the environment. To
restrict the possible forms an environment of an RTES can take, OCL constraints can be specified.
These constraints can for example be used to restrict the possible combinations of environment
components or to restrict the possible values of attributes.

The domain model for the Sorting Machine case study is shown in Fig. 2. Sorting Controller in the
domain model is the SUT and the components RVM, User, Sorter and Item are the environment
components. All the environment components are considered to be active objects, i.e., having their
own thread of execution, and communicate with each other through signals. Each environment
component in the domain model can have multiple instances. For example, in the domain model,
shown in Fig. 2, Item is represented as one environment component, but during simulation it can have
multiple instances. The number of instances to be created, which we refer to as an environment
configuration, is determined based on the cardinality of relationships, i.e., in this case the cardinality
of the association between User and [ltem with the role name itemCollection and the OCL constraints
restricting the possible combination of environment components. In the motivating example we have
restricted the possible number of items a user can enter to be less than 100. This is shown as an OCL

constraint in Fig. 3. A valid environment configuration for this example is a single RVM, a single
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Sorter and a User with three ltems. A test case in our context is a combination of a setting of the
simulator for the non-determinism in the environment models (e.g., a specific time at which a sensor
stops working), which we call simulation configuration and an environment configuration. A test case
uses these settings for a particular simulation run. During testing, the selected test strategy decides the
way these configurations for a test case are generated by the Test Framework (e.g., random values for
simulation and environment configurations when using random testing).

Note that the domain model that we develop is different from the ones commonly discussed in
literature (e.g., [40]). The components represented as classes in the environment domain model will
not necessarily relate to software classes. They may correspond to systems, users and concepts related
to various natural phenomena. Domain modeling here is not a starting point for software analysis. The
identification of components in the domain model, their properties, and their relationships is also
different from what is commonly done for software analysis. Following, we further discuss various

guidelines for modeling the structural details of a RTES environment.

5.2.1. Environment Components to be Included
Initially, all the environment components that are directly interacting with the SUT are included in

the domain model. Then, each of these components is further refined to a level where we are certain
to cover the important details for simulating the environment needed to test the SUT. If at any time
the behavior of an environment component is getting too complex, when possible, we can decompose
the component and divide its behavior into multiple concurrent state machines. This is especially
useful if a component can be divided into components that are similar to existing components, so that
we can specialize existing state machines. The environment components in the domain are
stereotyped with «Contexty. The environment components are modeled as active objects and can

communicate with each other and the SUT through signals.

5.2.2. Relationships to be Included

All those associations representing the physical or logical relationships among various
environment components, or that were needed for components to communicate, should be included. A
number of components in the environment might be similar to each other (e.g., various types of
sensors). It is wuseful to relate these components (and their behavior) wusing the
generalization/specialization relationship for simplifying the model, as our experience shows that such
domain models get highly complex. For example, in the sorting machine case study, we modeled the

association of the SortingController with the Sorter, which is controlled by the board.

5.2.3. Properties to be Included

From all properties that may characterize environment components, it is important to include only

context User inv:
self.itemCollection—size() > 0 and self.itemCollection—size() < 100

Fig. 0. An example OCL constraint
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Fig. 0. State machine for the Sorter component
those properties that are visible to the SUT (or have an impact on a component that is visible to the
SUT). These may include attributes that have a relationship to the inputs of the SUT, that constrain
the behavior of a component with respect to the SUT, or that contribute to the state invariant of a
component that is relevant to the SUT. For example, in Fig. 2, the attribute #ype of Item is used by the
SortingController to move the Sorter in appropriate position before the items arrive.

By using the profile, it is also possible to leave the decision of selecting exact values for properties
of the environment components till the time of testing (where it is decided by the simulation
configurations). This concept is modeled by assigning «NonDeterministic» to the properties of
environment components. This stereotype has three properties: an upper bound, a lower bound, a
valueConstraint, and a scope. The upper and lower bound specify the possible range of values that an
integer property of an environment component can take during simulation. This is provided to ease
the modeling of time events’ bounds. Alternatively, an OCL constraint can be provided as a
valueConstraint that restricts the possible values that an environment property can take. This
constraint can, for example, be used to restrict a string property to certain specific values.

As shown in Fig. 1, the scope property can have three possible values: Class, State, or Dual. If the
value is set to Class, the properties of the environment component instances are initialized with a
value obtained from simulation configuration only once when the instances are created. If the value is
set to State, the values are obtained whenever there is a state change in an instance. If the value of
scope is set to Dual, then a value is obtained for this environment component’s property from the
simulation configuration when an instance is created and the property is reassigned a value when
there is a state change in the instance. For example, in Fig. 2, the property type of Item is a non-
deterministic variable with the scope Class and its value is initialized based on a simulation

configuration when an instance of /tem is created.

5.2.4. Modeling the SUT
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Fig. 0. State machine of the RVM Component

It is important to include the SUT in the environment domain model, so that its relationship with
the other environment components can be specified. It is also useful to include the details of signal
receptions by the SUT from other environment components. The SUT is stereotyped as «Systemy.
The stereotype was used initially by Gomaa [23] to refer the system in a context diagram. Since, our
goal is software-in-the-loop testing, the SUT modeled in the domain model represents the SUT and its

execution platform as a single component.

5.3. Behavior Modeling

For each environment component in the domain model that has a behavior affecting the SUT, our
methodology requires to create a state machine representing this behavior. The state machine captures
such behavior at the level of abstraction that is visible to the SUT. The state machines are developed
using UML 2.x state machine notation and concepts, MARTE real-time extensions, and our profile to
assist in modeling the environmental aspects of RTES. The MARTE profile is used to model the
features related to time and a form of non-determinism. As discussed earlier, during simulation, the
instances of the environment components run in parallel to form the environment of the RTES. They
can send signals to each other and to the SUT. We can also view the environment as having one state
machine with orthogonal regions, one for each component. Fig. 4 - Fig. 7 show the state machines of
the four environment components of our motivating example. Note that the diagrams are developed in
IBM RSA, which adds some additional symbols to the triggers and effects in the state machines. A
change event is not shown with a when keyword as for example in the transition from On_Hold to
No_Item in the ItemiInside region of RVM state machine shown in Fig. 5. All the guards in the state
machines have the corresponding environment components as the context for OCL constraints.
Following, we discuss the details of the methodological guidelines for modeling behavior of the

environment components.

5.3.1. Identifying Stateful Components
Components whose states either affect the SUT or are affected by the SUT should be modeled

with state machines.Overall, the environment should be modeled in a way that enables, after the

16



Simula Research Laboratory Technical Report (2011-04) Version 3.0

“sItemSM

@9 Outside |43
@ -

—_—— Failures
= "z rvm_sends_item( bilitys b
— a@rvm, - 20n_Belt [ 4TimeProbabil i
- «limel IOb I|ItY - Lost

%% after "timeToNode, ms"

@aIn_RVM

. At_Node

| ===,

[(self .type = 0 and self .sorter.oclinState(Working: :Left)) or g after "100, ms"

T (self.type = 1 and self .sorter.oclinState(Working::Centre)) or @ | sorter.item_at_destination();
(0 At Destination | (self type = 2 and self .sorter.oclnState(Working: Right))] [eke]
else
«Errors
. Error State
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initialization and provision of simulation and environment configurations, the full simulation of the
interactions with the SUT. All the environment components shown in Fig. 2 are stateful components
of the sorting machine case study. For example, the Sorter component was modeled as stateful since it

receives signals from the SortingController and reacts differently based on its current state.

5.3.2. States to be Included

It is important to determine the right level of abstraction for a component state machine. If we
want to precisely model the behavior of an environment component, this might lead to a large number
of states. We are, however, only interested in state changes that have an impact on the SUT. A single
state in an environment model state machine may correspond to a large number of concrete or
physical states. For example, in the sorting machine, the states of ltem that we modeled were all
related to its movement through the sorting machine whereas its other possible states were not of
interest as an environment component of the SortingController.

A state in a UML state machine can be a simple state, a composite state (i.e., containing substates)
or it can be a submachine state. UML state machines can also have multiple orthogonal regions. The
concept of orthogonal regions is particularly useful in environment modeling as one environment
component can in reality be composed of multiple sub-components. For example, RVM in our
motivating example is composed of two sub-components: an item feeder that handles item insertion
and a conveyer that is responsible for routing the items. From the perspective of the SUT (Sorting
Controller) it is not important to distinguish these two components as it sees RVM as a single
component. For the RVM, to completely simulate the behavior visible to the Sorting Controller, it
must manage the movement of items on the conveyer in parallel to handling items in the feeder. From
the RVM point of view, functionality must be provided for both of these components, conveyer and
feeder. Therefore this information is modeled as two orthogonal regions of the RVM (named
ItemiInside and Routing) in the state machine shown in Fig. 5. In addition, according to our modeling
methodology, failure behavior of a component that is independent of its nominal behavior can also be

modeled as a separate orthogonal region.

5.3.3. Modeling Users in the Environment
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Generally, for software system modeling, users are only modeled as sources of inputs and data.
The behaviors of users with respect to the system are mostly not considered. In the environment
modeling methodology, it is useful to model the behavior of users in the environment to have a
control over the inputs/outputs of the various components or the SUT. If a user participates in multiple
roles, it is useful to model each role a user plays as a separate component. In the motivating example,
we modeled the persons who enter the items for sorting as a User environment component (state
machine shown in Fig. 7). In certain cases it can be interesting to model both the expected and
unexpected behavior of users using the proposed methodology. Overall, the behavior of a user in an

RTES environment is modeled using the same notations as any other environment component.

5.3.4. Modeling Events

When using UML 2.x state machines for environment modeling, only three types of events are
required to be modeled: signal events, time events, and change events. Call events are not required
since the components in the environment represent active objects and communicate asynchronously.
OCL is used to model guards on transitions and conditions in the change events. For example, Fig. 4
shows the state machine of the Sorfer component. As discussed earlier, a Sorter can be at three
different positions. This is represented by the three states, Left, Centre, and Right. Movement between
these states is represented by the outgoing transitions from these states to the two movement related
states: MovingLeftCentre and MovingCentreRight. For the Sorter to move from Left to Center it needs
to transition first from Left to MovingLeftCentre, which is triggered on receiving a signal event
POSITION CENTRE() from the SUT (Sorting Controller). A transition from MovingLefiCentre to
Centre state is triggered by the time event after “movingAdrmTimeLC, ms”’, where movingArmTimeLC
is the name of a non-deterministic property of Sorter and ms is the unit of time, milliseconds. This
transition is only triggered if the guard on the transition, written in OCL (self.destination = “centre”),
is true. An example of a change event can be seen in the state machine of the RVM component (Fig. 5)
in the [ltemInside region on a transition from On_Hold to No Item. The transition has an effect
“this.user.rvm sends item() written in Java, which we chose as the action language as
further discussed later.

The MARTE TimedEvent concept is used to model all timeout transitions, so that it is possible for

them to explicitly specify a clock (if needed). Each environment component may have its own clock
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1. import simula.embt.commons.*;

2. public class SortingMachineActionCode implements ExternalCode
3. ¢

4. private int port;

5. private String address;

6 private Connection con;

7 private IActiveObject sorter;

8. public SortingMachineActionCode (Object[] args)

9. {

10. port = (Integer) args[0];

11. address = (String) argsl[l];

12. }

13. public void openConnection() throws Exception

14. {

15. con = TCPConnection.openConnection (address, port, 1000);
16. String msg = con.readMessage () ;

17. sorter.receiveSignal (msg, null);

18. }

19. public void triggerSensor () throws Exception

20. { con.sendMessage (Signals.TRIGGER SENSOR) ; }
21. @Override

22. public void startExecution (IActiveObject ao)

23. { sorter= ao; }
24. @Override

25. public void stopExecution() throws Exception

26. { con.stopExecution () ; }
27. '}

Fig. 0 Excerpt of ExternalActionCode for the Sorter component

or multiple components may share the same clock for absolute timing. The clocks are modeled using
the MARTE’s concept of clocks. If no clock is specified (as in the case of motivating example), then
by default the notion of time is considered to be according to the physical time. Specifying a threshold
time for an action execution or for a component to remain in a state is possible using the MARTE
TimedProcessing concept. This is also a useful concept and can be used, for example, to model the
behavior of an environment component when the RTES expects a response from it within a time
threshold.

The proposed environment modeling profile allows the modeler to apply three stercotypes to
transitions in the state machines: «NonLeaving», «TimeProbability», and «gaStep» (defined by
MARTE profile). Following, we discuss the stereotype «NonLeaving», whereas the other two
stereotypes are related to non-determinism and will be discussed later (Section 5.3.7).

By default whenever a component transitions from one state to another (i.e., transitions that are not
internal), its event queue is emptied. To control the effect of a transition on the event queue and timers
of the context component, we defined the sterecotype «NonLeavingy. In other words, this stereotype is
a way to give more control to the modeler over the internal handling of the queues and timers. The
stereotype has a property called sideEffect, which can have three possible values: (1) NoSideEffects, to
denote that the transition should have no side effects on the source state. A transition with this
stereotype will result in no alteration of the event queue and the various timers in the environment
component; (2) DoNotEmptyQueue, which will result in no alteration of the event queue, but will

reset the timers; (3) DontResetTimers where the queue is emptied, but does not reset the timers.

5.3.5. Modeling Actions & Action Durations
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In our methodology, we chose Java as the action language for writing actions. The decision to
choose Java as the action language at the model level is due to the current lack of tool support for the
UML action language (ALF) [41] at the time of our tool development. Moreover, the testers of the
SUT are expected to be more familiar with Java (consistent with our experience of applying the
approach in two industrial contexts), rather than with a newly accepted standard language.

In the environment models, actions can be written in two places. Simple actions can be written
inside the models, e.g., in the RVM state machine (Fig. 5), the simple assignment action of the
transition from ltemlinside::No_Item to Iteminside::On_Hold (i.e., this.currentItem = item)
is placed directly as an effect. Relatively complex actions and communication related details are
written in a separate source file and are referred to as the external action code. Calls to methods of
external action code classes are simply made by using the keyword action: action.<method name>.
For example, in Fig. 5 the effect of the initial transition in the ltemlnside region is in fact making a
call to openConnection() in the action class corresponding to RVM (see line # 13 in Fig. 8).

External action code is the code that is to be written manually by the tester in a separate source
code file, to communicate with the SUT and compute complex effects (e.g., action code computing
continuous physical effects could also be generated by modeling and simulation tools, such as
Modelica [10]). An example for the type of external action code is signals transmitted to the SUT over
a UDP/TCP communication layer.

An excerpt of the external action code for the Sorter component is shown in Fig. 8 (line # 13 and
line # 19). The action code for the two messages sent to the action object in the state machine of
Sorter (Fig. 4) - openConnection() and triggerSensor () — can also be seen in the excerpt
shown. Class TCPConnection is part of the communication library that we used. The method
triggerSensor () simply forwards the signal to the SUT over the TCP connection. The decision
to keep such action code separate was made to avoid cluttering the models with unnecessary details
and to allow developers to write this code in a familiar programming tool. It was also important to
keep the communication related information separate to avoid changing the models in case of changes
in the communication mechanism. For example, if we want to change the communication from TCP
to UDP, the only change will be in the external action code classes. Given a communication layer,
even if the simulator is generated in Java, there is no particular restriction on the programming
language in which the SUT is implemented.

To provide a mapping between the environment components and corresponding classes containing
the external action code, an External Code Mapping file is provided by the modeler. Fig. 9 shows an
excerpt of this file for the sorting machine case study. The file contains the mapping details of

external action code and environment components for the two components (Sorter and RVM) that are

tomra.embt.env.Sorter tomra.embt.action.SortingMachineActionCode

tomra.embt.env.RVM tomra.embt.action.SortingMachineActionCode

Fig. 0 Excerpt of External Code Mapping File for the Sorting Machine case study
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communicating with the SUT. For the other two classes, no action class was required. This
information could have also been placed in the models, but we decided to keep things related to
external action code separate from the models, so that it can be changed without affecting the models.

Specifying a time threshold for an action execution or for a component to remain in a state is
possible using the MARTE TimedProcessing concept. This is also a useful concept and can be used,
for example, to model the behavior of an environment component when the RTES expects a response
from it within a time threshold. Though in our case studies we did not face a situation where we

needed to model action durations, the methodology supports this feature.

5.3.6. Modeling Error & Failure states

Two of the important features that are modeled in the state machines of environment components
are the Error and Failure states. Failure states represent possible failures in the environment of SUT,
e.g., hardware failure in the components. These states are required to test the robustness of the SUT
when confronted to failures in the environment components. The failure states are modeled with the
«Failure» stereotype. Failures that are independent of any specific aspect of an environment
component’s behavior (e.g., a hardware failure that can occur in any component state) are typically
modeled using separate parallel regions within the state machine of the environment component.

Error states are the states of the environment that can only be reached due to faulty behavior of the
SUT. These states are conditions that should never happen in the environment, otherwise indicating
that the SUT is faulty. For example, a Sorter should never receive an item while it is moving and
when there are no simulated failures in the hardware of the environment components, all items should
always be delivered to the correct destinations based on their types. It is the responsibility of the
Sorting Controller (SUT) to make the Sorter reach the appropriate position before an item reaches it.
Otherwise, this would mean that there is a fault in the implementation of the Sorting Controller. This
behavior of Sorter is modeled in the state machine shown in Fig. 4 as an error state, which is labeled
with «Error». Error states are key oracle information that is used during the test execution of the SUT.
By modeling erroneous situations as states, the methodology allows modeling of erroneous situations
due to violation of temporal constraint (modeled as time transitions leading to error states), due to
illegal change in the state of the environment (modeled as transitions leading to error states triggered
by change events), and due to erroneous signal receptions (modeled as a transitions leading to error

states triggered by signal events).

5.3.7. Modeling Non-Determinism
Non-determinism is a particularly important concept for environment modeling and is one of the

fundamental differences between models for system modeling and models for environment modeling.
Following we discuss different types of non-determinism that we have modeled for our case studies.
For a number of RTES environment components, specifying the exact values for timeout

transitions is not always possible. To model their behavior in a realistic way, it is often more
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appropriate to specify a range of values for a possible timeout, rather than an exact value. Moreover,
the behavior of humans interacting with the RTES is by definition non-deterministic. For modeling
these behaviors, the modeler can add an attribute in the environment component and label it with the
stereotype «NonDeterministicy. The stereotype allows the modeler to provide an upper and lower
bound values by directly specifying them in the properties or by using an OCL constraint to restrict
the possible set of values of the attribute. This attribute can then be used as a parameter of a time
event. In the state machine of the User (Fig. 7), the transition between the state /dle and RVM_ Busy is
modeling the behavior that this transition is non-deterministic and that the user can insert the next
item with a delay ranging from 1 to 10,000 milliseconds. The information constraining the values is
provided in the domain model by applying the stereotype «NonDeterministic» on the insertionTime
attribute (see Fig. 2). The attribute is then used as a parameter to the time event on the transition. The
actual value (between the range specified) to be used during simulation is obtained from the
Simulation Configuration. Since the scope property of the stereotype is set to State, the value for this
attribute will be obtained from the Simulation Configuration every time the User enters Idle state, i.e.,
every time a new item is inserted.

There can be situations in which the modeler wants to restrict that a non-deterministic value is
either only obtained once for each instance (i.c., assigned at the time of instantiation) or is obtained at
the time of instance creation and every state change. These restrictions can be modeled by setting the
property scope of the stereotype «NonDeterministic» to Class or Dual respectively. For example, The
attribute type for an Item (see Fig. 2) on the basis of which the [lfem is sorted is modeled as
«NonDeterministic» with scope set to Class and values constrained between 0 and 2 representing
different types of items. This means that for each instance of Item, the attribute fype is given a value
by a simulation configuration when an instance of /tem is created.

Another important form of non-determinism is to assign probabilities to the transitions of state
machines. In an RTES environment, we sometimes only know the probability of a component to go
into a particular state over time and we are not sure about the exact occurrence of such conditions. For
example, we can say that the probability of a car engine to overheat after running continuously for 10
hours is 0.05, but we cannot be certain about the exact instance in time when this situation will
happen. We can model this in the engine state machine with a transition going from Normal
Temperature state to Overheated state, during an interval of 10 hours, with probability of 0.05.

For modeling these scenarios, we can assign a probability on the transitions using the property
prob of the MARTE GaStep concept. Whenever a timeout transition has the gaStep stereotype applied
with a non-zero value of prob, the combination will be comprehended as the probability of taking the
transition over time of the test case execution. In the sorting machine case study, a Sorter can get
stuck in a position (e.g., because of a bottle blocking it or the arm jamming) for example with a

probability 0.02 in a minute if it is not moving and a higher probability when it is moving. The
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sending of non-deterministic signals can also be modeled using this type of transitions, by placing
them in the actions of such transitions.

If the goal is validation, for example based on reliability estimation, then these probability values
can be used as a sort of operational profile of the SUT [42]. On the other hand, if the goal of testing is
the verification of the SUT, then the actual values of these probabilities are not important (7Test
Framework decides if an event happens, as long as its probability is not zero). For example, if the goal
was validation, the above discussed scenario of a Sorter getting stuck could have been modeled with
the gaStep stereotype to provide an exact value, range, or a probability distribution of occurrence of
this failure.

For verification purposes, typically we only require modeling of such situations without specifying
an exact probability value or distribution and leave the decision of exact value to the Test Framework.
The stereotype «TimeProbability» on a transition is used to model such a non-deterministic trigger,
whose occurrence is decided by the Test Framework and obtained from the simulation configuration.
Such a transition is very useful to represent failures in environment components. For example, in the
Sorting machine case study, an item can fall of the belt and be lost at any time while it is moving
inside the machine. This is modeled as a transition from On_Belt state to a failure state named Lost in
the ltem state machine shown in Fig. 6.

Another type of probability that we modeled in our case studies is for the situations where one
event can lead to multiple possible scenarios, but all of them are mutually exclusive. For example, we
might want to represent the fact that during the communication with the SUT there is a chance that
signals are received with or without distortion. For modeling such scenarios in UML state machines,
we can use choice nodes. We provided a stereotype «NDChoice» that can be applied on choice nodes,
where each outgoing transition has the same probability. The decision of taking one of the outgoing
transitions from such a choice node is made at the time of execution by the Test Framework.

If the modeler wants to provide precise probabilities for such scenarios, she can assign the
MARTE gaStep stercotype to each of the multiple possible outgoing transitions. The example of
communication with the SUT can be modeled by having two transitions going out of the environment
component state on receiving of a signal, one labeled with a probability that the signal was corrupted
and the other with the probability that the signal was fine. As mentioned earlier, modeling the
distribution of event arrivals and timeout transitions can be useful for validation purposes, but is out

of the scope of this paper, since our goal is verification of the SUT.

6. Simulator Generation

The environment models, comprising a domain model (UML class diagram) and behavioral
models (UML state machines), are converted into a Java-based simulator using model to text
transformations. The transformations are based on an extension of the state pattern [7], which is a

well-known way of implementing state machines. The transformations proposed here are defined to
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Fig. 0 Architecture Diagram of Simulation Framework

address the specific requirements for environment simulation and RTES system testing. In this
section, we first provide an overview of the overall simulation framework. Then we discuss our
extended state pattern followed by a discussion on detailed transformation rules for domain and

behavior models to simulator code, thus providing a more thorough description of the pattern.

6.1. Simulation Framework
Fig. 10 shows the architecture of the Simulation Framework. Components marked with the

stereotype «artifact» represent the artifacts that are provided by the software testers to use the
framework. The two inputs include the Environment Models that are developed according to the
methodology discussed in Section 5 and the External Code Mapping file that provides a mapping
between the external action code and environment models (as discussed in Section 5.3.5)

The package named Simulator Generator contains the core components required for
simulator generation. The sub-package GeneratorDrivers contains driver classes provided with
the framework that are responsible for configuring and running the model transformations. The
Model Transformations package contains the transformations we wrote in MOFscript [43] to
translate the environment models to Java classes representing the environment simulator. Class
EnvironmentConfigurationGenerator is responsible for generating an environment
configuration  representing one possible setting of the environment. The class
OCLToJavaTranslator is used by the MOFScript transformations to translate the OCL
expressions in the model representing guards and change events to their Java equivalent. More details
on how the simulator generator handles change events are provided later in Section 6.4.1. The
components inside the Simulator Generator package generate a set of classes in Java corresponding to
the environment models given as input. This is represented as a Simulator package in Fig. 10. The
generated simulator is statically linked to classes from two packages: the Simulator Helper Library
(SHL) and the Non-Deterministic Engine which we discuss below.

The Simulator Helper Library is developed to support a number of features required by the
generated simulator. The library is independent of the case studies and hence is developed as a
separate library. The library contains generic features required by active objects (message queue,

event handling mechanism, etc.), time related functionalities (including features for handling clocks
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Fig. 0. Important classes in the SimulatorHelperLibrary

and timed events), collection classes (providing facility for sending broadcast signals to all elements
in the collection), and support for implementing the defined extension of the state pattern, as
discussed further in Section 6. The core package of the library is shown in Fig. 11. The class
ActiveObject represents the UML concept of an active object. The class provides an event queue
for the active objects in the form of a java.util.PriorityBlockingQueue. The queue is a
blocking queue and enables setting the priority of elements in the queue. The queue holds instances of
class EventInvocation. An EventInvocation instance represents an event that is ready to be
executed and is placed in the event queue of an ActiveObject. EventInvocation has an
attribute methodToInvoke that is of type Method from the Java reflections package and contains
the method of the ActiveObject to be invoked along with its parameter types, an attribute
parameterValues containing the values for the parameters of the method to be invoked, an
attribute triggerType representing the type of the trigger (signal event, change event, or time
event), and an attribute isTimeProbable that indicates whether the method to be invoked
represents a time probability trigger. The class ActiveObject is an abstract class containing the
generic behavior of an active object. The behavior provided by the class is used both for the
environment components (extending the further generalized class SimulatedObject) and
implementation of parallel regions (since each region has its own thread of execution and an event
queue). The interface IState is implemented by all the classes representing UML states. The class
SimulatorList is used to implement relationships having a multiplicity greater than 1. The class
provides facility to broadcast events to all the elements it contains at any given time. For example
SimulatorList is used to implement the relationship (itemCollection, Fig. 2) between Item and
User for the Sorting Machine case study, so that signals to items can be easily broadcasted.

The Non-Deterministic Engine is responsible to provide a link between the simulator and various
simulation configurations produced by the Test Framework. The Non-Deterministic Engine is called

by the simulator each time a non-deterministic occurrence needs to be produced, which in turn queries
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public Item(int id) {

super (1) ;
this.instanceld = id;
type = (Integer)TestCaseHandler.getTestCasel() .

getNextNonDeterministicValue (instanceId*3 + 0);

Fig. 0. Code snippet showing call to Non-Deterministic Engine
the current simulation configuration and returns the value generated by the Test Framework
corresponding to the non-deterministic occurrence. This is handled by assigning a unique id to each
non-deterministic occurrence during the entire simulation, based on the formula: <NDID> =
<INSTANCE ID> * <MAX ND COUNT> + <LOCAL ND ID>, where NDID is the non-deterministic
occurrence id to be calculated, INSTANCE_ID is the unique id assigned to instances of environment
components, MAX ND COUNT is the maximum number of non-deterministic occurrences that any
component in the domain model can have, and LOCAL _ND_ID is the unique id for the occurrence for
each environment component. For example, in the ltem component state machine (Fig. 6), the
transition from On_Belt to Lost is stereotyped as «TimeProbability», which is a non-deterministic
event. The actual value for the time when this transition is to be taken is obtained by the simulator
through the non-deterministic engine. As discussed later in Section 6.4.3, non-determinism can be of
multiple types. An excerpt of generated code in Fig. 12 shows a call to the Non-deterministic Engine
in order to initialize the value of the attribute fype of the Item environment component. The statement
instanceId * 3 + 0 will result in a unique id for this non-deterministic occurrence during

simulation.

6.2. An Extended State Pattern for Environment Simulation
The original state pattern, discussed in [7], provides a design pattern to implement state-driven

behavior in an object-oriented programming language. The idea of the pattern was to provide a clean
way to implement state-based behavior and make it easy to add new states or transitions by confining
the code related to states in separate classes and by providing a mechanism to change the state class at
runtime. The original state pattern did not, however, specify a number of important features present in
UML 2.x state machines, such as concurrency, time events, change events, and effects. A number of
works have provided extensions to the basic state-pattern for various purposes. We discuss these
extensions in the related work section and explain why these extensions do not entirely match our
needs. In this section, we describe how we extend the basic state pattern for various features required
by our environment modeling methodology.

Fig. 13 shows the meta-model of the proposed extensions to the state pattern. The meta-model is
included here for ease of understanding. The actual transformation is from UML models directly to
Java code (without an explicit target meta-model). The abstract meta-classes Active, IState and
SimulatedObject represent the classes with the same names in the Simulator Helper Library.
The core package of Simulator Helper Library is shown in Fig. 11. These classes were required for

the environment simulation and are not defined in the original state pattern.
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Fig. 0. Extended state pattern meta-model

The concept of Active is similar to the notion of an active object in UML. Instances of this
class hold an event queue and run as a separate thread. All state classes extend the IState class. The
class is implemented as a Java interface in Simulator Helper Library. SimulatedObject holds a
list of threads that have been created so far for the instance of an environment component and whether
or not the simulation has resulted in reaching an error state. The classes Context, ContextState
(called State in state pattern), and ConcreteState perform similar roles as in the state pattern. The
class Context corresponds to a «Context» component of the environment. It holds a reference to all
the states and to the current state of the environment component instance and forwards the incoming
events to the current state object. A ContextState can be a ConcreteState or a
CompositeState. The ConcreteState class represents the simple states where actual
implementations of triggers are defined. According to the modeling methodology, all events that are
not explicitly defined on a state are ignored (Section 6.4). To implement this behavior, the
ContextState class provides an empty implementation of all the signals defined for the Context
class. Since all the concrete state classes extend the ContextState class, if a signal is not accepted
in a state, then its implementation is not provided in the corresponding ConcreteState class. This
results in executing the empty implementation and the event is ignored. Since the original state pattern
does not handle parallel regions or composite states, we have added the CompositeState and
RegionContext classes for this purpose. An instance of CompositeState class is created for
each composite state in the state machine. A CompositeState holds substates that can be either a
ConcreteState or CompositeState (implemented as composite pattern [7] in the meta-
model). Instances of RegionContext are generated for each parallel region in the state machines.
All the states within a region are created as instances of ContextState. A RegionContext can
have further links with other RegionContext objects in case of further parallel regions within a
region.

Further extensions to the state pattern are related to handling the required simulation details for
RTES system testing. These extensions include the support of non-determinism that is a common
feature in RTES environments. We also provide support for change events, time events modeled using
the MARTE profile, and handling actions written in Java. We also provide a generic way to develop

and integrate a communication layer in the generated code for communication with the SUT (via the
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external action code as discussed earlier in Section 5.3.5). The generated code also supports the
generation of code for error and failure states and various heuristics necessary to apply search-based
testing techniques (e.g., for calculation of branch distances [44]).

The overall event processing in the simulator for active environment components is based on run
to completion processing as defined by UML semantics. The active object waits on the event queue,
performs a dequeue operation, processes the received events, and waits on the event queue again if the
queue is empty.

6.3. Transformation of the Domain Model

The domain model is used to obtain information regarding various environment components, their
relationships and possible cardinalities of associations, attributes, non-deterministic attributes, signals,
and signal receptions. This information is used throughout the transformation process and is also
included in the generated simulator classes. Since the transformation rules are based on an extension
of the state pattern, a number of Java classes are generated for every stateful component in the domain
model, e.g., RVM, User. As discussed earlier, every environment component is translated into a Java
class which is an instance of the Context meta-class. A list of the important auto-generated
methods in such context classes along with their descriptions is provided in Table 1 and a list of
generated attributes is given in Table A.1 of Appendix A. The various methods listed in the table are
further discussed in Section 6.4 (since most of them relate to the behavior models). Every context
class instance for each environment component will be assigned a unique id, called instanceId,
during simulation. The instanceId is decided by the environment configuration and is passed to
the constructor of context classes when the instances are created, as shown in Table 1. Each
environment component holds a reference to instance of a state object that represents the current state
of the component. A method oclInState(stateName) is provided for every component that
returns true if the component is in a state with name equal to stateName. The method corresponds
to the oclInState method defined by the OCL specifications and is called during evaluation of

various OCL expressions that need to check the state of a component. Whenever a component
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Fig. 0 Sequence of message calls on receiving a signal
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changes its state, the method changeState (fromState, toState) is called, which updates
the state object referring the current state. The method startExecution() is called when the
simulation is started and stopExecution() is called when the simulation is stopped. These
methods call methods with the same name in the external action code (shown in line # 22 and line #
29 in Fig. 8). Code related to acquiring or releasing resources can be placed in these methods. Effects
defined on transitions where either the constructor of the environment component is the trigger or the
transitions are initial transitions (i.e., their source is the initial pseudo-state) are implemented in the
startExecution () method. For example in the Sorter state machine (Fig. 4), the effect of initial
transition (action.openConnection( )is implemented in the startExecution () method of
context class Sorter.

Relationships are implemented following the standard class diagram conversion rules [45]. Signal
receptions are translated into Java methods in the context class. The associations with an environment
component at the navigable end, with a multiplicity above one, are implemented using a
SimulatorList collection from the Simulator Helper Library (Fig. 11). If, in the action code, a
signal is sent to a role name having multiplicity more than one, then it is sent to all the elements of the
collection. The attributes of classes that are stereotyped as «NonDeterministicy (e.g.,
moveArmTimeLC  in  Sorter) are used to generate an output file, called
NonDeterministicOccurrences that contains the range of values specified in the model for
these attributes. This file is used by the Test Framework to identify the domain of valid test cases.
Initial values for the environment configuration are randomly generated based on the OCL constraints
defined on the attributes.

Table 1. Automatically generated methods in instances of the Context meta-class

Method Name Description
«Constructor The constructor is passed with the unique instanceld for this instance during the
(int instanceld ) simulation. Actions of constructor are included in startExecution().
This method is called at the start of execution and all the initialization of attributes,
startExecution regions, and states is done here. Threads for concurrent regions are started in this
method.
This method is called at the end of execution. Various threads are stopped, and
stopExecution resources are released in this method. For example in the sorter case, a call to action

code to close the opened sockets is sent from this method.

This method is called from setter methods to evaluate whether any of the change

luateCh Event )

VAT AANEEEVENES oy ents is affected by the current change.
executeChangeEvent This method is called when the condition of a change event has been satisfied. The
(condition) call is forwarded to executeChangeEvent of the current state object.

Setter methods are generated for every attribute and association of the environment
Setter methods

components.

Getter methods are generated for every attribute and association of the environment
Getter methods

components.

Evaluates whether the component is in the specified state. The Semantics is similar to

oclinState(statcName) OCL method oclInState, except that the parameter stateName is of type String.

Called whenever a timeout has occurred (i.e., a timer of a time event has expired). The

timeout imethod calls the timeout method in the current state object.

These methods are generated for every signal that is accepted. The method forwards

Signal methods the call to the method implementing the signal in the current state.
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State getters IA getter method is generated for every ContextState class

This method is executed when the entry actions of the current state object have been

executeCompletionEvent executed. The call is forwarded to current state object.

The fromState object refers to the source state and the toState refers to the target state.
onStateExit()in fromState and onStateEntry()in toState are called. Current state is
changed to toState.

changeState(fromState:
[State, toState:IState)

6.4. Transformation of Behavioral Models
In this section, we will discuss some of the important rules for transformation of environment

behavioral models (i.e., UML/MARTE state machines). As discussed earlier, depending on the type
of the states in state machines of environment components (i.e., simple, orthogonal, and composite
states), instances of corresponding sub-classes of meta-class ContextState are generated. Various
methods that are generated for the instances of meta-class ContextState and its subclasses are

discussed in following sections. A summarized list is provided in Table A.2 in Appendix A.

6.4.1. Event Handling

As discussed earlier (in Section 5.3.4) the environment modeling methodology allows three types
of events to be modeled: signal events, change events, and time events. Since environment
components represent active objects, each of them contains an event queue that holds the events that
have been dispatched, but have not been executed yet. An environment component instance is
considered to be busy when it is executing behavior corresponding to an event. When an event is
triggered on a busy instance, the event is kept in the event queue and is processed after the current
execution is finished. Following we discuss how each of these events are translated into simulator
code.

Handling Signals The rules for handling signals are defined according to UML semantics. Here
we discuss how they are realized using the proposed extensions of the state pattern. Sending of a
signal from one component to another is done in the generated code by calling a receiveSignal
method of the target context instance, which extends the Active class in Simulator Helper Library
where receiveSignal is defined. The method places the received signal in the queue as an
EventInvocation, which represents the method to be invoked and the parameters. This behavior
is shown as a sequence diagram in Fig. 14. When the context object is ready to process the signal,
then the method of the EventInvocation is invoked on the context object using Java Reflection
API. Whenever an instance exits a state, its event queue is emptied (except for «TimeProbability»
events, discussed later).

Signals to a SUT are sent through the action code. All the signals towards the SUT are first
forwarded to a corresponding method (with the same signature) of the action code. For the reasons
discussed earlier (in Section 5.3.5), the low level details for sending the signal to the SUT over a
communication medium are written in the external action code manually by the developer. For

example, in the state machine of Sorter shown in Fig. 4, as a result of receiving a signal
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trigger sensor (), the Sorter sends a signal to the SUT. This is modeled as a signal to the action
class action.triggerSensor (). The implementation of the action class corresponding to the
Sorter is shown in Fig. 8. The action class contains triggerSensor () (line # 19 in Fig. 8) which
implementation is to forward this signal to the SUT over the TCP connection (implemented as
sendMessage( . .)). Similarly, it is the responsibility of an action code developer to define a
mechanism by which the signals are received from the SUT and are forwarded to the context objects.
For this purpose, every action class has an access to its corresponding context object. For example in
the external action code of the Sorter shown in Fig. 8, an object of type Sorter is passed as an
IActiveObject to the method startExecution () (line # 22 in Fig. 8). This method is called
at the start of environment simulation and is a way to allow the action code writer to provide
initializations required at the start of execution (e.g., opening of sockets). As shown in the
implementation of the action code in the figure, the reference of the instance is kept in a local variable
of the class (line # 23), which is then used to send messages to the Sorter component (see line # 19 in
Fig. 8) by invoking message sorter.receiveSignal( ). In the state machine of Sorter shown
in Fig. 4, the signals position left(), position centre(), and position right()
are sent by the SUT to the Sorfer and are handled in the above mentioned way.

Handling Change Events. A special mechanism was implemented for handling change events. In
the generated code, setter methods are generated for the attributes of environment components. All
action code statements that are assigning values to attributes are converted to corresponding setter
calls of state machines. Within the code of the setter method of every attribute there is a call to
evaluateChangeEvents () in the context object. The method forwards the call to the current
state object. Within the state object, evaluateChangeEvents () evaluates whether the change
in the attribute value has an impact on any of the possible change events. If this is the case, then the
corresponding condition which was evaluated to true is returned by the method. In the context
object’s setter method, if the condition returned is not null, then a call to
executeChangeEvent () with the condition as parameter is placed in the event queue of the
context object. This mechanism is similar to handling signals in the queue. The only difference is that
the change events have a higher priority than the signal events (reasons discussed later in Section
6.5.3). The mechanism was adopted in order to execute change events asynchronously for active
objects. As an example, the behavior of what happens when a setter method is called for the
notRoutingFlag attribute of the RVM component is shown in Fig. 15. A change event depending
on the value of this attribute is shown in Fig. 5 (i.e.,, self.notRoutingFlag and
oclInState(Routing::Idle)). When the executeChangeEvent method is executed, it
forwards the call to the current state object, which in turn evaluates the condition again and executes
the transition corresponding to the change event. If the condition is not satisfied, then nothing happens

and the event will be considered as lost.
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1: receiveChangeEvent ( messageName = "executeChangeEvent", values = condition )

Fig. 0 Sequence diagram showing the behavior for evaluating change events

Handling Time Events. Another non-trivial transformation is for the time events in state
machines. We have created a TimeService Library, as part of Simulator Helper Library that is
responsible for managing time-related operations (e.g., clock handling, event scheduling). In every
state class that has an outgoing transition with time trigger(s), an object of type TimeService is
added, which is responsible for handling time-related operations. For each time event, a
corresponding TimeInstance object is included that is initialized to the value of the time event. A
method afterT<i> is also included for every time event, where <i> is the unique index associated
with each time event. For such state classes, a timeout () method is also implemented, which has
the logic of forwarding the call to the correct afterT<i> method.

The time events are scheduled according to their corresponding clock. If no specific clock is
associated, then they are scheduled on first entry into the state class and are reset on every next entry
into the state. Non-deterministic time events (where times of occurrence are determined by the
simulation configuration) are handled as discussed in a specific section below (Section 6.4.3). When a
timer associated with a scheduled time event expires, a signal timeout () is sent to the context
object with the information of the time instance. The context object forwards the call to the timeout

method of its current state.

6.4.2. Handling Hierarchical State machines
We have already discussed how a simple state is handled by the code generator (in Section 6.2).

Since a submachine state is semantically equivalent to a composite state (p. 566 [4]), both of them are
treated in the same way for code generation. In the remainder of the section, we describe in detail how
the code generator handles orthogonal regions and composite states.

To translate parallel regions into code, we introduced the concept of a RegionContext class

(Fig. 13). The class acts as the state pattern’s context class for various states in that region (i.e., it
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Fig. 0. Generated code structure for RVM environment component

holds the current state object and forwards the messages to it). The Context class in these cases has
a reference to this RegionContext class. Each RegionContext class extends the Active class
and thus holds a queue of events. This was important for simulation in order to allow each region for
separate processing and execution of events in its queue. Fig. 16 shows the static structure of the code
(without operations and attributes) produced by the code generator for the RVM state machine shown
in Fig. 5. Classes name ItemInsideStateContext and RoutingStateContext are the two
RegionContext classes corresponding to the two regions of the state machine. Both these classes
have an association to their corresponding ContextState object, ItemInsideState and
RoutingState, respectively. These ContextState classes are specialized by the
ConcreteState classes, for example, in the case of RVM, RVMIdleState and
RVMRouting ItemState are instances of meta-class ConcreteState (for the states /dle and
Routing Item in Fig. 5 respectively) and specialize the RoutingState class, which is an instance
of the ContextState meta-class.

For every composite state, at least two classes are added to the state hierarchy. If a composite state
does not contain parallel regions, then an instance of CompositeState class is added and, for all
the sub-states of this composite state, instances of ConcreteState are added. If there are parallel
regions, then an instance of a RegionContext class is added and the CompositeState class
has an association with it (Fig. 13). The rest of the handling is similar to other states as defined by the
UML semantics (e.g., when a sub-state is entered, the entry actions of composite states are executed

first followed by the entry actions of the sub-state).

6.4.3. Handling Non-Determinism
Non-determinism can be of five types in the environment models, as discussed in Section 5.3.7.

Following we discuss how each of the five types of non-determinism are handled for simulating the
environment. Note that, as discussed earlier in Section 6.1, a unique id is assigned to each non-
deterministic occurrence during the entire simulation, which is used by the Non-deterministic Engine
to select an appropriate value for this occurrence from the simulation configuration.

The first form of non-deterministic occurrence is due to a trigger accessing a class attribute that
has a «NonDeterministic» stereotype. On entering a state, when one of the outgoing transitions

contains a trigger with such an attribute, the generated code passes the unique id of the non-
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deterministic occurrence to the Non-deterministic Engine and obtains an appropriate attribute value
from the simulation configuration. Handling of time events accessing such variables was discussed
earlier in Section 6.4.1.

The second form of non-determinism is when a variable of an environment component (modeled
by assigning a stereotype «NonDeterministic» ) needs to be initialized at the time of instance creation
during simulation. This information will be implemented by having the component constructor query
for a value from the Non-deterministic Engine. For example, for the domain model in Fig. 2, the code
that initializes the value for the attribute type ofthe Item component is shown in Fig. 12 .

The third form of non-determinism is the explicit representation of the probability to take a
transition, which is specified by the «gaStep» MARTE stereotype. During simulation whenever the
code corresponding to such transitions is reached, based on the probability it is decided whether or not
to take the transition.

The fourth type of non-determinism can be due to the «TimeProbability» sterecotype on a
transition. The time value specifying the delay in taking the transition is obtained from the Non-
deterministic Engine when the state is entered for the first time or when the instance is reentering the
state after this transition has been executed.

The fifth type of non-determinism is possible when we have a choice node with the «NDChoice»
stereotype. During simulation, whenever the code corresponding to such a choice node is reached, the
option of which branch to select is obtained from the Non-deterministic Engine (again, by passing the

id of this occurrence).

6.4.4. Handling Oracle Information
As discussed earlier (in Section 5.3), error states represent the states of the environment that are

reached due to a faulty implementation of the SUT. For example, in the Sorting machine case study,
there are two possible errors: the items are not sorted correctly according to their type or an item
reaches the Sorter while it is moving. The first error scenario is modeled in the state machine of Item
(Fig. 6) and the second scenario is modeled in the state machine of the Sorter (Fig. 4). For the purpose
of verification, the testing that we performed in [44] aimed at reaching the error states of the SUT.
The oracle consists in checking that any environment component instances do not traverse any of the
error states during test execution. Each error state for each instance of the environment components is
assigned a unique id during the simulation and the search heuristics (to help the generation of test
cases, discussed in Section 6.7.1) use this id to report information relevant to the selected test
heuristic, e.g., the distance from the error state for search-based testing.

During the simulation, a number of components in the environment might fail, but with a correct
SUT, the environment should never enter in an error state, although the SUT would likely operate

with degraded functionalities. In terms of code generation, the execution is stopped once an error state
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is reached, a complete log showing the execution trace is generated, and a JUnit test case is generated

corresponding to the values used in the simulation in order to enable the re-execution of the test case.

6.4.5. Handling Guards and Actions

Since the environment models are translated to Java code, the OCL guards on the models also need
to be translated to Java. For search-based testing we need to evaluate the OCL guards and the
corresponding branch distance [44]. Therefore, the OCL guards are translated to their Java equivalent
along with instrumentation code to support testing heuristics at run time [44].

As mentioned earlier (in Section 5.3.5), we have used Java as an action language. Complex action
code and the code related to the communication with the SUT (e.g., handling UDP/TCP sockets,
writing to the file system) are written in a separate action code file developed as part of the modeling
activity as discussed in Section 5.3.5. Recall that the mapping between the Context class and its action
code class is provided in the External Code Mapping (Section 5.3.5). An object of this class is
accessed in the models by using the keyword action as shown in Fig. 4 in the transition action of the
initial transition. The actions on the transitions are placed inside the body of the corresponding events
in the instance of ConcreteState class corresponding to the state from which the transition is
outgoing (e.g., the action discussed above 1is placed in the method for the signal
user inserts_item() in the class RVMNo_ItemState). Internal state activities (entry, do,
and exit) are handled as defined by the UML semantics. Their implementation is provided in the
onStateEntry() method of the state classes. On completion of the do activity,

executeCompletionEvent () in the state class is called.

6.5. Various Design Decisions and Their Rationale
Following we discuss various design decisions and their rationale for the code generation

approach. Decisions corresponding to the UML semantic variation points that had to be resolved for

simulator generation are also discussed.

6.5.1. Object Concurrency Model

We used the Active object model [4] to handle the concept of a concurrent object. In our case,
most of the environment components are considered as active objects. This is because they operate
independently in the RTES environment and can communicate asynchronously with each other and
the SUT. These objects have their own thread of execution and receive asynchronous messages that
are handled using an event queue. For example, Sorter shown in Fig. 2 is implemented as an active
object and executes independently from the other environment components, such as RVM and Item.

An active object simulating an environment component can have multiple internal threads
associated with it. These threads correspond to the parallel regions of the state machines. In our
motivating example, RVM (Fig. 5) has two internal threads, each for a parallel region (/teminside,

Routing). This was required to simulate the behavior of an RVM when routing and handling item
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insertion at the same time. In other cases, the parallel regions were used for modeling component

failures that could happen at any time independently of the current state of the component.

6.5.2. Time Semantics
Typically, in simulation approaches, the aim is to simulate and analyze the behavior of a system or

environment before it is actually built. For the type of simulator that we have developed, the aim is to
simulate the environment in order to test the RTES in diverse situations, without involving actual
hardware or people. The SUT in our case is always the actual executable production code and is seen
as a black-box. We have no control over the SUT behavior and its definition of time. Therefore, there
is no point in simulating the SUT clock, unlike the case in typical simulation approaches such as
SystemC?. From its point of view, the SUT interacts with the simulator as it would interact with the
actual environment. The time it takes for SUT to process a message will be same in both cases. The
notion of time for the environment is therefore based on the software implementation of the physical
time. In our case, we used the implementation provided by Java time semantics which are based on
the CPU clock.

A typical issue in using the CPU clock is the jitter that might be introduced because of
computation overhead on the processor (e.g., garbage collector, other operating system processes).
This jitter can range up to a few milliseconds. Fortunately, for the type of environments for the
systems that we tested, as in many embedded applications, a delay of few milliseconds was not a
major issue as the time events were generally in the magnitude of seconds (for example the time of a
bottle traveling on a conveyor). To be on the safe side, we explicitly executed the Java garbage
collector before and after the simulation. Moreover, for the experiments that we conducted, the
garbage collector never executed during simulation and we never faced synchronization issues due to
jitter. For the type of industrial systems that we were focusing on (see Section 2), using Java was
sufficient. For the environments which have hard time constraints from the system, for magnitudes of
milliseconds or less, this can be a critical problem. A possible solution to address this problem is to
use real-time Java virtual machines (e.g. Sun Java Real-Time System [46]) running over a real-time
operating system (e.g. SUSE Linux Enterprise Real Time Extension [47]), which will result in
nanosecond level accuracy. The code that our tool generates is in theory compatible to run with real-
time Java virtual machines since this is one of the requirements of such virtual machines. Though, the

practical implications of doing this for testing hard real time systems still remain to be investigated.

6.5.3. Execution Semantics and Order of Events in Queue
The state machines of environment components are implemented using the run-to-completion

semantics as specified by the standard UML [4]. For handling asynchronous messages, active objects
need to implement event queues. We have used the PriorityBlockingQueue Java class to

implement these queues. They are priority queues and hold various events during the life cycle of an

5 Webpage: http://www.systemc.org/, date last accessed: 04/01/2012
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environment component. The time events in the queue are assigned the highest priority, change events
the second highest, and the signal events the lowest priority. Time events have the highest priority
since the behavior that they trigger is explicitly related to time, so it should be executed as close to the
event occurrence time as possible. Change events have higher priority than the signal events since it is
important to execute the corresponding behavior at the earliest opportunity once the change condition

turns to true, as it may become false again.

6.5.4. Default Entry & Handling Conflicting Triggers

Another UML semantic variation point is the decision about the default behavior of state machines
when there is no explicit initial pseudo state defined in an enclosed region (e.g., in sub states). Our
environment modeling methodology requires the modeler to put at least one initial pseudo state in
every enclosed region. A region without an explicit initial transition will be considered ill-formed.

There can be situations during simulation when one outstanding event satisfies multiple triggers in
an environment component. This issue is left as a semantic variation point in UML [4]. For our
methodology, when such a case arises, one of the satisfied behaviors is selected and triggered at
random. Our environment modeling methodology recommends avoiding such situations as they

indicate imprecise or incomplete environment models.

6.5.5. Event not satisfying any Trigger

The behavior in the cases when the occurring events do not specify triggers on active states are left
as semantic variation points in UML. In our case, all the events that do not satisfy any trigger are
simply ignored. The modeling methodology requires the modeler to only model those triggers that
have a significant behavior, e.g., they have a corresponding effect. If accepting a signal coming from
the SUT in some state represents a faulty behavior (i.c., that signal should not have been sent), then it
should be modeled with a transition leading to an «Error» state. For example, in the sorting machine,
a Sorter should never accept a signal item at destination() when it is in MovingLeftCentre,

and so we modeled this with a transition from the moving state to an error state, as shown in Fig. 4.

6.5.6. Event Evaluation Time
In UML semantics, the time it should take for a component to dispatch an event after it was

received is not defined and is left as a semantic variation point to be decided by specific
methodologies. In our methodology, this time is dependent on the event queue size of the receiver, the

priority of the event, and the time to enqueue and dequeue the events before consumptions.
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Fig. 0. MOFscript Transformations used for generating simulators

For the specific case of time events, as discussed earlier (Section 6.4.1), when a time event is
received by the environment component, it is placed in the event queue. If there are more time events
ready to be dispatched in the queue, then the event received may never be executed. If a time event
already at the front of the queue is executed, it will result in a time transition and hence, the queue
will be emptied from all its events, unless for specific cases already mentioned in Section 5.3.4 (e.g.,
for transitions with «NonLeavingy). If the time event belongs to a parallel region (or a substate of a
parallel region) then it will again be placed in the region’s queue (see Section 6.4.2). Thus, the
dispatch time of a time event depends on the time events that are already in the queue(s) and the time
to enqueue and dequeue in the queue(s), and the number of internal orthogonal regions. Overall this
time will only be within a few milliseconds, which is not a major obstacle for the type of system

testing that we deal with and for many embedded applications (as discussed in Section 6.5.2).

6.5.7. Signal Transmission
As discussed earlier, signals are transmitted from the source to the target by calling the target’s

receiveSignal () method with the signal parameters. The receiveSignal method creates an
instance of EventInvocation and puts it in the event queue of the target component. The
sender and receiver will be running on the same process since all the environment components run on
a single process. This decision was made because intra-process communication is easier and faster
than inter-process communication. Since SUT is a black-box in our testing approach, the SUT runs on
a separate process (or even a separate machine) and the communication between environment
components and SUT is handled through the external action code.
6.6. Automation

We implemented the rules mentioned earlier in Section 6 by using MOFScript model to text
transformations [43]. Fig. 17 shows various MOFScript transformations that we developed for
transformation from environment models to Java code. These transformations are contained in the
package named MOFScript Transformations shown in Section 6.1. Stereotype « MOF Script»
denotes the MOFscript m2t files containing the transformation rules.

The control of transformations is handled by Controller. The ContextClassGenerator
transformation is responsible for transforming the domain model with the help of ClassHelper.
ContextClassGenerator also calls StateClassesGenerator, which is responsible for

transforming the state machine of an environment components to Java code with the help of
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StateHelper. JavaHelper contains the rules specific to Java and are used by various other
transformations; OCLHelper uses the OCLToJavaTranslator class discussed in Section 6.1 to
convert OCL expressions to their equivalent Java code. ActionLanguageHelper is responsible
for modifying the action language code in the models according to the generated code structure.
SimulatorConfigReader reads the configuration file given as input and the
TestConfigGenerator generates a configuration file that is read by the test engine.

The tool requires models exported as standard EMF format for UML (.uml file). This is a widely
accepted format for interchanging UML models and is supported by a number of modeling tools,
including Rational Software Architect and Papyrus. Our tool reads the .uml file and generates a
simulator corresponding to the models. The software engineer then needs to provide a test driver that
specifies the testing strategies to be used and that initializes the SUT and the generated environment

simulator.

6.7. Interaction with Test Framework
The Test Framework queries the simulator to obtain information required to generate the

Simulation Configuration (e.g., number of non-deterministic variables and their value domain and
type). The Test Framework then generates valid Simulation Configurations based on the testing
strategy in use (e.g., at random for random testing) and uses the Test Driver to run the SUT with the
environment simulator. The test framework uses a set of heuristics based on the previous test case
executions (e.g., rewarding test case diversity and Genetic Algorithms) to choose new test cases to run
and evaluate (for details see [7]).

The goal of the Test Framework is to find a simulation configuration for which, once executed
with the simulator, an error state is reached (if any fault is present in the SUT). Once such a
configuration is found, it automatically generates a JUnit test case. In [7], we show how the models
developed using the methodology described above can be used for automated system testing of RTES.
A test case is used to define two important components of the simulation: (1) the configuration of the
environment, e.g., number of sensors/actuators and their initialization; (2) the non-deterministic
events in the simulation, e.g., variance in time-related events such as physical movements of hardware
components, occurrence and type of hardware failures and actions of the user(s). In [7], we investigate
three strategies to automate these choices: Random Testing, Adaptive Random Testing and Search-
Based Testing (using a Genetic Algorithm). The results of the experiments (on three artificial
problems and one large industrial RTES) showed that environment model-based testing is able to
automatically find faults in all the considered case studies. In particular, previously uncaught critical
faults were automatically found in the industrial RTES [44].

Test data generation can be reformulated as a search problem [48, 49], in which for example the
goal can be to find test data for which failures are triggered (if any fault is present in the SUT). To

achieve such goal, it is important to have a heuristic to evaluate how good test data are, even if they
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do not trigger any failure. For example, test data that lead to execute most of the code of the SUT
would a priori be more useful than test data for which the computation finishes very quickly after
executing few lines of code. A search algorithm would use such information to focus on areas of the
search space (i.e., test data) that are more likely to contain test data for which the SUT fails. Since it is
not feasible to evaluate and run all possible test data, a search algorithm has to focus only on some
promising areas. Such type of test data generation is referred to as search-based software testing [48],
and there are many search algorithms and fitness functions (i.e., functions to evaluate how good the
test data are). For details regarding how to use search algorithms to system testing of RTES, see [44].

However, to use such search algorithms, it is important to obtain information on the execution of
test cases after they are run (e.g., which parts of the SUT code they execute). Such information would
be used to compute the fitness function. Which type of information is needed depends on the selected
testing strategy.

Typically, in white-box testing, when information regarding source code execution is needed for
the heuristics, the code of the SUT needs to be instrumented. Instrumentation means that the code is
augmented with probes to collect execution data (e.g., to check which branches of “if” statements are
executed). Since our system testing approach is based on environment models where the SUT is
treated as a black-box, the probes are inserted only in the code of the environment simulator. The
models contain valuable information to guide search-based testing, and such information would be
lost or difficult to reverse-engineer after the simulator is generated. For practical reasons, the probes
are automatically inserted when the code is generated from the models. This is another advantage of
using simulators generated from models rather than manually coding a simulator, as manually

inserting those probes would be likely tedious and time consuming.

6.7.1. Search Heuristics
Following we discuss four types of instrumentation to collect test case execution information used

in fitness functions in the context of environment-based system testing for RTES [44], namely
approach level, branch distance, time distance, and risky states. Because the goal of such type of
testing is to find simulation configurations for which error states are reached, we collect information
regarding how close the execution was from reaching any of these error states.

The approach level is a common heuristic [48] in white-box, search-based software testing, where
executions that get close to the testing target (e.g., branches in branch coverage) are rewarded. When
a test case is run, several states in the environment state machines are reached, while others are not.
The approach level calculates the minimum number of transitions required to reach any error state
from any visited state of the environment component. To obtain this value, we consider the state
machine as a graph and perform a breadth first search on each state to obtain the minimum distance
(in number of transitions) to reach the error states. This calculation is done only once, when the
simulator code is generated, and then hard-coded directly in the simulator code to ease fitness

computations during simulation. When a test case is executed, the approach level for all reachable

40



Simula Research Laboratory Technical Report (2011-04) Version 3.0

error states is calculated and reported. For example, consider the environment component Sorter (Fig.
4): the distance for the Sorting:: Working::Error state from Sorter::Working::Left state is two whereas
such distance is one from Sorter::Working::MovingCentreRight. If both these two non-error states are
reached during test case execution, then the approach level would be the minimum value among those
two values (i.e, 1).

The second piece of information used in the fitness functions is the branch distance. To reach an
error state, it is necessary to follow some specific paths in the state machine. A path would be a
sequence of state transitions, driven by triggers. However, state transitions often have guards (e.g.,
logical predicates expressed in OCL), which need to be satisfied (i.e., their predicates need to be
evaluated to true) to take such transitions. The predicates in these guards depend on variables, which
values cannot be directly manipulated [49] by the Test Framework and depend on the entire test case
execution carried out so far until the guard is evaluated. Some guards can be difficult to satisfy (i.e.,
only few simulation configurations lead to it) and, because the variables in the guards cannot be
directly manipulated, it is not possible to use external constraint solvers to satisfy them. The branch
distance is a heuristic to reward simulation configurations that brings the guards closer to satisfaction.
Consider for example the guard “x==07, and two test cases for which “x=1" and “x=100". None of
the test cases satisfy that guard but the case “x=1" is heuristically closer. The branch distance is a
common and effective heuristic in search-based software testing for structural coverage [48]. In
previous work, we have developed a search based constraint solver, in which we extended the branch
distance functions for white-box testing to support all the constructs of OCL constraints [49]. In this
paper, when we generate Java code to represent the OCL guards, we instrument such predicates to
calculate their branch distance each time they are evaluated. For the details of how these branch
distances are calculated, see [49].

The third type of information used in the fitness functions is the time distance. In some cases, a
transition is taken only after a timeout, and this type of transitions can appear on the paths that lead to
the error states. For example, assume that, in a particular state, the environment expects a signal from
the SUT within one second.

If such a signal is not received, then an error state is reached. In a state machine, this would be
modeled as a transition to an error state with trigger after (1, s), whereas receiving the signal from the
SUT would trigger a transition toward another state. The time distance calculates how much longer it
would have taken to get a given time trigger fired. Taking the example above, if we receive the signal
after one millisecond, it would be worse than receiving the signal after 900 milliseconds, although in
neither of the cases the error state is reached. Each time there is a time transition, during code
generation such transition is instrumented to calculate its time distance.

The fourth type of information used in the fitness functions to guide the search is about risky
states. The states that have a direct transition to error states are considered to be risky states. For the

search, this information is important as these are the closest states to the error states. For example, in
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the Sorter component, the state Sorter::Working::MovingCentreRight is a risky state. How often a
risky state has been reached, and for how long the environment was in such risky states, can be used

by the search algorithms to reward test cases that keep the environment in these risky states as long as

possible.

Table 2. A simulation configuration for the sorting machine
gz::;’::;ftnt Instance Id gg:j::g;ﬁ“ll:;nc Related Property Value
User 0 0 | insertionTime 500
RVM 1 - None - | - None - -N/A -
Sorter 2 6 | moveArmTimeLC 292
Sorter 2 7 | moveArmTimeCR 303
Item 3 9 | type 1
Item 3 10 | timeToNode 1062
Item 3 11 | «TimeProbability» 0,0
Item 4 12 | type 0
Item 4 13 | timeToNode 970
Item 4 14 | «TimeProbability» 1,300
Item 5 15 | type 0
Item 5 16 | timeToNode 1011
Item 5 17 | «TimeProbability» 0,0

6.7.2. Simulation Configuration
The Simulation Configuration is generated by the Test Framework. During the simulation, the

simulator queries the simulation configuration to obtain the values of non-deterministic occurrences,
e.g., exact time in time event. For this purpose each non-deterministic occurrence is assigned a unique
id during the simulation. Notice that, once a configuration is defined, the simulation becomes
deterministic. In other words, executing again the simulator environment with the same simulation
configuration should result in the same behavior. However, this latter point is not strictly correct,
because a simulation would still be affected by non-deterministic components such as the thread
scheduler and other operating system resources. Fortunately, this is not a serious problem for the type
of system level testing done here where, for most environments, variances of few milliseconds in the
interactions between the environment and SUT are simply negligible as they have no impact on the
resulting states of the environment and SUT. When this is not the case, as further discussed in Section
6.5.2, the modeling methodology and code generated are still valid but a real-time operating system
and Java RT would need to be used. Therefore, for all practical purposes, a test case is uniquely
characterized by a simulation configuration.

As an example consider Table 2 that shows a random generated simulation configuration. The
simulation configuration shown is based on an environment configuration having 1 RVM instance, 1
Sorter instance, 1 User instance, and 3 [tem instances. This environment configuration results in a
total of twelve non-deterministic occurrences, 2 for Sorter, 1 for User, and 3 for each of the three
instances of ltem. Each instance has a unique id during the simulation (“Instance Id”). Each of the

non-deterministic occurrences has a unique id during simulation as shown by the “Nondeterministic
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Occurrence Id” column. The “Related Property” column in the table shows properties of the
environment components that are related to the non-deterministic occurrences. When a non-
deterministic occurrence is based on a transition with «TimeProbability», the stereotype is mentioned
in the column. The values for these occurrences selected by the Test Framework are shown in the
column labeled “Value”. In the case of «TimeProbability», each value pair specifies the choice of
value as 1 or 0 referring to whether or not to take the transition and the time in milliseconds at which
the transition is to be triggered (irrelevant when the transition is not to be taken). Other values in the
column are assigned by the test-engine based on the ranges (e.g., the upper and lower bounds) of
«NonDeterministic» environment component properties. The ranges are shown in the domain model
as stereotype properties of the environment component properties (Fig. 2). For example the lower and
upper bounds for movedrmTimelLC are 280 and 320. The value in the simulation configuration

decided by the Test Framework is 292.

6.7.3. OCL Constraint Solver
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1. public class Test_Sorter {

2. QTest

3. public void testCase() {

4. ProblemData pd = new sorter.embt.SorterProblemData() ;
5. TestCaseRunner runner = new TestCaseRunner() ;
6. runner.init(pd) ;

7. TestCase tc = getTestCaseData(pd) ;

8. Environment env = pd.getEnvironment() ;

9. try{ runner.runTestCase (tc) ; }

10. catch (Exception e) { fail (e.toString()); }
11. assertEquals (false, env.hadError());

12. }

13. protected TestCase getTestCaseData() {

14 RingTestCase tc = new RingTestCase();

15 tc.setVariable (17, 0, 0);

16. tc.setVariable (16, 1011);

17. tc.setVariable (15, 0);

18. tc.setVariable (14, 1, 300);

19. tc.setVariable (13, 970);

20. tc.setVariable (12, 0);

21. tc.setVariable (11, 0, 0);

22. tc.setVariable (10, 1062) ;

23. tc.setVariable (9, 1);

24 tc.setVariable (7, 303);

25 tc.setVariable (6, 292);

26. tc.setVariable (0, 500);

27. return tc;

28. }

29. }

Fig. 0 An auto generated JUnit test case for Sorting Machine case study

According to the modeling methodology, the domain model captures the different forms the SUT
environment can take (see Section 5.2). For a given test execution, we need to select one possible
environment configuration. We use an OCL constraint solver to generate a possible configuration
fro7m the domain model. This consists in selecting appropriate initial values for the association
multiplicities and attributes that are not labeled with the «NonDeterministic» stereotype, as the latter
are determined by the simulation configuration. Fig. 3 shows an example of OCL constraint on the
User component of the domain model of the Sorting machine case study (Fig. 2). The constraint
specifies that a User instance is always associated with a non-empty collection of items. To obtain an
appropriate value of an instance according to such constraints, we have developed a search-based
OCL constraint solver [49], since current OCL solvers in the literature do not scale up to the
complexity of real constraints found in industrial systems. The generated simulator code calls this

solver to generate values for which the OCL constraints are satisfied.

6.7.4. Test Driver & JUnit Test Case

A Test Driver needs to be written by the tester, which is used to start the execution of the simulator
and SUT, and to stop them after a timeout (a set of predefined libraries are provided to help the tester
in this task). In the case studies for this paper, the environment simulator and the SUT are run on
different processes on the same machine.

Whenever the Test Framework leads the simulation to an error state, this is due to a faulty
implementation of the SUT. The specific simulation configuration of the simulator at that time is
embedded in a JUnit test case and a source file representing the test case is generated by the Test
Framework. This is done so that the simulation configuration is saved and can be executed later for

debugging purposes. The JUnit test case calls the Test Driver based on a simulation configuration.
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Assert statements are automatically added to check whether any error state has been reached during
the simulation. Once generated, these JUnit test cases do not need the Test Framework for their
execution. Fig. 18 shows an auto generated test case for the Sorting Machine case study. The test case
is based on the simulation configuration shown in Table 2. The class ProblemData used in the
JUnit test case holds information of various non-deterministic occurrences.

The method getTestCaseData() creates and returns an object of class named TestCase
based on a simulation configuration decided by the Test Framework. The implementation of the
method shows the various values being assigned to non-deterministic occurrences. Class
ProblemData used in the JUnit test case (see line number 9 in Fig. 18) is supposed to hold
information related to various settings of the Test Framework, such as the environment configuration
and the total time for simulation. Objects of class Environment represent environment

configurations for the simulator.

7. Case Study

In this section, we discuss the case study we conducted to evaluate the proposed modeling

methodology and simulator generation.

7.1. Case Study Design

The objective of the case study is to evaluate whether (1) the transformation rules are sufficient to
convert environment models of different complexity levels, and belonging to various domains, to
simulator code, (2) the automated generation of simulators is likely to significantly reduce
development effort, (3) the generated simulators enables the detection of failures in RTES system
testing, (4) the transformations implemented are correct, and (5) the proposed methodology and
profile are sufficient for modeling environments of RTES for the type of testing we are interested in.

We selected five different RTES as part of our study. Two of the cases were industrial RTES. One
industrial RTES, Industrial Case A (IC-A) is the sorting machine system that we have discussed as a
motivating example throughout the paper’. As mentioned earlier, in this paper, we are only
considering a subset of the case study focusing on the sorting functionality, having four environment
components and an average of five states per component.

The second industrial system (Industrial Case B) is a marine seismic acquisition system, which has
five environment components with an average of 12 states per component. The aim was to select two
industrial systems that belong to different domains, with different functionalities, to study diverse
environment models. We also developed three artificial problems of varying complexity that also
belong to different domains. Two of the artificial problems (AP1 and AP2) were inspired by one of
our industrial case studies and deal with RTES interacting with multiple sensors in different

situations. The third artificial problem (AP3) is inspired by a train control gate system discussed in

6 Notice that in [1] we considered the entire sorting machine case study. In this paper, we only discuss the subset of the
case study that we used for testing and simulator generation. Therefore, the data presented in this paper is not exactly
the same as in [1].
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Table 3. Environment Models for
Artificial Problems and Industrial

Cases
Case |[EC States
Simple [Orth |Comp

AP1 1 3 0 0
AP2 1 6 2 0
AP3 2 9 0 0
IC-A 4 20 2 1
IC-B 3 23 3 1

*EC=Environment = components,
Orth=Orthogonal, Comp=Composite,

[50]. The RTES for these artificial prol;lems ;J;/;:re develop;d in—}ava. Note that during the simulator
execution a number of instances are generated for each environment component. For example, in
industrial case B (IC-B), tens of instances were created and ran in parallel for simulating the
environment. For the industrial case (IC-A), a hardware interface layer was not separated from rest of
the code while the RTES was being developed (as it was for IC-B). As a refactoring task to improve
the testing processes, the software engineers are currently working on separating out the code that
deals with hardware components and providing a standard mechanism of communication for the SUT.
Since the adapter was not yet available at the time of writing, we manually developed the portions of
SUT that are related to the subset of the case being used in this paper. However, this has no effect on
the code generation discussed in this paper, as the environment models would be exactly the same for
the actual SUT. Table 3 shows the statistics of various modeling elements used in the five cases.

As mentioned earlier, the aim of the case study is to evaluate five aspects: completeness of the
transformation rules, effect on model-based simulation generation on development -effort,
effectiveness of the approach in test automation, the correctness of transformations, and the
completeness of profile and methodology. We define them below and briefly mention how they will
be assessed, before going into more details in the next section. Completeness of transformation rules
refers to whether the transformation rules that we wrote are sufficient for generating a simulator from
environment models developed using our methodology. Evaluating the completeness of model
transformations is still an open research question [51]. Note that in this paper, we have only discussed
the most important rules for simulator generation. As further discussed below, completeness of the
transformation rules is evaluated by checking that, in all five case studies, there were no elements in
the environment models that were ignored or could not be handled by the simulation code generator.

Regarding the effect on development time, we evaluate whether the automated generation of the
simulator is likely to help significantly reduce the effort required by the developers to perform system
level testing. To gain insight into this question, we compare the source code to be manually developed
with the size of the models required for automated simulator generation.

Effectiveness in test automation refers to the effectiveness of the Test Framework in detecting
failures when it uses an automatically generated simulator. We evaluated the fault detection

effectiveness for the simulators generated for all the five cases with various testing strategies. On one
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hand the generated simulator should not prevent test cases that should fail to do so and, on the other
hand, it should not trigger spurious failures, the latter being related to correctness discussed below.

Correctness of the transformation rules is about how correct are the transformation rules in
generating simulators that behave as expected according to the environment models. Evaluating the
correctness of model transformations is still an open research question [51] and no standard
mechanism or appropriate tool is available for testing them. To evaluate the correctness of our
transformations, we focused on both the structure (the code is what it is supposed to be) and behavior
(the code works as it is supposed to work) of the generated code. We evaluated the structural
correctness of the code keeping in mind two properties: syntactic correctness (the generated
simulators are syntactically correct, i.e., no compilation errors) and semantic correctness (the
generated code is what it should be according to the extended state pattern). To evaluate that the
behavior of the generated simulators is correct, we manually developed test cases keeping in mind
three properties: (1) behavior of the generated simulators conform to what is specified in their
environment models, (2) the simulators correctly report the information required to guide test
heuristics, and (3) the simulators correctly detect and report failures in SUT.

Completeness of profile and methodology refers to whether the proposed modeling methodology
and the identified subset of UML/MARTE along with the proposed profile is sufficient for modeling
the environment of RTES for the automated black-box system level testing that we are interested in.
This includes the ability to generate simulators from the environment models, automated generation
of test cases, and use of the models as oracles.

To evaluate completeness and correctness of the transformation rules we also created several test
models. The models were not linked to any SUT and were only developed to evaluate the
transformation rules and were developed in order to cover different sets of modeling elements
according to our environment modeling profile. In total the test models comprised of 50 components,
with each component having on average of 4 states and 12 transitions and covered various state
machine and class diagram constructs and all the modeling features defined by the environment

modeling methodology.

7.2. Case study procedure
This section describes how the data was collected for the five evaluation criteria.

7.2.1. Completeness of the Transformation Rules

To evaluate completeness of the transformation rules, we generated simulators for the five cases,
each having different level of complexity and modeling different concepts. We also generated
simulators for the different test models that covered different sets of modeling elements. The aim was

to see whether the transformations completely handle code generation from that diverse set of models.

7.2.2. Effect on Development Effort
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To evaluate this we generated simulators for the five cases and obtained size and complexity
information about the generated code. When compared to the size of the models, such data can help
assess the potential amount of effort saved by generating simulators from models rather than
developing the simulators manually. Of course, we can only provide qualitative insights because the
quantitative results depend on the skills of developers with respect to modeling and coding. Table 3
summarized the details of the environment models that were developed to generate simulators for the

five cases.

7.2.3. Effectiveness in Test Automation
To assess this, we manually seeded non-trivial faults in the three artificial problems and industrial

case A (one fault for each SUT). We could have rather seeded those faults in a systematic way, for
example by using a mutation testing [52] tool. We did not follow such procedure because the SUTs
are highly multi-threaded and use a high number of network features (e.g., opening and
reading/writing from TCP sockets), which could be a problem for current mutation testing tools.
Furthermore, our testing is taking place at the system level, and though small modifications made by a
mutation testing tool might be representative of faults at the unit level, it is unlikely to be the case at
the system level for RTES. For the SUT of Case B, a previously uncaught critical fault was found
with our Test Framework [44] and used to assess the effectiveness of the simulator for test
automation. We ran the simulators generated for the five cases (i.e., the three artificial problems and
two industrial cases) with various testing strategies to evaluate whether the test cases that were

expected to fail did and whether no other test cases failed.

7.2.4. Correctness of Transformations
To evaluate the transformation rules based on the five correctness properties, we adopted a

procedure that is summarized in Table 4. The structure of the generated code can be considered to be
syntactically correct if it has no compilation errors for various types of models. To achieve this we
created a number of test models that contained different set of modeling elements for state machines
and class diagrams, generated simulators for them, and used the Java compiler to compile the
generated simulator code. For semantic correctness, we inspected the generated code for the
developed test models to see if the code was conforming to the extended state pattern.

To evaluate the effectiveness of simulators to detect failures in SUTSs, we created two versions of
SUTs for the three artificial problems and industrial case A: one version was a bug free version and
for the other one we seeded a fault manually (same as we did for evaluating effectiveness in test
automation). We created two test cases for each artificial problem and industrial case A, one test case
was supposed to detect and report the failure corresponding to the seeded fault. The other test case
was not expected to detect the fault. We ran the two test cases on the two versions of the SUT and
observed their behavior. Our assumption was that a faulty simulator might lead to falsely reporting a

bug in the correct SUT or prevent the triggering of an expected failure in the faulty SUT.
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The above strategy was iteratively applied to check correctness and achieve a stable version of the

tool. At any rate, testing cannot prove the absence of defects, although it increases our confidence.

7.2.5. Completeness of the Modeling Methodology and Profile

To evaluate whether the modeling methodology and profile are sufficient for simulator generation
we generated simulators for the five cases according to the transformation rules presented in the
paper. To evaluate the completeness of the methodology and profile with respect to testing we
generated test cases with different test strategies and evaluated them based on the information of

oracle obtained from the models.

7.3. Results

Following, we present the results of the case study for each evaluation criterion.

7.3.1. Completeness of the Transformation Rules
As far as generating simulators from environment models for the five cases and test models

presented above, the transformation rules are complete. These test models along with the three
artificial problems and two industrial cases covered all the modeling elements defined in the
methodology. The MOFScript transformations developed were able to generate Java code for all of

the UML/MARTE/OCL model constructs used in the case study artifacts and the test models.

7.3.2. Effect on Development Effort

When using our methodology, the only significant effort required by the software engineers is to
create environment models for the environment of RTES. Once developed, these models are used for
generating the simulator, executable test cases, and automated oracles. Table 3 shows relevant size
data for the various environmental models and Table 5 summarize the details for corresponding
generated simulators for the five cases (three artificial problems and two industrial case studies) in
terms of the total number of generated classes, number of methods, threads, and lines of code. The
first three rows of the tables show data about the three artificial problems (AP) and the last two rows
about the two industrial cases. Note that, even though the number of components in each case is
small, during the simulator execution a number of instances are generated for each environment
component. As discussed earlier the number of instances to be generated is decided based on the OCL
constraints on the domain model and is specified in an environment configuration. For example, in
industrial case B, as shown in Table 3, the total number of environment components is three, but for
one of the components, tens of instances were created for simulating the environment.

One of the reasons for the large number of generated classes, methods, and lines of code is the use
of the state pattern, which requires a separate class for each state. For example, industrial case A has
only four environment components, but because of 23 simple, 3 orthogonal, and 1 composite state
over 5000 lines of simulator code were generated with 35 classes and 386 methods. Even if the code
were manually written, we would expect developers to follow a similar pattern (extension of state

pattern) in order to facilitate changes, which would have resulted in a similar number of lines of code.
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This conjecture is supported by the fact that, in one of the industrial case studies, an existing,
manually-written simulator was of similar complexity. The simulator is a complex, multithreaded
application and various components run in parallel. If the simulator were to be manually written, the
developers would have had to resolve synchronization issues related to concurrency. For example, in
IC-B, the generated simulator included 20 threads to handle active objects and various timers. With a
large number of possible instances running during an environment simulation (as tens of instances for
IC-B) the overall behavior of the environment is quite complex. In our approach, the simulator

generator takes care of these issues and the software engineers only have to develop the environment

models, which are expressed at a higher level of abstraction than the source code.

Table 4. Summary of procedure to evaluate the correctness of transformations

Property

Syntactic Semantic Conformance to Heuristics Reporting|Failure Detection
. correctness |correctness models
Artifacts
Input Test models, Test models, Test models, models

Models for AP1,

extended state

source models

on source models

AP1 - AP3, |Test models models for AP1, for AP1, AP2, AP3,
IC-A, IC-B AP2, AP3, & IC-A |& IC-A AP2, AP3, & IC-A
Execution Manual drivers Manual. Manual test cases |Manual test cases Manual test cases
Procedure inspection
E(O)gzlzorsttz?s for None for test models, |Buggy & Correct
SUT None None arti ﬁcizil coblems stubs for artificial versions for AP1,
& IC-A p problems & IC-A AP2, AP3, & IC-A
cc(flri(:l;il:r%ce with |Comparison with Manually added in  |Failure reporting
Oracle Java compiler p P the test cases based |mechanism during

simulation

pattern
Table 5. Details of Generated Simulators
Case Classes | Methods LOC Threads | Manually written LOC
AP-1 8 67 975 3 123
AP-2 13 133 1871 6 79
AP-3 16 174 2396 8 137
IC-A 35 386 5545 12 181
IC-B 37 573 9209 20 360

The statistics about the generated code are only used to provide an estimation of the complexity of
the simulators. The reason is that, the objective of our tool was on generating simulators that are
correct and are usable for environment-based system level testing by utilizing reasonable level of
computing resources. The generated simulator is given to the end-user as an executable archive so we
did not focus on optimizing the code for better understanding or cleaner code generation. Therefore
there is room for further optimizations to reduce the number of lines of code, classes, and methods.

The column in Table 5 labeled ‘Manually written lines of code’ show the lines of code that the
developers had to write by hand. These were mostly written for external action code dealing with
communication. It is worth noting that, even if the simulator were manually developed, this

communication-related code would have to be written in any case and would have been very similar
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to the code written using our methodology (as we have experienced in one of the industrial case
studies). Therefore, the effort required to develop such communication layers is not something
specific to our approach, rather it is required whenever environment-based simulations are run.
Overall, the automated generation of the simulator code can be expected to save significant effort
to the developers. Though there is a considerable effort involved in developing environment models,
given the amount and complexity of the source code generated, it is expected to be less than the effort
required for manually developing and maintaining environment simulator code with concurrency and
complex synchronization issues. However, to ascertain this claim with confidence, controlled

empirical studies in industrial contexts are required.

7.3.3. Effectiveness in Test Automation
As discussed earlier, to evaluate the effectiveness of the generated simulator to help in test

automation, we ran the simulator with various testing strategies on all the five cases, i.c., the three
artificial problems and two industrial cases.

Overall, the testing framework was able to trigger system failures corresponding to all the seeded
faults for these cases. For IC-B, we ran the testing framework for three different testing strategies:
Random Testing, Adaptive Random Testing, and Genetic Algorithms and we were able to find a
critical fault in the production code. The detailed results for the experiment conducted on the three
artificial problems and this industrial case are presented in [44]. Taken together, the results of these
experiments increased our confidence that the generated simulators are effective in detecting faults in

the SUT when used in combination with various test automation strategies.

7.3.4. Correctness of the Transformation Rules
On the stable release of the transformations, we did not find any compilation errors for the test

models. Inspecting the code generated revealed that the code was generated according to the extended
state pattern. For conformance correctness, the transitions in the models were triggered correctly in
the code and all the events that were not defined were ignored (as defined in the methodology). The
heuristics reported also matched the desired results, except that the time distance had a jitter of 2 — 4
milliseconds due to the possible noise in timers. To evaluate failure reporting, for the sixteen test
cases that we executed, the four that were supposed to trigger the failure in the buggy SUT reported
the failure and the rest did not report any failure. This increases our confidence that the generated

simulators report failures correctly.

7.3.5. Completeness of the Modeling Methodology and Profile

For all the five cases, we were able to model the RTES environments with the subset of UML and
MARTE that we identified and the lightweight extensions that we proposed. The models were
sufficient to generate simulators that could be used to support large-scale test automation. Results in
Section 7.3.1 support this claim. In one of our industrial case study, using random testing and the

search-based testing, combined with using the environment model to identify error states (oracle),
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new critical faults were detected. For the other cases, as discussed in 7.3.3, we were able to detect
various seeded faults using the generated test cases.

For both the industrial case studies, the number of components identified at the time of domain
modeling was larger than what was finally required. During successive revisions and based on insight
obtained through behavioral modeling, some components turned out to be unnecessary and were
removed from the domain model. One practical challenge is that it was not easy in practice to identify
the right level of abstraction to model the behavior of environment components. Sub-machines were
widely used to incrementally refine the behavioral models until the right level of detail was achieved

to simulate the behavior of component from the viewpoint of the SUT.

8. Limitations

The focus of the work presented here was only on RTES with soft time deadlines in the order of
hundreds of milliseconds, with an accepted jitter of a few milliseconds. However, the modeling
methodology proposed in this paper is independent of this limitation and can be used to model
systems with stricter deadlines. This limitation is due to the choice of Java as a target language for
simulation. The choice of Java was made based on the needs of our industry partners but may
obviously not be appropriate in other environments. To use the approach in the presence of stricter
deadlines, a possible option is to use a virtual machine supporting Real Time Java (Java RT) (e.g.,
[46]) on a real-time operating system (e.g., [47]). We have not currently evaluated the practical
implications of using Java RT, but the specifications claim that the standard java code is completely
portable to a Java RT machine, which provides a precision in the order of nanoseconds.

One of the limitations of the proposed simulator generator is that we still cannot be completely
sure about its correctness. As discussed earlier, to test the simulator generator, we wrote a number of
test cases by hand. We also ran the generated simulator with the testing engine to test faulty RTES
(artificial problems and industrial cases) and were able to trigger failures on test cases revealing
seeded faults without triggering failures that were unwarranted. This increased our confidence in the
correctness of the transformation rules. The evaluation of such transformations is still an open
research question [51] and no suitable tool for testing model to text transformation is available yet.

Based on the experiments that we ran [44] to test different types of RTES (artificial problems and
industrial cases), and as discussed above, the generator simulator seems effective in supporting test
automation for fault detection. Because this is very time consuming, we however did so only on five
RTES. One important question is whether our simulation rules are complete enough to simulate the
environment of any RTES. To address this possible limitation, the industrial cases and artificial prob-
lems that we selected were from diverse domains. One case was of an automated bottle recycling
system and the other was a marine seismic acquisition system. Two of the artificial problems that we
developed depicted the common scenarios of RTES interactions with sensors in the environment. The

third artificial problem was selected from the domain of train control systems. The diversity of the
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domains of these RTES, which environment was simulated, increased our confidence in the
completeness of the transformation rules and the simulation framework for the RTES developed using
our modeling methodology.

We evaluated correctness and completeness of the transformation rules by generating simulators
for several test models, three artificial problems, and two industrial cases. Though it cannot be
guaranteed that the implemented transformation rules are complete and correct, note that this does not
affect the general validity and applicability of the simulation generation approach based on

environment modeling using extensions of UML. Such rules will be refined and augmented over time.

9. Conclusion

Black-box system testing of Real-time Embedded Systems (RTES) on their development platforms
is required to verify the correctness of these systems without involving the deployed hardware and
other physical components of their environments. This approach typically involves simulations of the
behavior of environment components in a way that is transparent to the RTES. Such a strategy allows
early and fully automated system testing, even when the hardware is not yet available. It is also help-
ful in situations where testing RTES for critical failures in their actual environments is either not
feasible, too costly, or might have catastrophic consequences.

This paper reported on a model-driven automated approach for such black-box system testing
strategy based on environment simulation. We purposefully took a practical angle and our approach
does not require software engineers to use additional, specific notations for simulation and testing
purposes, but only involve slight extensions of existing software modeling standards and a specific
modeling methodology. This paper focuses on environment modeling and rules for simulator
generation to enable automated black-box system testing and only briefly discusses the test generation
strategies, which are reported elsewhere.

As mentioned above, to facilitate its adoption, the methodology is based on standards: UML,
MARTE profile and OCL for modeling the structure, behavior, and constraints of the environment.
We, and this is part of our methodology, made a conscious effort to minimize the notation subset used
from these standards. Our modeling methodology entails the use of constructs (e.g., non-determinism,
error states, and failure states), which are essential to enable fully automated system testing (i.e.,
choice, execution and evaluation of the test cases). We modeled the environment of three artificial
problems and two industrial RTES in order to investigate whether our methodology and the notation
subsets selected were sufficient to fully address the need for automated software testing. Our
experience showed that this was the case.

Based on a careful analysis of the literature, we concluded that none of the existing code
generation approaches in the literature supports the constructs required to support the testing of RTES
through environment simulation. We implemented the code generation rules for the simulator using

model-to-text transformations with MOFScript, thus producing a set of Java classes. Our empirical
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evaluation based on our five case studies shows that the developed rules are sufficient and that they
are correct as far as fault detection is concerned. The automated simulator generation is expected to
save a significant amount of effort, although controlled empirical studies in industrial contexts will be
necessary to support such a claim with increased confidence. By using our environment models and
the generated simulators, it was possible to automatically find new, critical faults in one of the

industrial case studies using fully automated, large scale random and search-based testing.
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Appendix
The appendix provides a description of auto-generated attributes for instances of Context meta-
class in Table A.1 and a description of auto-generated methods for instances of ContextState

meta-class of the extended state pattern in Table A.2.

Table A.1. Auto generated attributes in the Context class

Attribute Name Description
instanceld: int Refers to a unique id for every instance in the simulation
action: ? extends ExternalCode |The reference contains an object of action class associated to the context class
states:IState[*] An array of possible states the environment component can be in
stateContext[*]:Region The array has object(s) when the class has an orthogonal state machine
associated with it.
currentState:IState [0.. 1] Refers to the state object that the context object is currently in.

Table A.2. Auto generated methods in the State class

Method Name Description

Constructor Generally empty unless the state has outgoing time events. In that case
TimeService object is initialized

evaluateChangeEvents Returns the condition corresponding to any of the change triggers of the out-
going transition from the state that is satisfied

executeChangeEvents The condition that is satisfied is compared and actions corresponding to the
change event that the condition relates to are executed.

executeCompletionEvent If the only outgoing transition from the state is without a trigger, then that tran-
sition is taken (in this case changeState method is executed)

getStateName Returns the name of the current state

onStateEntry Timers corresponding to time events are initialized. For non-deterministic time

events, a value for the timer is obtained from test-engine. Timers associated
with «TimeProbability» transition are only initialized/reset if this is the first
entry into the state after instance creation or the transition has been taken. Entry
activity is executed, do activity is executed in a parallel thread, and completion
event is triggered.

onStateExit Exit activity of the state is executed
stopExecution Stops the current thread
afterT<i> methods An afterT<i> method is generated for every time event and is called by the

timeout method if the corresponding time event is triggered. <i> is the
automatically assigned id of the time event.
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Signal methods A signal method is generated for every signal that is defined to be accepted for

the state. Action code corresponding to the transition is placed in this method
along with a call to changeState method

timeout() Calls the afterT<i> method whose time event has been triggered
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