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Scripting languages are popular

Syntax is compact and clean; almost like pseudo—code

(]

@ Fast code development; interpreted languages do not need
compilation

@ Extensive general purpose libraries

@ Scripting languages constitute productive programming
environments

@ Popular scripting languages: Perl, Ruby, Tcl, Python (and
bash)

@ Major drawback; numerical efficiency
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Education
Education |

@ Students want it:
o Simple language with few pit—falls
@ Easy to learn the language by exploring the Python shells
@ Similar to other, modern languages (i.e. Java)
@ Industry needs students with scripting knowledge:
@ A major challenge in industry is to automate tasks
¢ This often involves gluing applications together using a
scripting language
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Education
Education Il

@ A major problem with low—level languages is the distance
between the mathematics (algorithms) and implemented code

@ Using a high—level scripting language in mathematics
education closes this gap

@ The result may be an increased focus on algorithms, and less
focus on implementation hassle

@ The poor numerical efficiency is probably not important in
educational settings
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Education

Example

def trapezoidal(f, a=0.0, b=1.0, n=10):
20
Integrate f(x) from a to b using the composite Trapezoidal
rule with n evaluation points.
130
h = (b-a)/float(n-1)
I = 0.5xf(a)
for i in iseq(1l, n-2):
I += f(a + ixh)
I += 0.5%f(b)
I x=h
return I
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Code Reuse
What about the existing code?

@ Over the years, computational science groups tend to develop
a huge base of legacy code
@ Typical legacy code characteristics:
o Stable, high—quality, efficient
o Difficult to learn, use, and change
@ A problem is that the demands on a given code are increasing;
parallelization, GUI front-end, data conversion, advanced IO,
etc.
@ Quality code should be re—used
@ Equipping legacy code libraries with scripting interfaces may
solve the problem. The good news is that this is easy
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Code Reuse
Wrapper code tools

o C/C++:
o SWIG — http://www.swig.org
Mature, general purpose. Choosing a general solution to an
efficient one. Excellent documentation
o Sip — http://www.riverbankcomputing.co.uk/sip/
Very special purpose (make a Python interface to QT), one
developer. Quite efficient, almost no documentation
o Boost — http://www.boost.org
Based on template meta programming. Good documentation.
Difficult to get started
o Babel — http://www.11lnl.gov/CASC/components/babel.html
@ Fortran:

@ F2py — http://cens.ioc.ee/projects/f2py2e
Tightly integrated with NumPy. Good documentation.
Automatic Python callback support.
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Code Reuse

SWIG Example

Consider the following C function (fact.c):

int fact(int i) {
if (i <= 1) return 1;
else return i*fact(i-1);

A corresponding interface file (fact.i) may read:

Ymodule fact // fact is the module name

#{

/* Put headers and other declarations here */

#include <fact.h>

%

/* The interface definition (e.g. function signatures) */
int fact(int 1i);

The wrapper code (fact_wrap.c) is generated by running:

swig -python fact.i
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Code Reuse

SWIG Example, continued

At last, the source code and the generated wrapper code must be
compiled and linked:

> gcc -c —fpic fact_wrap.c fact.c -I. -DHAVE_CONFIG_H \
-I/local/include/python2.3 -I/local/lib/python2.3/config

> gcc -shared fact.o fact_wrap.o -lswigpy \
-L/local/lib/ -o _fact.so

In Python:

>>> from fact import fact
>>> fact(4)
24
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Advanced SWIG

@ A Python extension module should look and feel like native
Python

@ SWIG provides so—called directives to control the wrapper
code generation

@ Python special methods can often be implemented by
renaming existing methods

%rename(__add__) add;

@ Types can be mapped using typemaps
/* Convert from Python --> C */
%typemap(in) int {

$1 = PyInt_AsLong($input);

/* Convert from C --> Python */
%typemap(out) int {

$result = PyInt_FromLong($1);
}
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Code Reuse
Benefits of interfacing

@ Sequential code may be parallelized at the scripting level,
using e.g. PyMPI (http://pympi.sourceforge.net/) or
Scientific.BSP

(http://starship.python.net/~hinsen/ScientificPython/)
@ Old libraries can be given modern, object—oriented interfaces

@ Example: SciPy (http://www.scipy.org/) uses ALTAS/BLAS
from netlib

o
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Application Development
Applications can be developed in a scripting language

@ A recent trend in scientific scripting: Design applications in a
high—level scripting environment, and migrate hotspots and
bottlenecks to compiled code

@ Benéefits:

@ Simple mapping between the Python code and the underlying
mathematical problem

o Advanced functionality (file handling and 10, GUI, initialization
etc.) is easy to incorporate in an application

o By designing the user interface first, time—critical parts of an
application are easy to spot and speed up as Python extension
modules
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Application Development
Challenges

@ There should be a standardized set of data types for vectors
and matrices, both scalar and distributed

@ Today, even NumPy is split in two (Numeric vs. numarray)
@ Installing Python extensions can be extremely difficult

@ The look and feel of the Python shell as a scientific calculator
must improve (i.e. better plotting and more functionality)
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