
Education Code Reuse Application Development

Visions of Python in Scientific Computing

Ola Skavhaug1,2

Simula Research Laboratory1

Dept. of Informatics, University of Oslo2

March 7, 2005

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

Outline

1 Education

2 Code Reuse

3 Application Development

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

Scripting languages are popular

Syntax is compact and clean; almost like pseudo–code

Fast code development; interpreted languages do not need
compilation

Extensive general purpose libraries

Scripting languages constitute productive programming

environments

Popular scripting languages: Perl, Ruby, Tcl, Python (and
bash)

Major drawback; numerical efficiency

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

List of Topics

1 Education

2 Code Reuse

3 Application Development

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

Education I

Students want it:

Simple language with few pit–falls
Easy to learn the language by exploring the Python shells
Similar to other, modern languages (i.e. Java)

Industry needs students with scripting knowledge:

A major challenge in industry is to automate tasks
This often involves gluing applications together using a
scripting language

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

Education II

A major problem with low–level languages is the distance
between the mathematics (algorithms) and implemented code

Using a high–level scripting language in mathematics
education closes this gap

The result may be an increased focus on algorithms, and less
focus on implementation hassle

The poor numerical efficiency is probably not important in
educational settings

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

Example

def trapezoidal(f, a=0.0, b=1.0, n=10):
’’’
Integrate f(x) from a to b using the composite Trapezoidal
rule with n evaluation points.
’’’
h = (b-a)/float(n-1)
I = 0.5*f(a)
for i in iseq(1, n-2):

I += f(a + i*h)
I += 0.5*f(b)
I *= h
return I

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

List of Topics

1 Education

2 Code Reuse

3 Application Development

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

What about the existing code?

Over the years, computational science groups tend to develop
a huge base of legacy code

Typical legacy code characteristics:

Stable, high–quality, efficient
Difficult to learn, use, and change

A problem is that the demands on a given code are increasing;
parallelization, GUI front-end, data conversion, advanced IO,
etc.

Quality code should be re–used

Equipping legacy code libraries with scripting interfaces may
solve the problem. The good news is that this is easy

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

Wrapper code tools

C/C++:

SWIG – http://www.swig.org

Mature, general purpose. Choosing a general solution to an
efficient one. Excellent documentation
Sip – http://www.riverbankcomputing.co.uk/sip/

Very special purpose (make a Python interface to QT), one
developer. Quite efficient, almost no documentation
Boost – http://www.boost.org

Based on template meta programming. Good documentation.
Difficult to get started
Babel – http://www.llnl.gov/CASC/components/babel.html

Fortran:

F2py – http://cens.ioc.ee/projects/f2py2e

Tightly integrated with NumPy. Good documentation.
Automatic Python callback support.

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

SWIG Example

Consider the following C function (fact.c):

int fact(int i) {
if (i <= 1) return 1;
else return i*fact(i-1);

A corresponding interface file (fact.i) may read:

%module fact // fact is the module name
%{
/* Put headers and other declarations here */
#include <fact.h>
%}
/* The interface definition (e.g. function signatures) */
int fact(int i);

The wrapper code (fact wrap.c) is generated by running:

swig -python fact.i

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

SWIG Example, continued

At last, the source code and the generated wrapper code must be
compiled and linked:

> gcc -c -fpic fact_wrap.c fact.c -I. -DHAVE_CONFIG_H \
-I/local/include/python2.3 -I/local/lib/python2.3/config

> gcc -shared fact.o fact_wrap.o -lswigpy \
-L/local/lib/ -o _fact.so

In Python:

>>> from fact import fact
>>> fact(4)
24

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

Advanced SWIG

A Python extension module should look and feel like native
Python

SWIG provides so–called directives to control the wrapper
code generation

Python special methods can often be implemented by
renaming existing methods

%rename(__add__) add;

Types can be mapped using typemaps
/* Convert from Python --> C */
%typemap(in) int {

$1 = PyInt_AsLong($input);
}

/* Convert from C --> Python */
%typemap(out) int {

$result = PyInt_FromLong($1);
}

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

Benefits of interfacing

Sequential code may be parallelized at the scripting level,
using e.g. PyMPI (http://pympi.sourceforge.net/) or
Scientific.BSP
(http://starship.python.net/~hinsen/ScientificPython/)

Old libraries can be given modern, object–oriented interfaces

Example: SciPy (http://www.scipy.org/) uses ALTAS/BLAS
from netlib

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

List of Topics

1 Education

2 Code Reuse

3 Application Development

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

Applications can be developed in a scripting language

A recent trend in scientific scripting: Design applications in a
high–level scripting environment, and migrate hotspots and
bottlenecks to compiled code

Benefits:

Simple mapping between the Python code and the underlying
mathematical problem
Advanced functionality (file handling and IO, GUI, initialization
etc.) is easy to incorporate in an application
By designing the user interface first, time–critical parts of an
application are easy to spot and speed up as Python extension
modules

Skavhaug Visions of Python in Scientific Computing

Education Code Reuse Application Development

Challenges

There should be a standardized set of data types for vectors
and matrices, both scalar and distributed

Today, even NumPy is split in two (Numeric vs. numarray)

Installing Python extensions can be extremely difficult

The look and feel of the Python shell as a scientific calculator
must improve (i.e. better plotting and more functionality)

Skavhaug Visions of Python in Scientific Computing

	Education
	Code Reuse
	Application Development

