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S o f t w a r e 
E n g i n e e r i n g  f o r  C S E

The development of scientific software has similarities with processes that follow the 
software engineering “agile manifesto”: responsiveness to change and collaboration are 
of utmost importance. But how well do current scientific software-development processes 
match the practices found in agile development methods, and what are the effects of using 
agile practices in such processes?

What Do We Know about  
Scientific Software Development’s 
Agile Practices?

Over the years, software engineer-
ing (SE) practice and research have 
focused on techniques and concepts 
intended to be generally applicable to 

software development. However, SE best practices 
and research have rarely been adopted in scientific 
software development.1 Here, we use scientific soft-
ware to refer to software developed by scientists 
for scientists. Such software implements complex 
algorithms to solve systems of mathematical equa-
tions, provide simulations, and so on.

Because employing such practices might aid 
in the scientific software-development process, 
in this article we survey and analyze how much 
and how well current scientists employ best SE 
practices for scientific computing, taking into 

consideration why they approach the develop-
ment process in various ways. In particular, we’re 
interested in the use of agile practices for scientific 
software development—that is, in the use of light-
weight, incremental processes that involve the 
customer’s continuous feedback.

Contextualizing to Define  
Our Research
In most aspects of scientific software develop-
ment, the urge to conduct science is the primary 
motivation and goal. Unlike software engineers, 
the scientist’s mindset is to perform science, not 
to write software.2 Development methods that 
emerge usually are based on local experience.3 
Also, the variation in domains, maturity of the 
science, and motivation in scientific software 
projects influence development methods, and thus 
we should expect large variations both across and 
within domains.

Nevertheless, some common ground can be 
found. Scientists use their software to perform 
complex calculations or simulations. In some 
scientific projects, scientists use the software to 
test a scientific theory. These characteristics of 
scientific software entail that, in contrast to the 
development of, say, administrative or business-
enterprise software, the scientific software writer  
can’t determine what an application’s correct 
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output should be in the traditional sense. Also, 
the software might evolve through the combined 
effort of many scientists over the course of many 
years, continuously adding new system function-
alities.4 This poses particular challenges from the 
software engineering viewpoint: First, the require-
ments elicitation and specification will be highly 
dynamic. Because of the exploratory nature of 
many scientific projects, requirements elicitation 
and specification is difficult because they might 
be unclear, or even unknown, up front. Second, 
because requirements are so volatile, testing the 
software with regards to such requirements is  
often problematic.

In fact, the lack of knowledge about require-
ments and testing principles has been identified as 
a problem area in several studies.3,5,6 One survey 
article noted that requirements-related activities 
are perceived as problematic in scientific soft-
ware projects.5 We also identified that scientists 
perceive the definition of test cases for software 
validation and verification as challenging. For ex-
ample, it’s often not obvious to stipulate whether 
an error lies within a scientific theory or in that 
theory’s implementation (numerical approxima-
tion). Moreover, technical testing skills seemed 
to be a clear weak point for scientists developing 
software.

The challenges with determining require-
ments up front and the subsequent testing have 
been addressed explicitly in SE agile practices. 
Could scientific software development lend itself 
more to agile-oriented practices than to tradi-
tional plan-driven practices? Rebecca Sanders 
supports this possibility by stating that most proj-
ects under investigation in her study took an it-
erative, rather than a plan-oriented, approach to  
development.6

Adopting an explicit process model should en-
able projects to benefit from SE best practices and 
research. However, it’s well known that technol-
ogy adoption relies on a sufficient number of el-
ements shared between the technology and the 
problem domain. It’s therefore worth investigat-
ing the extent to which more appropriate pro-
cess models harmonize with scientific software 
development. Thus, we defined two research  
questions:

•	How well do practices in current scientific  
software-development processes match the 
practices found in agile development methods?

•	How does the use of agile practices influence 
the handling of common challenges in scientific 
software-development projects?

Regarding the first question, we were interested 
to find out which, if any, agile practices were used. 
Related to the second question, we investigated 
whether using relevant agile practices yields a bet-
ter handling of testing-related and requirements-
related activities.

Agile Practices: Literature Review
Agile practices are currently being adopted by 
more and more projects, including large projects 
with complex architectures. For the purpose of 
our analyses, we identified 35 agile practices (see 
Table 1). The first 12 practices in Table 1 origi-
nate from the Scrum methodology.7 The remain-
ing 23 elements are Extreme Programming (XP)8 
practices (see the “Agile Software Development” 
sidebar). The elements marked with an asterisk 
are XP practices that are also recommended prac-
tices in the Scrum methodology. We discuss how 
we selected these agile practices elsewhere.9

To review evidence of agile practices in scien-
tific software projects, we performed a literature 
review that extracted and critically appraised 
available literature on the subject. We conducted 
the literature review in a similar fashion to the 
method described by Tore Dybå and his col-
leagues,10 searching multiple literature databases 
in a systematic manner.9

The practice numbers in Table 2 refer to the 
agile practices (with the same numbers) in Table 1. 
An “×” in a cell of Table 2 indicates that we found 
evidence that the practice wasn’t present. A check 
indicates that we found evidence that the practice 
was present. Blank fields indicate that we were un-
able to determine whether a practice was followed 
from the available information.

Relevant Articles and Our Initial Findings
Although there are more than 100 publications 
reporting on scientific software-development 
projects, our literature search (and subsequent fil-
tering) left us with only five articles that addressed 
the possible use of agile practices in such projects:

1.	 “Engineering the Software for Understand-
ing Climate Change”;11

2.	 “Chaste: Using Agile Programming Tech-
niques to Develop Computational Biology 
Software”;12

3.	 “Agile Methods in Biomedical Software 
Development: A Multi-Site Experience 
Report”;13

4.	 “Exploring XP for Scientific Research”;14 and
5.	 “Introducing Agile Development into Bio

informatics: An Experience Report.”15
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To see what information the reviewed publica-
tions revealed concerning the fi rst research ques-
tion, we mapped the agile practices listed in Table 1 
to development practices used in the projects de-
scribed in the fi ve selected articles. Table 2 shows 
the result of this mapping. Articles 1, 2, 4, and 5 
describe exactly one project, while article 3 de-
scribes six projects (labeled as 3.1, 3.2, …, and 3.6, 
respectively, in Table 2).

Regarding our second research question, all fi ve 
articles indicated positive effects of agile practices 
in scientifi c software development. A tentative 
conclusion is that agile methods can effectively 
handle the special characteristics of require-
ments and testing in scientifi c software develop-
ment. The evidence in favor of such a conclusion 
is stronger for small projects with relatively few 
team members.

table 1. List of agile practices.

Practice number agile practices
  1 Priorities (product backlog) maintained by a dedicated role (product owner)

  2 Development process and practices facilitated by a dedicated role (Scrum master)

  3 Sprint planning meeting to create sprint backlog

  4 Planning poker to estimate tasks during sprint planning

  5 Time-boxed sprints producing potentially shippable output

  6 Mutual commitment to sprint backlog between product owner and team

  7 Short daily meeting to resolve current issues

  8 Team members volunteer for tasks (self-organizing team)

  9 Burn down chart to monitor sprint progress

10 Sprint review meeting to present completed work

11 Sprint retrospective to learn from previous sprint

12 Release planning to release product increments

13 User stories are written*

14 Give the team a dedicated open work space*

15 Set a sustainable pace*

16 The project velocity is measured*

17 Move people around*

18 The customer is always available*

19 Code written to agreed standards*

20 Code the unit test fi rst

21 All production code is pair programmed

22 Only one pair integrates code at a time

23 Integrate often

24 Set up a dedicated integration computer

25 Use collective ownership*

26 Simplicity in design*

27 Choose a system metaphor

28 Use class-responsibility-collaboration (CRC) cards for design sessions

29 Create spike solutions to reduce risk*

30 No functionality is added early

31 Refactor whenever and wherever possible

32 All code must have unit tests

33 All code must pass all unit tests before it can be released

34 When a bug is found tests are created

35 Acceptance tests are run often and the score is published

* Denotes Extreme Programming (XP) practices that are also recommended practices in the Scrum methodology.
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The testing approaches’ rigor seemed to sat-
isfy the need for having reproducible, correct re-
sults.15 For requirements activities, we identified 
a degree of mismatch between scientific software 
projects and the agile-assumed context of a clear  
customer–developer relationship. However, the 
agile methods’ responsiveness and f lexibility 
proved valuable for the requirements activities. 
Elicitation and specification of tasks were per-
ceived as easier and more focused with agile meth-
ods.12,14 Good practices regarding requirements 
prioritization were also observed.11

Thus, the literature review indicated that proj-
ects using agile practices better handle testing-
related activities. The review also supports the 
assumption that projects using agile practices are 
better at handling requirements activities, but the 
findings aren’t as substantial as for testing.

Agile Practices: Case Study
To complement our questionnaire-based survey5 
and literature review,9 we conducted a multiple-
case study (see the “Emprical Research Methods” 
sidebar) that compared three large scientific soft-
ware projects: Finite Elements in Computational 
Science (FEniCS), Dalton, and Olga (see Table 3). 
The case study added some dimension to the 

results found in the projects investigated in the 
literature review. We selected these three projects 
because they represent different types of scientific 
software than the projects investigated in the re-
view, as they’re much larger in terms of size, dura-
tion, and participants. These cases also extended 
the range of scientific domains beyond that of 
bioinformatics. In addition, we had easy access to 
scientists involved in software-development activ-
ities. Thus, the selection of cases was to a certain 
degree opportunistic.

The case study’s purpose was to

•	 analyze and conceptualize core product and 
development-process elements in the three 
projects;

•	 investigate the extent to which these elements 
map to agile practices (as listed in Table 1); and

•	 investigate the effects of agile practices on test-
ing and requirements handling, as perceived by 
project participants.

The following sections characterize each of the 
case study projects and provide information re-
lated to two research questions. Table 4 shows 
the agile mapping chart of all three projects. As 
you can see, most of the agile practices weren’t 

Agile Software Development

Agile practices emerged in the mid-1990s as an alterna-
tive to the traditional, plan-driven approach to soft-

ware development. The practices are intended to address 
the problems in meeting customer requirements when 
the requirements were specified and locked early—the 
observation being that requirements will change over time 
as the customer and software developer become aware of 
further needs and constraints. Agile practices imply light-
weight, incremental processes that fully and continuously 
involve the customer and that are adaptable to changing 
requirements. In 2001, a group of software engineers for-
mulated the “agile manifesto” (http://agilemanifesto.org), 
outlining profound principles of agile development. Many 
elaborations and specializations of agile practices exist. 
Two agreed-upon elaborations that capture agile develop-
ment comprehensively are Scrum and Extreme Program-
ming (XP).

Scrum1 is an organizational process model that defines 
roles in a development project, as well as the activities that 
Scrum teams will perform. Each team is largely autono-
mous and works in two-to-four-week iterative increments 
(sprints). Scrum teams consist of a Scrum master, a product 
owner, and regular team members (developers and testers). 
The Scrum master’s primary objective is to facilitate  

communication and to keep the team’s productivity  
(velocity) on a satisfactory level. The product owner en-
sures customer involvement and communication. Scrum 
scales up (for example, by “Scrum of Scrums”—meaning 
that many first-order Scrum teams can work in parallel 
while coordination of these Scrum teams is done via a 
second-order Scrum team to which each first-order Scrum 
team sends a representative). Sprints are time boxed, 
meaning that they have a fixed time and flexible scope, 
but every sprint should produce a functioning part of the 
system (potentially shippable code). Sprint planning and 
estimation is based on the team’s recorded historical pro-
ductivity, thus providing reliable and constantly updated 
scope-time estimates.

XP2 also focuses on close customer–developer relation-
ships and communication in short-time iterations. Rather 
than an organizational framework, XP describes work 
practices in some detail. Among the most central practices 
are pair programming, continuous code review, test-
ing and refactoring, and distributed competence among 
developers.

References
1.	M. Cohn, Succeeding with Agile: Software Development Using Scrum, 

Addison-Wesley, 2009.

2.	D. Wells, The Rules of Extreme Programming, 2009; www.

extremeprogramming.org/rules.html.
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present in cases 1 and 2, but many were detected in 
case 3.

Case 1: feniCS
FEniCS is a project with participants from several 
universities and research institutions. The aim is to 
automate solving differential equations. The pro-
gram is open source, free, and distributed through 
software managers in Ubuntu and Debian.

FEniCS isn’t a traditional software applica-
tion; it’s a collection of separate packages that 
form a framework for the automated solution of 
differential equations. Scientists then write ap-
plications, typically relating to a specifi c scien-
tifi c problem, on top of the FEniCS framework/
interface. The components are written in 
C++ and Python. An internat ional, geo-
graphically distributed community of developers 

table 2. Mapping chart of agile practices from the literature review.

Practice 
number

Projects
1 2 3.1 3.2 3.3 3.4 3.5 3.6 4 5

  1  

  2  

  3 

  4  

  5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

  6  

  7  ✔ ✔ ✔ ✔ ✔ ✔ ✔

  8 ✔ ✔ ✔  ✔ ✔ ✔ ✔

  9  ✔ ✔

10 

11 ✔

12 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

13  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

14 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

15 ✔

16  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

17  ✔ ✔

18 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

19 ✔ ✔ ✔

20 ✔

21        ✔

22 ✔

23 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

24

25 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

26 ✔

27 ✔

28

29

30 ✔

31 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

32 ✔ ✔

33

34 ✔

35 ✔ ✔ ✔
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contributes to the coding and documentation 
efforts. As with any project with distributed 
development, collaboration, coordination, and 

communication are key aspects that must be han-
dled appropriately for the project to be effective 
and successful.

empiriCAl reSeArCH metHoDS

We used several empirical research methods in our line 
of investigation. Here we provide a brief summary of 

each method.

Survey
For our preliminary investigations, we used a Web-based 
survey.1 Surveys are designed to collect large amounts 
of subjective data in a schematic form that lends itself to 
statistical analysis.

Literature review
In the next stage,2 we followed guidelines for systematic 
literature reviews in software engineering.3 Strict adher-
ence implies that we defi ned a review protocol that speci-
fi ed our literature-selection criteria, variable extraction 
procedures, secondary-analysis methods, quality assess-
ment, and inter-reviewer agreement scores. The purpose 
is to ensure a complete and replicable account of available 
literature on a topic. For our purposes, we followed a sim-
pler review process,4 which omitted the formal protocol, 
multiple reviewers, and secondary analysis.

Case Study Method
The third stage involved a multiple-case study. A case study 
is an in-depth examination of a selection of contemporary 
phenomena (agile practices) within a real-life context (actual 
scientifi c software-development projects).5 The fi rst part 
of our case study was exploratory: We investigated the 
software-development processes in the three projects “as 
is.” The second part was confi rmatory: We mapped and 
evaluated these processes from an agile viewpoint, according 

to the agile mapping chart. In addition to examining 
project documentation, we interviewed between two and 
four key developers in each project over several sessions, 
following ethical guidelines. The interviews covered a set 
of high-level topics, and we later analyzed the content by 
categories of information that appear under each case in 
the main text.

further Methods
To fi nd out more about agile practices’ causal effects, fu-
ture studies might deploy controlled fi eld experiments and 
further comparative case studies. In addition, mappings 
from studies on agile practices in other domains could 
offer insights, if suffi cient generalized arguments are viable.

references
1. J.E. Hannay et al., “How Do Scientists Develop and Use Scientifi c 

Software?” Proc. 2nd Int’l Workshop on Software Eng. for 

Computational Science and Eng., IEEE CS Press, 2009, pp. 1–8.

2. M.T. Sletholt et al., “A Literature Review of Agile Practices and Their 

Effects in Scientifi c Software Development,” Proc 4th Int’l Workshop 

on Software Eng. for Computational Science and Eng., ACM Press, 

2011, pp. 1–9.

3. B.A. Kitchenham, Procedures for Undertaking Systematic Reviews, 

joint tech. report, (TR/SE-0401) Computer Science Dept., Keele 

Univ., and (0400011T.1) Nat’l Information and Comm. Technology 

of Australia (NICTA), 2004.

4. T. Dybå, T. Dingsøyr, and G.K. Hanssen, “Applying Systematic 

Reviews to Diverse Study Types: An Experience Report,” Proc. 1st 

Int’l Symp. Empirical Software Eng. and Measurement, IEEE CS Press, 

2007, pp. 225–234.

5. R.K. Yin, Case Study Research: Design and Methods, Sage Publications, 

2003.

table 3. Characteristics of the case study projects.

Characteristics feniCS* Dalton Dalton
Scientifi c domain Mathematical (automated 

solution of differential 
equations)

Chemistry (molecular 
electronic structures)

Physics (fl ow modeling 
of oil, gas, and natural 
water)

Number of 
contributors

>10 40 50

Duration 10 years 30 years 30 years

Programming 
languages

C++, Python Fortran77/90, C, C++ Fortran, C++, C#

Chosen process 
method

No specifi c No specifi c Scrum

Distributed 
development

Yes Yes Yes

Availability Free, open source Free, licensed Proprietary

* FEniCS stands for Finite Elements in Computational Science.
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Teams and roles. Most of the developers are equal 
peers, much like open source development. De-
velopers choose how much effort they devote to 
the project at a given time. Although there are no 
project leaders in the traditional sense, some 
implicit project roles exist. Developers who are 
heavily involved and who contribute more are gen-
erally more infl uential. A core team reviews code 

changes. Membership in the core team is granted 
based on a constant level of contributions to the 
project.

development process. The development process 
in FEniCS has been formed over the course of 
several years. Although the process is undefi ned 
and doesn’t match any established model, certain 
practices have been established; for example, code 
is developed incrementally. It was hard to identify 
any detailed process activities (and hence, transi-
tions between them), because the development is 
mostly based on personal initiative and commit-
ment. This could imply several vastly different 
approaches to development.

Coding is clearly perceived as the most im-
portant and time-consuming phase/activity. It’s 
diffi cult to precisely defi ne tasks beforehand, 
as they are so closely connected to research. 
There are multiple aspects that can infl uence a 
specifi c task during both planning and coding, 
such as changes to the original requirements or 
specifi cations and technical diffi culties. Because 
these types of challenges arise often, there’s no 
focus on specifying tasks or estimating efforts 
for tasks. The overall feel of it is that develop-
ing the project is much like conducting research 
(the output isn’t necessarily known), which 
means that you have to accommodate dynamic 
requirements.

requirements and testing. The level of self-
organization is apparent in all activities related to 
requirements handling. Although developers use 
LaunchPad to coordinate tasks (“blueprints”) and 
to track their progress, the individual developers 
requesting a specifi c functionality usually specify 
and defi ne the tasks themselves. Minor tasks don’t 
have a blueprint or specifi cation. No uniform pat-
tern, such as user stories, is used for specifying 
tasks.

The project has a dedicated tester, who updates 
a Buildbot—that is, a system to automate the 
compile/test cycle to validate code changes. With 
the help of the Buildbot, the tester checks that the 
system compiles and that there are no build er-
rors, and he/she also runs regression tests. Apart 
from that, testing isn’t prioritized and it’s left up 
to the individual developer.

General challenges. Obvious challenges for FEniCS 
relate to collaborating and coordinating the proj-
ect work. Sometimes, problems can arise 
when people have different requirements related 
to the same functionality.

table 4. Mapping chart of agile practices 
from the case study.

Practice 
number

Projects
feniCS Dalton olga

  1   ✔

  2   ✔

  3   ✔

  4   ✔

  5   ✔

  6   ✔

  7   ✔

  8 ✔ ✔ ✔

  9   

10   ✔

11   ✔

12   

13   ✔

14   

15   

16   

17   ✔

18 ✔ ✔ ✔

19 ✔  ✔

20   

21   

22   

23 ✔  ✔

24   

25   ✔

26 ✔  

27   

28   

29   

30  ✔ ✔

31 ✔  

32   

33 ✔ ✔ ✔

34  ✔ 

35 ✔  
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Agile practices. Few agile practices were identified 
in the FEniCS project.

Case 2: Dalton
The Dalton project is an older scientific software 
project in the molecular electronic structures’ 
subdomain of chemistry. The aim is to automate 
computation of such molecular properties. The 
software was first released in 1997, with several 
versions in the years to follow; the latest version 
dates to the first quarter of 2010. An international 
community of scientists is involved in the pro-
gram’s development.

The software is written in Fortran 77 and C, 
and the authors recommend a Unix platform. The 
program consists of seven components, with more 
or less independent development cycles. The pro-
gram is distributed free of charge, as long as the 
user signs a personal license agreement.

Perhaps because of the project’s age, no tools for 
managing code were used initially; source code 
was exchanged via email. As the number of code 
lines increased, the need for a source-code revi-
sion tool became more apparent.

Teams and roles. It was hard to identify roles. Su-
pervisors to masters and doctoral students assume 
roles akin to project leaders for their students, but 
normally the scientists don’t assume any specific 
roles. A board has been established to map out the 
project’s general, future directions, as well as to 
make decisions on significant matters. However, 
the board’s responsibilities are as much related to 
scientific research as to the software-development 
project. There’s also a role for users who have 
signed the license agreement. Such users can re-
quest functionality or suggest changes, but there 
are no guarantees that the suggestions will be 
implemented.

Development process. No explicit development 
model exists, but a culture has been established 
over the years, yielding guidelines for how to at-
tend to certain aspects of the development. Never
theless, most of the development is performed 
individually. Aspects requiring collaboration—for 
instance, integrating code or planning a release—
are handled in an ad hoc manner rather than 
systematically.

None of the interviewees were able to identify 
any transitions between the activities, as most of 
these activities (such as coding, analysis, design, 
and testing) are carried out more or less simulta-
neously. The development bears certain resem-
blances to iterative development, but the activities 

in the Dalton development process aren’t formal-
ized at all.

Requirements and testing. The developers are lo-
cated at various research facilities, most of them 
in Scandinavia. Occasionally meetings occur to 
discuss requirements and ongoing activities. The 
nature of specific scientific research plays a part; 
but most of the time the full requirements aren’t 
known until far into the implementation phase.

Requirements are handled individually and 
all the developers have their own private to-do 
lists. The level of self-organization is high; tasks 
are both defined and chosen by the developers 
themselves. Often development is motivated by 
(personal) research needs. There’s seldom any 
gathering of the requirements on a plenary level; 
this happens only when a release is imminent. 
As there are relatively few people involved in the 
project at a given time, the most active developers 
seem to have some idea of what other members are 
currently doing.

There are some regression tests that must be 
passed before the developer can commit his or her 
code to the main repository. It’s unclear whether 
there are also unit tests; their absence was pointed 
out by some but others said that they had written 
unit tests. Perhaps some parts of the regression-
test suite also target single functions in the code.

Challenges. It’s challenging to coordinate new 
software-version releases. It’s hard to get all of the 
scientists to deliver on time, and deadlines have 
occasionally been postponed. It’s also difficult 
to manage the code and integrate all the differ-
ent code branches. Requirements are sometimes 
impossible to stipulate before well into the imple-
mentation stage; many tasks are explorative and 
the correct output might be difficult, if not impos-
sible, to predetermine. This also complicates test-
ing matters, as errors could be in either the theory 
or implementation.

Agile practices. As with FEniCS, only a few agile 
practices were identified in the Dalton project.

Case 3: Olga
The third case is Olga. Contrary to the other cases, 
this is a commercial project, developed by the 
SPT Group. Olga is a simulator tool for accurate 
flow modeling of oil, water, and gas in wells and 
pipelines. Being a commercial system that must 
stay competitive, Olga has a more traditional type 
of developer–customer relationship. Another dif-
ference between Olga and the other two projects 
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in the case study is the immaturity of the underly-
ing theory on which the software development is 
based. Although in FEniCS and Dalton the ma-
turity of the underlying scientific theory is high, 
in Olga the software can be considered as a docu-
mentation of the underlying theory.

Teams and roles. In terms of roles, the develop-
ers belong to one of three main company de-
partments: R&D, maintenance, and GUI. GUI 
developers seem to be dedicated solely to their 
department, while other developers might engage 
in the other departments’ projects. Occasionally, 
they also work with support (which also might be 
viewed as a kind of maintenance effort). In the 
various projects, however, regular Scrum roles 
are used; every project has a dedicated product 
owner and a Scrum master. There are also other 
developer roles in the company that don’t pertain 
specifically to the Scrum methodology, such as a 
dedicated tester.

Development process. Because of the company’s 
size, the Olga project is organized via multiple 
subprojects of various sizes and durations. Most 
of these use Scrum or many of the Scrum prac-
tices. The projects’ lifecycles aren’t synchronized; 
each project has its own deadlines and backlogs to 
consider. Project iterations vary from two to four 
weeks. Releases of the complete software package 
occur approximately twice a year. Of course, as the 
projects differ in various aspects, different Scrum 
practices are variably applied; some of the prac-
tices are followed throughout, while others might 
be absent or carried out unsystematically or in-
completely according to the Scrum methodology.

Requirements and testing. Requirements are han-
dled in a tracking system, where tasks must follow 
a series of states before ultimately being ready for 
the main repository. Scrum also provides some 
guidelines on how to deal with the tasks, more 
specifically the sprint backlog and the sprint-
planning meetings. The tasks are planned, bro-
ken down into smaller, more manageable parts, 
and then estimated. Each project can choose its 
own way of estimating the tasks; some projects 
use planning poker.

The company has a test suite that covers close 
to 50 percent of the production code. The tests 
consist of use cases that check the results of exe-
cuting the software. This test suite is run quite of-
ten (at least once a day). There are also some unit 
tests in the project, but unit testing is a relatively 
new aspect for the project, which means that there 

are no specific or established guidelines related to 
such tests. The developers’ perception is that it’s 
much easier to write unit tests while writing new 
code, compared to creating or updating unit tests 
for already existing code. A limited part of the 
code is currently being addressed by unit tests. 
As the software is scientifically explorative, the 
output can’t always be verified until someone pos-
sesses real, observed data. Comparisons between 
results from the software and scientific data are 
conducted on a regular basis.

Challenges. It’s difficult to establish testing rou-
tines to be performed systematically in the proj-
ect. For example, although unit testing is regarded 
as important, not all new code is unit tested.

Whether the output matches observed data is 
hard to assess prior to collecting the scientific 
data. This also complicates effort estimation, 
because the workload associated with a task is so 
uncertain.

Agile practices. In contrast to the FEniCS and 
Dalton projects, several agile practices could be 
identified in the Olga project. Most of the Scrum 
practices are present, as the project explicitly uses 
this process methodology.

Discussion
Now that we’ve provided some background on 
our multiple-case study, let’s discuss the results 
from the literature review and case study in light 
of the two proposed research questions.

Presence of Agile Practices
As Tables 2 and 4 show, both the literature review 
and case study indicate that agile practices are in-
deed present in projects developing scientific soft-
ware. However, with the exception of Olga, which 
deliberately uses the Scrum method, for most of 
the agile practices listed in Table 1, we couldn’t 
find clear positive evidence as to their application.

Overall, we found that practices 5 (time-boxed 
sprints), 7 (short daily meetings), 8 (self-organizing  
team), 12 (release planning), 13 (user stories),  
14 (dedicated open work space for team), 16 (proj-
ect velocity is measured), 18 (customer is always 
available), 23 (integrate often), 25 (collective own-
ership), and 31 (refactor whenever and wherever 
possible) are present in most of the projects. In 
addition, practice 19 (code written to agreed stan-
dards) is present in five out of 13 projects, and we 
found negative evidence about its usage in only 
one project. Finally, the use of practice 33 (all code 
must pass all unit tests before release) was evident 
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in three projects, and we found no project with 
evidence that it wasn’t used. Thus, our literature 
review and case study indicates that 13 out of 35 
agile practices are used in projects developing sci-
entific software.

On the other hand, we found that only prac-
tice 21 (all production code is pair programmed) 
had clear evidence that it’s not used in most of the 
projects. In addition, we found that practices 24 
(set up a dedicated integration computer), 28 (use 
class-responsibility-collaboration, or CRC, cards 
for design sessions), and 29 (create spike solutions 
to reduce risk) either weren’t used or there was no 
evidence about their use.

For the remaining 18 agile practices, the picture 
is unclear. With each of these practices, we found 
projects that use them and projects that don’t. In 
addition, the number of projects where we found 
positive or negative evidence for the use of these 
practices is small.

Impact on Challenging Aspects  
(Requirements and Testing)
Most of the projects in the literature review re-
ported effective handling of testing and require-
ments. In some projects, these aspects were 
emphasized as being especially successful when 
using an agile development approach. However, 
not all publications reported clearly which specific 
agile practices the authors applied. In those cases, 
it was difficult to assess which agile practices af-
fected testing and requirements handling, and 
how much of the reported positive effects could 
be attributed to the use of these practices. Two of 
the projects in the case study employed virtually 
no agile practices, while the third one explicitly 
followed Scrum practices. In the following sec-
tions, we’ll discuss the extent to which certain 
agile practices could be said to benefit require-
ments handling and testing in the projects under 
study (from both the literature review and case  
study).

Impact on requirements handling. All projects indi-
cated that the customer is always available (prac-
tice 18). This is presumably a consequence of 
the fact that developers of scientific software are 
potential or actual users of their software. There-
fore, issues related to requirements are less likely 
to be caused by misunderstandings between de-
velopers and customers and might instead relate 
to other difficulties with capturing the functional 
and nonfunctional requirements—for example, 
because of the immaturity of the scientific theory 
on which the software is based.

Nearly all projects from the literature review 
used short time-boxed iterations (practice 5), self-
organizing teams (practice 8), and release plan-
ning (practice 12). The presence of these practices 
might have facilitated that requirements are dis-
cussed or refined quite often, making eventual 
changes easier to deal with. User stories (prac-
tice 13) were also used in most of the projects, 
which could have further promoted deliberate 
handling and refinement of requirements and  
tasks.

From the case study, the Olga project aligns 
well with these observations. Olga developers 
used most of the Scrum practices, and they re-
garded requirements activities to be dynamic and 
proper for the project.

The two noncommercial projects from the case 
study didn’t use any of the agile practices related 
to requirements. However, it’s interesting to ob-
serve that the people involved in these projects 
didn’t perceive any particular problems with re-
quirements, even though they didn’t use the agile 
practices. This might be explained by the fact that 
the development is based on personal motivation, 
and that the individuals define and write their 
own requirements.

Impact on testing. Testing activities in software-
development projects are directly related to 
five agile practices: 20 (code the unit test first),  
32 (all code must have unit tests), 33 (all code must 
pass all unit tests before release), 34 (when a bug 
is found tests are created), and 35 (acceptance 
tests are run often and the score is published). 
Because we couldn’t find clear evidence for the 
presence (or absence) of most of the test-related 
agile practices, their impact on testing activities 
in the various projects wasn’t easy to identify pre-
cisely. However, in all projects where we could 
identify the presence of one or more test-related 
agile practices, problems with testing were less-
frequently reported than in the other projects. For 
example, project 2 from our literature review (dis-
cussed elsewhere12) used at least four test-related 
practices (20, 32, 34, and 35) and reported that the 
agile approach to testing was a valuable asset, both 
in testing new functionalities and regression test-
ing existing functionalities.

The FEniCS project in our case study uses two 
test-related agile practices (33 and 35). In inter-
views, we learned that testing isn’t considered a 
problematic development activity in this project. 
Thus, the FEniCS project is better off than most 
of the projects we surveyed in a previous study.5 
Although this could indicate that the presence 
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of test-related agile practices contributed to this 
comfortable situation, we can’t provide clear 
support for a causal relationship between the 
presence of these practices and a lack of testing  
problems.

Similar to FEniCS, the Dalton project didn’t 
emphasize particular problems with testing. In 
Dalton, we found that two test-related agile prac-
tices (33 and 35) are in use. In addition, we found 
that at least some developers used agile practice 32.  
Again, we couldn’t establish a clear causal rela-
tionship between using test-related agile prac-
tices and the lack of problems with testing, but we 
have some indication that these factors might be 
related.

Of those projects where we found evidence 
of one test-related agile practice, project 4 from 
our literature review was the one that indicated 
most explicitly positive effects on testing activi-
ties. Among the observed effects were more focus 
and more deliberate handling of testing (an activ-
ity that hadn’t been prioritized before using agile 
practices).

Limitations
Every empirical investigation has natural threats 
to validity that should be reported and mini-
mized. The validity of our literature review was 
to some degree influenced by the quality of the 
articles that we selected for our in-depth analyses. 
In addition, we had to address the following typi-
cal threats to validity: reliability threats, because 
of single-reviewer assessment; publication bias, 
because of articles possibly being submitted and 
published more readily when they report positive 
findings; and selection bias, because of reviewer 
reliability threats and search engine mechanics. 
(We discuss more details about validity threats re-
lated to the literature review elsewhere.9)

Regarding our case study, as Mike Cohn pointed  
out, there are a few common risks associated with 
interviews as a source for evidence.7 In addition 
to a selection bias for opportunistic case selec-
tions, here we describe the most relevant risks, 
along with the precautions taken to limit risk  
factors.

Bias caused by poorly asked questions. To avoid un-
clear questions as much as possible, we had the in-
terview guide reviewed by experienced scientists. 
However, misunderstandings and misconceptions 
might have arisen because of technical terms and 
unfamiliar concepts from software engineering. 
During the interview sessions, we made an effort 
to clarify and explain unknown concepts.

Response bias. This bias relates to the possibility 
that questions are formulated in a way that they 
influence the response. We tried to mitigate this 
risk in two ways. First, the interview guide con-
taining the questions had been approved by other 
researchers. Second, the questions in the guide 
were relatively open and general. Therefore, the 
probability that the questions influenced the re-
sponses was small.

Inaccuracies caused by poor recall. We recorded 
all of the interviews. This eliminated the risk 
of losing important details in the interviewees’ 
responses.

Reflexivity. Reflexivity refers to the possibility that 
an interviewee responds according to a perception 
of what the interviewer wants to hear. We took 
precautions that the interviewer expressed neu-
trality with regards to software engineering prac-
tices and agile practices in particular.

A gile practices, as defined and observed 
in our studies, are used both explicitly 
and implicitly in scientific software-
development projects. However, in the 

projects that we investigated in more detail (in 
the case study), most of these practices were, in 
fact, not present or used only occasionally by some 
developers. A select few practices were present 
throughout. One of those was the practice of self-
organizing teams. The other practice used was 
that the software must pass all unit tests for the 
code to be released. However, it turned out that 
the code coverage achieved by such tests was low.

The results indicated that agile practices aren’t 
used across the board. Only in the exceptional 
case of Olga, a commercial project, was the de-
liberate decision made to use agile practices as-
sociated with the Scrum methodology. In the 
other projects, we found evidence only of those 
agile practices that lend themselves naturally to 
scientific software projects, which are character-
ized by frequent code alterations due to chang-
ing requirements, tight collaboration in small 
teams, and short planning horizons. Although the 
frequently used practices 18 (customer is always  
available), 23 (integrate often), 25 (collective owner
ship), and 31 (refactor whenever and wherever 
possible) correspond well with the conditions un-
der which scientists develop scientific software, 
other practices such as pair programming (prac-
tice 21) don’t lend themselves to those conditions. 
We might tentatively conclude that contemporary 
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scientific-software-development projects embrace 
the agile spirit in their focus on flexibility and 
communication, but otherwise are selective in us-
ing specific agile practices according to the book. 
Apart from that, some of the more technology-
driven practices simply might not be known to 
scientists who aren’t professional software devel-
opers. Nevertheless, the literature review indi-
cated that agile techniques generally had positive 
effects in the projects investigated. None of the 
studies displayed any particular negative side ef-
fects of using agile practices.

To be conclusive on the pros and cons of agile 
practices in scientific software, more research is 
needed. A substantial challenge is that the level of 
process awareness is low (a characteristic shared 
with software development in many domains). For 
example, one of our case study projects switched 
to Scrum recently and is therefore an opportune 
case for assessing the effects of introducing agile 
practices in a scientific software project. However, 
project members couldn’t recall what development 
approach was used prior to Scrum, or if there were 
significant changes in handling requirements or 
testing as a result of its introduction. Neverthe-
less, the initial results from our combined studies 
are promising. A preliminary conclusion might be 
that the agile approach can be valuable to scien-
tific software development, especially for smaller-
sized teams and projects.�
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