
A Python Framework for Verifying Codes for

Numerical Solutions of Partial Differential

Equations

Ola Skavhaug∗ Kent-Andre Mardal†

Hans Petter Langtangen‡

Abstract

We present a Python framework for applying the method of manufac-
tured solutions (MMS) to verify software for solving partial differential
equations. The user can, interactively or in a script, specify mathemati-
cal expressions for the solution and the PDE, and the framework modifies
the simulator according to the new analytical solution. The verification
framework applies to C, C++, and Fortran simulators, and effort has been
made to make it both general and easy to use. We show three examples
of code verification for PDE simulators written in C++. In these exam-
ples, the true errors of the numerical solutions are computed. We also
discuss the constructs needed to use the Python verification framework
with existing PDE simulators.

1 Introduction

Numerical solutions of partial differential equations (PDEs) modelling physical
phenomena are increasingly being used in science and engineering. This puts
high demands on the reliability and accuracy of the computed solutions. Bugs
in the software, or the use of numerical algorithms outside their well defined
scope, may be critical and cost huge amounts of money. Roache has for many
years advocated the need for extensive verification and validation, see e.g. [11].
In his experience, the Method of Manufactured Solutions (MMS) is a simple and
powerful technique to debug a simulation code. Salari and Knupp [6] have sys-
tematically used the MMS to investigate a series of common bugs. They found
that most of the bugs are detected because their presence violates the order
accuracy of the manufactured solution for the numerical methods in question.

∗Dept. of Scientific Computing, Simula Research Laboratory and Dept. of Informatics,

University of Oslo. Email: skavhaug@simula.no.
†Dept. of Scientific Computing, Simula Research Laboratory and Dept. of Informatics,

University of Oslo. Email: kent-and@simula.no.
‡Dept. of Scientific Computing, Simula Research Laboratory and Dept. of Informatics,

University of Oslo. Email: hpl@simula.no.

1

The scope of this paper is to present a high–level software platform for
verifying1 numerical simulators for PDE problems. Furthermore, particular
emphasis is put on the verification of legacy code by integrating them in such a
framework, with minimal modification of the existing code. To our knowledge
most verification tools developed are closely linked to an application or library.
We advocate the need for a general framework for comparing and verifying
simulation codes in a wide range of application areas. The framework must be
sufficiently easy to use such that the MMS is applied regularly; although the
MMS is widely known, its use is limited according to our experience, because it
requires too tedious modifications of the simulator software.

We have chosen to implement the MMS framework in the Python scripting
language2. We emphasize that existing simulators written in Fortran, C or
C++ can be integrated into this Python framework. This is often easy thanks
to interfacing tools such as SWIG [3] and F2PY [10]. In this project, we have
combined the two C++ libraries Diffpack [5] and GiNaC [2], as well as Fortran
and C code, with Python. In fact, we find it simpler to combine Fortran and
C++ simulators in Python (with SWIG and F2PY) than directly in the native
languages.

This paper is outlined as follows. We start in Section 2 by explaining the ba-
sics of the Method of Manufactured Solutions as described by Roache [11]. Then,
in Section 3, we present Famms (Fully automatic method of manufactured so-
lutions) [12]; our interactive Python framework for automatic code verification.
In Section 4, we apply Famms to three PDE simulators. The module Symbolic,
used to express analytical solutions and PDEs symbolically is discussed in Sec-
tion 5, and we make some concluding remarks in Section 6. Four examples
of how to implement the constructs needed to evaluate Python functions from
compiled PDE simulators are discussed in Appendix A–D.

2 The Method of Manufactured Solutions

We start with a brief review of the Method of Manufactured Solutions, which
is a simple, yet powerful tool to construct known solutions to PDE problems.
The knowledge of the analytical solution can be used to check that the error in
the numerical solution satisfies the properties posed by the numerical methods
used.

In the MMS, an additional source term is inserted into the model description,
such that an analytical solution of the problem is known. Solving the new PDE
problem, both the numerical and analytical solution are available, and the error
can easily be computed and analyzed.

Consider a PDE problem on the form,

F (u) = 0, (1)

1In computational science and engineering, program verification refers to empirical testing

of software, for instance by the MMS. We remark that this meaning of program verification

is different from the meaning of this term in computer science.
2The reasons for this decision will be explained later.

2

with appropriate boundary and initial conditions. Here, F may be a system of
non–linear differential operators, and u an unknown system of scalar and vector
functions. For example, we can easily rewrite the heat equation,

∂u

∂t
= ∇ · (k∇u) + f, (2)

to fit into this formulation by defining:

F (u) =
∂u

∂t
−∇ · (k∇u) − f . (3)

The MMS is based on choosing an analytical solution, v, such that u = v is the
solution of

F (u) = F (v). (4)

The expression F (v) can be computed apriori and used as an additional source
term in the original problem specification. For example, the modified heat
equation reads:

∂u

∂t
= ∇ · (k∇u) + f + F (v) . (5)

Hence, instead of solving (1), we add a source term F (v) to the PDE and solve
(4), since we know the solution of the latter problem. Note that the source term
F (v) is a function of x and t since v is known.

From a computational point of view, we calculate F (v) analytically and add
the result as extra source terms in the equations. The boundary and initial
conditions must be adjusted accordingly. For example, we may apply Dirichlet
conditions u = v on the whole boundary when solving (4), and use v at t = 0 as
the initial condition. Using the MMS in the heat equation example and choosing
v = exp(−t) sin(xy), k = 1, and f = 0, we get the following source term:

F (v) = exp(−t) sin(yx)(x2 + y2 − 1) . (6)

The new problem definition then reads

∂u

∂t
= ∇2u) + exp(−t) sin(yx)(x2 + y2 − 1) . (7)

With a known solution it is possible to check if the simulator is order–

accurate. For many numerical methods for PDEs we expect the following error
estimate to be valid within the asymptotic regime,

‖v − vh‖ ≤ Chα + D(∆t)β . (8)

Here, the parameters h and ∆t are characteristic for the resolution of the dis-
cretization in space and time, respectively, and α and β depend on the dis-
cretization methods. The order accuracy is checked by running a sequence of
decreasing values of h and ∆t, computing the error in each run, fitting α and β
in (8), and comparing the fitted values with the theoretically expected estimate
for the numerical method in question.

3

The heat equation above is a simple toy model used to illustrate how the
MMS works. A software framework to handle this problem may seem like
overkill. In fact, cutting and pasting source code from Maple or Mathemat-
ica would probably be both easier and faster. However, later in Section 4.3 we
will consider a coupled heat and fluid flow problem that models the extrusion
of metal or the flow of highly viscous polymers. In this problem there are more
than 10 variables depending on each other. Moreover, the models for these
variables are uncertain and are typically varied during the investigation of a
concrete application. In such situations it is desirable to have an interactive
Python interface with MMS in the debugging–verification–validation cycle.

3 Famms

An automatic code verification framework must be easy to use, with high–level
syntax and semantics. Also, such a framework must be able to tackle quite
general PDE models; scalar and vector equations, as well as coupled systems.
We have developed Famms, a Python framework for applying the MMS to PDE
solvers, with these design goals in mind.

Code verification using the MMS is usually conducted in several, individual
steps. Typically, the PDE model and the analytical solution are specified in a
language dedicated to symbolic manipulation, such as Maple or Mathematica.
After computing the source term, it is saved to file together with the solution as
either Fortran or C code. The source code must in turn be compiled and linked
with the PDE simulator manually. Each time a new analytical solution is chosen,
these steps are repeated. The resulting MMS setup, if used in the first place, may
soon become static, with only a few choices for analytical solutions. Another
drawback with the traditional way of applying the MMS is that the syntax
and semantics of modern symbolic manipulation tools are quite complicated.
Especially, we find them less clear and intuitive than the Python language.
(Having said this, Maple and Mathematica are powerful tools, not limited to
computing source terms needed for code verification.)

In Famms, we glue all the parts of the MMS into one framework. The
main components in the framework are: (i) a symbolic manipulation module
for specifying solutions, PDE models, and source terms using the Python lan-
guage, (ii) a PDE simulator accessible from Python as an extension module, and
(iii) constructs for swapping functions written in the compiled language with
Python functions. In Figure 1, we show how the components in a Famms session
work together. These components are described in more detail in the following
sections. In the technical note, we state the demands to the simulator to be
verified.

In a typical Famms session, we specify the PDE and the analytical solu-
tion symbolically in a Python script. Also, the simulator, which we assume is
equipped with a Python interface, is created and initialized from the script. The
simulator and the symbolic representations of the PDE model and solution are
then assigned to a Famms object. In this assignment, the new source term is

4

Verification
script

PDE Simulator

Symbolic

Famms

Figure 1: An overview of the various components involved when using Famms
to verify a PDE simulator.

computed analytically and inserted as a callback in the simulator together with
the solution. Later, when simulations are run from the script, the solution is
known and the error in the numerical solution can be computed and processed
further.

We have chosen Python as the high–level coding environment for several
reasons. First, Python has a clean and very readable syntax close to that of
Matlab, a popular scripting language for scientific programming. Therefore,
learning Python is fairly easy. Being platform independent and having an ex-
tensive collection of both general purpose and scientific modules, Python serves
as a well suited environment for high–level scientific programming in general. A
third argument for choosing Python is that it has a mature C API (Application
Programming Interface), used when extending Python with modules written in
compiled languages. Also, the Python/C API can be used for creating interfaces
to existing PDE solvers written in C/C++ and Fortran. We refer to [8] for a
discussion of scripting languages as a complement to compiled languages.

3.1 Specifying the PDE Model in Python

In the MMS, we choose an analytical solution, insert this into the PDE, and
fit an additional source term such that the chosen solution fulfills the modified
PDE. Famms therefore relies on a Python module able to do symbolic manipu-
lation. We have made the module Symbolic for this task. Here, we can specify
PDE models in a convenient manner, with high–level mathematical operators

5

Technical Note

Famms Assumptions

In order to apply Famms to a PDE simulator, the implementation of
the simulator must follow some rules. Especially, the implementation
of source terms, boundary conditions, and initial conditions must follow
some conventions. We have made the following assumptions:

• Source terms, boundary conditions, and initial conditions must be
placed in functions (or methods). If these terms are hard–coded
into the discretization schemes, Famms can not be applied.

• At the run–time of a simulator, it must be possible to change which
function to call, e.g., by accessing functions through function point-
ers or by using function objects. Functions accessed directly can
not easily be replaced at run–time, and Famms needs to do this.

• The PDE simulator must be split into functions for initializing and
running a simulation. If the simulator is implemented as a sin-
gle function performing both the initialization and the simulation,
Famms may not be able to alter the PDE model specification ac-
cording to the new analytical solution.

Famms has been applied to C++ simulators using the Diffpack library.
These simulators fulfill the above assumptions.

such as divergences and gradients working on scalar and vector functions. The
Symbolic module is only a thin layer on top of a full–fledged symbolic engine:
GiNaC. This engine is implemented in C++ and available as open source code.

The setup for computing new source terms in Symbolic is simple: We define
a Python function F(u), representing the PDE model F (u) = 0. This func-
tion returns the new source term corresponding to the chosen solution v. For
example, if we consider the heat equation (2),

F (u) =
∂u

∂t
−∇ · (k∇u) − f = 0,

the Python function may take the form:

def F(u):
return u.diff(t,1) - div(k*grad(u)) - f

Here, u.diff(t,1) computes the derivative of u with respect to time, and div

and grad computes the divergence and gradient, respectively. Constructing a
solution v, e.g., v = exp(-t)*sin(x*y), the new source term, rhs, is obtained by
passing the solution to the function F, rhs = F(v). The variable rhs now holds
the auxiliary source term F (v) as a symbolic expression.

6

3.2 PDE Simulators as Python Extension Modules

In Famms, the analytical solution and corresponding source term exist as Python
objects only. Since a PDE simulator needs to access these objects to solve the
modified PDEs, the application has to communicate with Python. The way to
solve this problem is to extend the simulator with scripting capabilities, turning
the PDE simulator into a Python extension module. The Python/C API, offer-
ing access to most of the Python run–time system, has been made to facilitate
the job of mixing compiled applications and Python.

In most cases, we do not interface the entire PDE simulator from Python.
The functions we need to reach typically initialize the simulator and run the
computations. Variables holding important data such as the solution, the model
parameters, and numbers related to the numerical methods used are usually
interfaced as well.

Having chosen the parts of the simulator to interface from Python, the wrap-
per code is written using the Python/C API. When the interface is small, this
job can be done by hand. However, for huge PDE simulators, writing the
wrapper code manually can be both time–consuming and error–prone. We can
instead utilize tools that automatically does this job, e.g., SWIG [3], Boost [1],
and SIP [14] for C/C++, and F2PY [10] for Fortran. Describing in detail how
these tools work is beyond the scope of this text. However, most of these tools
are well documented and easy to learn.

The last stage is to compile and link the wrapper code with the simulator,
forming a shared library file that Python can import as a module.

Having access to the main functionality of a PDE simulator from Python,
we easily set up and run simulations in simple Python scripts. For instance, we
can run numerical experiments where important model parameters are varied,
information is collected, and results are saved in tabular form for later use.

3.3 Calling Python Functions from Low–Level Code

To apply Famms to a PDE simulator, Python functions for the symbolic ex-
pressions of the new source term and analytical solution must be callable from
the application. In many cases this can be done without changing the source
code of the simulator.

Using the Python/C API, we can write Python wrapper functions, having
the same signature as the functions in the simulator. The job of these wrap-
pers is to replace the native functions and call Python functions when invoked.
More specifically, the arguments to a wrapper function are first converted to
data types in Python and then passed on to a function defined in the scripting
language. Replacing the native functions with the wrappers is done in Python
scripts.

One of the assumptions Famms makes regarding a PDE simulator, is that
source terms, boundary conditions, and initial conditions are placed in functions
representing fields, or field functions. A field function takes a point in time
and space as arguments and returns a scalar or vector value. Writing wrapper

7

code for field functions is usually straight forward, because the input arguments
are simple and therefore easy to convert to Python data types. However, the
concrete implementation of a field function varies from one simulator to another.
Therefore, we have only outlined how such wrappers can be constructed, and
given some examples in Appendix A–D.

How do we replace a native function in a simulator with a Python function?
If the application uses pointers to address functions, replacing a function is just
a matter of moving a pointer. In C++, functions can be placed in objects,
and we can replace the native function object with a version calling a function
in Python. When a function is called directly, it can not be replaced. In this
case, we have to modify the source code to replace the function. For PDE
simulators written in Fortran, interfaced with F2PY, calling Python functions
is very simple, because F2PY allows Python functions to replace subroutines
automatically.

The Python field function wrappers usually must be written manually. The
job is typically done once and the construct then provides a powerful extension
of the Python interface to a PDE simulator: Whenever a simulator uses a native
field function, it can be replaced by a Python field function.

3.4 Famms Overview

In Famms, the PDE model and desired solution are specified in Python by using
the module Symbolic. Recall from Section 3.1 that the specification is given in
terms of a function defining the PDE problem, and a symbolic expression for
the solution. Suppose that a PDE simulator has been converted to a Python
extension module. Then, what Famms basically does is to make the Python
functions callable from the simulator.

Famms is a lightweight Python module, implementing a single class, Famms.
A Famms object takes two arguments at initialization. The first is the number of
space dimensions for the PDE, and the second is a boolean for specifying time
dependent problems:

f = Famms(nsd=2, time=True)

The method assign is used to specify the setup of a MMS, and it takes the PDE
model, solution, and the simulator as arguments:

f.assign(equation=F, solution=v, simulator=heat)

When assigning these objects to Famms, the new right–hand side and analytical
solution of the PDE problem are automatically inserted into the simulator.

When applying MMS to a system of PDEs, the module SystemFamms can
be used. It is built on top of Famms, and administers coupling of the various
equations, solutions, and simulators. When constructing a SystemFamms instance,
we must at least specify the number of equations in the coupled system and the
maximum number of space dimensions:

f = SystemFamms(nproblems=2, max_nsd=2, simtype="DP")

8

Here, we specify a coupled system of two PDEs in two dimensions.
A method assign is again used to set up the MMS for the system. The

arguments are three lists of simulators, solutions, and equations:

f.assign(sim_list=[momentum, energy], sol_list=[w, T], PDE_list=[F1, F2])

In this example, the two simulators momentum and energy solve the momentum
equation and energy equation for a coupled fluid flow and heat problem having
the analytical solutions w and T, respectively. F1 and F2 are Python functions
specifying the PDE model, i.e., the momentum and energy equations. This
simulator is treated in more detail in Section 4.3.

4 Examples

In this section, we show three examples of how to use Famms to verify PDE sim-
ulators. The simulators have first been turned into Python extension modules
using SWIG. Starting with the heat equation used in the previous sections, we
apply Famms to a scalar, time–dependent finite element solver, and show how
the MMS can be used to investigate the true errors of the numerical solutions.
In the following example, a simulator for a linear elasticity problem, utilizing
a multigrid solver, is treated. The example shows an example of how Famms
can be used to detect bugs. Especially, we use Famms to reveal a bug in the
multigrid algorithm. The most challenging example is a solver for a coupled
heat and fluid flow problem. This is a system of two non–linear PDEs. As an
example, we test the iterative convergence of the non–linear solver as the degree
of non–linearity is increased.

4.1 The Heat Equation

We consider a fully specified problem similar to the heat equation from Section 2:

∂u

∂t
= ∇ · (k∇u) + f, in Ω,

u = g, on ∂Ω,

u = u0 in Ω at t = 0.

Here u is the temperature in the domain Ω, k is the conductivity, f is a source
term, and g is a known temperature at the boundary. One way of discretizing
this problem is to use a finite difference for the time derivative and finite elements
for the spatial derivatives.

The simulator for solving this problem is implemented as a Diffpack appli-
cation and equipped with a Python interface extended with methods for insert-
ing Python functions in place of the native functions for evaluating the source
term, initial conditions, and boundary conditions. In Famms, a default naming
convention is used for these extensions, to ease the verification of simulators
following this standard. The convention is that the source term is attached

9

to the simulator by calling the method set b func, and the analytical solution
is inserted by calling set v func. The simulator is responsible for redirecting
the function calls for setting boundary and initial conditions to the symbolic
expression for the analytical solution.

We present a simple Famms script in detail below, containing less than
thirty lines of code. The first part of the script creates and initializes of the
heat simulator:

from Heat1 import Heat1 # Import simulator
from dputils import * # Import Diffpack utilities
from Symbolic import exp, sin, cos, div, grad
from Famms import Famms

heat = Heat1(); # Create simulator
initSimulator(heat) # Initialize simulator

Above, the initialization of the simulator takes place in the function initSimulator,
which is specific for Diffpack simulators. The next step is to create a Famms
object, and symbolically specify the PDE model and analytical solution.

f = Famms(nsd=2, time=True) # Time dependent problem in 2D
[x, y] = f.x; t = f.t # Define some aliases
v = exp(-t)*(sin(2*x) + cos(2*y)) # Analytical solution
k = 1

def F(u):
return u.diff(t,1) - div(k*grad(u))

To insert the analytical solution and source term into the simulator, we assign
F, v, and Heat1 to the Famms object. We then run a simulation and print the
numerical error to screen:

f.assign(equation=F, solution=v, simulator=heat)
heat.solveProblem() # FE assebly, solve linear system

error = Error.Error() # Error computing utilities
print error.L_norm(heat.uanal(), heat.u(), time=heat.tip().time())

In the function L norm, we compute the L1, L2, and L∞ norms of the error of
the numerical solution. The input arguments to this function are the analytical
and numerical solution, and the time step.

Numerical Experiment

We want to inspect the error of the numerical solution from the heat equation
simulator for different choices of finite elements, and use both piecewise bilinear
and biquadratic finite elements is space. In time, we use a backward Euler finite
difference scheme.

We use the menu system in the heat simulator to specify the experimental
setup from Python. Especially, we set the solution domain, Ω, to the unit square
in two dimensions, the conductivity is set to unity, and the source term, f , is
dropped. The time interval is (0, 1]. We use a conjugate gradient method to
solve the linear systems, with the convergence criterion ||rk||L2

≤ ǫ = 10−10,

10

where rk is the residual after iteration k, is used for all simulations. The man-
ufactured solution is v = exp(−t)(sin(2x) + cos(2y)).

In Table 1 and Table 2 we show the L2 error of the numerical solutions for
two different choices of finite elements. In Figure 2 and Figure 3, we plot the
lower row and right column of Table 1 and Table 2. For bilinear elements, we see
quadratic convergence in space, and for biquadratic elements, the convergence
rate is time is linear. To reveal the convergence rate in space for biquadratic
elements, finer time stepping would be required, and similarly, we would need a
finer grid to see the linear convergence rate in time for bilinear elements. Such
behaviour is common: the discretization must be sufficiently fine to see the
expected asymptotic convergence.

Table 1: L2 errors of the numerical solution of the heat equation, using bilinear
finite elements.

∆t/h 2−2 2−3 2−4 2−5

2−5 9.88 · 10−3 2.28 · 10−3 3.94 · 10−4 1.98 · 10−4

2−6 1.00 · 10−2 2.41 · 10−3 5.05 · 10−4 8.16 · 10−5

2−7 1.01 · 10−2 2.47 · 10−3 5.70 · 10−4 9.86 · 10−5

2−8 1.01 · 10−2 2.51 · 10−3 6.03 · 10−4 1.26 · 10−4

Table 2: L2 errors of the numerical solution of the heat equation, using bi-
quadratic finite elements.

∆t/h 2−2 2−3 2−4 2−5

2−5 1.71 · 10−3 3.63 · 10−4 3.19 · 10−4 3.20 · 10−4

2−6 1.72 · 10−3 2.54 · 10−4 1.59 · 10−4 1.59 · 10−4

2−7 1.73 · 10−3 2.24 · 10−4 8.20 · 10−5 7.93 · 10−5

2−8 1.74 · 10−3 2.19 · 10−4 4.65 · 10−5 3.96 · 10−5

4.2 Linear Elasticity

One commonly applied PDE model is the Navier’s equation governing small
deformations of an elastic structure. The equation reads

(λ + µ)∇[∇ · u] + µ∇ · [∇u] = 0, (9)

where u is the displacement field, and λ and µ are parameters describing the
elastic properties of the structure. For simplicity, we have omitted the inertia
and body forces in Equation (9). The PDE is a vector equation, with the number
of components coinciding with the number of space dimensions.

A simple Famms script for this problem is quite similar to that for the heat
equation in the previous section, and starts with initializing the simulator:

from Elasticity1MG import Elasticity1MG

11

6.10 · 10−5

1.22 · 10−4

2.44 · 10−4

4.88 · 10−4

9.77 · 10−4

1.95 · 10−3

3.91 · 10−3

7.81 · 10−3

3.91 · 10−3 1.56 · 10−2 6.25 · 10−2 2.50 · 10−1

Parameter step size

∆t = 2−8 +

+

+

+

+
h = 2−5

+

+
+

+

+

Figure 2: Logarithmic plot of the numerical errors of the heat simulations, when
bilinear finite elements are used.

6.10 · 10−5

1.22 · 10−4

2.44 · 10−4

4.88 · 10−4

9.77 · 10−4

1.95 · 10−3

3.91 · 10−3 1.56 · 10−2 6.25 · 10−2 2.50 · 10−1

Parameter step size

∆t = 2−8 +

+

+
+

+
h = 2−5

+

+

+

+

+

Figure 3: Logarithmic plot of the numerical errors of the heat simulations, when
biquadratic finite elements are used.

from dputils.DP import MenuSystem
from Famms import Famms
from Symbolic import Vector, sin, cos, grad, div
from dputils import Error

12

m = MenuSystem()
m.init("Elasticity1MG", "Python interface"); m.thisown = 0

el = Elasticity1MG()
el.define(m)
el.scan()

The model depends on the parameters λ and µ, which we get from the simulator
before specifying the model. We choose an analytical solution, and symbolically
express the PDE using Symbolic. We also create a Famms object, and assign
the model and simulator to it:

lambda_ = el.get_lambda(nu,E) # Get model parameters from
mu = el.get_mu(nu,E) # the simulator

f = Famms(nsd=2) # Problem in 2 space dimensions
[x, y] = f.x # Define some aliases
v = Vector([sin(x), cos(y)]) # Analytical solution

def F(u):
return -grad((lambda_ + mu)*div(u)) - div(mu*grad(u))

f.assign(equation=F, solution=v, simulator=el)

Now the MMS setup is complete, and we run a simulation and print the error:

el.solveProblem()

err = Error.Error()
print err.L_norm(el.uanal(), el.u())

The above Famms script is complete. When used for real simulations, however,
the initialization of the simulator, involving specifying various model parame-
ters, can be quite comprehensive.

Numerical Experiment

The simulator for the PDE model above uses a finite element method for dis-
cretization and a multigrid solver for the linear system of equations. The multi-
grid method is known to be robust. In fact, it often works even when imple-
mented wrong. For instance, restrictions and interpolation operators can be
made without references to boundary conditions, giving a multigrid method
that in many cases works well. However, boundary conditions must be incor-
porated at all multigrid levels, according to theory. See [4, Chapter 4] for a
general treatment of this topic. In the experiment below, we show an example
where the multigrid interpolation and restriction operators are made both with
and without references to the boundary conditions3.

When the interpolation and restriction operators are without references to
the boundary conditions, it results in a too small reduction of the error in each
multigrid cycle. To debug the multigrid solver, we compute the L2 error of the
solution after each multigrid V–cycle sweep. Instead of changing the code in

3In fact, the bug uncovered in this example was present for several years in the original

code.

13

the multigrid solver to compute this error, we add a Python callback function
that is called after each multigrid sweep. This way, we can take care of the
debugging process in Python.

We have used the manufactured solution, v = (sin(x + y), cos(x− y)), of the
PDE problem, and the solution domain is the unit square in two dimensions.

The element basis functions are bilinear with two degrees of freedom at each
node, and we use box elements. Starting with the coarsest mesh with nine
nodes, each refinement is made by dividing the elements in four. We use six
grid levels, which gives 4096 elements at the finest grid. The smoother in the
multigrid solver is the symmetric successive over–relaxation (SSOR) method,
and we carry out two pre– and post–smoothing sweeps at each grid level. As
coarse grid solver we use Gaussian elimination. The convergence criterion is
||rk||L2

||r0||L2

≤ ǫ = 10−8, where rk is the residual at the k-th multigrid iteration and

r0 is the initial residual.
Table 3 shows the L2 error of the numerical solution for the simulator with

the bug at the boundary after each multigrid sweep. In Table 4, we show the
same error after the bug is fixed. The improvement of the multigrid algorithm
by removing the bug in multigrid is significant; the number of iterations needed
to meet the convergence criterion is reduced from 13 to 4. In Figure 4, we
compare the convergence of the two multigrid algorithms.

Table 3: L2 errors after each multigrid V–cycle iteration for the simulator with
a bug.

Iteration 1 2 3 4
L2 error 2.62 · 10−1 8.04 · 10−2 2.69 · 10−2 9.37 · 10−3

Iteration 5 6 7 8
L2 error 3.26 · 10−3 1.21 · 10−3 3.87 · 10−4 1.90 · 10−4

Iteration 9 10 11 12
L2 error 3.99 · 10−5 6.35 · 10−5 4.35 · 10−5 4.98 · 10−5

Iteration 13
L2 error 4.74 · 10−5

Table 4: L2 errors after each multigrid V–cycle iteration for the debugged sim-
ulator.

Iteration 1 2 3 4
L2 error 2.54 · 10−2 8.17 · 10−4 6.95 · 10−5 4.83 · 10−5

4.3 Coupled Heat and Fluid Flow

Our next problem concerns coupled heat and fluid flow in a straight pipe with
constant cross section Ω, see [7, pp. 611–614]. Because the velocity field can be
taken as uni–directional, the general governing equations (the incompressible

14

10−4

10−3

10−2

10−1

2 4 6 8 10 12

Simulator with bug♦

♦

♦

♦

♦

♦

♦

♦

♦
♦

♦ ♦ ♦

♦
Simulator without bug

+

+

+
+

+

Figure 4: The L2 error of the numercial solution after each multigrid V–cycle
iteration.

Navier–Stokes equations and the heat transfer equation) can be simplified to
the following system:

∇ · [µ∇w] = −β, (10)

∇2T = −κ−1µγ̇2, (11)

µ = µT (T)µw(γ̇), (12)

γ̇ =
√

(w,x)2 + (w,y)2. (13)

Here, w is the velocity along the pipe, T is the temperature, κ is the heat
conductivity, and γ̇ is a measure of the deformation rate of the flow.

The model (10)–(13) depends on some constitutive relations, i.e., µT and µw

must be defined. Here we apply a power–law fluid model,

µw(γ̇) = µ∞ + µ0γ̇
n−1, (14)

where µ∞ is the viscosity at high shear rates, µ0 is a reference viscosity, and n
is a real number. The other factor in (12) is taken as,

µT (T) = eα(T−T0), (15)

where T0 is a given reference temperature and α is a constant.
Experimenting with the parameter values in the models for, e.g., µT , µw

and κ is hard when cutting and pasting from Maple or Mathematica. In the

15

following, we will see that this is much easier and safer done in Python, with
Famms.

The C++ simulator for solving the problem (10)–(13) uses an operator split-
ting technique, where two simulator classes, EnergySPy and MomentumSPy are cou-
pled. These two classes have been turned into Python extension modules using
SWIG. In a Python script, we create one instance of each simulator class:

from Pipeflow import *
mgr = Manager()
energy = EnergySPy(mgr)
momentum = MomentumSPy(mgr)

Here, Manager is a C++ class, wrapped as a Python extension module, that is
used by the C++ application to couple the two simulators.

Because we have two equations, we use the SystemFamms module in Python
instead of the Famms module previously used. The SystemFamms module admin-
istrates several Famms instances, one for each equation in the system, and makes
sure that the coupling of the two equations is done correctly. We specify the
model symbolically in the Python script:

def dgamma(w):
return (w.diff(x, 1)**2 + w.diff(y, 1)**2)**0.5

def mu_w(dgamma):
return mu_inf + mu0*dgamma**(n - 1)

def mu_T(T):
return exp(-alpha*(T - T0))

def mu(T, dgamma):
return mu_T(T)*mu_w(dgamma)

def F1(w, T):
print "SS"
print grad(w).spatial_symbs
return div(mu(T, dgamma(w))*grad(w)) + beta

def F2(w, T):
return laplace(T) + kappa**(-1)*mu(T, dgamma(w))*dgamma(w)**2

Here, F1 and F2 are the Python versions of (10) and (11), respectively. We choose
analytical solutions and assign the problem specification to the SystemFamms

object.

w = sin(x*y)
T = cos(y*x)
f.assign(sim_list=[momentum, energy], sol_list=[w, T], PDE_list=[F1, F2])

At this point, the simulators are up–to–date with the new problem specification.

Numerical Experiment

In this example, we investigate the non–linearity of the model (10)–(15), i.e.,
we vary the parameter n in (14). When n decreases towards zero, the model
becomes more non–linear, and harder to solve.

16

The solver for this problem is quite complicated. Being a non–trivial PDE
model itself, the possible lack of convergence of the solver may be grounded in
either coding mistakes, or problems with the numerical methods used. With
Famms, we may be able to rule out some sources of bugs, as we can closely
investigate the true error of the numerical solution.

The simulator in this experiment utilizes the finite element method for dis-
cretization, a Gauss–Seidel–like operator splitting technique for the coupled sys-
tem, and either Newton–Raphson or successive substitution (Picard iteration)
as non–linear solver for each PDE, where the linearized systems are solved with
a conjugate gradient squared solver. The convergence criteria used for the two

non–linear solvers are ǫNL =
||∆xl||L2

||xl||L2

= 10−6, where xk is the solution of either

the momentum or the energy equation at iteration k, and ∆x is the change from
the previous iteration. In the Gauss–Seidel method, we use the stopping crite-
rion max(||∆Tl||, ||∆wl||) ≤ ǫGS = 10−6, where l denotes the iteration number,
and ∆Tl and ∆wl are the change of residuals from the previous to the current
Gauss–Seidel iteration.

The solution domain is the unit square in 2D, and the mesh size, h, is h = 0.1.
The manufactured solutions are w = sin(xy) and T = cos(xy). The (constant)
model parameters are β = 0.2 in (10), κ = 0.5 in (11), µ0 = 1 and µ∞ = 0 in
(14), and T0 = 0 and α = 1 in (15).

In Table 5, we show the number of iterations needed to fulfill the conver-
gence criterion for the Gauss–Seidel method when the power–law exponent, n,
is decreased, as well as the final error measured in L2 norm. When n is small,
n < 0.15, the number of iterations needed to fulfill the convergence criterion
suddenly drops, and the errors increase. The reason for this is that an absolute
convergence criterion is used, and because the change in the solutions for highly
non–linear choices of n is small in the beginning, this criterion is fulfilled before
the method has converged.

Table 5: Number of Gauss–Seidel iterations and L2 errors for different power–
law exponents. The analytical solutions are w = sin(xy) and T = cos(xy).

n 0.6 0.3 0.15 0.10
Iter. 6 9 16 2
||eT ||L2

1.15 · 10−4 1.10 · 10−4 1.07 · 10−4 1.30 · 10−2

||ew||L2
4.83 · 10−5 2.93 · 10−5 2.16 · 10−5 2.47 · 10−1

4.4 A Note on the Simulators

The simulators presented here are all using the Diffpack PDE library. Diffpack
is a comprehensive C++ library, with a focus on solving PDEs using finite
element methods, see [5, 7]. The Famms framework does not, however, depend
on Diffpack, as it has been developed as a tool for verifying PDE solvers in
general. However, the authors have to this point only used it for real problems
in combination with the Diffpack library.

17

5 Symbolic Manipulation in Python

In Section 3, the module Symbolic was used to express analytical solutions and
PDE models symbolically in Python. Below, we describe this module in more
detail.

GiNaC (GiNaC is Not a CAS (Computer Algebra System)), see [2], is a C++
library designed for applications that need symbolic mathematics. It offers,
among other things, symbols and expressions, and differentiation of expression
with respect to the symbols involved. Therefore, it is ideal for the purpose of
constructing manufactured solutions and differentiating these in accordance to
the governing PDE problem. There already exists a Python interface to GiNaC,
named PyGiNaC, see [9]. Instead of building on this module, we have chosen
to build a new interface using SWIG. Thereby we can tailor the behavior of the
interface to fit our needs.

The interface to GiNaC, named Swiginac [13], is basically made by running
SWIG on simplified versions of the GiNaC header files. This does not, however,
give the wanted high–level mathematical module for expressing PDEs symbol-
ically. Instead, a pure Python module, Symbolic [13], is used as high–level
front–end to Swiginac. Here, we have access to symbolic expressions, vectors,
matrices and various functions working on these. The module does not offer a
general interface to all the functionality of GiNaC, but provides what is needed
in combination with the MMS.

In Symbolic we differ between symbols and symbolic expressions. The latter
are mathematical expression built with symbols. A simple example reads:

>>> from Symbolic import *
>>> x = Symbol(’x’)
>>> y = Symbol(’y’)
>>> t = Symbol(’t’)
>>> u = exp(-t)*sin(x+y)**2
>>> u.setSymbols([x, y], time=t)
>>> f = (u.diff(t, 1) - laplace(u)).simplify()
>>> print f
(-4*cos(y+x)**2+(3.0)*sin(y+x)**2)*exp(-t)

Here, f is a symbolic expression for the source term corresponding to the solu-
tion u=exp(-t)*sin(x+y)**2 of the heat equation in two space dimensions. The
functions grad and div above compute the gradient and divergence of expres-
sions, respectively. To do this, we first have to specify the dimension of the
expressions. The method setSymbols of expressions is used for this. It takes
two arguments: a list of symbols defining the space and an optional symbol for
time.

Vectors are lists of expressions and are equipped with arithmetic operations,
as well as high–level mathematical operations such as grad and div.

>>> u = sin(x)
>>> v = cos(y)
>>> w = Vector([u, v], [x, y])
>>> f = grad(div(w))
>>> print f
[-sin(x),-cos(y)]

18

Both expressions and vectors have methods for evaluation in terms of Python
floating point numbers.

6 Summary and Concluding Remarks

In this paper, we have introduced the Python framework Famms for verifying
PDE simulators written in C, C++, and Fortran. Famms uses the method of
manufactured solutions, and applies it to simulators equipped with a Python
interface. We have tried to make Famms simple to use, yet powerful enough to
tackle general PDE problems. Famms is freely available, and can be downloaded
from http://software.simula.no/sc/famms.

We have presented a series of examples, ranging from simple to complicated,
and showed how Famms can be used to investigate the properties of numerical
solutions and algorithms. Especially, the true numerical error has been com-
puted and compared with the expected theoretical behavior with the aim of
uncovering bugs.

We have also presented the Python module Symbolic for symbolic calcula-
tions. This module is built on top of a low–level SWIG interface to GiNaC, and
offers high–level abstractions convenient for expressing analytical solutions and
PDE models symbolically.

Appendix

In this appendix we show some examples of Python callbacks, which must be
implemented to fit the user’s simulation code in oder to utilize Famms. However,
implementing the callbacks for a given software library is a one time job. For
instance, in Diffpack the class FieldFunc is used to implement functions of space
and (optionally) time. Therefore, we made the class FieldFuncPython for Python
field functions. Because FieldFuncPython is a subclass of FieldFunc, a typical
Diffpack simulator does not distinguish between field function defined in Python
or C/C++.

In the following we list three implementations of Python callbacks to give
the reader a starting point for writing her own.

A Python Callbacks and Fortran

One of the advantages of the wrapper tool F2PY [10] is that it allows Python
functions to replace Fortran functions. We therefore do not need to implement
special callback functions for evaluating source terms and analytical solutions
when applying Famms to Fortran simulators.

To create a Python interface to a Fortran PDE simulator, we use the com-
mand line tool f2py. It can read Fortran source code and generate wrapper
code, which in turn must be compiled and linked with the PDE simulator. To

19

exemplify the use of F2PY, we show how Famms can be used to set the initial
condition in a Fortran heat simulator.

The function bell below can be used to point–wise assign an initial condition
to a Fortran array. The arguments are the spatial coordinates and the return
value is a scalar floating point number. The Fortran subroutine setIC performs
a loop over all grid nodes and calls a function, for instance bell, to set the initial
condition in the array u given as argument to the subroutine:

REAL*8 FUNCTION bell(x, y)
REAL*8 x, y
bell = exp(- x*x - y*y)
RETURN
END

SUBROUTINE setIC(u, n, initFunc)
INTEGER n
REAL*8 u(n, n), initFunc

Cf2py intent(in, out) u
EXTERNAL initFunc
INTEGER i, j
REAL*8 x, y, delta
delta = 1.0/(n-1)
DO 20 j=1, n

DO 10 i=1, n
x=(i-1)*delta
y=(j-1)*delta
u(i, j) = initFunc(x, y)

10 CONTINUE
20 CONTINUE

RETURN
END

After using F2PY to generate a Python interface to this Fortran code, a Python
function can be used in place of bell directly. The requirement is that the
Python and Fortran functions have compatible arguments.

To control the way F2PY builds a Python interface, special comment lines
starting with Cf2py can be used. Above, Cf2py intent(in, out) u is used to
specify that the array u is both an input argument and return value of setIC.

In a Python script for this Fortran simulator, we use Numerical Python
arrays and initialize them in Python. We also specify the analytical solution
and the PDE model symbolically and use Famms to create Python callbacks for
the analytical solution and the source term:

import HeatF # Fortran Heat simulator
from Numeric import *
from Symbolic import *
from Famms import Famms

n = 51 # Mesh size in each space direction
u = zeros([n, n], ’f’) # Solution
up = zeros([n, n], ’f’) # Solution at previous time step

f = Famms(nsd=2, time=True)
[x, y] = f.x; t = f.t # Define aliases

v = exp(-t)*exp(-x*x - y*y) # Manufactured solution

def F(u): # PDE definition
return u.diff(t, 1) - laplace(u)

20

Compute the source term and return callback functions
[source_cb, sol_cb] = f.createCallbacks(solution=v, equation=F)

Set initial condition to analytical solution.
def ic(x, y):

return sol_cb(x, y, 0)

up = HeatF.setic(up, ic)

The initial condition is set by sending the callback to the Fortran subroutine
setic4.

B Python Callbacks and C

Contrary to F2PY in Appendix A, SWIG and SIP do not automatically allow a
Python function to replace a function written in C/C++. Therefore, when using
SWIG or SIP to interface simulators, the wrapper code must be implemented
manually, by using the Python/C API directly.

We start by assuming that the PDE solver uses function pointers, e.g., that
the source term is evaluated through a function pointer similar to the following:

double(*source)(const double pt[], int n, double t);

The idea is to implement a wrapper function with a signature the above function
pointer can address. The wrapper function then invokes a Python function
object defined in the scripting layer. We first convert the arguments to the
wrapper function to their Python equivalents and then call a Python function
object with the converted values. The latter is done by the Python/C API
function PyEval CallObject, which takes two arguments: the function object to
call and a Python tuple holding the arguments to the Python function. The
function returns a Python object containing the return value. This value is
converted to a native data type, in our case a double, and returned. The source
code for this function reads:

double pycb(const double point[], int n, double time) {
PyObject* pt;
PyObject* arglist;
int i;

pt = PyTuple_New(n);
for (i=0; i<n; i++) {

PyTuple_SetItem(pt, i, PyFloat_FromDouble((double)point[i]));
}

arglist = PyTuple_New(2);
PyTuple_SetItem(arglist, 0, pt);
PyTuple_SetItem(arglist, 1, PyFloat_FromDouble((double)time));

double dres = 0.0;
PyObject* result;
result = PyEval_CallObject(pyobj, arglist);

4Note that F2PY by default lowercases all subroutine names. In Fortran, the name of this

subroutine is setIC.

21

Py_DECREF(arglist);
if (PyFloat_Check(result)) {

dres = PyFloat_AsDouble(result);
}
else {

printf("FieldFuncPython::valuePt: PyObject does not return double\n");
PyErr_SetString(PyExc_TypeError, "Could not evaluate Python callback\n");
dres = 0.0;

}
Py_XDECREF(result);
return dres;

}

When several function pointers are used in a simulator, we have to implement
one wrapper function for each function pointer we want to replace.

C Using Function Objects to Implement Python

Callbacks

When a PDE simulator is written in an object–oriented language like C++, we
can implement Python callbacks using function objects. Basically, a function
object is a function wrapped as a method of a class. Such methods are typically
redefined in subclasses, for example to implement different source terms in a
PDE simulator.

The code presented below should provide a good starting point for imple-
menting function objects for many PDE simulators in C++. We declare the
base class as follows:

class evalPt {
public:

virtual double operator()(const double* point, int n, double t=0.0);
virtual void operator()(const double* point,double* rets,int n,double t=0.0);

};

A simulator that utilizes this class can use the overloaded method operator()

for both scalar and vector field functions. The input arguments are typically a
point in space and a time step.

We declare a Python callback subclass of evalPt, named pyevalPt:

class pyevalPt: public evalPt {
public:

int nsd; // Number of space dimensions
pyevalPt (int _nsd){ nsd = _nsd; }
PyObject* pycb; // Python function to be called
virtual double operator()(const double* point, double t=0.0);
virtual void operator()(const double* point, double* rets, double t=0.0);
void attach(PyObject* pycb_);

};

The method attach is used from Python to assign a Python function.
The implementation of the scalar field function in operator() is similar to

the C implementation in Appendix B. The main differences are that the pointer
to the Python function is now a class variable, and, because the number of space
dimensions are specified in the constructor, we avoid sending the length of the
coordinate to the method:

22

double pyevalPt:: operator()(const double* point, double t){
PyObject* pt;
PyObject* arglist;

pt = PyTuple_New(nsd);
for (int i=0; i<nsd; i++)

PyTuple_SetItem(pt, i, PyFloat_FromDouble((double)point[i]));

arglist = PyTuple_New(2);
PyTuple_SetItem(arglist, 0, pt);
PyTuple_SetItem(arglist, 1, PyFloat_FromDouble((double)t));

double dres = 0.0;
PyObject* result;
result = PyEval_CallObject(pycb, arglist);
Py_DECREF(arglist);
if (result) dres = PyFloat_AsDouble(result);
Py_XDECREF(result);
return dres;

}

The great advantage of class pyevalPt is that we need to implement the wrapper
only once.

D Python Callbacks for Diffpack

Diffpack has the classes FieldFunc and FieldsFunc for representing scalar and
vector valued functions (resp.) of space and time. These classes define a virtual
method, valuePt, which takes points in time and space as arguments and returns
the implemented functions evaluated at these points.

For the base class FieldFunc we define a subclass named FieldFuncPython:

class FieldFuncPython: public FieldFunc {
public:
PyObject* pyobj_value;
PyObject* pyobj_grad;
PyObject* pyobj_hessian;

FieldFuncPython(const char* name = __null);
~FieldFuncPython() {}

bool ok();
void attach(PyObject* value);
void attach(PyObject* value, PyObject* grad);
void attach(PyObject* value, PyObject* grad, PyObject* hessian);

virtual double valuePt(const Ptv(double)& p, double t);
virtual double valueFEM(const FiniteElement& fe, double t=DUMMY);

We omit the definition of valuePt, because it is similar to the definition of
of the method operator() in pyevalPt in Appendix C. The vector version of
FieldFuncPython, named FieldsFuncPython, is similar, where the main difference
is that the returned value from the Python function object is a list that has to
be converted to a C++ array type.

23

References

[1] D. Abrahams. Boost.Python homepage.
http://www.boost.org/libs/python/doc/, 2004.

[2] Christian Bauer, Alexander Frink, and Richard Kreckel. GiNaC homepage.
http://www.ginac.de, 2004.

[3] D. Beazley. SWIG homepage. http://www.swig.org, 2004.

[4] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial.
SIAM Books, 2nd edition, 2000.

[5] Diffpack. See http://www.diffpack.com/ for further information.

[6] P. M. Knupp, S. G. Krantz, and K. Salari. Verification of Computer Codes

in Computational Science and Engineering. CRC Press, 2002.

[7] H. P. Langtangen. Computational Partial Differential Equations – Nu-

merical Methods and Diffpack Programming. Textbook in Computational
Science and Engineering. Springer, 2nd edition, 2003.

[8] J.K. Ousterhout. Scripting: Higher Level Programming for the 21st Cen-
tury. IEEE Computer, March, 1998.

[9] Pearu Peterson. PyGiNaC homepage.
http://cens.ioc.ee/projects/pyginac/, 2001.

[10] Pearu Peterson. F2PY homepage.
http://cens.ioc.ee/projects/f2py2e/, 2004.

[11] P. J. Roache. Verification and Validation in Computational Science and

Engineering. Hermosa Publishers, Albuquerque, 1998.

[12] Ola Skavhaug. Famms homepage.
http://famms.berlios.de, 2005.

[13] Ola Skavhaug and Ondrej Certik. Swiginac homepage.
http://swiginac.berlios.de, 2005.

[14] P. Thompson. SIP homepage.
http://www.riverbankcomputing.co.uk/sip/index.php, 2004.

24

