
2	 This article has been peer-reviewed.� Computing in Science & Engineering

S o f t w a r e
E n g i n e e r i n g f o r C S E

The development of scientific software has similarities with processes that follow the
software engineering “agile manifesto”: responsiveness to change and collaboration are
of utmost importance. But how well do current scientific software-development processes
match the practices found in agile development methods, and what are the effects of using
agile practices in such processes?

What Do We Know about
Scientific Software Development’s
Agile Practices?

Over the years, software engineer-
ing (SE) practice and research have
focused on techniques and concepts
intended to be generally applicable to

software development. However, SE best practices
and research have rarely been adopted in scientific
software development.1 Here, we use scientific soft-
ware to refer to software developed by scientists
for scientists. Such software implements complex
algorithms to solve systems of mathematical equa-
tions, provide simulations, and so on.

Because employing such practices might aid
in the scientific software-development process,
in this article we survey and analyze how much
and how well current scientists employ best SE
practices for scientific computing, taking into

consideration why they approach the develop-
ment process in various ways. In particular, we’re
interested in the use of agile practices for scientific
software development—that is, in the use of light-
weight, incremental processes that involve the
customer’s continuous feedback.

Contextualizing to Define
Our Research
In most aspects of scientific software develop-
ment, the urge to conduct science is the primary
motivation and goal. Unlike software engineers,
the scientist’s mindset is to perform science, not
to write software.2 Development methods that
emerge usually are based on local experience.3
Also, the variation in domains, maturity of the
science, and motivation in scientific software
projects influence development methods, and thus
we should expect large variations both across and
within domains.

Nevertheless, some common ground can be
found. Scientists use their software to perform
complex calculations or simulations. In some
scientific projects, scientists use the software to
test a scientific theory. These characteristics of
scientific software entail that, in contrast to the
development of, say, administrative or business-
enterprise software, the scientific software writer
can’t determine what an application’s correct

Magnus Thorstein Sletholt
Distribution Innovation
Jo Erskine Hannay
Simula Research Laboratory
Dietmar Pfahl
Lund University
Hans Petter Langtangen
University of Oslo and Simula Research Laboratory

1521-9615/12/$31.00 © 2012 IEEE

Copublished by the IEEE CS and the AIP

CISE-14-2-Pfahl.indd 2 1/6/12 4:34 PM

March/April 2012 � 3

output should be in the traditional sense. Also,
the software might evolve through the combined
effort of many scientists over the course of many
years, continuously adding new system function-
alities.4 This poses particular challenges from the
software engineering viewpoint: First, the require-
ments elicitation and specification will be highly
dynamic. Because of the exploratory nature of
many scientific projects, requirements elicitation
and specification is difficult because they might
be unclear, or even unknown, up front. Second,
because requirements are so volatile, testing the
software with regards to such requirements is
often problematic.

In fact, the lack of knowledge about require-
ments and testing principles has been identified as
a problem area in several studies.3,5,6 One survey
article noted that requirements-related activities
are perceived as problematic in scientific soft-
ware projects.5 We also identified that scientists
perceive the definition of test cases for software
validation and verification as challenging. For ex-
ample, it’s often not obvious to stipulate whether
an error lies within a scientific theory or in that
theory’s implementation (numerical approxima-
tion). Moreover, technical testing skills seemed
to be a clear weak point for scientists developing
software.

The challenges with determining require-
ments up front and the subsequent testing have
been addressed explicitly in SE agile practices.
Could scientific software development lend itself
more to agile-oriented practices than to tradi-
tional plan-driven practices? Rebecca Sanders
supports this possibility by stating that most proj-
ects under investigation in her study took an it-
erative, rather than a plan-oriented, approach to
development.6

Adopting an explicit process model should en-
able projects to benefit from SE best practices and
research. However, it’s well known that technol-
ogy adoption relies on a sufficient number of el-
ements shared between the technology and the
problem domain. It’s therefore worth investigat-
ing the extent to which more appropriate pro-
cess models harmonize with scientific software
development. Thus, we defined two research
questions:

•	How well do practices in current scientific
software-development processes match the
practices found in agile development methods?

•	How does the use of agile practices influence
the handling of common challenges in scientific
software-development projects?

Regarding the first question, we were interested
to find out which, if any, agile practices were used.
Related to the second question, we investigated
whether using relevant agile practices yields a bet-
ter handling of testing-related and requirements-
related activities.

Agile Practices: Literature Review
Agile practices are currently being adopted by
more and more projects, including large projects
with complex architectures. For the purpose of
our analyses, we identified 35 agile practices (see
Table 1). The first 12 practices in Table 1 origi-
nate from the Scrum methodology.7 The remain-
ing 23 elements are Extreme Programming (XP)8
practices (see the “Agile Software Development”
sidebar). The elements marked with an asterisk
are XP practices that are also recommended prac-
tices in the Scrum methodology. We discuss how
we selected these agile practices elsewhere.9

To review evidence of agile practices in scien-
tific software projects, we performed a literature
review that extracted and critically appraised
available literature on the subject. We conducted
the literature review in a similar fashion to the
method described by Tore Dybå and his col-
leagues,10 searching multiple literature databases
in a systematic manner.9

The practice numbers in Table 2 refer to the
agile practices (with the same numbers) in Table 1.
An “×” in a cell of Table 2 indicates that we found
evidence that the practice wasn’t present. A check
indicates that we found evidence that the practice
was present. Blank fields indicate that we were un-
able to determine whether a practice was followed
from the available information.

Relevant Articles and Our Initial Findings
Although there are more than 100 publications
reporting on scientific software-development
projects, our literature search (and subsequent fil-
tering) left us with only five articles that addressed
the possible use of agile practices in such projects:

1.	 “Engineering the Software for Understand-
ing Climate Change”;11

2.	 “Chaste: Using Agile Programming Tech-
niques to Develop Computational Biology
Software”;12

3.	 “Agile Methods in Biomedical Software
Development: A Multi-Site Experience
Report”;13

4.	 “Exploring XP for Scientific Research”;14 and
5.	 “Introducing Agile Development into Bio

informatics: An Experience Report.”15

CISE-14-2-Pfahl.indd 3 1/6/12 4:34 PM

4 Computing in SCienCe & engineering

To see what information the reviewed publica-
tions revealed concerning the fi rst research ques-
tion, we mapped the agile practices listed in Table 1
to development practices used in the projects de-
scribed in the fi ve selected articles. Table 2 shows
the result of this mapping. Articles 1, 2, 4, and 5
describe exactly one project, while article 3 de-
scribes six projects (labeled as 3.1, 3.2, …, and 3.6,
respectively, in Table 2).

Regarding our second research question, all fi ve
articles indicated positive effects of agile practices
in scientifi c software development. A tentative
conclusion is that agile methods can effectively
handle the special characteristics of require-
ments and testing in scientifi c software develop-
ment. The evidence in favor of such a conclusion
is stronger for small projects with relatively few
team members.

table 1. List of agile practices.

Practice number agile practices
 1 Priorities (product backlog) maintained by a dedicated role (product owner)

 2 Development process and practices facilitated by a dedicated role (Scrum master)

 3 Sprint planning meeting to create sprint backlog

 4 Planning poker to estimate tasks during sprint planning

 5 Time-boxed sprints producing potentially shippable output

 6 Mutual commitment to sprint backlog between product owner and team

 7 Short daily meeting to resolve current issues

 8 Team members volunteer for tasks (self-organizing team)

 9 Burn down chart to monitor sprint progress

10 Sprint review meeting to present completed work

11 Sprint retrospective to learn from previous sprint

12 Release planning to release product increments

13 User stories are written*

14 Give the team a dedicated open work space*

15 Set a sustainable pace*

16 The project velocity is measured*

17 Move people around*

18 The customer is always available*

19 Code written to agreed standards*

20 Code the unit test fi rst

21 All production code is pair programmed

22 Only one pair integrates code at a time

23 Integrate often

24 Set up a dedicated integration computer

25 Use collective ownership*

26 Simplicity in design*

27 Choose a system metaphor

28 Use class-responsibility-collaboration (CRC) cards for design sessions

29 Create spike solutions to reduce risk*

30 No functionality is added early

31 Refactor whenever and wherever possible

32 All code must have unit tests

33 All code must pass all unit tests before it can be released

34 When a bug is found tests are created

35 Acceptance tests are run often and the score is published

* Denotes Extreme Programming (XP) practices that are also recommended practices in the Scrum methodology.

CISE-14-2-Pfahl.indd 4 1/6/12 4:34 PM

March/April 2012 � 5

The testing approaches’ rigor seemed to sat-
isfy the need for having reproducible, correct re-
sults.15 For requirements activities, we identified
a degree of mismatch between scientific software
projects and the agile-assumed context of a clear
customer–developer relationship. However, the
agile methods’ responsiveness and f lexibility
proved valuable for the requirements activities.
Elicitation and specification of tasks were per-
ceived as easier and more focused with agile meth-
ods.12,14 Good practices regarding requirements
prioritization were also observed.11

Thus, the literature review indicated that proj-
ects using agile practices better handle testing-
related activities. The review also supports the
assumption that projects using agile practices are
better at handling requirements activities, but the
findings aren’t as substantial as for testing.

Agile Practices: Case Study
To complement our questionnaire-based survey5
and literature review,9 we conducted a multiple-
case study (see the “Emprical Research Methods”
sidebar) that compared three large scientific soft-
ware projects: Finite Elements in Computational
Science (FEniCS), Dalton, and Olga (see Table 3).
The case study added some dimension to the

results found in the projects investigated in the
literature review. We selected these three projects
because they represent different types of scientific
software than the projects investigated in the re-
view, as they’re much larger in terms of size, dura-
tion, and participants. These cases also extended
the range of scientific domains beyond that of
bioinformatics. In addition, we had easy access to
scientists involved in software-development activ-
ities. Thus, the selection of cases was to a certain
degree opportunistic.

The case study’s purpose was to

•	 analyze and conceptualize core product and
development-process elements in the three
projects;

•	 investigate the extent to which these elements
map to agile practices (as listed in Table 1); and

•	 investigate the effects of agile practices on test-
ing and requirements handling, as perceived by
project participants.

The following sections characterize each of the
case study projects and provide information re-
lated to two research questions. Table 4 shows
the agile mapping chart of all three projects. As
you can see, most of the agile practices weren’t

Agile Software Development

Agile practices emerged in the mid-1990s as an alterna-
tive to the traditional, plan-driven approach to soft-

ware development. The practices are intended to address
the problems in meeting customer requirements when
the requirements were specified and locked early—the
observation being that requirements will change over time
as the customer and software developer become aware of
further needs and constraints. Agile practices imply light-
weight, incremental processes that fully and continuously
involve the customer and that are adaptable to changing
requirements. In 2001, a group of software engineers for-
mulated the “agile manifesto” (http://agilemanifesto.org),
outlining profound principles of agile development. Many
elaborations and specializations of agile practices exist.
Two agreed-upon elaborations that capture agile develop-
ment comprehensively are Scrum and Extreme Program-
ming (XP).

Scrum1 is an organizational process model that defines
roles in a development project, as well as the activities that
Scrum teams will perform. Each team is largely autono-
mous and works in two-to-four-week iterative increments
(sprints). Scrum teams consist of a Scrum master, a product
owner, and regular team members (developers and testers).
The Scrum master’s primary objective is to facilitate

communication and to keep the team’s productivity
(velocity) on a satisfactory level. The product owner en-
sures customer involvement and communication. Scrum
scales up (for example, by “Scrum of Scrums”—meaning
that many first-order Scrum teams can work in parallel
while coordination of these Scrum teams is done via a
second-order Scrum team to which each first-order Scrum
team sends a representative). Sprints are time boxed,
meaning that they have a fixed time and flexible scope,
but every sprint should produce a functioning part of the
system (potentially shippable code). Sprint planning and
estimation is based on the team’s recorded historical pro-
ductivity, thus providing reliable and constantly updated
scope-time estimates.

XP2 also focuses on close customer–developer relation-
ships and communication in short-time iterations. Rather
than an organizational framework, XP describes work
practices in some detail. Among the most central practices
are pair programming, continuous code review, test-
ing and refactoring, and distributed competence among
developers.

References
1.	M. Cohn, Succeeding with Agile: Software Development Using Scrum,

Addison-Wesley, 2009.

2.	D. Wells, The Rules of Extreme Programming, 2009; www.

extremeprogramming.org/rules.html.

CISE-14-2-Pfahl.indd 5 1/6/12 4:34 PM

6 Computing in SCienCe & engineering

present in cases 1 and 2, but many were detected in
case 3.

Case 1: feniCS
FEniCS is a project with participants from several
universities and research institutions. The aim is to
automate solving differential equations. The pro-
gram is open source, free, and distributed through
software managers in Ubuntu and Debian.

FEniCS isn’t a traditional software applica-
tion; it’s a collection of separate packages that
form a framework for the automated solution of
differential equations. Scientists then write ap-
plications, typically relating to a specifi c scien-
tifi c problem, on top of the FEniCS framework/
interface. The components are written in
C++ and Python. An internat ional, geo-
graphically distributed community of developers

table 2. Mapping chart of agile practices from the literature review.

Practice
number

Projects
1 2 3.1 3.2 3.3 3.4 3.5 3.6 4 5

 1  

 2  

 3 

 4  

 5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

 6  

 7  ✔ ✔ ✔ ✔ ✔ ✔ ✔

 8 ✔ ✔ ✔  ✔ ✔ ✔ ✔

 9  ✔ ✔

10 

11 ✔

12 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

13  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

14 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

15 ✔

16  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

17  ✔ ✔

18 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

19 ✔ ✔ ✔

20 ✔

21        ✔

22 ✔

23 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

24

25 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

26 ✔

27 ✔

28

29

30 ✔

31 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

32 ✔ ✔

33

34 ✔

35 ✔ ✔ ✔

CISE-14-2-Pfahl.indd 6 1/6/12 4:34 PM

marCh/april 2012 7

contributes to the coding and documentation
efforts. As with any project with distributed
development, collaboration, coordination, and

communication are key aspects that must be han-
dled appropriately for the project to be effective
and successful.

empiriCAl reSeArCH metHoDS

We used several empirical research methods in our line
of investigation. Here we provide a brief summary of

each method.

Survey
For our preliminary investigations, we used a Web-based
survey.1 Surveys are designed to collect large amounts
of subjective data in a schematic form that lends itself to
statistical analysis.

Literature review
In the next stage,2 we followed guidelines for systematic
literature reviews in software engineering.3 Strict adher-
ence implies that we defi ned a review protocol that speci-
fi ed our literature-selection criteria, variable extraction
procedures, secondary-analysis methods, quality assess-
ment, and inter-reviewer agreement scores. The purpose
is to ensure a complete and replicable account of available
literature on a topic. For our purposes, we followed a sim-
pler review process,4 which omitted the formal protocol,
multiple reviewers, and secondary analysis.

Case Study Method
The third stage involved a multiple-case study. A case study
is an in-depth examination of a selection of contemporary
phenomena (agile practices) within a real-life context (actual
scientifi c software-development projects).5 The fi rst part
of our case study was exploratory: We investigated the
software-development processes in the three projects “as
is.” The second part was confi rmatory: We mapped and
evaluated these processes from an agile viewpoint, according

to the agile mapping chart. In addition to examining
project documentation, we interviewed between two and
four key developers in each project over several sessions,
following ethical guidelines. The interviews covered a set
of high-level topics, and we later analyzed the content by
categories of information that appear under each case in
the main text.

further Methods
To fi nd out more about agile practices’ causal effects, fu-
ture studies might deploy controlled fi eld experiments and
further comparative case studies. In addition, mappings
from studies on agile practices in other domains could
offer insights, if suffi cient generalized arguments are viable.

references
1. J.E. Hannay et al., “How Do Scientists Develop and Use Scientifi c

Software?” Proc. 2nd Int’l Workshop on Software Eng. for

Computational Science and Eng., IEEE CS Press, 2009, pp. 1–8.

2. M.T. Sletholt et al., “A Literature Review of Agile Practices and Their

Effects in Scientifi c Software Development,” Proc 4th Int’l Workshop

on Software Eng. for Computational Science and Eng., ACM Press,

2011, pp. 1–9.

3. B.A. Kitchenham, Procedures for Undertaking Systematic Reviews,

joint tech. report, (TR/SE-0401) Computer Science Dept., Keele

Univ., and (0400011T.1) Nat’l Information and Comm. Technology

of Australia (NICTA), 2004.

4. T. Dybå, T. Dingsøyr, and G.K. Hanssen, “Applying Systematic

Reviews to Diverse Study Types: An Experience Report,” Proc. 1st

Int’l Symp. Empirical Software Eng. and Measurement, IEEE CS Press,

2007, pp. 225–234.

5. R.K. Yin, Case Study Research: Design and Methods, Sage Publications,

2003.

table 3. Characteristics of the case study projects.

Characteristics feniCS* Dalton Dalton
Scientifi c domain Mathematical (automated

solution of differential
equations)

Chemistry (molecular
electronic structures)

Physics (fl ow modeling
of oil, gas, and natural
water)

Number of
contributors

>10 40 50

Duration 10 years 30 years 30 years

Programming
languages

C++, Python Fortran77/90, C, C++ Fortran, C++, C#

Chosen process
method

No specifi c No specifi c Scrum

Distributed
development

Yes Yes Yes

Availability Free, open source Free, licensed Proprietary

* FEniCS stands for Finite Elements in Computational Science.

CISE-14-2-Pfahl.indd 7 1/6/12 4:34 PM

8 Computing in SCienCe & engineering

Teams and roles. Most of the developers are equal
peers, much like open source development. De-
velopers choose how much effort they devote to
the project at a given time. Although there are no
project leaders in the traditional sense, some
implicit project roles exist. Developers who are
heavily involved and who contribute more are gen-
erally more infl uential. A core team reviews code

changes. Membership in the core team is granted
based on a constant level of contributions to the
project.

development process. The development process
in FEniCS has been formed over the course of
several years. Although the process is undefi ned
and doesn’t match any established model, certain
practices have been established; for example, code
is developed incrementally. It was hard to identify
any detailed process activities (and hence, transi-
tions between them), because the development is
mostly based on personal initiative and commit-
ment. This could imply several vastly different
approaches to development.

Coding is clearly perceived as the most im-
portant and time-consuming phase/activity. It’s
diffi cult to precisely defi ne tasks beforehand,
as they are so closely connected to research.
There are multiple aspects that can infl uence a
specifi c task during both planning and coding,
such as changes to the original requirements or
specifi cations and technical diffi culties. Because
these types of challenges arise often, there’s no
focus on specifying tasks or estimating efforts
for tasks. The overall feel of it is that develop-
ing the project is much like conducting research
(the output isn’t necessarily known), which
means that you have to accommodate dynamic
requirements.

requirements and testing. The level of self-
organization is apparent in all activities related to
requirements handling. Although developers use
LaunchPad to coordinate tasks (“blueprints”) and
to track their progress, the individual developers
requesting a specifi c functionality usually specify
and defi ne the tasks themselves. Minor tasks don’t
have a blueprint or specifi cation. No uniform pat-
tern, such as user stories, is used for specifying
tasks.

The project has a dedicated tester, who updates
a Buildbot—that is, a system to automate the
compile/test cycle to validate code changes. With
the help of the Buildbot, the tester checks that the
system compiles and that there are no build er-
rors, and he/she also runs regression tests. Apart
from that, testing isn’t prioritized and it’s left up
to the individual developer.

General challenges. Obvious challenges for FEniCS
relate to collaborating and coordinating the proj-
ect work. Sometimes, problems can arise
when people have different requirements related
to the same functionality.

table 4. Mapping chart of agile practices
from the case study.

Practice
number

Projects
feniCS Dalton olga

 1   ✔

 2   ✔

 3   ✔

 4   ✔

 5   ✔

 6   ✔

 7   ✔

 8 ✔ ✔ ✔

 9   

10   ✔

11   ✔

12   

13   ✔

14   

15   

16   

17   ✔

18 ✔ ✔ ✔

19 ✔  ✔

20   

21   

22   

23 ✔  ✔

24   

25   ✔

26 ✔  

27   

28   

29   

30  ✔ ✔

31 ✔  

32   

33 ✔ ✔ ✔

34  ✔ 

35 ✔  

CISE-14-2-Pfahl.indd 8 1/6/12 4:34 PM

March/April 2012 � 9

Agile practices. Few agile practices were identified
in the FEniCS project.

Case 2: Dalton
The Dalton project is an older scientific software
project in the molecular electronic structures’
subdomain of chemistry. The aim is to automate
computation of such molecular properties. The
software was first released in 1997, with several
versions in the years to follow; the latest version
dates to the first quarter of 2010. An international
community of scientists is involved in the pro-
gram’s development.

The software is written in Fortran 77 and C,
and the authors recommend a Unix platform. The
program consists of seven components, with more
or less independent development cycles. The pro-
gram is distributed free of charge, as long as the
user signs a personal license agreement.

Perhaps because of the project’s age, no tools for
managing code were used initially; source code
was exchanged via email. As the number of code
lines increased, the need for a source-code revi-
sion tool became more apparent.

Teams and roles. It was hard to identify roles. Su-
pervisors to masters and doctoral students assume
roles akin to project leaders for their students, but
normally the scientists don’t assume any specific
roles. A board has been established to map out the
project’s general, future directions, as well as to
make decisions on significant matters. However,
the board’s responsibilities are as much related to
scientific research as to the software-development
project. There’s also a role for users who have
signed the license agreement. Such users can re-
quest functionality or suggest changes, but there
are no guarantees that the suggestions will be
implemented.

Development process. No explicit development
model exists, but a culture has been established
over the years, yielding guidelines for how to at-
tend to certain aspects of the development. Never
theless, most of the development is performed
individually. Aspects requiring collaboration—for
instance, integrating code or planning a release—
are handled in an ad hoc manner rather than
systematically.

None of the interviewees were able to identify
any transitions between the activities, as most of
these activities (such as coding, analysis, design,
and testing) are carried out more or less simulta-
neously. The development bears certain resem-
blances to iterative development, but the activities

in the Dalton development process aren’t formal-
ized at all.

Requirements and testing. The developers are lo-
cated at various research facilities, most of them
in Scandinavia. Occasionally meetings occur to
discuss requirements and ongoing activities. The
nature of specific scientific research plays a part;
but most of the time the full requirements aren’t
known until far into the implementation phase.

Requirements are handled individually and
all the developers have their own private to-do
lists. The level of self-organization is high; tasks
are both defined and chosen by the developers
themselves. Often development is motivated by
(personal) research needs. There’s seldom any
gathering of the requirements on a plenary level;
this happens only when a release is imminent.
As there are relatively few people involved in the
project at a given time, the most active developers
seem to have some idea of what other members are
currently doing.

There are some regression tests that must be
passed before the developer can commit his or her
code to the main repository. It’s unclear whether
there are also unit tests; their absence was pointed
out by some but others said that they had written
unit tests. Perhaps some parts of the regression-
test suite also target single functions in the code.

Challenges. It’s challenging to coordinate new
software-version releases. It’s hard to get all of the
scientists to deliver on time, and deadlines have
occasionally been postponed. It’s also difficult
to manage the code and integrate all the differ-
ent code branches. Requirements are sometimes
impossible to stipulate before well into the imple-
mentation stage; many tasks are explorative and
the correct output might be difficult, if not impos-
sible, to predetermine. This also complicates test-
ing matters, as errors could be in either the theory
or implementation.

Agile practices. As with FEniCS, only a few agile
practices were identified in the Dalton project.

Case 3: Olga
The third case is Olga. Contrary to the other cases,
this is a commercial project, developed by the
SPT Group. Olga is a simulator tool for accurate
flow modeling of oil, water, and gas in wells and
pipelines. Being a commercial system that must
stay competitive, Olga has a more traditional type
of developer–customer relationship. Another dif-
ference between Olga and the other two projects

CISE-14-2-Pfahl.indd 9 1/6/12 4:34 PM

10� Computing in Science & Engineering

in the case study is the immaturity of the underly-
ing theory on which the software development is
based. Although in FEniCS and Dalton the ma-
turity of the underlying scientific theory is high,
in Olga the software can be considered as a docu-
mentation of the underlying theory.

Teams and roles. In terms of roles, the develop-
ers belong to one of three main company de-
partments: R&D, maintenance, and GUI. GUI
developers seem to be dedicated solely to their
department, while other developers might engage
in the other departments’ projects. Occasionally,
they also work with support (which also might be
viewed as a kind of maintenance effort). In the
various projects, however, regular Scrum roles
are used; every project has a dedicated product
owner and a Scrum master. There are also other
developer roles in the company that don’t pertain
specifically to the Scrum methodology, such as a
dedicated tester.

Development process. Because of the company’s
size, the Olga project is organized via multiple
subprojects of various sizes and durations. Most
of these use Scrum or many of the Scrum prac-
tices. The projects’ lifecycles aren’t synchronized;
each project has its own deadlines and backlogs to
consider. Project iterations vary from two to four
weeks. Releases of the complete software package
occur approximately twice a year. Of course, as the
projects differ in various aspects, different Scrum
practices are variably applied; some of the prac-
tices are followed throughout, while others might
be absent or carried out unsystematically or in-
completely according to the Scrum methodology.

Requirements and testing. Requirements are han-
dled in a tracking system, where tasks must follow
a series of states before ultimately being ready for
the main repository. Scrum also provides some
guidelines on how to deal with the tasks, more
specifically the sprint backlog and the sprint-
planning meetings. The tasks are planned, bro-
ken down into smaller, more manageable parts,
and then estimated. Each project can choose its
own way of estimating the tasks; some projects
use planning poker.

The company has a test suite that covers close
to 50 percent of the production code. The tests
consist of use cases that check the results of exe-
cuting the software. This test suite is run quite of-
ten (at least once a day). There are also some unit
tests in the project, but unit testing is a relatively
new aspect for the project, which means that there

are no specific or established guidelines related to
such tests. The developers’ perception is that it’s
much easier to write unit tests while writing new
code, compared to creating or updating unit tests
for already existing code. A limited part of the
code is currently being addressed by unit tests.
As the software is scientifically explorative, the
output can’t always be verified until someone pos-
sesses real, observed data. Comparisons between
results from the software and scientific data are
conducted on a regular basis.

Challenges. It’s difficult to establish testing rou-
tines to be performed systematically in the proj-
ect. For example, although unit testing is regarded
as important, not all new code is unit tested.

Whether the output matches observed data is
hard to assess prior to collecting the scientific
data. This also complicates effort estimation,
because the workload associated with a task is so
uncertain.

Agile practices. In contrast to the FEniCS and
Dalton projects, several agile practices could be
identified in the Olga project. Most of the Scrum
practices are present, as the project explicitly uses
this process methodology.

Discussion
Now that we’ve provided some background on
our multiple-case study, let’s discuss the results
from the literature review and case study in light
of the two proposed research questions.

Presence of Agile Practices
As Tables 2 and 4 show, both the literature review
and case study indicate that agile practices are in-
deed present in projects developing scientific soft-
ware. However, with the exception of Olga, which
deliberately uses the Scrum method, for most of
the agile practices listed in Table 1, we couldn’t
find clear positive evidence as to their application.

Overall, we found that practices 5 (time-boxed
sprints), 7 (short daily meetings), 8 (self-organizing
team), 12 (release planning), 13 (user stories),
14 (dedicated open work space for team), 16 (proj-
ect velocity is measured), 18 (customer is always
available), 23 (integrate often), 25 (collective own-
ership), and 31 (refactor whenever and wherever
possible) are present in most of the projects. In
addition, practice 19 (code written to agreed stan-
dards) is present in five out of 13 projects, and we
found negative evidence about its usage in only
one project. Finally, the use of practice 33 (all code
must pass all unit tests before release) was evident

CISE-14-2-Pfahl.indd 10 1/6/12 4:34 PM

March/April 2012 � 11

in three projects, and we found no project with
evidence that it wasn’t used. Thus, our literature
review and case study indicates that 13 out of 35
agile practices are used in projects developing sci-
entific software.

On the other hand, we found that only prac-
tice 21 (all production code is pair programmed)
had clear evidence that it’s not used in most of the
projects. In addition, we found that practices 24
(set up a dedicated integration computer), 28 (use
class-responsibility-collaboration, or CRC, cards
for design sessions), and 29 (create spike solutions
to reduce risk) either weren’t used or there was no
evidence about their use.

For the remaining 18 agile practices, the picture
is unclear. With each of these practices, we found
projects that use them and projects that don’t. In
addition, the number of projects where we found
positive or negative evidence for the use of these
practices is small.

Impact on Challenging Aspects
(Requirements and Testing)
Most of the projects in the literature review re-
ported effective handling of testing and require-
ments. In some projects, these aspects were
emphasized as being especially successful when
using an agile development approach. However,
not all publications reported clearly which specific
agile practices the authors applied. In those cases,
it was difficult to assess which agile practices af-
fected testing and requirements handling, and
how much of the reported positive effects could
be attributed to the use of these practices. Two of
the projects in the case study employed virtually
no agile practices, while the third one explicitly
followed Scrum practices. In the following sec-
tions, we’ll discuss the extent to which certain
agile practices could be said to benefit require-
ments handling and testing in the projects under
study (from both the literature review and case
study).

Impact on requirements handling. All projects indi-
cated that the customer is always available (prac-
tice 18). This is presumably a consequence of
the fact that developers of scientific software are
potential or actual users of their software. There-
fore, issues related to requirements are less likely
to be caused by misunderstandings between de-
velopers and customers and might instead relate
to other difficulties with capturing the functional
and nonfunctional requirements—for example,
because of the immaturity of the scientific theory
on which the software is based.

Nearly all projects from the literature review
used short time-boxed iterations (practice 5), self-
organizing teams (practice 8), and release plan-
ning (practice 12). The presence of these practices
might have facilitated that requirements are dis-
cussed or refined quite often, making eventual
changes easier to deal with. User stories (prac-
tice 13) were also used in most of the projects,
which could have further promoted deliberate
handling and refinement of requirements and
tasks.

From the case study, the Olga project aligns
well with these observations. Olga developers
used most of the Scrum practices, and they re-
garded requirements activities to be dynamic and
proper for the project.

The two noncommercial projects from the case
study didn’t use any of the agile practices related
to requirements. However, it’s interesting to ob-
serve that the people involved in these projects
didn’t perceive any particular problems with re-
quirements, even though they didn’t use the agile
practices. This might be explained by the fact that
the development is based on personal motivation,
and that the individuals define and write their
own requirements.

Impact on testing. Testing activities in software-
development projects are directly related to
five agile practices: 20 (code the unit test first),
32 (all code must have unit tests), 33 (all code must
pass all unit tests before release), 34 (when a bug
is found tests are created), and 35 (acceptance
tests are run often and the score is published).
Because we couldn’t find clear evidence for the
presence (or absence) of most of the test-related
agile practices, their impact on testing activities
in the various projects wasn’t easy to identify pre-
cisely. However, in all projects where we could
identify the presence of one or more test-related
agile practices, problems with testing were less-
frequently reported than in the other projects. For
example, project 2 from our literature review (dis-
cussed elsewhere12) used at least four test-related
practices (20, 32, 34, and 35) and reported that the
agile approach to testing was a valuable asset, both
in testing new functionalities and regression test-
ing existing functionalities.

The FEniCS project in our case study uses two
test-related agile practices (33 and 35). In inter-
views, we learned that testing isn’t considered a
problematic development activity in this project.
Thus, the FEniCS project is better off than most
of the projects we surveyed in a previous study.5
Although this could indicate that the presence

CISE-14-2-Pfahl.indd 11 1/6/12 4:34 PM

12� Computing in Science & Engineering

of test-related agile practices contributed to this
comfortable situation, we can’t provide clear
support for a causal relationship between the
presence of these practices and a lack of testing
problems.

Similar to FEniCS, the Dalton project didn’t
emphasize particular problems with testing. In
Dalton, we found that two test-related agile prac-
tices (33 and 35) are in use. In addition, we found
that at least some developers used agile practice 32.
Again, we couldn’t establish a clear causal rela-
tionship between using test-related agile prac-
tices and the lack of problems with testing, but we
have some indication that these factors might be
related.

Of those projects where we found evidence
of one test-related agile practice, project 4 from
our literature review was the one that indicated
most explicitly positive effects on testing activi-
ties. Among the observed effects were more focus
and more deliberate handling of testing (an activ-
ity that hadn’t been prioritized before using agile
practices).

Limitations
Every empirical investigation has natural threats
to validity that should be reported and mini-
mized. The validity of our literature review was
to some degree influenced by the quality of the
articles that we selected for our in-depth analyses.
In addition, we had to address the following typi-
cal threats to validity: reliability threats, because
of single-reviewer assessment; publication bias,
because of articles possibly being submitted and
published more readily when they report positive
findings; and selection bias, because of reviewer
reliability threats and search engine mechanics.
(We discuss more details about validity threats re-
lated to the literature review elsewhere.9)

Regarding our case study, as Mike Cohn pointed
out, there are a few common risks associated with
interviews as a source for evidence.7 In addition
to a selection bias for opportunistic case selec-
tions, here we describe the most relevant risks,
along with the precautions taken to limit risk
factors.

Bias caused by poorly asked questions. To avoid un-
clear questions as much as possible, we had the in-
terview guide reviewed by experienced scientists.
However, misunderstandings and misconceptions
might have arisen because of technical terms and
unfamiliar concepts from software engineering.
During the interview sessions, we made an effort
to clarify and explain unknown concepts.

Response bias. This bias relates to the possibility
that questions are formulated in a way that they
influence the response. We tried to mitigate this
risk in two ways. First, the interview guide con-
taining the questions had been approved by other
researchers. Second, the questions in the guide
were relatively open and general. Therefore, the
probability that the questions influenced the re-
sponses was small.

Inaccuracies caused by poor recall. We recorded
all of the interviews. This eliminated the risk
of losing important details in the interviewees’
responses.

Reflexivity. Reflexivity refers to the possibility that
an interviewee responds according to a perception
of what the interviewer wants to hear. We took
precautions that the interviewer expressed neu-
trality with regards to software engineering prac-
tices and agile practices in particular.

A gile practices, as defined and observed
in our studies, are used both explicitly
and implicitly in scientific software-
development projects. However, in the

projects that we investigated in more detail (in
the case study), most of these practices were, in
fact, not present or used only occasionally by some
developers. A select few practices were present
throughout. One of those was the practice of self-
organizing teams. The other practice used was
that the software must pass all unit tests for the
code to be released. However, it turned out that
the code coverage achieved by such tests was low.

The results indicated that agile practices aren’t
used across the board. Only in the exceptional
case of Olga, a commercial project, was the de-
liberate decision made to use agile practices as-
sociated with the Scrum methodology. In the
other projects, we found evidence only of those
agile practices that lend themselves naturally to
scientific software projects, which are character-
ized by frequent code alterations due to chang-
ing requirements, tight collaboration in small
teams, and short planning horizons. Although the
frequently used practices 18 (customer is always
available), 23 (integrate often), 25 (collective owner
ship), and 31 (refactor whenever and wherever
possible) correspond well with the conditions un-
der which scientists develop scientific software,
other practices such as pair programming (prac-
tice 21) don’t lend themselves to those conditions.
We might tentatively conclude that contemporary

CISE-14-2-Pfahl.indd 12 1/6/12 4:34 PM

March/April 2012 � 13

scientific-software-development projects embrace
the agile spirit in their focus on flexibility and
communication, but otherwise are selective in us-
ing specific agile practices according to the book.
Apart from that, some of the more technology-
driven practices simply might not be known to
scientists who aren’t professional software devel-
opers. Nevertheless, the literature review indi-
cated that agile techniques generally had positive
effects in the projects investigated. None of the
studies displayed any particular negative side ef-
fects of using agile practices.

To be conclusive on the pros and cons of agile
practices in scientific software, more research is
needed. A substantial challenge is that the level of
process awareness is low (a characteristic shared
with software development in many domains). For
example, one of our case study projects switched
to Scrum recently and is therefore an opportune
case for assessing the effects of introducing agile
practices in a scientific software project. However,
project members couldn’t recall what development
approach was used prior to Scrum, or if there were
significant changes in handling requirements or
testing as a result of its introduction. Neverthe-
less, the initial results from our combined studies
are promising. A preliminary conclusion might be
that the agile approach can be valuable to scien-
tific software development, especially for smaller-
sized teams and projects.�

Acknowledgments
We thank the members of the FEniCS, Dalton, and
Olga projects for participating in the case study.
Parts of this work were funded by the Excellence
Center at Linköping–Lund in Information Technol-
ogy (ELLIIT) and the Simula School of Research and
Innovation.

References
1.	 D.F. Kelly, “A Software Chasm: Software Engineering

and Scientific Computing,” IEEE Software, vol. 24,

no. 6, 2007, pp. 118–120.

2.	 V.K. Decyk, C.D. Norton, and H.J. Gardner, “Why

Fortran?” Computing in Science and Eng., vol. 9, no. 4,

2007, pp. 68–71.

3.	 J.C. Carver et al., “Software Development Environ-

ments for Scientific and Engineering Software: A

Series of Case Studies,” Proc. 29th Int’l Conf. Software

Eng., IEEE CS Press, 2007, pp. 550–559.

4.	 R. Sanders and D. Kelly, “Dealing with Risk in Scien-

tific Software Development,” IEEE Software, vol. 25,

no. 4, 2008, pp. 21–28.

5.	 J.E. Hannay et al., “How Do Scientists Develop and

Use Scientific Software?” Proc. 2nd Int’l Workshop on

Software Eng. for Computational Science and Eng.,

IEEE CS Press, 2009, pp. 1–8.

6.	 R. Sanders, The Development and Use of Scientific Soft-

ware, master’s thesis, School of Computing, Queen’s

University, Kingston, Ontario, Canada, 2008.

7.	 M. Cohn, Succeeding with Agile: Software Development

Using Scrum, Addison-Wesley, 2009.

8.	 D. Wells, The Rules of Extreme Programming, 2009;

www.extremeprogramming.org/rules.html.

9.	 M.T. Sletholt et al., “A Literature Review of Agile

Practices and Their Effects in Scientific Software

Development,” Proc 4th Int’l Workshop on Software

Eng. for Computational Science and Eng., ACM Press,

2011, pp. 1–9.

10.	 T. Dybå, T. Dingsøyr, and G.K. Hanssen, “Apply-

ing Systematic Reviews to Diverse Study Types: An

Experience Report,” Proc. 1st Int’l Symp. Empirical

Software Eng. and Measurement, IEEE CS Press, 2007,

pp. 225–234.

11.	 S.M. Easterbrook and T.C. Johns, “Engineering

the Software for Understanding Climate Change,”

Computing in Science & Eng., vol. 11, no. 6, 2009,

pp. 64–74.

12.	 J. Pitt-Francis et al., “Chaste: Using Agile Program-

ming Techniques to Develop Computational Biology

Software,” Philosophical Trans. Royal Society—Series A:

Mathematical, Physical and Eng. Sciences, vol. 366,

no. 1878, 2008, pp. 3111–3136.

13.	 D.W. Kane et al., “Agile Methods in Biomedical Soft-

ware Development: A Multi-Site Experience Report,”

BMS Bioinformatics, vol. 7, no. 273, 2006, pp. 1–12.

14.	 W.A. Wood and W.L. Kleb, “Exploring XP for Scien-

tific Research,” IEEE Software, vol. 20, no. 3, 2003,

pp. 30–36; doi:10.1109/MS.2003.1196317.

15.	 D. Kane, “Introducing Agile Development into Bioin-

formatics: An Experience Report,” Proc. Agile Develop-

ment Conf., IEEE CS Press, 2003, pp. 132–139.

Magnus Thorstein Sletholt is a software developer
at Distribution Innovation. His research interests in-
clude agile development and testing. Sletholt has an
MSc in computer science from the University of Oslo.
Contact him at magnus.sletholt@di.no.

Jo Erskine Hannay is a senior researcher at Simula
Research Laboratory. His research interests include
challenges in large agile projects, software quality
management, and effort estimation. Hannay has
a PhD in computer science from the University of
Edinburgh. Contact him at jo@simula.no.

Dietmar Pfahl is an associate professor at Lund Univer-
sity. His research interests include scientific computing,
empirical software engineering, requirements engi-
neering, testing, and software process improvement.

CISE-14-2-Pfahl.indd 13 1/6/12 4:34 PM

14� Computing in Science & Engineering

Pfahl has a PhD in computer science from the Tech-
nical University of Kaiserslautern, Germany. Contact
him at dietmar.pfahl@cs.lth.se.

Hans Petter Langtangen is a professor at the Uni-
versity of Oslo and a department head at Simula
Research Laboratory. His research interests include
implementation techniques for scientific software,

numerical solutions for partial differential equations,
biomechanics, and stochastic mechanics. Langtan-
gen has a PhD in computer science from the Univer-
sity of Oslo. Contact him at hpl@simula.no.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

CISE-14-2-Pfahl.indd 14 1/6/12 4:34 PM

