
Extending SysML with AADL Concepts for
Comprehensive System Architecture Modeling

Razieh Behjati1,2, Tao Yue1, Shiva Nejati1, Lionel Briand1,2, and Bran Selic 1,3

1Simula Research Laboratory, Lysaker, Norway
2University of Oslo, Oslo, Norway

3Malina Software Corp., Ottawa, Canada
{raziehb, tao, shiva, briand, bselic}@simula.no

Abstract. Recent years have seen a proliferation of languages for de-
scribing embedded systems. Some of these languages have emerged from
domain-specific frameworks, and some are adaptions or extensions of
more general-purpose languages. In this paper, we focus on two widely-
used standard languages: the Architecture Analysis and Design Language
(AADL) and the Systems Modeling Language (SysML). AADL was born
as an avionics-focused domain-specific language and later on has been re-
vised to represent and support a more general category of embedded real-
time systems. SysML is an extension of the Unified Modeling Language
(UML) intended to support system engineering and modeling. We pro-
pose the ExSAM profile that extends SysML by adding AADL concepts
to it with the goal of exploiting the key advantages of both languages in a
seamless way. More precisely, by using ExSAM and any SysML modeling
environment, we will be able to both model system engineering concepts
and use AADL analysis tools where needed. We describe the ExSAM
profile through several examples and compare it with existing alterna-
tives. We have implemented ExSAM using IBM Rational Rhapsody and
evaluated its completeness and usefulness through two case studies.
Keywords: Integrated Control Systems (ICSs), Systems modeling lan-
guages, Architecture modeling languages, Embedded control systems,
AADL, SysML.

1 Introduction
Many control applications are systems-of-systems, integrating various mechan-
ical, electronic, and software systems. The design of these systems, classified
as Integrated Control Systems (ICSs), depends more and more on effective so-
lutions that can address heterogeneity and interplay of physical and software
elements. In particular, design languages used for specifying ICSs should incor-
porate, in a consistent manner, essential concepts from multiple disciplines, such
as mechanical, electronic, and software engineering.

Model-Driven Engineering (MDE) approaches to system development have
been adopted in diverse domains, in particular, ICSs. This is because the use of
models has shown to be promising in addressing the above issues, as well as, in
handling the increasing complexity of ICSs, reducing their cost of construction,
and supporting efficient maintenance and evolution [17, 15].

A number of modeling languages have been proposed to help engineers from
different disciplines to communicate and compare their perspectives, to reason



about properties of heterogeneous ICSs, and to develop optimized system-level
solutions by assessing multidisciplinary design trade-offs. Of particular interest
in our work are standardized languages, which are generally preferred by indus-
try because they can reduce training costs, and reduce the risk of vendor lock
in. In recent years, a number of modelling languages targeting ICSs have been
standardized, but, to the best of our knowledge, none of them provide the full
range required to deal effectively with the kinds of ICSs that we have encoun-
tered. Some of them, such as Systems Modeling Language (SysML) [7], focus
on the “big picture” requirements and architectural views, whereas others, such
as Architecture Analysis and Design Language (AADL) [14] address the more
detailed platform-oriented and physical aspects of such systems.

Consequently, we investigated the possibility of combining these two lan-
guages, SysML and AADL, since they are both widely used in industry with
adequate tool support. However, since it is generally preferable for system engi-
neers to work with a single internally consistent formalism within one modeling
environment, we chose to merge the two into a single unified language as a SysML
profile. Concrete objectives include the ability to use AADL analysis tools while
performing system engineering modeling in any SysML modeling environment.

Figure 1 illustrates the relationship between the capabilities of the two lan-
guages, showing that they are mutually complementary. SysML, an extension

SysML

Requirements, Traceability, 
Parametric models, Interactions

Modes/State Machines,
Components/System Blocks,

Component Interactions/Block Flows

Quantitative Analysis,
Hardware-Software Component Categories,

Software to Hardware Binding

AADL
ExSAM

2

1

3

Fig. 1. The relationship between SysML, AADL, and the com-
bined profile ExSAM.

of Unified Modeling Lan-
guage (UML), version 2,
is a standardized lan-
guage for systems engi-
neering. In addition to
retaining much of UML,
it also provides special-
ized support for require-
ments engineering, trace-
ability, and precise mod-
eling of diverse physical
phenomena. AADL, on
the other hand, is oriented towards the modeling of real-time embedded sys-
tems and includes a comprehensive catalogue of hardware and software elements
common in such systems and their characteristics, allowing relatively precise and
dependable analyses of different system properties such as performance, timing,
or power consumption.

Although both SysML and AADL have extension mechanisms, in unifying
the two languages, we chose to extend SysML. This is because its extension mech-
anism (profiles) comes from UML, which is much more widespread and better
supported by tools, and which is also more powerful compared to that of AADL
(annexes). We propose a SysML profile, Extended SysML for Architecture Anal-
ysis Modeling (ExSAM), that combines all the modeling capabilities of AADL
and SysML (Figure 1). Specifically, ExSAM extends SysML to cover all AADL
concepts, by expressing these concepts using SysML constructs.

2



Since SysML and AADL both target modeling embedded software systems,
there are conceptual overlaps between them. Figure 1, level 2, represents an
overview of the overlapping constructs between these two languages. These con-
structs seemingly specify the same concepts, however they tend to have different
meanings, usages, or design rationales. In general, AADL has a well defined se-
mantics compared to SysML, which inherits the main bulk of its semantics from
UML with several semantic variation points. Hence, in the ExSAM profile, we
opt for the AADL semantics whenever the corresponding SysML elements are
not precisely defined or have a semantics different from that of AADL. We do so
by defining appropriate Object Constraint Language (OCL) [6] constraints. For
example, realization relation is used both in AADL and SysML. In AADL, real-
ization allows the reuse of attributes of physical components, whereas in SysML,
the physical attributes cannot be manipulated through realization relations be-
cause such attributes appear at the instance-level while realization is defined at
the block-level (UML class-level). Hence, to model AADL realization, SysML
realization must be extended and constrained (Section 3.1). In ExSAM, we have
made several such alignments to fully embed AADL constructs into SysML.

To evaluate the completeness and usefulness of ExSAM for ICSs, we have
applied it to two case studies: One is a benchmark case study and the other
is a large-scale, industrial case study. The first case study showed that ExSAM
was adequate to capture all the used AADL concepts. The second case study
showed that ExSAM was sufficient to satisfy the modeling needs of our industrial
partner, while AADL and SysML alone were not.

The reminder of the paper is organized as follows. We provide a brief intro-
duction to SysML and AADL in Section 2. In Section 3, we present ExSAM
and illustrate its use. We describe the tool support and an evaluation of ExSAM
through two case studies in Section 4. We compare ExSAM with other alterna-
tives in Section 5. Finally, we conclude the paper in Section 6.

2 Background
In this section, we provide a brief introduction to SysML (Section 2.1) and to
AADL (Section 2.2).
2.1 SysML
SysML is a modeling language with a graphical syntax developed and standard-
ized by the Object Management Group (OMG). It was designed to, among other
things, capture the interactions of software with physical entities, and is widely
used for systems engineering [16]. Compared to UML 2, SysML adds support
for systems engineering (e.g. through requirements engineering, and quantita-
tive analysis of physical aspects of the system), while removing many of UML’s
object-oriented constructs. In ExSAM, we have particularly benefited from the
following SysML-specific constructs:
SysML blocks. Blocks are modular units of system descriptions in SysML and

are generalizations of the UML class concept. The notion of block in SysML
enables better expression of Systems engineering semantics compared to
UML, and particularly, reduces the UML bias towards software. Blocks and
their relationships are visualized in SyML block definition diagrams (bdds).

3



The definition of a block in SysML can be further detailed by specifying its
parts; ports, specifying its interaction points; and connectors, specifying the
connections among its parts and ports. This information is visualized using
SysML internal block diagrams (ibds).

SysML flows ports and SysML item flows. The SysML flow port concept
extends the UML port concept and is intended to describe an interaction
point for a block through which the block interacts with its environment
[18]. The rationale for having flow ports is that some interactions of a block
may not involve message passing or service calls, but rather phenomena such
as continuous or discrete energy flows. In particular, a block can have interac-
tion points over which it supplies or is supplied with electric power, fuel, air,
or any other kind of streaming input or output. SysML FlowPorts are typed
by FlowSpecifications, which specify the types of flows that can pass through
them. The SysML ItemFlow concept extends the UML InformationFlow con-
cept, which has the ability to be explicitly associated with Connectors via
the realizingConnector dependency [8]. This capability allows us to describe
the detailed implementation of an item flow through connectors and flows
realizing it.

2.2 AADL

AADL, is a modeling language originally designed for and used in avionics. It
was standardized by the Society of Automotive Engineers (SAE) and has been
used to describe software execution platforms (e.g., processors, memory, buses,
devices) as well as the physical environments of embedded software systems
(e.g., electronic and mechanical parts interacting with ICSs). In addition, AADL
supports the early prediction and analysis of critical system qualities – such as
performance, schedulability, and reliability [14].

In this section, we provide an overview of AADL using a domain model rep-
resenting the main AADL concepts and their relationships. We have developed
this domain model based on the AADL reference manual [14]. A fragment of
this domain model capturing the main AADL concepts is shown in Figure 2.
A complete domain model is available in [10]. Below, we discuss the concepts
shown in Figure 2 and illustrate them using the AADL example in Figure 3.

Fig. 2. The core AADL concepts.

AADL provides abstractions for describing a system in terms of its compo-
nents, their interfaces, and the connectors between the interfaces. AADL provides
two mechanism for declaring components: using the component type construct,

4



which specifies a component by describing only its interface, or using the com-
ponent implementation construct, which specifies a component by describing
its internal structure. ComponentType and ComponentImpl in Figure 2, respec-
tively, represent these concepts. In Figure 3, lines 1-10 specify a component type
named redundant pattern, and lines 11-32 specify a component implementa-
tion named redundant pattern.primary backup. In AADL, components are
declared as a type or implementation within a particular component category
[14]. These core concepts are elaborated further below.
1 system redundant_pattern
2 features
3 indata: in data port;
4 outdata: out data port;
5 reinitialize: in event port;
6 flows
7 primary_flow: flow path indata -> outdata;
8 properties
9 Period => 20ms;
10 end redundant_pattern;

11 system implementation redundant_pattern.primary_backup
12 subcomponents
13 primary_system: system principal_functions;
14 backup_system: system principal_functions;
15 observer: process observer_pattern;
16 connections
17 in_nom:data port indata -> primary_system.indata in modes nominal;
18 in_fail: data port indata -> backup_system.indata in modes backup, reinit;
19 out_nom:data port primary_system.outdata -> outdata in modes nominal;
20 out_bk: data port backup_system.outdata -> outdata in modes backup, reinit;
21 indata_p: data port primary_system.outdata -� observer.indata_P;
22 indata_b: data port backup_system.outdata -� observer.indata_B;
23 flows
24 primary_flow: flow path indata -> in_nom -> primary_system.flow1 -> out_nom -> outdata;
25 modes
26 primary: initial mode;
27 backup: mode;
28 reinit: mode;
29 primary -[observer.primary_fail]-> backup;
30 backup -[reinitialize]-> reinit;
31 reinit -[observer.primary_ok] -> primary;
32 end redundant_pattern.primary_backup;

Fig. 3. An example AADL model.

Component categories. AADL provides ten component categories to define
the runtime nature of software, hardware, and composite components. Software
component categories are data, subprogram, thread, thread group and process.
Hardware component categories arememory, processor, bus and device. A special
component category named system indicates either a system consisting of sev-
eral software components only, or a system consisting of both hardware and soft-
ware components. In Figure 3, the component type redundant pattern (Line
1) and the component implementation redundant pattern.primary backup

(Line 11) both belong to the component category system.
Component types. A component type specifies the externally visible charac-
teristics of a component in terms of features, flow specifications, and property
value associations (Figure 2).

Features. Different types of features are used to specify the interfaces of a
component. Ports and port groups (collections of ports or other port groups)

5



are hardware features that represent the directional exchange of data, events,
or both. Subprograms, server subprograms, and their parameters are used
to specify the software features of a component. In Figure 3, lines 3-5 specify
the features of the component type redundant pattern.

Flow specifications. In a component type, flows are directional and designate
a source or a sink, which are features of a component, or a flow path, which
represents a flow through a component from one feature to another. Line 7
in Figure 3 declares a flow path connecting indata to outdata, which are
declared as features of the component type.

Property value associations. Property value associations are used to assign
a value or a list of values to properties. Note that these properties are defined
as part of the component categories. Line 9 in Figure 3 shows a property
value association.

Component implementations. As shown in Figure 2, component implemen-
tations refine component types by specifying subcomponents, interactions (con-
nections and call sequences), flow path implementations, property value associ-
ations and modes. In Figure 3, redundant pattern.primary backup imple-
ments the component type redundant pattern.
Subcomponents and interactions. Subcomponents in a component imple-

mentation can be other component types or component implementations.
Connections and call sequences are used to describe the interactions among
subcomponents. In Figure 3, subcomponents of the component implementa-
tion redundant pattern.primary backup are listed in lines 13-15. Con-
nections among these subcomponents are declared in lines 17-22.

Flow path implementations. A flow path implementation describes a se-
quence of paths through and connections among subcomponents within a
component implementation. This path is a realization of the corresponding
flow path declared in the component type declaration [14]. In Figure 3, the
flow path implementation declared in line 24 refines the flow path specifica-
tion declared in line 7.

Modes. An AADL component implementation declaration may contain the
declaration of modes and mode transitions. Modes represent alternative op-
erational states of a system or component [14]. Transition from one mode to
another is triggered by events. In Figure 3, lines 26-28 declare three modes
of redundant pattern.primary backup. In addition, lines 29-31 show the
mode transitions among these three modes.
In AADL, a mode is an explicit configuration of its contained elements, e.g.,
subcomponents and connections. The in modes clause in the declaration of
a component implementation is used to specify the active elements in each
mode. The declarations of the connections in lines 17-20, in Figure 3, also
contain the specification of the modes these connections are active in.

3 Profile Description
In this section we describe how we extend SysML using a profile, ExSAM, with
the purpose of combining architecture design and analysis concepts of AADL

6



with the system modeling concepts of SysML. This profile is resulted from our
practice of mapping AADL to SysML and based on our observations of SysML
limitations in addressing important AADL concepts discussed in Section 2.2.
In this section, we briefly describe the most important features of ExSAM. A
complete description of the profile, and illustration of its usage is provided in
[10]. Here, we first describe the mapping for AADL components in Section 3.1.
In Section 3.2 we describe the mapping for AADL component extension and
generalizations. Section 3.3 is dedicated to the mapping of AADL modes. In
Section 3.4 we present the mapping for AADL bindings. Finally, in Section 3.5
we explain how we can use ExSAM to benefit from AADL analysis capabilities
for SysML models.

3.1 Mapping component types and component implementations
Recall from Section 2.2 that in AADL, component types and component im-
plementations describe a component, respectively, through its externally visible
interface and its internal structure. In ExSAM, we use SysML blocks to model
both AADL component types and AADL component implementations. To dis-
tinguish between component types and component implementations, we use two
newly defined stereotypes, «ComponentType» and «ComponentImpl», both ex-
tending SysML block as shown in Figure 41. SysML blocks extend UML classes,
and are chosen to model components because they can describe both structural
and behavioral features of a system or component. In addition, using blocks
for modeling components allows us to easily use other SysML constructs (e.g.
parts and ports) to model AADL constructs (e.g. subcomponents and ports)
associated with a component in a consistent and straightforward manner.

Fig. 4. Metamodel for mapping AADL concepts: component type and component implementation.

As mentioned in Section 2.2, AADL provides ten different component cat-
egories. In ExSAM, we dedicate to each AADL component category a stereo-
type with a set of attributes representing the properties of the corresponding
component category. AADL property value associations are then automatically
mapped to the values assigned to the attributes of stereotypes applied to blocks.
In the rest of this section, we refer to this set of stereotypes as category identifier
stereotypes. In ExSAM, all category identifier stereotypes generalize «Compo-
nentType» and «ComponentImpl». We apply two stereotypes to each block:
one stereotype specifies whether it is a component type («ComponentType») or
a component implementation («ComponentImpl»), and the other specifies its
component category.
1 In Figures 4 and 7, the stereotypes in gray are introduced by us, and the rest are from
SysML. Also, in these two figures, a solid line ending in a filled triangle shows UML
extension and a solid line ending in a hollow triangle shows UML generalization.

7



As shown in Figure 2, a component implementation in AADL can realize
and refine a component type specification by adding implementation details to
it, namely, by specifying its subcomponents, connections, modes, properties,
and flow paths. A realization relationship in AADL transfers all property value
associations from the component type to the component implementation, and
makes all features and flow specifications of the component type accessible from
the component implementation. In ExSAM, we capture this refinement using a
UML/SysML realization relationship between a block stereotyped by «Compo-
nentImpl» and a block stereotyped by «ComponentType». However, the seman-
tics of UML/SysML realization is different from that of AADL realization. For
example, it does not support the transfer of property value associations from the
block stereotyped by «ComponentType» to the block stereotyped by «Compo-
nentImpl». In addition, for the realization to be meaningful in this context, the
involved blocks should be stereotyped by the same category identifier stereotype.
In ExSAM, we have specialized and constrained UML/SysML realization using
«AADL_Realization» (Figure 4) to capture these detailed semantics. Each re-
alization relationship in an ExSAM model, should, therefore, be stereotyped by
«AADL_Realization» to represent an AADL realization.

Fig. 5. A fragment of the ExSAMmodel for the AADL model in Fig. 3. Having «AADL_Realization»
applied to the realization relation ensures that in redundant_patternPrimary_backup the value of
period is set to 20ms, which is the same value as in redundant_pattern.

Figure 5 shows an excerpt of the ExSAM model created for the AADL model
in Figure 3. In this model, a block named redundant pattern, stereotyped
by «ComponentType» and «System», represents the AADL component type
redundant pattern. The value of the attribute period, defined in «System», is
set to 20ms in this block. The other block, redundant patternPrimary backup,
realizes redundant pattern, and is stereotyped by «ComponentImpl» and
«System». Note that the realization relation between the two blocks is also
stereotyped by «AADL_Realization», which, as shown in Figure 5, ensures that
in redundant patternPrimary backup the value of period is 20ms.

As mentioned in Section 2.2 and shown in Figure 2, a component type dec-
laration in AADL defines the interface of a component in terms of features and
flow specifications. In ExSAM, we use attributes and operations of a SysML
block to model AADL software features (e.g. subprograms and parameters), and
ports (i.e. SysML FlowPorts and UML StandardPorts) to model AADL hardware
features (e.g. ports). Specifically, for modeling an AADL port group in ExSAM,
we use a port typed by a SysML FlowSpecification.

In AADL, flow specifications are used to specify flow sources, flow sinks,
and flow paths that connect flow sources to flow sinks. Since, flow sources and
flow sinks are hardware features of a component, according to the mapping
specified earlier in this section, they are mapped to ports in ExSAM. To model
a flow path connecting a flow source to a flow sink, we use a SysML ItemFlow
connecting the two ports representing the flow source and the flow sink. For

8



example, in the ExSAM model created for the AADL model in Figure 3, there
is an ItemFlow named primary flow in the block named redundant pattern

connecting the ports representing indata and outdata (Figure 5). Note that
in SysML, ItemFlow is a stereotype that can be applied to both associations and
connectors. In this particular example, it is applied to a connector specifying
that there is a data transferring between two ports of a block.

Recall from Section 2.2 that in AADL, a component implementation specifies
the internal structure of a component through its subcomponents and the con-
nections among them. Subcomponents of an AADL component implementation
are naturally mapped to parts of a SysML block in ExSAM. The connections
among AADL subcomponents are then captured through SysML ports (owned
by the parts or by the encompassing block) and connectors connecting them.
SysML ibds are used to visualize this information.

As mentioned in Section 2.2, an AADL component implementation can de-
clare flow path implementations (e.g. line 24 in Figure 3) to refine and implement
the flow path specifications (e.g. line 7 in Figure 3) declared in the component
type that it implements. A flow path implementation involves connections that
specify a flow path starting from a flow source, passing through a number of
subcomponents and their specified flows and finally reaching the flow sink. In
ExSAM, an AADL flow path implementation is mapped to a set of connectors
that are associated to the ItemFlow representing the AADL flow path specifi-
cation, which is implemented by the flow path implementation. In addition, for
each flow path implementation we create an ibd in the ExSAM model to visu-
alize these connectors and the way they connect parts and ports, as shown in
Figure 6. The highlighted connectors in Figure 6, in nom, out nom, and flow1,
are used to realize the primary flow ItemFlow depicted in Figure 5.

Fig. 6. An ibd in the ExSAM model created for the AADL model in Fig. 3. This ibd shows the
internal structure of redundant_patternPrimary_backup in the nominal mode.

We use ItemFlows to model flow path specifications because SysML ItemFlow
extends UML InformationFlow, which according to UML metamodel [8], can be
realized using a set of connectors named realizingConnectors. In our mapping,
the realizingConnectors of SysML ItemFlows are used to model AADL flow path
implementations.

A component implementation in AADL can also declare call sequences. In
ExSAM, we use SysML activities or interactions to model call sequences.

3.2 Extension and generalization

As shown in Figure 2, in AADL, a component type can extend another com-
ponent type. A component type inherits all the features, flow specifications

9



and property value associations from its base component. Similarly, a compo-
nent implementation can extend another component implementation. A compo-
nent implementation inherits subcomponents, flow path implementations, call
sequences, modes and property value associations from its base component im-
plementation.

In an ExSAM model, we can use UML/SysML generalization to model the
extension relationships between AADL components. However, the semantics of
UML/SysML Generalization is different from that of AADL extension. For ex-
ample, using UML/SysML Generalization we cannot capture the inheritance
of property value associations. To address this semantic difference, in ExSAM,
we define a new stereotype named «AADL_Generalization» that specializes
UML/SysML Generalization and implements the semantics of AADL extension
using an OCL constraint. Such an OCL constraint specifies that: 1) a block
can extend another if they both have the same category identifier stereotype, 2)
if the blocks are component types, the sub block must inherit from its supper
block all the attributes, ports, item flows, and values assigned to the attributes
of the category identifier stereotype applied to its super block, 3) if the blocks
are component implementations, the sub block must inherit from its super block
all parts, item flows and their realizing connectors, interactions, modes, and val-
ues assigned to the attributes of the category identifier stereotype applied to its
super block.

3.3 Modes
As mentioned in Section 2.2, a component implementation can operate in several
modes. Each mode represents one configuration of the component. The compo-
nent can transit from one mode to another in response to the occurrence of an
event. In ExSAM, we use states to model modes and state machine transitions
to capture mode transitions. Such a state machine is associated with the block
- stereotyped by «ComponentImpl» - representing the component implemen-
tation with modal behavior. The association between «ComponentImpl» and
StateMachine in Figure 7 shows this.

Fig. 7. Metamodel for mapping AADL concepts: modes.

In addition, in AADL, the in modes clause is used to specify the active sub-
components and connections in each mode. Notice that a state machine can only
model modes and the transitions among them, but have no way to link modes
(states in state machine) to their own structure, behavior, and/or constraints.
Therefore, to model the AADL in modes concept in ExSAM, we have introduced

10



a stereotype named «ModeParticipant». As shown in Figure 7, the «ModePar-
ticipant» stereotype has a relation to the UML State metaclass. This relation
shows the set of modes that an element stereotyped by «ModeParticipant» can
be active in. Notice that a «ModeParticipant» can be active in one or more
modes.

There are three different types of modes in AADL: (1) mode-specific structure
of subcomponents and connections, which describes alternative configurations of
active components and connections; (2) modal configurations of call sequences,
which describe alternative behavioral interactions of subcomponents; and (3)
mode-specific properties, which define alternative characteristics and behaviors
of the components. To support these modeling capabilities in ExSAM, we use the
«ModeParticipant» stereotype, which, as shown in Figure 7, extends the UML
metaclasses Property, Connector, Behavior, and Constraint. Being able to model
properties, including parts and ports, as well as connectors as mode participants
allows us to precisely model the mode specific structure in each state. Similarly
stereotyping behaviors, including interactions and activities as mode participants
allows us to precisely specify AADL behaviors, e.g. call sequences, and associate
them to the appropriate state.

Fig. 8. An ibd visualizing the part and connectors that are active in the backup mode.

Figure 6 shows an excerpt of the ExSAM model depicting an ibd for the inter-
nal structure of the component redundant pattern.primary backup (Figure
3) in the nominal mode. In this ibd the part named primary system repre-
sents the subcomponent primary system in the AADL model. Note that the
other subcomponents are not shown in this ibd, since the purpose of this ibd is
to visualize only the elements that are involved in the mode nominal. The part
primary system is stereotyped by «System» to show its component category.
Figure 8 shows another ibd, which is used to visualize the active part and con-
nectors (e.g. backup system, in fail, out bk) in the backup mode. Table
1, lists model elements of Figures 6 and 8 that are stereotyped by «ModePartic-
ipant». For each element in the table, the modes in which that element is active
are indicated using X. Note that this information is not shown in Figures 6 and
8 to minimize cluttering the figures.

Table 1. Mode participants and their active modes.
indata in_fail backup_system out_bk outdata in_nom primary_system out_nom

nominal X X X X X X
backup X X X X X X
reinit X X X X X X

Note that in the development of ExSAM, we were restricted by the design
choices of SysML, including the fact that only a subset of UML constructs are

11



imported into SysML. The most interesting UML concepts that are, in our opin-
ion, missing in SysML are Collaboration and CollaborationUse, which can be
used to capture AADL modes in UML. The solution we proposed in this sec-
tion, however, uses the «ModeParticipant» stereotype and applies it to several
metaclasses, mentioned above, to precisely convey the semantics of AADL modes
in ExSAM models.

3.4 Mapping for bindings

An important aspect of AADL is the ability to model the deployment of soft-
ware components to hardware components. In AADL it is done through value
associations to specific properties of certain, deployable component categories.
For example, in AADL to model that process FlightDirector is deployed to
the processor named Xeon solo, in the component FlightDirector we set
the value of the property bound processor to Xeon solo.

In order to model this information in ExSAM, we use SysML allocation rela-
tionships. For example, in the example mentioned above, we add a dependency
stereotyped by SysML «allocate» to the model, connecting the block representing
FlightDirector to the block representing Xeon solo. Note that this mapping
is an exception to the general rule on mapping property value associations (Sec-
tion 3.1), which is done through values assigned to the attributes of stereotypes.
This is because allocation is an important piece of information in ICSs, and it is
crucial to explicitly capture and visualize it using dependencies stereotyped by
«allocate».

3.5 Support for AADL analysis
As mentioned in Section 2.2, AADL supports quantitative analysis of non-
functional properties as well as early prediction of critical systems qualities.
In order to take advantage of the analysis capabilities of AADL, we can use
ExSAM to extract the fragment of a SysML or an ExSAM model that conforms
to AADL. One can then transform this fragment to AADL using the mappings
specified in ExSAM, and apply AADL analysis tools to the result of transfor-
mation. Note that the only modeling elements of SysML that are translatable to
AADL are those in level 2 of Figure 1 because these are the only concepts that
have corresponding elements in AADL.

4 Application and Evaluation of the Profile
The ExSAM profile presented in Section 3 is implemented and its applicability
and usefulness are evaluated through two case studies. The first case study,
presented in Section 4.1, is taken from the Carnegie Mellon Software Engineering
Institute (SEI) report [13] on applying AADL to analyze an avionics system
design. The purpose of this case study is to evaluate the ability of ExSAM in
capturing all the AADL concepts. The next case study, presented in Section 4.2,
is a real industrial case study, in which we applied ExSAM to model one of the
Subsea Production Systems of FMC Technologies [3]. The goal of this case study
is to evaluate the ability of ExSAM in addressing the modeling requirements of
large, distributed, integrated control systems (ICSs).

12



We have implemented ExSAM as a set of stereotypes and constraints using
IBM Rational Rhapsody Architect for Systems Engineers, version 7.5.1 [4], which
supports SysML.

4.1 The Avionics case study
In the first case study, we used ExSAM to model an avionics system. The AADL
model for this system is presented in [13] and is accessible from [1]. An avionics
system typically consists of a collection of hardware and software components
that controls the flight, navigation, and radio communication [13].

The SysML features used in this case study are bdds and ibds to show
the blocks, their relationships, and their internal structures. In addition, the
model consists of a total of six SysML FlowSpecifications for modeling AADL
port groups and 49 blocks for capturing the components. The blocks are all
stereotyped by either «ComponentType» or «ComponentImpl». In addition,
each block is stereotyped by one of the category identifier stereotypes speci-
fied in Section 3.1. There are 10 realization relationships that are stereotyped
by the newly proposed «AADL_Realization», and four generalization relation-
ships that are stereotyped by «AADL_Generalization». The ExSAM model and
diagrams created for this case study are provided in our technical report [10].

From the above description, we can conclude that the developed ExSAM
model captured all the features and details in the AADL model for the avionics
system. As expected, many aspects of the AADL model required that we use
ExSAM features since SysML turned out to be insufficient.

4.2 The FMC case study
As a typical integrated control system, one of the subsea control systems of FMC
Technologies (henceforth referred to simply as FMC) is selected as the industrial
case study in this work. FMC is a leading global provider of technology solutions
for the energy industry. One of the key technologies of FMC subsea systems is
the Subsea Production System (SPS), which is used for managing and improving
oil production fields. The main component of the system is the Subsea Control
Module (SCM), which contains electronics and instrumentation for safe and
efficient operation of subsea valves, chokes, etc. FMC subsea systems are large-
scale, integrated and distributed systems of systems connected through high
speed electric and fiber-optic network communication links. In this case study,
we focused on FMC SPS, which according to the characteristics listed above, is a
typical, complex ICS, which is representative in terms of modeling requirements.
Based on the characteristics of SPS and results of the detailed domain analysis we
conducted, the main requirements for modeling the architecture of such complex
ICSs are:
– Req-1) For a particular installation, we need to model how the SPS is config-

ured into a deployable product by capturing how its software and hardware
components are connected and what roles they play,

– Req-2) For a particular installation, we must specify the software deployment
across distributed hardware computing resources, which in our case consists
of many instances of the SCM,

13



– Req-3) We need to model the behavior of the SPS in several possible modes of
operation. For example, the SPS can be operated by different topside control
modules, requiring operation in different control modes. It can also operate
in the maintenance mode or the normal operation mode. In each mode,
we need to identify which hardware and software components are actively
operating, and identify constraints and behavior related to this mode.

– Req-4) We need to specify requirements and link them to the SPS archi-
tecture and design. This is very important to support safety inspection and
certification in the maritime and energy sectors.

– Req-5) The hardware characteristics on which the software will be deployed
need to be specified to facilitate the actual configuration of the SPS and to
enable performance and resource consumption analysis.

In addition, there are practical considerations that should be accounted for.
FMC wishes to use well-supported commercial tools with graphical notations for
modeling SPS.

We applied ExSAM to model the architecture of the FMC SPS. In the model,
we have a total of 13 bdds, 15 ibds, two state machine diagrams for describing
modes and mode transitions, three sequence diagrams and two activity diagrams
for describing behaviors. We used, 104 blocks stereotyped by category identifier
stereotypes of ExSAM to model different components of the system. In this
model, 43 realization relationships are stereotyped by «AADL_Realization»,
and 18 generalization relationships are stereotyped by «AADL_Generalization».
Deployment of software to processors, and processors to underlying hardware for
one part of the system is modeled using seven SysML allocation links, and is
visualized in an ibd.

The description of the ExSAM model for the FMC case study suggests that
SysML provides the basis for achieving the above requirements with its block
concept, various diagram types (e.g., ibd, bdd, state machine diagram), and
allocation modeling capabilities. SysML blocks, bdds and ibds can together be
used to describe an FMC product through its physical and logical elements, their
relationships, and internal structures, addressing Req-1. As pointed in Req-2, an
important modeling requirement for the FMC case study is to capture software
deployment to distributed hardware computing resources. In the ExSAM model,
this is done through SysML allocations, which are equivalent to AADL bindings.
Req-4 can be fulfilled using SysML requirements modeling capability, including
the specification of requirements, their relationships (e.g., decomposition), and
the traceability links between requirements or between them and other model
elements.

In addition to the above, the FMC case study illustrated that SysML alone
does not have the necessary mechanisms to satisfy Req-3 and Req-5, while
ExSAM does. Using the «ModeParticipant» stereotype and its association to
UML State metaclass (Figure 7), ExSAM can explicitly identify the compo-
nents that are currently active in a mode and also link each mode to its own
behavior, structure, and/or constraints (Section 3.3). Regarding Req-5, using
newly introduced stereotypes and their attributes in ExSAM (e.g., «Memory»,

14



«Device») allows us to capture the hardware characteristics of the SPS such that
system configuration can be facilitated and performance and resource consump-
tion analysis can then be supported.

As mentioned earlier in this section, one practical consideration at FMC is the
need for well-supported commercial modeling tools. To the best of our knowledge,
however, AADL lacks professional tool support and a well-defined, complete
graphical notation. AADL tool support is restricted to only one commercial tool
and a few open-source ones. In contrast, SysML is supported by an increasing
number of commercial (e.g. [2, 4, 5]) and open source tools justifying our choice
for using SysML as the basis for ExSAM. In addition, AADL has no mechanisms
to model requirements and traceability. However, AADL has some important
features such as modes, and detailed component categories that are missing
from SysML, thus justifying their reuse in ExSAM.

In sum, ExSAM brings missing features from AADL into SysML so that we
can benefit from both AADL and SysML strengths. We applied ExSAM to model
the architecture of the FMC SPS, which is a typical and complex ICS, and is
representative in terms of architecture modeling requirements in ICSs domain.
According to the two domain experts who reviewed the resulting architecture
models, ExSAM is able to fulfill the five requirements mentioned above.

5 Related Work
MARTE is a UML profile for modeling real-time and embedded systems [9].
The two approaches presented in [9] and [12], that have used MARTE to cre-
ate AADL-like models, suggest that MARTE is an interesting alternative to
ExSAM. MARTE can indeed be extended with AADL-like constructs, as we
did with SysML. However, in this work we chose to focus on SysML because
of its wide acceptance in a wide spectrum of industrial sectors, as well as its
support for systems engineering through features such as traceable requirements
and parametric diagrams.

Combining SySML and MARTE is another alternative to bring together
SysML’s systems engineering constructs and MARTE’s ability in specifying
non-functional aspects, thus enabling quantitative analysis. The combination
of SySML and MARTE is currently investigated and discussed in [11] in the
context of four usage scenarios. A comparison of ExSAM with such alternatives
would be interesting but is out of the scope of this paper.

6 Conclusion and future work
The increasing complexity of integrated control systems demands more effective
design languages that can address, in a consistent manner, the heterogeneity
resulting from the multidisciplinary nature of such systems.

In this paper, we describe how we combined two highly complementary stan-
dard modeling languages, SysML and AADL, to provide a common modeling
language (in the form of the ExSAM profile) for specifying embedded systems
at different abstraction levels, and from different stakeholder perspectives.

In Section 3, we specified ExSAM, which extends SysML with AADL-like
concepts. The applicability and usefulness of ExSAM were investigated through
two case studies. One benchmark case study showed that ExSAM can fully

15



cover all AADL aspects and one large-scale industrial case study, performed in
collaboration with an industrial partner developing integrated control systems,
showed that ExSAM could successfully address all their modeling requirements,
whereas neither SysML nor AADL could do so in isolation.

Future work will include the development of tool support for translating
ExSAM models into AADL models by abstracting away the ExSAM constructs
that fall in level 1 of Figure 1 (i.e., requirements, traceability, parametric mod-
els, interactions). The resulting AADL models can therefore be analyzed using
AADL analysis tools.
Acknowledgments
This work was supported by a grant from Det Norske Veritas (DNV) and Simula
Research Laboratory, Norway, in the context of the ModelME! project. We are
grateful to FMC Technologies Inc. for their support and help on performing the
industrial case study.
References
1. Aadl model for the avionics case study. http://aadl.sei.cmu.edu/aadl/

downloads/Models/IntegratedModel10292007.zip.
2. Enterprise Architect Tool. http://www.sparxsystems.com/.
3. FMC Technologies, Inc. http://www.fmctechnologies.com/.
4. IBM Rational Rhapsody Architect for Systems Engineers. http://www-01.ibm.

com/software/rational/products/rhapsody/sysarchitect/.
5. MagicDraw SysML Plugin. http://www.magicdraw.com/sysml.
6. OMG Object Constraint Language. http://www.omg.org/spec/OCL/2.2/.
7. OMG Systems Modeling Language. http://www.omgsysml.org/.
8. UML 2.0 Superstructure Specification, August 2005.
9. A UML profile for MARTE: Modeling and analysis of real-time embedded systems,

May 2009.
10. R. Behjati, T. Yue, S. Nejati, L. Briand, and B. Selic. An AADL-based SysML

profile for architecture level systems engineering: Approach, metamodels, and ex-
periments. Technical Report 2011-03, Simula Research Laboratory, http://vefur.
simula.no/~raziehb/ExSAM-11.pdf, 2011.

11. H. Espinoza, D. Cancila, B. Selic, and S. Gérard. Challenges in combining SysML
and MARTE for model-based design of embedded systems. In ECMDA-FA ’09,
pages 98–113, 2009.

12. M. Faugere, T. Bourbeau, R. de Simone, and S. Gérard. MARTE: Also an UML
profile for modeling AADL applications. Engineering of Complex Computer Sys-
tems, IEEE International Conference on, pages 359–364, 2007.

13. P. H. Feiler, D. Gluch, J. J. Hudak, and B. A. Lewis. Embedded system architecture
analysis using SAE AADL. Technical report, CMU/SEI, 2004.

14. P. H. Feiler, D. P. Gluch, and J. J. Hudak. The Architecture Analysis & Design
Language (AADL): An Introduction. Technical report, CMU/SEI, 2006.

15. N. J. Nunes, B. Selic, A. R. da Silva, and J. A. T. Álvarez, editors. UML Modeling
Languages and Applications, UML, volume 3297 of LNCS, 2005.

16. W. Schafer and H. Wehrheim. The challenges of building advanced mechatronic
systems. In FOSE ’07, pages 72–84, 2007.

17. T. Weigert and F. Weil. Practical experience in using model-driven engineering
to develop trustworthy computing systems. In IEEE International Conference on
Sensor Networks, Ubiquitous, and Trustworthy Computing, pages 208–217, 2006.

18. T. Weilkiens. Systems Engineering with SysML/UML: Modeling, Analysis, Design.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

16


