Visions of Python in Scientific Computing

Ola Skavhaug!?

Simula Research Laboratory!

Dept. of Informatics, University of Oslo?

March 7, 2005

Skavhaug Visions of Python in Scientific Computing

@ Education
© Code Reuse

9 Application Development

Skavhaug Visions of Python in Scientific Computing

Scripting languages are popular

Syntax is compact and clean; almost like pseudo—code

(]

@ Fast code development; interpreted languages do not need
compilation

@ Extensive general purpose libraries

@ Scripting languages constitute productive programming
environments

@ Popular scripting languages: Perl, Ruby, Tcl, Python (and
bash)

@ Major drawback; numerical efficiency

Skavhaug Visions of Python in Scientific Computing

Education

List of Topics

@ Education

Skavhaug Visions of Python in Scientific Computing

Education
Education |

@ Students want it:
o Simple language with few pit—falls
@ Easy to learn the language by exploring the Python shells
@ Similar to other, modern languages (i.e. Java)
@ Industry needs students with scripting knowledge:
@ A major challenge in industry is to automate tasks
¢ This often involves gluing applications together using a
scripting language

Skavhaug Visions of Python in Scientific Computing

Education
Education Il

@ A major problem with low—level languages is the distance
between the mathematics (algorithms) and implemented code

@ Using a high—level scripting language in mathematics
education closes this gap

@ The result may be an increased focus on algorithms, and less
focus on implementation hassle

@ The poor numerical efficiency is probably not important in
educational settings

Skavhaug Visions of Python in Scientific Computing

Education

Example

def trapezoidal(f, a=0.0, b=1.0, n=10):
20
Integrate f(x) from a to b using the composite Trapezoidal
rule with n evaluation points.
130
h = (b-a)/float(n-1)
I = 0.5xf(a)
for i in iseq(1l, n-2):
I += f(a + ixh)
I += 0.5%f(b)
I x=h
return I

Skavhaug Visions of Python in Scientific Computing

Code Reuse

List of Topics

© Code Reuse

Skavhaug Visions of Python in Scientific Computing

Code Reuse
What about the existing code?

@ Over the years, computational science groups tend to develop
a huge base of legacy code
@ Typical legacy code characteristics:
o Stable, high—quality, efficient
o Difficult to learn, use, and change
@ A problem is that the demands on a given code are increasing;
parallelization, GUI front-end, data conversion, advanced IO,
etc.
@ Quality code should be re—used
@ Equipping legacy code libraries with scripting interfaces may
solve the problem. The good news is that this is easy

Skavhaug Visions of Python in Scientific Computing

Code Reuse
Wrapper code tools

o C/C++:
o SWIG — http://www.swig.org
Mature, general purpose. Choosing a general solution to an
efficient one. Excellent documentation
o Sip — http://www.riverbankcomputing.co.uk/sip/
Very special purpose (make a Python interface to QT), one
developer. Quite efficient, almost no documentation
o Boost — http://www.boost.org
Based on template meta programming. Good documentation.
Difficult to get started
o Babel — http://www.11lnl.gov/CASC/components/babel.html
@ Fortran:

@ F2py — http://cens.ioc.ee/projects/f2py2e
Tightly integrated with NumPy. Good documentation.
Automatic Python callback support.

Skavhaug Visions of Python in Scientific Computing

Code Reuse

SWIG Example

Consider the following C function (fact.c):

int fact(int i) {
if (i <= 1) return 1;
else return i*fact(i-1);

A corresponding interface file (fact.i) may read:

Ymodule fact // fact is the module name

#{

/* Put headers and other declarations here */

#include <fact.h>

%

/* The interface definition (e.g. function signatures) */
int fact(int 1i);

The wrapper code (fact_wrap.c) is generated by running:

swig -python fact.i

Skavhaug Visions of Python in Scientific Computing

Code Reuse

SWIG Example, continued

At last, the source code and the generated wrapper code must be
compiled and linked:

> gcc -c —fpic fact_wrap.c fact.c -I. -DHAVE_CONFIG_H \
-I/local/include/python2.3 -I/local/lib/python2.3/config

> gcc -shared fact.o fact_wrap.o -lswigpy \
-L/local/lib/ -o _fact.so

In Python:

>>> from fact import fact
>>> fact(4)
24

Skavhaug Visions of Python in Scientific Computing

Advanced SWIG

@ A Python extension module should look and feel like native
Python

@ SWIG provides so—called directives to control the wrapper
code generation

@ Python special methods can often be implemented by
renaming existing methods

%rename(__add__) add;

@ Types can be mapped using typemaps
/* Convert from Python --> C */
%typemap(in) int {

$1 = PyInt_AsLong($input);

/* Convert from C --> Python */
%typemap(out) int {

$result = PyInt_FromLong($1);
}

Skavhaug Visions of Python in Scientific Computing

Code Reuse
Benefits of interfacing

@ Sequential code may be parallelized at the scripting level,
using e.g. PyMPI (http://pympi.sourceforge.net/) or
Scientific.BSP

(http://starship.python.net/~hinsen/ScientificPython/)
@ Old libraries can be given modern, object—oriented interfaces

@ Example: SciPy (http://www.scipy.org/) uses ALTAS/BLAS
from netlib

o

Skavhaug Visions of Python in Scientific Computing

Application Development

List of Topics

9 Application Development

Skavhaug Visions of Python in Scientific Computing

Application Development
Applications can be developed in a scripting language

@ A recent trend in scientific scripting: Design applications in a
high—level scripting environment, and migrate hotspots and
bottlenecks to compiled code

@ Benéefits:

@ Simple mapping between the Python code and the underlying
mathematical problem

o Advanced functionality (file handling and 10, GUI, initialization
etc.) is easy to incorporate in an application

o By designing the user interface first, time—critical parts of an
application are easy to spot and speed up as Python extension
modules

Skavhaug Visions of Python in Scientific Computing

Application Development
Challenges

@ There should be a standardized set of data types for vectors
and matrices, both scalar and distributed

@ Today, even NumPy is split in two (Numeric vs. numarray)
@ Installing Python extensions can be extremely difficult

@ The look and feel of the Python shell as a scientific calculator
must improve (i.e. better plotting and more functionality)

Skavhaug Visions of Python in Scientific Computing

	Education
	Code Reuse
	Application Development

