A controlled experiment comparing the maintainability of
programs designed with and without Design Patterns—a
replication in a real programming environment

Marek Voka¢ (marekv@simula.no)
Stmula Research Laboratory

Walter Tichy

Universitat Karlsruhe

Dag I. K. Sjgberg

Stmula Research Laboratory

Erik Arisholm

Stmula Research Laboratory

Magne Aldrin

Norwegian Computing Center

Abstract. Software “Design Patterns” seek to package proven solutions to design prob-
lems in a form that makes it possible to find, adapt and reuse them. To support the
industrial use of Design Patterns, this research investigates when, and how, using pat-
terns is beneficial, and whether some patterns are more difficult to use than others. This
paper describes a replication of an earlier controlled experiment on Design Patterns in
maintenance, with major extensions. Experimental realism was increased by using a real
programming environment instead of pen and paper, and paid professionals from multiple
major consultancy companies as subjects.

Measurements of elapsed time and correctness were analyzed using regression models
and an estimation method that took into account the correlations present in the raw data.
Together with on-line logging of the subjects’ work, this made possible a better qualitative
understanding of the results.

The results indicate quite strongly that some patterns are much easier to understand
and use than others. In particular, the VISITOR pattern caused much confusion. Con-
versely, the patterns OBSERVER and, to a certain extent, DECORATOR were grasped and
used intuitively, even by subjects with little or no knowledge of patterns.

The implication is that Design Patterns are not universally good or bad, but must be
used in a way that matches the problem and the people. When approaching a program
with documented Design Patterns, even basic training can improve both the speed and
quality of maintenance activities.

Keywords: Controlled experiment, design patterns, real programming environment,
qualitative results

1. Introduction

Design Patterns have become quite popular (Buschmann et al., 1996; Gamma
et al., 1995). In addition to making design knowledge available to both junior

© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.1

2

and more experienced developers, it is claimed that Design Patterns define a
common terminology that can be used to document the design. According to
the classic books by (Alexander, 1978; Alexander, 1987), individual patterns
can be combined into a language that guides the designer. This should
simplify communication of the underlying design and assumptions from the
original designers to maintainers of the software.

An expected benefit—because Design Patterns tend to provide solutions
that are more complete than just solving the immediate problem at hand—
is the ability to add functionality at a later time without causing major
changes. The same property may, however, introduce unneeded complexity.

Prechelt et al. performed a controlled experiment in late 1997 (Prechelt
et al., 2001) to measure the effects of using several Design Patterns in a
maintenance situation. They used 29 unpaid professionals from a single com-
pany as subjects, and used pen and paper for the programming exercises.
Based on the properties of the four selected patterns, they hypothesised
both positive and negative effects from the patterns.

Their results generally agreed with expectations. The use of the OB-
SERVER pattern in a simple program had the expected negative effect on
maintainability; the VISITOR pattern was neutral in a context where a
negative effect was expected. The DECORATOR pattern had the expected
positive effect, and ABSTFACTORY caused only small differences.

The authors of the present paper replicated their experiment with 44
paid, professional subjects using the same programs in a real programming
environment, instead of pen and paper. This increases the experimental
realism and, thereby, the applicability of the results.

The technical environment also allowed us to collect more data, making
more detailed analysis and inferences possible. It also allowed us to address
some of the threats to validity of the original experiment, such as effects
of subjects’ C++ knowledge, and of actually programming and testing the
solutions. At the same time, performing a close replication allowed us to do
a direct comparison of our results to those of the original experiment.

Our results reinforce the conclusion that each Design Pattern has its own
nature and proper place of use; they cannot be classified as “good” or “bad”
in general terms. We found a positive effect for OBSERVER and a very strong
negative effect for VISITOR, while DECORATOR and ABSTFACTORY found
effects similar to those of the original experiment.

The remainder of this paper is organised as follows: Section 2 describes
the original experiment. The present replication is described in Section 3.
Section 4 contains the programs, work tasks, hypotheses and a summary
of the quantitative results. Section 5 discusses the results and qualitative
factors that underlie the quantitative measurements. Section 6 compares
this replication to the original experiment. Section 7 addresses methods,

"PatMain EMSE".tex; 22/08/2003; 11:32; p.2

3

and Section 8 the validity and applicability of the experiment. Section 9
concludes.

2. The original experiment
This Section gives an overview of the design of the original experiment.

2.1. OBJECTIVES AND HYPOTHESES

“If you have a hammer, everything looks like a nail”. Thus, having learned
some Design Patterns, it may be tempting for a designer to use them even
in situations where their complexity and application may not be warranted,
and a simpler solution is available.

Prechelt et al. wished to test whether the use of some specific patterns
in such situations is “helpful”, “harmful” or “neutral” for subjects with
different backgrounds. They informally framed their hypotheses as expec-
tations: A design pattern P does, or does not, improve the performance
of subjects doing maintenance work task X on program A (containing P)
when compared with subjects doing the same work task X on an alternative
program A’ (not containing P).

Note that the programs may contain patterns other than the one being
tested; these other patterns are used identically in the A and A’ versions.
Henceforth, we will use the term PAT for the version with patterns, and ALT
for the version without.

The “helpful”, “harmful” and “neutral” interpretations are derived from
the support or contradiction of these hypotheses.

2.2. VARIABLES

The experiment used three independent variables:

— Program and Work Task: there were four different programs, each
with its own purpose, patterns, and two maintenance work tasks.

— Program Version: each program existed in two versions, functionally
equivalent, comparably complex and sharing some code. The PAT ver-
sion contained one pattern not present in the ALT version; the alternate
version used a “simpler” structure to replace the pattern. This was
the central variable of the experiment. Equivalent documentation was
present in the two versions, such as an inheritance outline vs. pattern
name and class role.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.3

Amount of Design Pattern Knowledge: the experiment was di-
vided into three parts. In the first half of day one, the subjects per-
formed the pre-test, consisting of work tasks on two programs. The rest
of day one and the first half of day two contained a patterns course, and
the rest of day two was used for the remaining two tasks (post-test).

Before the experiment, most subjects had little or no experience with
patterns; thus, the post-test represented subjects with significantly
more knowledge of Design Patterns than the pre-test. The experimental
design is summarized in Figure 1. In order to control learning and
fatigue effects, the order of programs is varied, and data is collected
from each subject on both PAT and ALT programs.

The experiment used two dependent variables:

Time: the time taken to complete each task, in minutes.

Correctness: each solution was evaluated on a five-point scale to assess
to what degree it was functionally correct, regardless of whether it used
the “proper” design. We use the term “correctness” instead of the more
general “quality”, as overall quality is complex and difficult to measure.
However, “correctness” is more simply defined:

1.

Requirements misunderstood—the solution did not address the given
task, or was totally useless, or no real solution was made or at-
tempted.

Wrong answer—the requirements were understood, but the at-
tempted solution did not work and was not on the right track.

Right idea—the requirements were understood and a reasonable
solution attempt was made, but the solution either did not work or
did not compile.

. Almost correct—the solution compiled and ran but did not give

exactly the correct answer; however, it did not contain any funda-
mental errors.

Correct—the solution compiled, ran and produced correct output.

2.3. SUMMARY OF PROGRAMS AND WORK TASKS

The four C++ programs used came from different domains and were of
varying complexity. This was intended to guard against the possibility of
domain knowledge or complexity systematically biasing the results; a fuller
discussion can be found in Threats to Validity, Section 8.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.4

Pre-test Course Post-test
Time

Y

Course

MO0

®
®® ¢

Alt version

Familiarisation O Pat version

Q

Figure 1. Experimental Design: Circles denote PAT program versions, shaded diamonds
AvLT versions. The two-letter codes are the program name abbreviations. Time runs from
left to right; the first day includes the pre-test and the first half of the course, the second
day contains the second half of the course and the post-test.

This experiment looked at the effects of Design Patterns through the
medium of code (with some documentation), not models. In a maintenance
situation, there may not be any valid models available; also, having to actu-
ally implement changes in code provides a stricter test of understanding of
the original code and its design. Fundamentally, the end result that matters
from a development or maintenance project is the final code and not the
underlying model.

Throughout this paper, the programs are identified by their names or
abbreviations. The names reflect the domain of the programs: Stock Ticker
(ST), Graphics Library (GR), Boolean Formulas (BO) and Communication
Library (CO). For each program, there were two work tasks. With one
exception, the first task was a programming task (addition of a feature),
and the second task was oriented more towards theoretical comprehension.

Each program tested a different pattern. While it would be possible to
create a program that contained all the patterns, it was considered easier
to make the programs separately, so that each tested the aspects of a single
pattern. The correspondence between the PAT and ALT versions of the
programs was also considered simpler to maintain in separate programs.
Most importantly, combining multiple patterns in a single program would
have given the subjects a chance to see all of the patterns and code immedi-
ately, thereby introducing a learning effect and seriously compromising the
experimental design.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.5

6

Table I. Descriptions of programs and tasks

Program Description and Complexity Tasks Patterns
Stock Display an incoming stream of 1: Add another kind of PAT: OBSERVER
Ticker data (read from a file) in one or window (the window itself
(ST) more windows using a supplied, was supplied). ALT: None

simple GUI library 2: Let the user choose

. . . which windows should be
Simple program with little data isibl
visible

and low code complexity

PaT: 441 SLOC, 7 classes

Avrt: 374 SLOC, 7 classes
Boolean A system for storing and ma- 1: Evaluation of formulas PaT: COMPOSITE,
Formulas nipulating boolean formulas, rep- 2: Change name of one VISITOR
(BO) resented in a hierarchical data method, breaking the

structure. COMPOSITE pattern ALT: COMPOSITE

Relatively complex, using a re-

cursive data structure.

PaT: 471 SLOC, 11 classes

Avrt: 372 SLOC, 8 classes
Comm. Wrappers for communication 1: Add a wrapper for a PAT: DECORATOR
Library primitives such as transmit, new (supplied) primitive
(CO) receive, compress and 2: Determine the ALT: None

decompress conditions leading to a

. certain status value;

Very little flata and. nf)t_ very determine how to create a

c'on%pleg, Simple primitives with channel with certain

similar interfaces functionality

PAaT: 404 SLOC, 6 classes

Avrt: 342 SLOC, 1 class
Graphics Represent graphic primitives 1: Add a new graphics PAT: ABSTRACT
Library such as point, line and circle, device and corresponding FACTORY,
(GR) and a system for drawing them subclasses of primitives COMPOSITE

on several kinds of device. 2: Determine whether a

Methods for creating devices running supplied method ALT:

ABSTFACTORY

and corresponding primitives.

Data structure is partly
recursive, but less complex than
in “Boolean Formulas”. The
code is larger than the other
programs, but well structured

PaT: 683 SLOC, 13 classes
AvrT: 667 SLOC, 11 classes

will result in a certain
output

In all cases, the features to be added to the programs corresponded to
features already present in the code, which could be used as templates by
the subjects. Table I contains short, comparable descriptions of all programs
and tasks, while detailed descriptions can be found in Section 5.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.6

2.4. SUBJECTS, PROGRAMS, TASKS AND GROUPS

A total of 29 subjects participated in the original experiment. They were
all professional software engineers and came from a single company. Fifteen
subjects had some experience with Design Patterns.

The subjects were divided into four groups (A-D). Each group maintained
one PAT and one ALT version of a program in both the pre-test and post-
test. Each subject worked on all four programs and each program was used
as often in the pre-test as in the post-test, and as often in PAT and ALT
versions, as shown in Figure 1.

2.5. ANALYSIS AND STATISTICAL METHODS

The time and correctness data was first evaluated using an analysis of vari-
ance to identify significant factors. As expected, the work task was the most
significant factor, while the order of tasks was not significant. The rest of
the factors (pre/post, pat/alt, individual differences) were discussed on a
per-task basis.

Distribution-independent bootstrap methods were used to evaluate mean
elapsed times and derive P-values for the differences (Efron and Tibshirani,
1993). Such differences were calculated for each pair that corresponded to
a hypothesis, eg., for PRE-ALT vs. POST-ALT for a particular program and
work task. Numerous significant differences were found and compared with
the expected trends (hypotheses) for each work task. For many tasks, all
groups achieved near-perfect correctness, so the dependent variable “cor-
rectness” was often ignored (Prechelt et al., 2001), p. 1136.

3. Current replication

We wished to increase the realism of the experiment (Sjsberg et al., 2002),
and attempted to do so in two ways: 1) we used a real programming environ-
ment, instead of annotations to paper printouts, and 2) our subjects came
from multiple consultancy companies and were paid for their participation,
instead of being volunteers from a single company.

We used the same general design of the experiment and the exact same
set of four tasks, with a PAT and ALT program version of each. The pro-
gram code was identical to that used in the original experiment, except for
corrections of minor errors. The same course on Design Patterns was taught
by the same person (Walter Tichy), using the same course materials.

In the terminology of Lindsay and Ehrenberg, this can be considered
a relatively “Close” replication (Lindsay and Ehrenberg, 1993). While an
identical replication is neither possible nor particularly desirable, we de-

"PatMain EMSE".tex; 22/08/2003; 11:32; p.7

8

signed ours to keep it as close as possible, except for differences that are
either unavoidable or explicitly desired.

In this case, the difference in actual subjects and their nationality was
unavoidable. Their background was roughly the same and was evaluated
using the same methods. The use of paid subjects from more than one
company, and the use of a programming environment, were motivated by
the increased realism they offer.

3.1. LOGGING AND DATA COLLECTION

Our subjects used their own laptop PC’s as terminals, while the actual
programming environment ran on a set of Windows Terminal Servers. This
made it possible to install various non-intrusive logging tools to collect
additional data, beyond the correctness and time variables (as well as the
post-mortem questionnaire) of the original design.

To gain insight into the programming process of each subject, a copy
of the program file being edited was saved at every compilation, together
with information on compilation errors, editing time (as a further check) and
breakpoint and debugging information. It is, therefore, possible to detect the
changes made for each compilation, which often occurs every few minutes,
as well as the debugging method used. This data was used both for grading
of solution correctness (Section 4.2) and in the qualitative analysis of results
(Section 5).

To limit the possibilities for cheating,and to lessen competitive stress,
subjects were placed so that two people sitting next to each other always
worked on different programs. Copy/Paste operations through the Termi-
nal Server environment need multiple menu choices and intermediate files,
making data exchange through IR ports impractical. Inspection of the code
logs revealed no traces of cheating or plagiarism.

3.2. SUBJECT SELECTION AND BACKGROUND

Several international and Norwegian consultancy companies contributed
subjects. They were explicitly asked to provide people who formed a rea-
sonably representative sample, with regard to seniority, experience and
education.

In total, 44 subjects were paid for their participation, on three scales
(junior, intermediate, senior). The employers determined the scale for each
participant. Additionally, payment was offered for a limited amount of
overhead per company, to encourage them to undertake a serious selection
process.

The subjects were mostly (39) professional software engineers, from 11
different companies. There were also five students at the master/PhD level.
The median education was five years and work experience was four years.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.8

9

Five subjects had 20 or more years work experience. 17 subjects had some
experience with patterns, though generally with only one or a few pat-
terns, applied a few times. Only six subjects had practical knowledge of the
patterns actually being tested.

Regarding prior experience with object-oriented programming and C++-,
one third of the subjects answered that they had less than one year expe-
rience with object-oriented programming (as opposed to other paradigms);
the average value was 2.4 years. 75% of the subjects had written less than
25000 lines of C++ code.

Thus, the participants in our replication generally had a relatively exten-
sive education, but only limited practical experience, and initially almost no
relevant pattern knowledge. We would expect the lack of practical experience
to cause the subjects to spend more time on some programming details
than would experienced developers. This also has some implications for the
external validity of the experiment.

3.3. GROUP ASSIGNMENT

The subjects were assigned to the four groups using randomized blocking,
where the groups were balanced (the blocks were not random, but the
assignment of members from each block to the groups was). Obviously,
balancing all characteristics at once is not possible; the greatest weight was
given to knowledge of Design Patterns, and general experience. The subjects
completed a survey form before the experiment, and their answers were used
to compute a “pre-qualification score”. The subjects were ordered by this
score, and those with the four highest scores were randomly assigned, one
to each group, then the next four, etc.

Of the original 54 subjects who expressed an interest, 10 were unable
to participate. Of those, four cancelled after the final group assignment,
causing an imbalance in group sizes. Table II summarizes the groups. Pos-
sible threats to validity stemming from the imbalances are discussed in
Section 7.8.

3.4. EXPERIMENT CONDUCT

The subjects were not told about the design of the experiment (the presence
of Pattern and Alternate versions), nor about what we were measuring,
logging or how this was done. The programming tasks were presented as
exercises for the patterns course, though the subjects were told in advance
that they were taking part in a combination of course and experiment.
The authors discreetly eavesdropped on conversations during lunch and in
breaks, and the subjects did not to our knowledge discuss the tasks.

The same general timetable was followed as in the original experiment:
The pre-test work tasks in the morning, then lunch, followed by the first

"PatMain EMSE".tex; 22/08/2003; 11:32; p.9

10

Table II. Subject backgrounds for each of the four groups A—D

N Pat Educ Work OO prog C++

A 10 1 3.5 5.7 2.2 13300
B 12 1 4.7 5.3 2.6 16387
Cc 12 2 4.0 6.7 1.5 8509
D 10 2 4.1 7.7 3.4 18638

N = number of subjects,

Pat = number with previous knowledge of relevant patterns,
Educ = median education (years),

Work = median work experience (years),

OO prog = median OO programming experience (years),
C++ = mean number of C++ lines of code written.

part of the Design Patterns course. On day two, the course continued until
lunch, and the post-test work tasks were conducted after lunch.

The participants were encouraged to work until they were done. On day
one there was a time limit (the start of the course), on day two there was
no formal time limit and the last subject left at 5.45 pm. Four subjects
ran out of time on day one, and in the questionnaire estimated that they
would have needed from one to three hours additional time to complete their
tasks. Since our analysis looks at both the time needed for the tasks as well
as the solution quality, these partial solutions were graded and included in
the data set. The analysis of elapsed time excluded solutions of low quality,
regardless of the reason for the low quality (Section 3.6).

3.5. EXPECTATIONS AND HYPOTHESES

Since both the programs and the different patterns they contained were
of varying kind and complexity, the hypotheses varied. In some cases we
expected the PAT version to be easier to understand and modify, while
in other cases we expected the ALT version to have the advantage. The
expected effect of the patterns course also differed.

The hypotheses represent what we expected to observe based on software
engineering common sense. They were identical to those of the original
experiment, which used bootstrap methods to compare mean work times for
work tasks, either between PAT and ALT versions or between PRE and POST.
The hypotheses were defined and evaluated separately for each program and
work task.We reformulated the hypotheses to correspond to our statistical
approach, and they are presented in tabular form in Section 3.8, table III.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.10

11

In addition to quantitative analysis of dependent variables, a qualitative
analysis was also made, the purpose of the latter being to try to explain
why the quantitative results were observed.

3.6. MODEL FOR ANALYSIS OF TIME

To evaluate the observed quantitative data and enable a more compact
representation of the hypotheses, a regression-based approach was adopted.
The method used in the original experiment (bootstrap estimations of dis-
tributions of differences of means) only takes into account data for each pair
of tasks considered, separately from all other data. The model adopted here
considers all the data simultaneously and thereby enables us to better take
into account differences between individual subjects.

Since completion times have little meaning for solutions with low correct-
ness, only those solutions achieving correctness score 4 (“Almost correct”)
or 5 (“Correct”) were used in this analysis.

The time used to execute a task may vary systematically by explana-
tory variables such as program and task number, ALT or PAT version, and
amount of pattern knowledge. Define

time;; = time used by individual i (i = 1,...,n) on task ¢t (¢t = 1,...,8),
on the condition that the corresponding solution correctness was
at least 4.

Ip:; =1 if task ¢ for individual ¢ were with PAT, else Ip;; = 0,
Ic:; =1 if task ¢ for individual ¢ were done after the course, else Ic;; = 0,

Further, let E(time;) = pt,i be the expected time used on task ¢, where
the expectation is taken over the sample population of programmers, given
specific values of the explanatory variables. We assume that the logarithm
of p; has the additive structure

log(pies) = a4+ Bedprs + 00(1 — Ipgi)Icts +vilpeilcot (1)

where the a’s, s, §’s and +’s are regression coefficients that will be esti-
mated from the data.

The model can be transformed back to the original scale. The population
averaged expected time used on task t before the course, for ALT programs,
and with correctness at least 4 will be p;; = by = exp(oy).

The quantity b; will be called the base level for task t. The expected time
for a PAT program, before the course, and with correctness at least 4, will
be puit; = by - exp(ft), such that

exp(f;) is the relative increase in time by using PAT instead of ALT before
the course, i.e., the “effect of Design Patterns before course”.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.11

12

Furthermore, the following quantities will be of interest:

exp(d;) is the relative increase in time from PRE-ALT to PosT-ALT, i.e.,
the “course effect on alternate programs”,

exp(7y) is the relative increase in time from PRE-PAT to POST-PAT, i.e.,
the “course effect on Design Patterns programs”,

exp(0B¢ + v¢ — 0¢) is the relative increase in time by using PAT instead of ALT
after the course, i.e., the “effect of Design Patterns after course”.

The relative increases will be reported as percentage increases, i.e., in-
stead of reporting exp(3;), we will report 100 - exp(3;) — 100, etc.

If we assume that the observations time;; are gamma distributed, and
independent for all ¢t and ¢, the parameters can be estimated by maximum
likelihood according to the theory of generalized linear models (GLM) (Mc-
Cullagh and Nelder, 1989). The gamma distribution is suitable for data that
takes only positive values and are skewed to the right. This is the case for
the time data, which has 0 as lower limit, but no clear upper limit (though
it cannot be longer than a day). However, the independence assumption is
unrealistic, as we have multiple observations for each individual subject, one
for each work task.

Therefore, the parameters were instead estimated by the method of
Generalized Estimating Equations (GEE) (Diggle et al., 1994; Liang and
Zeger, 1986), using the software package Oswald (Smith et al., 1996). GEE
is an extension of GLM, developed specifically to accommodate data that
is correlated within clusters (here individuals).

First, the user has to specify a so-called working correlation matrix, i.e.,
the structure of the correlations between observations within the same indi-
viduals. For the present model, we have used an “exchangeable correlation
matrix”, which means that all observations within the same individual have
equal correlation. Then the estimation is carried out under the assumption
that (the structure of) the working correlation matrix is true, and standard
errors of the estimates are calculated.

The theory of GEE states that the estimates are asymptotically normal
distributed with the given standard errors. Further, under certain assump-
tions, the estimates are consistent (i.e., converge to the true values when
the number of observations becomes large), even if the distribution or the
working correlation matriz is incorrectly specified. This important result
does not imply that the choices of distribution and working correlation
matrix are of no consequence. The closer they are to reality, the more precise
the estimates will be.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.12

13

3.7. MODEL FOR ANALYSIS OF CORRECTNESS

It would be natural to handle the correctness scores by ordinal logistic
regression, i.e., by estimating the probabilities of getting the score values
1,2,..,5, given the explanatory variables. However, it was impossible to
estimate such a model by GEE or GLM, because the methods break down
when all observations for certain combinations of the explanatory variables
have the same value. This happened in several cases; for example, in the PAT
group working on task 1 of the Stock Ticker program in the post-test, all
the subjects had a perfect score. Instead we have used the model presented
below, assuming Gaussian data.

The model for the quality or correctness score on each task is similar to
that for time. Define score;; € (1,2,3,4,5) = score achieved by individual
i(i=1,...,n)ontask t (t=1,...,8),.

Further, let E(score;;) = pt; be the expected score on task ¢, which is
assumed to have the structure

log(pes) = ar + Belpei + 0:(1 — Ipei)lcts +velpeilct- (2)

The regression coefficients have different values than in the time model, and
slightly different interpretations. The expected score for task ¢ before the
course, for ALT programs now becomes 1;; = oy, where oy will be called
the base level for task ¢. The other coeflicients give the increase in score
compared with the same alternatives as in the time model. Note that positive
values here mean improvements in correctness (higher correctness score),
whereas negative values meant improvements in the time model (shorter
time).

The parameters have again been estimated by GEE, but now using the
Gaussian family of distribution as mentioned above. We used an “iden-
tity working correlation matrix”, because the GEE algorithm did not con-
verge with an exchangeable working correlation matrix. Using an identical
working correlation matrix gives the same estimates as GLM, but the es-
timated uncertainty limits are more robust to incorrect specification of the
correlation.

In practice, the correctness scores take integer values, and are far from
Gaussian. As mentioned in the discussion of the time model, the GEE
estimates are robust also to mis-specification of the distribution. However,
more data would be necessary for the asymptotics to hold, so the uncertainty
limits should be interpreted with some care.

To guard against a model optimized to find only the “desired” results and
ensure its statistical correctness, it was constructed by one of the authors
(M.A.) without prior detailed knowledge of the hypotheses posed.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.13

14

Table III. Hypotheses for time

Pr Task PoOST-ALT vs. PoOST-PAT vs. PRE-PAT vs. POST-PAT vs.

PRE-ALT PRE-PAT PRE-ALT PosT-ALT

ST 1 S1 + S22 —

2 S3 -
BO 1 B2a — B2b — Bl + B3 -

2 B4 + B6 0
CO 1 C1 - c2 -

2 C3a + C3b +
GR 1 G2a — G2b — Gl +

2 Gda — G4b — G3a 0 G3b 0

3.8. REFORMULATED HYPOTHESES

Given the analysis models and the quantities exp(0;), exp(y¢), exp(Br + v —
dt), we can now express the hypotheses formally, in a tabular format. In
Tables IIT and TV, a ‘4’ in a cell means that we expected a positive value
for the coefficient on the log scale or greater than 1 on the original scale
(longer time, higher correctness score). A ‘—’ means we expected a negative
coefficient on the log scale or lower than 1 on the original scale. A ‘0’ means
we expected no change relative to the base level (log scale coefficient 0,
original scale 1), which is the ALT version of each program, before the
patterns course. The hypotheses and expectations are discussed in detail in
Section 5.

Note that empty cells in this table mean that no hypothesis was ad-
vanced with respect to this program/task/parameter combination. As this
is a replication of an earlier experiment, we did not change any hypotheses
or advance any new ones. Significant observations that do not correspond
to one of the hypotheses are discussed in Section 5.6. The numbering of the
hypotheses was rendered consistent with those in the original experiment,
to make comparisons easier.

The headings refer to the effect measured: POST-ALT vs. PRE-ALT shows
the course effect (from pre-test to post-test) on the ALT version programs,
while PRE-PAT vs. PRE-ALT shows the effect of going from ALT to PAT
version, both taken in the pre-test only.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.14

15

Table IV. Hypotheses for correctness

Pr Task PoOST-ALT vs. PoOST-PAT vs. PRE-PAT vs. POST-PAT vs.

PRE-ALT PRE-PAT PRE-ALT PosT-ALT

ST 1

2
BO

2 B5 -—
CO

2 Cda — C4b —
GR 1

2

4. Results

4.1. VALIDATION OF RAW DATA

The first step in the analysis was to check that there were no errors in
the raw data resulting from misunderstandings or gross technical problems.
The only such case was one subject who had performed the work tasks
completely out of order. All data from this subject was therefore dropped.

4.2. GRADING OF CORRECTNESS

The grading of the solution correctness used the scale described in Sec-
tion 2.2 above, ranging from “Misunderstood” to “Correct”.Correctness
was determined by first compiling and running the final solution saved
by each subject. Then, the final solution code was inspected to determine
the magnitude of any problems. Finally, all intermediate source files were
inspected to arrive at a better understanding of any errors and the solution
strategy. The grading was done by one of the authors using a system that
presented the source files, program output, etc. The subject information was
fully anonymised at this point (to the grader) and the subjects were graded
in random order.

We also determined whether each solution used the patterns present in
the code. Note that “Correct” does not imply that the patterns present in
the code, if any, were actually used in the solution; only that the solution
produced the correct output.

Four subjects had consistently low-quality solutions. Inspection on a per-
compilation basis revealed that their C++ proficiency was so low that it

"PatMain EMSE".tex; 22/08/2003; 11:32; p.15

16

would significantly mask any other effect. None of them finished all tasks,
and most had given up (i.e., stopped work while the solution was nonwork-
ing and there was more time available) on more than one task. All data
from these subjects was also dropped. Since their solution correctness was
consistently low across both PAT and ALT program versions, this introduces
no significant bias.

4.3. REFINEMENT OF THE ANALYSIS MODEL

There were several candidates for explanatory variables other than those
described in Sections 3.6 and 3.7. In the model for dependent variable time,
candidate explanatory variables were the pre-qualification score and the
correctness of the solutions. The pre-qualification score (as discussed in Sec-
tion 3.3) should be significant if it is correlated with the actual performance
of the subjects. An analysis of the data showed that this was not the case.
The coefficient had a value close to 0 and was not significant.

We interpret this as showing that the pre-qualification score bears lit-
tle relation to the subjects’ actual performance. At the same time, the
experimental design is quite robust with respect to effects of individual
performance differences, and therefore also balancing of groups. Since all the
subjects performed tasks on all the programs, imbalances between subjects
and groups will increase the total variability, but have a relatively small
chance of causing systematic skewing of the results.

Solution correctness could also have been included in the analysis model
for time, in the form of an indicator variable Ig;; with value 1 if solution
correctness 5 were achieved by a subject on a task. One might expect a pos-
itive value for this coefficient, indicating that achieving higher correctness
takes more time. An analysis showed that it was also close to 0 and not
significant.

Our interpretation is that high correctness was not achieved at the ex-
pense of time; i.e., skilled individuals tend to favour time and correctness
equally.

In the model for dependent variable correctness, the pre-qualification
score had a low, positive value (p = 0.026), but the values and confidence in-
tervals of the other estimated coefficients in the model were not significantly
changed by including this factor.

To summarize, including these candidate explanatory variables caused
only very slight changes to the values and confidence intervals of the re-
maining coefficients, in the models for both time and correctness. They
were therefore not included in the final model for time.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.16

17

4.4. EFFECT OF PROGRAMMING TOOL USE

We wished to determine whether any subjects had spent a significant amount
of time on “technical details”, i.e., problems with programming language
syntax, obscure compiler error messages or other factors that might be
classed as not relevant to the effects of design patterns. This determination
was necessarily exploratory in nature and proceeded as follows:

An analysis was performed of each separate compilation of each solu-
tion. A “syntactical change” was defined as one that did not introduce new
features or functions, but only changed the statement that caused the com-
pilation errors. Typically this consisted of trying out various combinations of
the ., =>, :: or * operators, different placements of [] brackets in attempted
array declarations, etc. Another example was a subject who spent about 15
minutes looking for a missing closing brace; the error messages from the
compiler were not helpful.

If the program submitted for compilation did not compile, the only
changes were localized and syntactical, and there was a contiguous series of
such changes all related to one or a few lines, those individual compilations
were classified as “irrelevant technical detail”. The sum of the editing times
for such compilations was subtracted from the total elapsed time for that
task, as a correction.

Such corrections! were made for 33 out of the 43 subjects. The regression
analysis was then run on both corrected and uncorrected data, to check
whether the corrections actually had any effect, and to guard against the
introduction of any bias. Ideally, we would want the confidence intervals to
shrink when using the corrections, though without significantly changing
the point estimates.

The corrections did achieve some reduction in the confidence intervals,
and did so without materially affecting the point estimates. However, the
reduction was nowhere near significant and did not change the degree of
support or rejection for any hypothesis. Since the grading that underlies
such corrections is necessarily somewhat subjective, and there is a risk of
penalizing subjects who simply spent time thinking about the problems
without submitting compilations, the corrections were dropped and the final
analysis done on uncorrected, raw data.

L All data is stored in a relational database together with the relevant source files, so
that it is possible at any time to retrieve data with or without any corrections and grades,
inspect the classification of each compilation, and the file difference giving rise to it.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.17

18
4.5. SUMMARY OF QUANTITATIVE RESULTS

The results from the analysis using the regression models are shown in
graphically in Figures 2 and 3, and in tabular form in Table VII using the
same layout as for the hypotheses in Table III.

In the Figures, the point estimates for the coefficients are dots and 95%
confidence limits are shown as vertical bars; a significant (at 5%) result is
one where the bars do not cross the 0 line. As detailed in Section 3.6, the
estimates from the regression model are asymptotically normal distributed,
providing the basis for calculation of the confidence intervals.

Descriptive statistics are given in Table V for working times and Ta-
ble VI for correctness scores. The first four columns in the tables contain
the key to the measurement—the program, work task, PAT/ALT version,
and pretest /posttest.

From Table VII we can see that significant results (at 5%) were achieved
for five out of the total 20 hypotheses, while another seven tests showed a
reasonably certain direction, either supporting or contradicting the hypoth-
esis.

The regression model provides strong support for the hypotheses in four
cases:

1. Using the VISITOR pattern causes problems if the underlying data struc-
ture changes

2. DECORATOR is a pattern that requires training, but then yields easier
maintenance

3. DECORATOR makes it more difficult to trace the flow of control in a
program, and increases the time needed to understand it

4. Like DECORATOR, OBSERVER, requires some training, but is then easy
to understand and shortens maintenance

The hypothesis that a short course is sufficient to profit from ABSTRACT
FACTORY was strongly contradicted. The observed result was actually the
opposite; subjects took significantly longer after the course than before to
complete the task.

5. Discussion
The quantitative results and hypothesis tests form only one part of the
total results from the experiment, and do not automatically result in bet-

ter understanding. The quantitative measures must be complemented with
qualitative evaluations. Logging all compilations provides a basis for such

"PatMain EMSE".tex; 22/08/2003; 11:32; p.18

Table V. Descriptive statistics for time: Each line contains the minimum, first
quartile, mean, third quartile and maximum values of programming time in
minutes, for one combination of Program, ALT or PAT version, task number
and day number. Number of subjects is also given.

Each hypothesis

in table III refers to one pair of lines

in this ta-

ble, e.g., hypothesis (B2a: —) compares BO/ALT/Task 1/PoOST: line 2 to
BO/Arr/Task 1/PRE: line 1, and expects the former to be lower (shorter time).

Line Prog Task Pre/Post Ver Min Q1 Mean Q3 Max N
1 BO 1 Pre Alt 27 88 129 175 298 9
2 BO 1 Post Alt 27 45 86 130 186 9
3 BO 2 Pre Alt 0 4 13 20 37 6
4 BO 2 Post Alt 4 8 14 17 39 8
5 BO 1 Pre Pat 45 8 108 135 145 11
6 BO 1 Post Pat 20 55 99 160 173 10
7 BO 2 Pre Pat 6 13 26 39 66 8
8 BO 2 Post Pat 3 24 46 65 6
9 CO 1 Pre Alt 22 35 63 85 97 10
10 CO 1 Post Alt 24 48 69 90 117 10
11 CO 2 Pre Alt 7 9 15 20 33 10
12 CO 2 Post Alt 7 9 19 27 47 10
13 CO 1 Pre Pat 44 45 65 84 124 8
14 CO 1 Post Pat 17 22 33 43 60 9
15 CO 2 Pre Pat 12 18 33 45 66 8
16 CO 2 Post Pat 7 11 20 29 45 9
17 GR 1 Pre Alt 32 51 91 136 196 10
18 GR 1 Post Alt 37 57 105 155 214 11
19 GR 2 Pre Alt 13 16 37 51 125 8

20 GR 2 Post Alt 11 22 41 43 122 11
21 GR 1 Pre Pat 36 59 78 89 155 9
22 GR 1 Post Pat 101 104 127 145 190 9
23 GR 2 Pre Pat 9 14 28 42 65 9
24 GR 2 Post Pat 6 9 24 38 50 9
25 ST 1 Pre Alt 6 7 14 21 32 9
26 ST 1 Post Alt 7 13 26 35 65 9
27 ST 2 Pre Alt 12 15 31 48 68 9
28 ST 2 Post Alt 2 23 50 77 143 9
29 ST 1 Pre Pat 1 3 22 27 8 10
30 ST 1 Post Pat 2 6 14 26 40 11
31 ST 2 Pre Pat 1 14 36 56 91 9
32 ST 2 Post Pat 5 7 15 22 36 11

19

"PatMain EMSE".tex; 22/08/2003; 11:32; p.19

20

Table VI. Descriptive statistics for quality: Each line contains the minimum, first
quartile, mean, third quartile and maximum values of the correctness score, for
one combination of Program, ALT or PAT version, task number and day number.
Number of subjects is also given.

Each hypothesis in table IV refers to one pair of lines in this table.

Line Prog Task Pre/Post Ver Min Q1 Mean Q3 Max N

1 BO 1 Pre Alt 1 3.0 39 5.0 5 9
2 BO 1 Post Alt 3 4.0 4.6 5.0 5 9
3 BO 2 Pre Alt 2 2.8 4.2 5.0 5 6
4 BO 2 Post Alt 1 2.0 3.8 5.0 5 8
5 BO 1 Pre Pat 2 2.0 35 5.0 5 11
6 BO 1 Post Pat 1 1.8 3.0 5.0 5 10
7 BO 2 Pre Pat 2 23 3.6 5.0 5 8
8 BO 2 Post Pat 2 2.0 2.8 4.3 5 6
9 CO 1 Pre Alt 3 3.8 4.5 5.0 5 10
10 CO 1 Post Alt 3 3.8 4.4 5.0 5 10
11 CO 2 Pre Alt 3 3.8 4.4 5.0 5 10
12 CO 2 Post Alt 5 5.0 5.0 5.0 5 10
13 CO 1 Pre Pat 5 5.0 5.0 5.0 5 8
14 CO 1 Post Pat 5 5.0 5.0 5.0 5 9
15 CO 2 Pre Pat 4 5.0 4.9 5.0 5 8
16 CO 2 Post Pat 4 5.0 4.9 5.0 5 9
17 GR 1 Pre Alt 1 3.0 3.7 5.0 5 10
18 GR 1 Post Alt 3 5.0 4.7 5.0 5 11
19 GR 2 Pre Alt 2 2.0 39 5.0 5 8
20 GR 2 Post Alt 2 4.0 4.5 5.0 5 11
21 GR 1 Pre Pat 5 5.0 5.0 5.0 5 9
22 GR 1 Post Pat 3 4.5 4.7 5.0 5 9
23 GR 2 Pre Pat 2 2.0 39 5.0 5 9
24 GR 2 Post Pat 2 2.0 3.2 5.0 5 9
25 ST 1 Pre Alt 4 5.0 4.9 5.0 5 9
26 ST 1 Post Alt 4 5.0 4.9 5.0 5 9
27 ST 2 Pre Alt 4 4.0 4.4 5.0 5 9
28 ST 2 Post Alt 3 4.0 4.4 5.0 5 9
29 ST 1 Pre Pat 1 4.8 4.5 5.0 5 10
30 ST 1 Post Pat 5 5.0 5.0 5.0 5 11
31 ST 2 Pre Pat 5 5.0 5.0 5.0 5 9
32 ST 2 Post Pat 4 5.0 4.9 5.0 5 11

"PatMain EMSE".tex; 22/08/2003; 11:32; p.20

Table VII. Summary of quantitative results—work time

21

Pr Task PoOST-ALT vs. PoOST-PAT vs. PRE-PAT vs. PoOST-PAT vs.
PrRE-ALT PRE-PAT PRE-ALT PosT-ALT
ST 1 S1 S +52% S2 SS —48%
2 S3 SS —-72%
BO 1 B2a S -33% B2b — Bl WC —-1% B3 WC +29%
2 B4 S +108% B6 WS 18%
CcO Cl WC +13% C2 SS —49%
2 C3a SS +117% C3b —
GR 1 G2a WC +2% G2b SC +62% Gl —
2 G4a C +66% G4b — G3a S —-9% G3b C -3%%

Cell contents: To the left is the program/hypothesis identification, followed by the degree
of support in the centre. SS means Strongly Supported, SC means Strongly Contradicted
(significant at 5% level). S means supported, C means contradicted (not strictly significant
at 5%, but still relatively clear effect). WC means weakly contradicted, similarly, WS

denotes weak support. “—” denotes an inconclusive result.
The estimated effect in % of the factor on the observed time (multiplicative) is given to
the right.

Table VIII. Summary of quantitative results—correctness

Pr Task PosST-ALT vs. PoOST-PAT vs. PRE-PAT vs. PoOST-PAT vs.
PRE-ALT PRE-PAT PRE-ALT PosT-ALT
ST 1
2
BO
B5 S —20%
CcO
C4a C +15% C4b WS —5%
GR

"PatMain EMSE".tex; 22/08/2003; 11:32; p.21

22

Analysis of time

Base level
©150F
5
£
E100t +
Q
E *
> 50f
| |
5 ‘ l ‘
& Ot
1 1 1.2 12
ST BO co GR
Effects of design patterns before course Course effects on alternate programs
2Fs1 B1 B4 C3a G1 = 2 =
9 4008 P 400 8
=2 1) =R [
R LA G TN I K IR N B L4
5 0 ‘ ‘ + T i T UTQ 05 o 0 T + i f 1 T 05
8 Al 50 & 8 1 50 &
3 758 3 758
ok c1 2 2 B2a Gza_Gda 2
1.2 1_2 1_2 12 1.2 1_2 1.2 12
ST BO co GR ST BO co GR
Effects of design patterns after course Course effects on design pattern programs
2F C3b P 2 —~
4 4008 8 1008
2 1} 2 1
: L T it B | S
2 e b 2
é 0 ‘ g ‘ b OE _é 0 { * ‘ Oé
g 4l j } sog g \ } 502
o 758 <} 758
o [3] o [
2L s2 3 B3 c2 2 2 B2b G2b Gab 2
1.2 1_2 1_2 12 1.2 1_ 2 12 12
ST BO co GR ST BO co GR

Figure 2. Analysis of elapsed times for all programs and tasks

The upper left panel of the Figure shows the base levels b, for each task, given in minutes.
The estimates are given as dots, whereas the vertical lines are 95% confidence intervals.
The four lower panels have the same structure as the upper left panel, but show changes
relative to the Base level. Hypotheses are shown, with the position of the label indicating
the direction expected effect. The log scale is given at the left of the panel, and the
corresponding relative change in % is given at the right side of the panel.

evaluations, and allows us to gain insight into what happened, and from
there to formulate explanations of why.

This discussion is structured around each program and work task, since
their kinds and patterns were different, and revealed different aspects of
patterns and their effects.

5.1. OBSERVER: STOCK TICKER (ST)

Stock Ticker is a program for directing continuous streams of data (stock
trades) to one or more displays that are part of the program.

Both versions of ST consist of seven classes, and in the PAT version (441
lines) four of them participate in an OBSERVER. The ALT version includes
one class that contains an instance variable for each display, and updates the

"PatMain EMSE".tex; 22/08/2003; 11:32; p.22

23

Analysis of correctness

Base level
5r 4
EERREIRNE
|5
2]
o 3
g
§ 2
< 1
0
T2 12 1_2 1__2
ST BO CcO GR
Effects of design patterns before course Course effects on alternate programs
o 2 0 2
8 } 8 \
st b 2 NN BRI
2] 0 (3] 0 I ‘
g 1 T T ‘ £ 1
< e
O 2 O .2
BS C4a
T2 1_2 12 1 __2 1 2 1 1.2 1 2
ST BO co GR ST BO co GR
Effects of design patterns after course Course effects on design pattern programs
o 2 o 2
8 Q
3 1 + B 1 *
£ ol { | | £ 4 || 4 |
% L T % T ¥ T +
g 1 \ g 1
e e
o 2 o 2
! C4b
T2 1_2 1_2 1__2 T2 1.2 1_2 1__2
ST BO CcO GR ST BO CcO GR

Figure 3. Analysis of correctness effects for all programs and tasks

The upper left panel of the Figure shows the base levels a: for each task, given as
average scores. The four lower panels show changes in scores compared with the relevant
alternative. Some confidence intervals have 0 length. For the corresponding estimates, all
relevant data had the same correctness, or the same change in correctness. In such cases,
the GEE method is unable to compute confidence intervals.

displays when data changes. There is no dynamic registration of observers
in this version, which has 374 lines. The line counts include blank lines and
comments.

The actual displays are implemented using a very simple Window inter-
face. The subjects did not use this interface directly, because the display
objects required by the work tasks were already present in the code.

5.1.1. Work task 1

“In the given program, only one of the three display types is used. Enhance
the program such that a second display (of type volume) is shown”. The
PAT groups only had to invoke the pattern method subscribe() with a
new instance of the display. The ALT groups had to introduce an instance

"PatMain EMSE".tex; 22/08/2003; 11:32; p.23

24

variable for the new window and invoke its update () method to show new
data. The main work in this program is to understand how it operates,
because the actual changes required are very small in both cases.

Hypotheses: In the pretest, we expected the PAT group to need more
time (S1: 4), since subjects without pattern knowledge need to analyze the
OBSERVER to determine how it operates. After the course, we expected the
opposite (S2: —), because the OBSERVER should then have been easy to
grasp and use.

Results: S1:4 > +52% "> is weakly supported.? PRE-PAT subjects did
use 52% more time than PRE-ALT. Most of the difference can be attributed
to one outlier data point; without it, the PRE-PAT and PRE-ALT groups
are virtually identical with respect to time used. The correctness is also
consistently high for both groups.

The outlier is a subject who did not understand the OBSERVER pattern,
and actually reinvented and reimplemented an equivalent structure, which
explains why it took so long to complete the task.

Hypothesis S2:— > —48% _72 is quite strongly supported. There were no
significant differences in the correctness of the solutions.

5.1.2. Work task 2

“Change the program so that displays can be dynamically selected at run-
time”. The code included a third display type for this purpose, as well as a
simple method to get user input: bool askYesNo(char *prompt);

The PAT groups needed to do very little; just ask the user two or three
questions, and subscribe() to those displays that were selected. The ALT
groups would have to add a mechanism for extending the number of displays
with more instance variables.

Hypotheses: In contrast to the original pen and paper experiment,
where Prechelt et al. stated that the PAT groups did not need to do any-
thing (Prechelt et al., 2001), the subjects in this experiment actually had
to implement a change. We did, however, expect the PAT groups to have a
clear advantage (S3: —), because their changes are much smaller; apart from
getting user input, only a test around each subscribe () method invocation
is needed.

Results: S3:— > —72% ::2 is strongly supported. The PosT-PAT group
spent less than half the time used by the PosT-ALT group. Most subjects
in the POST-PAT group chose to add Boolean variables to the TradeInfo
class constructor to specify the users’ choice, while a few put the subscribe
calls into the main program.

2 Notation: The hypothesis is identified by its letter/number combination as in Ta-
bles II1, IV, VII and VIII, followed by the direction of the expected effect, and observed
effect in %. The lower and upper limits of the 95% confidence interval are given as subscript
and superscript.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.24

25

All the subjects in the ALT groups interpreted the task to mean a choice
between a fixed number of displays: those already present in the code. None
implemented a fully dynamic solution that would easily have accommodated
another display.

Correctness was significantly higher for the PAT groups than for the ALT
groups both before and after the course. The effect of the course was in
this case to reduce the time needed to arrive at a high-correctness solution.
OBSERVER, therefore, seems to be a pattern that can be grasped without
much training, but training saves time.

5.2. COMPOSITE AND VISITOR: BOOLEAN FOrRMULAS (BO)

Boolean Formulas contains a library for representing Boolean formulas (OR,
AND, XOR, NOT and variables), and methods for printing the formulas in
two different styles. It also contains a small main program that sets a few
variables, constructs a formula and prints it using both methods.

The PAT version consists of 11 classes over 471 lines. The formulas are
represented using COMPOSITE, and the printing methods use VISITORs. For
each concrete COMPOSITE class there is a printing method in each of the
VISITORs, and each COMPOSITE class provides a dispatch method for the
VISITOR. Internally, the COMPOSITEs use three different data structures:
NOT has a single operand, XOR has two operands in a classic left-right scheme,
while AND and OR are implemented with a common base class and have a
dynamic number of operands to handle expressions such as a AND b AND c
(this would be one AND with three operands). Recursion is a central feature
of the COMPOSITE pattern. The VISITOR solution allows the addition of
new functions without changing the COMPOSITES.

The ALT version has the same COMPOSITEs, but is shorter, with eight
classes over 372 lines. The VISITOR is completely missing, and the printing
functionality is implemented directly as methods in each concrete CoM-
POSITE, so adding a new function means adding methods to each concrete
COMPOSITE.

5.2.1. Work task 1

“Enhance the program to evaluate Boolean formulas, i.e., to determine the
result for a given formula represented by a Composite and values of the
variables”.

The printing methods serve as structural examples. The PAT groups had
to create a new VISITOR, while the ALT groups had to add new methods to
each concrete COMPOSITE class.

Hypotheses: In principle, it should be easier to create a single new
class similar to another existing class, rather than having to add methods
to several classes. This should favour the PAT group.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.25

26

However, VISITOR is quite a difficult pattern to comprehend and use, so
we expected that the PAT group would need more time to understand the
structure than the ALT group would need to simply add methods (B1: +).

Gaining patterns knowledge during the course should help both groups,
since there is a COMPOSITE in both the PAT and ALT versions of the program
(B2a: —), (B2b: —). The PAT group should get an additional advantage from
the VISITOR pattern after the course (B3: —).

Results: Bl:+ > —17%",° was not supported; the PRE-PAT group ac-
tually needed 17% less time than the PRE-ALT group, though much of the
difference was due to one outlier.

A more interesting observation comes from the correctness model in Table
VIII (VISITOR). First, the correctness was quite low, and lower for the
PAT group before the course. Second, the ALT group benefited from the
course, while the PAT group actually got worse. Perhaps most interesting is
that only three out of 12 subjects in the PRE-PAT group actually used the
VISITOR. The rest implemented changes directly on the COMPOSITE and
ignored the two VISITORS in the code.

B2a:— > —33% 17 and B2b:— > +4% "’ had some support, most for
B2a. There was, however, some rise in correctness for the ALT group.

B3:— > +29% +_1§§ was inconclusive, with no significant difference visible.
However, the correctness of the PAT group solutions was at the same low
level as in the pre-test, and the subjects were still not using VISITOR much—
four out of 10, and of those four, only one succeeded.

Inspection of the solutions on a compilation-by-compilation basis re-
vealed that many subjects struggled with the recursion inherent in the
CoOMPOSITE. This is somewhat surprising, given that the subjects were
professional developers, many employed by major consultancy corporations.

The conclusion is that VISITOR was so difficult that even after a course
that gave the instructor excellent feedback (grade better than 4 out 5), most
subjects either ignored it or were confused by it.

We may also speculate that developers nowadays use predefined container
classes so much that recursion is simply not used on a daily basis any
more. This has implications for the design of future experiments, and for
the usefulness of Design Patterns that depend heavily on recursion in their
structure.

5.2.2. Work task 2
“After a code review, an incompetent manager requires you to change the
method operatorname () to varname () on the VarTerm class only”.

This in effect broke the COMPOSITE pattern, because one of the concrete
classes no longer followed the declaration of the superclass.

Hypotheses: We expected that the ALT group would find the pre-test
easier than the PAT group (B4: +), because all the resulting changes only

"PatMain EMSE".tex; 22/08/2003; 11:32; p.26

27

have to be made in the class already being changed. The PAT group would
have to modify the VISITOR classes. One of the modifications is somewhat
tricky to spot, so we also expected lower correctness (B5: —).

In the post-test, we expected that the PAT and ALT groups would be
roughly equal, because the magnitude of the change is the same in both
cases (B6: 0).

Results: B4:+ > +108% """ seemed to be supported, in that the PaT
group needed twice as long as the ALT group. However, we were still dealing
with subjects who in five cases out of seven were not using VISITOR. There
was quite a lot of confusion visible in the solutions, and the correctness was
quite low B5:— > —20%*,°. Also, four subjects were missing (relative to
work task 1), because they had run out of time.

B6:0 > 18% "' was contradicted; the correctness of the PAT solutions
was markedly lower than that of the ALT solutions (average grade 2.8 vs.
3.8).

This reinforces the conclusion from work task 1: our subjects were badly
confused by the VISITOR pattern; only 6 out of 21 achieved a “Correct” or
“Almost correct” solution (PRE and POST combined).

5.3. DECORATOR: COMMUNICATION CHANNELS (CO)

This program is mostly a wrapper library. A communication channel estab-
lishes a connection for transparently transferring packets of data of arbitrary
length. One can turn on additional functionality for logging, compression
and encryption.

The library does not implement the functionality itself, but only provides
a FAGADE for a system library (whose internal source code was unavail-
able to the subjects). However, this application of the FAGADE pattern is
irrelevant to the experiment.

The PAT version uses a DECORATOR scheme to add extra functionality
to a bare channel. It consists of six classes over 404 lines.

The ALT version has only a single class, using boolean flags and if
sequences for turning functionality on and off during the processing of one
packet. It consists of 342 lines, and is the only instance where the ALT
version has a structured (as opposed to object-oriented) design.

5.3.1. Work task 1
“Enhance the functionality of the program so that error correction can be
added”.

The actual encoder/decoder for the error correction was available as an
interface with a working, hidden implementation. Its interface was exactly
analogous to one of the functions that were already in use.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.27

28

Hypotheses: DECORATOR has two competing influences. On the one
hand, it nicely separates the functionality and all but removes dependen-
cies, so that it should be easy to add a new function by adding a new
DECORATOR, rather than having to find the right place in a block of if
statements.

On the other hand, this separation also means that it is more difficult to
trace what is actually going to happen at runtime, as opposed to a situation
in which there is a structured block of code with a clear sequence of flag
tests.

We expected the first influence to be stronger, and hence that it would
be quicker to enhance the PAT version (Cl: —), especially at higher levels
of pattern knowledge (C2: —).

Results: Cl:— > +13% fgg was not supported, because the groups spent
virtually the same time. However, the correctness of the solutions was much
better for the PAT group, with a perfect (10/10) “Correct” score for all
PRE-PAT subjects. In the PRE-ALT group, there were nine “Correct”, one
“Almost correct” and two “Right idea”.

Expectation C2:— > —49% ~27 was strongly supported. Also the correct-
ness was again better with nine “Correct”, vs. six “Correct”, two “Almost
correct” and two “Right idea”.

The conclusion here is that DECORATOR is a pattern that can be grasped
with reasonable ease, and contributes to higher correctness. With training,
its use also results in considerably faster development.

5.3.2. Work task 2

A communication channel—as implemented in the program—has an internal
state (open, closed, failed) that is altered by certain operations. Work
task 2 asked the subjects to “determine when a reset () call will return the
“impossible’ result”. This required the subjects to find where the underly-
ing state was changed, and how. This should be easier for the ALT group,
where the state changes are strongly localized, so we expected shorter time
(C3a: +), (C3b: +) and higher correctness (Cda: —), (Cdb: —).

The subjects were also asked to “create a channel that performs com-
pression and encryption”. Again, the ALT group should have the advan-
tage, since they only needed one new statement. The PAT group needed to
determine the correct nesting of DECORATORs to achieve the same result.

Results: C3a:+ > +117% *7]] was strongly supported in the pre-test, but

1
inconclusive in the post-test (é3b:+ > +9%*37). Correctness was actually
better for the PAT group in the pre-test, contrary to Cda:— > +15% +f§,
remained so in the post-test C4b:— > —5% 7.
This seems to reinforce our conclusion that DECORATOR had a mainly

positive effect and can be grasped without too much training. Any problems

and

"PatMain EMSE".tex; 22/08/2003; 11:32; p.28

29

caused by the delocalisation that results from applying this pattern were
outweighed by the greater ease of composition of functions.

5.4. COMPOSITE AND ABSTRACT FACTORY: GRAPHICS LIBRARY (GR)

The Graphics Library enables creation, manipulation and drawing of simple
graphical objects, such as points, lines and circles. They can be rendered
to different displays (alphanumeric or pixel), represented as output device
classes with standardized interfaces.

In a central class a device context (type) is selected, and depending on
this choice different versions of the graphical objects are created. Some basic
objects (points and lines) are implemented identically for all devices, but
circles have special implementations per device. Objects can also be collected
in groups, which can then be manipulated like objects themselves.

The PAT version uses ABSTFACTORY for the generator classes, and COM-
POSITE for the hierarchical object grouping.

The ALT version uses a single generator class with switch statements
for the different devices, per object type. Combination and manipulation of
objects is achieved with a quasi-COMPOSITE, the only difference being that
there is no hierarchical group nesting.

This pair of programs has the smallest structural differences of all of
the four pairs. The PAT version has 13 classes over 683 lines, the ALT
version uses 11 classes over 667 lines. Both versions contain an identical
main program that defines an Olympic logo with five circles and a line,
rotates it 180° and draws it.

Output devices are represented by working classes with simple interfaces
and hidden implementations, and can be run by the subjects. Some sample
output is also included in the task documentation.

5.4.1. Work task 1

“Add a third device type (a pen plotter)”. The PAT group had to introduce
a new concrete factory class, extend the factory selector method, and add
two concrete product classes using the supplied Plotter device interface.
The ALT subjects instead had to extend the switch statements; the product
classes were the same.

This task was also one in which there was a difference from the original
experiment, because in the present case, subjects actually tried out their
solutions and ran into issues with scaling, forgetting to select a visible pen,
etc. These issues affect the “product classes”, which are common to both
the PAT and ALT versions. Since this extended the total time, we expected
to see less difference overall than in the original experiment.

Hypotheses: The actual volume of changes is the same for the PAT
and ALT groups, so the main difference should come from differences in

"PatMain EMSE".tex; 22/08/2003; 11:32; p.29

30

comprehension. The ALT program, with its localized switch statements,
should be easier to understand (G1: +).

Pattern knowledge should help both groups to deal with the COMPOSITE
(G2a: —), while the PAT group may derive an additional advantage from
better understanding of the ABSTFACTORY (G2b: —).

Results: G1:4+ > —17% 2 was inconclusive. If we ignore one ALT outlier,
the groups were virtually identical with respect to time used.

However, the correctness was significantly better for the PAT group.
Inspection of the code revealed that several of the PRE-ALT subjects did
not use the supplied Plotter interface, but instead just copied one of the
existing output device interfaces. However, this did not necessarily invalidate
the test, since it is the structure more than the particular class that matters.

The post-test, G2a:— > +2% ", was inconclusive, with a hint in the
opposite direction—subjects needed more time after the course for the ALT
version. G2b:— > +62% "7 was not supported: The PAT group needed more
time than the ALT group; this time all the subjects actually implemented
the plotter as intended.

It seems that use of ABSTFACTORY therefore had little influence on the
time needed to make the changes, but it may have contributed positively
to quality. This agrees with the purpose of the pattern: to concentrate the
knowledge of which objects should be created in one place. The actual work
remains roughly the same, but is localised instead of being spread out.

5.4.2. Work task 2

“Determine whether a given sequence of statements will result in an x-shaped
figure”. This is a comprehension test on COMPOSITE, where the key is to
recognize that references, and not copies of objects, are stored in an object
group.

Hypotheses: First of all, we expected the subjects to actually try run-
ning the function containing the statements (it is present in the program,
but not called by default). This was in contrast to the original experiment,
where analysis was the only possibility. Consequently, we expected correct
answers.

The structure of both programs is similar, so no difference in time was
expected for PAT and ALt (G3a: 0), (G3b: 0), but we did expect the post-
test to be faster than the pre-test, due to knowledge about the COMPOSITE
(G4a: —), (G4b: —).

Results: High correctness was present only for the POST-ALT group. All
other groups had a significant number of incorrect answers, despite the fact
that most of them tested their solutions (visible traces in the code logs).

G3a:0> —9% "¢ and G3b:0> —39% 2 were inconclusive. The POST-PAT
group spent 39% less time than the Post-ALT group, but their correctness
was significantly lower. Perhaps they were tricked by the application of

"PatMain EMSE".tex; 22/08/2003; 11:32; p.30

31

CoMPOSITE and forgot to take the effect of object references vs. object
copies into account.

Gda:— > +66% 72 and G4b:— > +11% """ were not supported; there
was no significant difference in time spent between the pre-test or post-test.
If anything, G4a tended in the opposite direction, with subjects spending
more time on the ALT version after the course. However, this may simply
be due to fatigue.

Due to scaling, a part of the figure would have been clipped and invis-
ible, so we conclude that a number of subjects tried the drawing method,
and when they did not get a good visible result, they resorted to (faulty)
analysis instead of getting a good test output. After that, we were probably
measuring a combination of their C4+ proficiency with pointers and their
approach to testing, rather than knowledge of Design Patterns. However,
the fact that they trusted their analysis rather than actually making the
test run well is interesting in itself.

5.5. SUMMARY OF QUALITATIVE RESULTS

We found evidence for both the usefulness and potential for harm of using
Design Patterns, mostly as predicted by software engineering common sense.
In summary:

OBSERVER —expectation: The pattern solution is more complicated and
harmful relative to the alternative solution, unless its flexibility is required

Actual result: There was no significant harmful effect, even for subjects
with little or no patterns knowledge. After a short course, a significant
benefit was observed in terms of both time and correctness.

COMPOSITE, VISITOR —expectation: VISITOR is difficult to understand
and thus harmful.

Actual result: Both before and after the course, the majority of the
subjects did not even use VISITOR even though two examples were present
in the code. The correctness of the solutions was significantly lower than in
the alternate design.

DECORATOR —expectation: Delocalization of functionality is expected
to make it easier to change, but more difficult to analyze and call.

Actual result: The first expectation was supported, but the second was
contradicted. The correctness and time improved significantly after the
course, but the correctness was also better in the PAT version before the
course, for no large penalty in time spent.

COMPOSITE, ABSTFACTORY —expectation: The similarities in the de-
signs of PAT and ALT versions lead us to expect only minor differences.

Actual result: No overriding difference was observed, even though the
course helped with the ABSTFACTORY pattern, which was also present in
the ALT version.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.31

32

5.6. OTHER OBSERVED EFFECTS

In this Section, we discuss cases where a significant effect was observed, but
no prior hypothesis existed. This situation arises because of the regression-
based analysis model, which automatically estimates more coefficients than
those needed to test the hypotheses of the original experiment. These results
are necessarily of an exploratory nature.

Since there are no hypotheses to use for labelling, we will instead refer
to the panel title in Figure 2 or 3, together with program abbreviation and
task number. The observations are grouped by program and thus pattern.

5.6.1. Stock Ticker / OBSERVER

Figure 2 (time): Course effects on design pattern programs, work task 2—
this panel compares the time spent on the work task before (pre-test) and
after (post-test) the course, and there is a significant difference present. In
the post-test, the subjects used 60% less time than in the pre-test.

In the corresponding coefficient for the ALT version, the opposite effect
is present, though without being significant. So the effect of the course was
to reduce the time used for the PAT version, and increase it for the ALT
version.

Part of the explanation lies with two subjects; one spent some time
looking for a typographical error (an extra closing brace that caused cryptic
error messages from the compiler), and the other struggled with the syntax
of arrays and enumerators. These two outliers increased the time spent
by the ALT group; but being outliers, did not cause the increase to be
statistically significant.

That the course should benefit the PAT group is as expected. The nature
of the program and task were such that understanding of the OBSERVER
pattern reduced the task to only a few lines. The corresponding panels in
Figure 3 (correctness, course effects) show almost no discernible effects.

Figure 3 (correctness), Effects of design patterns before course and Effects
of design patterns after course both point in the same direction: the solutions
of the PAT version have a higher correctness. The effect is significant in the
pre-test and close to significant in the post-test. It reinforces the conclusion
in Section 5.5 and contradicts the expectation from the original experiment.

5.6.2. Communication Library / DECORATOR

Figure 2 (time): Course effects on design pattern programs, work task 1—
the panel shows that the subjects who maintained the PAT version of the
program spent significantly less time in the post-test than those who main-
tained it in the pre-test (50% less). In Figure 3, the panel Effects of design
patterns after course measures the difference between ALT and PAT version

"PatMain EMSE".tex; 22/08/2003; 11:32; p.32

33

in the post-test, and shows a significant increase in correctness for the PAT
version.

There is one outlier in the PRE-ALT group, who worked for about 90
minutes before submitting a large change for compilation. However, the
measured effect persists even if this outlier is omitted. The tentative inter-
pretation is that DECORATOR is a pattern that benefits significantly those
who take even a short course in it, and that such benefit influences both the
correctness of the solutions and the time used to complete them.

5.6.3. Base levels

The size and complexity of the programs varied, and this can be seen in the
"base level” (time used for the ALT version in the pre-test, correctness at
least 4 out of 5, as defined in Sections 3.6 and 3.7). Qualitative analysis of
the solutions showed that recursion and recursive data structures created
problems for a number of subjects. This affected the Boolean Formulas and
Graphics Library programs (longer time, lower correctness), but is not a
threat to validity because recursion is a central feature of the COMPOSITE
pattern that is present in these programs.

The Stock Ticker program (OBSERVER pattern) was the shortest and
simplest, and the base levels show a short time and high correctness for the
solutions. Again, this reflects the pattern itself, which is structurally very
simple.? In this experiment the subjects had few problems understanding
and extending it, and the base level observations reinforce the conclusions
regarding this pattern.

6. Comparison with the original experiment

This experiment was originally designed to investigate whether it is useful to
utilize Design Patterns during program construction, even if the particular
problem can be solved in simpler ways. The context was program mainte-
nance by developers other than the original ones, and the experiment used
pen and paper.

Our replication of the original experiment added the dimension of a real
programming environment, so we retained the original aim, while adding an
interest in the effects of the differences in execution of the experiment. We
therefore re-analyzed the data from the original experiment using the same
regression model, estimation method and software as for our replication,
thus making it easier to compare the two experiments.

3 The subtle interaction effects which it is possible to encounter with multiple OB-
SERVERs and event-driven programming in general, become visible only in programs of
greater complexity.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.33

34

Analysis of time, replicated and original experiment

Base level
©150F
5
£
E100t *
@ t
£ * *
> 50
& f Y
o N ¢ ’
s | |
& Ot
1 12 12 12
ST BO co GR
Effects of design patterns before course Course effects on alternate programs
2Fs1 B1 B4 C3a G1 = 2 =
9 4008 P 400 8
=2 1) =R [
=L MERUNTIIN L3-S I K TR IR TR A
- © = ©
.5 0 ‘ ‘+ H T T | T‘ﬂ 05 .5 0 ¥ T H i i ¥ H 0
% .l ; 50 & % 1 50 &
8 758 o 758
° 5 c1 2 ° B2a G2a_ Gda 2
1.2 1_2 1_2 12 1.2 1_2 1.2 12
ST BO co GR ST BO co GR
Effects of design patterns after course Course effects on design pattern programs
2F C3b P 2 —~
8 2008 8 4008
=2 1t =2 1
: t b H H wog % | | A 1002
2 5 dds <) 2 | | i . <)
§o H—be) 05§ o0 o ‘ “ 1 05
g .l b sog & |4 * } 50 ¢
3 58 3 758
2l s2 3 B3 c2 2 2 B2b G2b Gab 2
1.2 1_2 1_2 12 1.2 1_ 2 12 12
ST BO co GR ST BO co GR

Figure 4. Completion times for all programs and tasks

Same format as Figure 2. For each coefficient, the left value is from the current replication,
and the right value is from the original experiment, using the same analysis model and
estimation method.

The program Communication Library had three work tasks in the original
experiment. The last two were quite similar and had similar hypotheses;
in our replication they were combined to give a more symmetrical experi-
mental design. When re-evaluating the data from the original experiment,
the completion times for the last two tasks of this program were summed,
and the correctness scores averaged and rounded to the nearest integer to
match the analysis model. In the original experiment, so many subjects
misunderstood Boolean Formulas Task Two that it was omitted from the
analysis. We likewise omitted it from our re-evaluation.

6.1. BASE LEVEL AND VARIANCE
For the dependent variable time, the upper left panel of Figure 4 shows that

the trends are similar, in that the same work tasks take a long or short time
to complete. However, the absolute values differ. Those tasks that contained

"PatMain EMSE".tex; 22/08/2003; 11:32; p.34

35

a lot of programming (Boolean Formulas task 1, Graphics Library task 1)
took significantly longer in the replication.

Our explanation is that this is mainly an effect of the switch to actual
programming; since all the details have to be correct, there is more work to
be done than simply sketching out a class on paper. The variances are also
larger, and we attribute that to the same effect—Prechelt has previously
estimated the expected speed difference between fast and slow engineers to
be on the order of 4:1 (Prechelt, 2000), and we expect both the programming
environment and the varied background of the subjects to contribute.

Another possible contributing factor is the fact that our subjects were
paid for participating, whereas in the original experiment, the subjects were
volunteers. We would expect this to cause a greater variance, because the
volunteers would generally be more interested than a less self-selecting sam-
ple. However, the presence or strength of this factor is difficult to evaluate
separately.

For the dependent variable correctness, seen in the upper left panel of
Figure 5, the situation is similar, though the correctness of the solutions
in our replication is often somewhat lower than in the original experiment.
One possible explanation is that the criteria for scoring were not identical.
For instance, it is possible to grade as “Correct” a paper solution that does
not actually compile due to a syntax error; in our replication this situation
would have given an “Almost correct” score at best.

6.2. ELAPSED TIME

The four lower panels of Figure 4 show that in most cases, the sign, and
to a lesser extent the size of the observed effects, are similar in both the
original and the replicated experiments. Since the replication is fairly close,
we concentrate the following discussion on the following cases: a hypothesis
exists, its estimated actual coefficient changes sign and there is little or no
overlap of the confidence limits. We first note that there seem to be no
systematic differences. As the replication is fairly close, this is as expected,
and improves our confidence in the validity of the experiment.

For Stock Ticker/OBSERVER work task 1, the hypothesis (S2: —) is con-
tradicted in the original experiment and confirmed in the replication. The
expectation was that given knowledge of Design Patterns, subjects would
find it easier to implement the work task on the PAT version, because the
programming effort would be much smaller. This did not happen in the
original experiment, while the expectation was supported in our replication,
leading to opposite conclusions regarding the OBSERVER pattern.

In Communications Library/DECORATOR work task 1, there are con-
flicting expectations. The ALT version has a greater amount of localized
code and should be easier to understand, but new functionality has to be

"PatMain EMSE".tex; 22/08/2003; 11:32; p.35

36

Analysis of correctness, replicated and original experiment

Base level
5 4 . + +
[}
S 4 t + + +
2 t
o 3
g
§ 2
< 1
0
T2 12 1_2 1__2
ST BO CcO GR
Effects of design patterns before course Course effects on alternate programs
o 2 + o 2
S R T L
£ 0 | “ ‘ + + l £ 0 il l | ‘ H. | |
g T T ! H s TT [Mt T !
§ 1 § 1
O 2 O .2
BS Cda
T2 1_2 12 1 __2 T 2 12 12 1__2
ST BO co GR ST BO co GR
Effects of design patterns after course Course effects on design pattern programs
o 2 + p 2
R S 2 |y
£ ols {] | £ 4 [RN
% | i T % T M T‘ +N
gt st
o 2 o 2
C4b
T2 1_2 1_2 1__2 T2 1.2 1_2 1__2
ST BO CcO GR ST BO CcO GR

Figure 5. Correctness effects for all programs and tasks Same format as Figure 3

added in several places and correctly sequenced, leading Prechelt et al. to
expect the subjects working on the PAT version to be faster, even in the pre-
test. In the original experiment, the first effect was the strongest, leading
to a strong confirmation of (Cl: —). In the replication, subjects working
on the ALT version were marginally slower than those working on the PAT
version, leading to an inconclusive result. Simultaneously, correctness was
significantly higher for the PAT version than for the ALT version in the
replication, and even more so in the original experiment. In summary, the
subjects in the replicated experiment had more problems with DECORATOR
before training than in the original experiment. In the post-test there is no
significant difference between the two experiments.

6.3. CORRECTNESS

As with the dependent variable time, we see no large, systematic differ-
ences between the original experiment and our replication in the estimated
coefficients for the dependent variable correctness. For Communications

"PatMain EMSE".tex; 22/08/2003; 11:32; p.36

37

Library /DECORATOR work task 1, we observed a smaller improvement in
correctness going from the ALT version to the PAT version of the program
than in the original experiment. The explanation lies in the base level
correctness (ALT version), which is higher for the replicated experiment,
leaving less room for improvement.

Graphics Library/ABSTFACTORY recorded improvements in correctness
between the pre-test and post-test for ALT version programs. We believe
this to be caused by the fact that both the PAT and ALT versions of this
program contained an ABSTFACTORY pattern as noted in Table I, and that
the subjects benefited from the course in understanding this pattern.

6.4. SUMMARY

For OBSERVER, we did not find the negative effect that was observed in
the original experiment, while for VISITOR we had a very strong negative
indication. For DECORATOR also we found fewer harmful effects, while
COMPOSITE / ABSTFACTORY turned out about the same.

The total and C++ experience of our subjects was roughly comparable
to those of the original experiment, but our subjects had less pattern knowl-
edge to start with. The materials, experimental design and Design Patterns
course were the same. The main differences were a more heterogeneous group
of subjects (multiple companies), and the programming environment vs. pen
and paper.

Having a detailed log of all compilations enabled better understanding of
what the subjects were doing while solving their tasks. In particular, several
cases were observed in which a subject worked on one solution, discarded
it and did something different, whereas in the final code, no trace of the
intermediate solution was present.

6.5. LESSONS LEARNED

Our suggested “lessons learned” are similar to those in the original experi-
ment. It is not always useful to use a pattern if a simpler design will do the
job; and if the pattern is a complex one like VISITOR, even “proper” use
can confuse more than it helps.

However, patterns that are more intuitive, such as OBSERVER or DECO-
RATOR, will generally do little harm, and code based on them can be readily
extended even by developers who do not fully understand them.

A developer needs an awareness, not just of Design Patterns or whatever
other design method is in fashion, but also of good design principles in
general. Good breadth in education and experience can make up for lack of
knowledge of specific patterns, but the opposite does not follow. Educational
institutions should avoid the temptation to concentrate too much on the
current design fashion, whatever it might be.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.37

38

7. Methodological results

During the course of this experiment we identified a number of issues relating
to the conduct of such experiments, which we will summarize here:

7.1. MEASUREMENTS

The subjects measured the total elapsed time for a task themselves, noting
it in a questionnaire. They could also add free-form comments at the com-
pletion of every work task. Our logging system also measured the elapsed
time, and unobtrusively saved time-stamped copies of every file compiled.
After each task, all the subjects completed the questionnaire, grading the
difficulty of the task, the helpfulness of any patterns present, and their own
use of the patterns.

The combination of both machine- and self-measured elapsed time, to-
gether with the comments, enabled better verification of the actual mea-
surement. The fact that there were no significant discrepancies increased
our confidence that the times were measured correctly.

The free-form comments and the compilation logs were valuable in both
grading the correctness of the solutions, and in later qualitative analysis.

7.2. TECHNICAL SETUP

Setting up a lab with 45-50 workstations is an expensive and laborious task.
We instead decided to use a Terminal Server™ configuration, in which each
subject would bring his/her own laptop computer (the vast majority of
consultants now use them), connect to our network and then work entirely
inside the Terminal Server environment. We used four servers with a total
of six CPUs and 3GB of RAM. The servers ran at 20-30% CPU load during
the experiment. Logs were made of various performance parameters to verify
that no major server problems affected the experiment.

The subjects were assigned seating based on their group membership,
such that two subjects sitting next to each other never worked on the same
task.

On the morning of the first day, the subjects were assisted by Simula
Research Laboratory technical support staff to connect their laptop PCs
to our network. This operation took from a few to about 15 minutes per
subject, depending on their Windows configuration. There were three staff
members on hand to handle this task, and this proved barely sufficient.

If the organization owning the laptop had a restrictive security policy,
this relatively simple reconfiguration became very difficult or impossible to
perform. We had 10 terminals ready to accommodate subjects who for any
reason could not use their own computer, and seven of them were actually
used. To avoid losing subjects it is essential to have such a backup option

"PatMain EMSE".tex; 22/08/2003; 11:32; p.38

39

ready. Switching in the middle of the experiment should be avoided; in
our case, if the laptop did not work satisfactorily on our network within a
maximum of 15 minutes, the subject was given a terminal instead and the
laptop was never used.

7.3. PROGRAMMING ENVIRONMENT

The environment was set up with a pre-installed editor/compiler, Web
browser, a viewer for PDF documents, and nothing else. Access to other
functions, files, etc., was removed or blocked. In this way we ensured that
the subjects had equal working conditions, and also guarded against mishaps
with incompatible header files and other setup-related problems. It should
be noted that such problems are not easily overcome in the C++ world,
where even “standard” headers are incompatible among major compiler
manufacturers.

7.4. BIG-BANG EXPERIMENTS

This experiment had a design that forced all the subjects to be present at a
certain place, and at the same time, for several days. Finding participants
is quite difficult, because people have to be available at exactly the given
time, which may be difficult to schedule for their employers. In addition,
if anything happens to prevent attendance, the subject is lost: there is no
second chance.

An alternative model is to perform the experiment in batches, over an
extended period of time. This is more flexible and robust, and also allows
the experiment to be extended with more subjects if needed. However,
it precludes experimental designs that require the subjects to have some
common activity, such as the patterns course in this experiment.

7.5. PLACE OF EXPERIMENT

Due to the design of the experiment, our subjects had to come to Simula
Research Laboratory, both for the course and to do the exercises. An alter-
native model is to use a web-based tool (Arisholm et al., 2002b) to deliver
the programming tasks, questionnaires and tools directly to the subjects,
and have them perform their tasks in their own office environment.

The experimenters must in any case be in attendance on the premises
to handle any problems.The major methodological challenge in this model
is to keep control of the experiment; on the technical side it is not trivial
to make sure that all the subjects’ computers have equivalent and properly
working environments. It is also more difficult to install and use various
monitoring tools.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.39

40
7.6. RECRUITMENT AND SUBJECT SELECTION

The intended population for this experiment were programmers who make
general-purpose data processing software. A number of consultancy com-
panies were asked to participate in the experiment. They were told the
general outline, consisting of a one-day patterns course between two half
days of exercises. The subjects were paid for the exercise time, and received
the course free.

Both the companies and individual subjects were told that they were
participating in an experiment, but were not told about any of the goals,
hypotheses or expectations, nor what was measured or how.

The participation was formalized by contracts signed by each company
and Simula Research Laboratory. Each company was also allowed to charge
a limited number of management/overhead hours. Our experience is that
allowing reasonable overhead costs increases the likelihood of participation.

The experimental design required all participants to be present at the
same time, for two consecutive days. This made it much more difficult to
get a sufficient number than for previous experiments that could be done
on each company’s premises, one company at a time.

7.7. SUBJECT BACKGROUND MAPPING

The background data was collected using an on-line questionnaire prior
to the experiment (Arisholm et al., 2002a). The questionnaire used was
identical to that used in the original experiment. However, instead of the
subjective, manual process that was used to allocate subjects to group in
the original experiment, the answers were transferred to a database, and
processed by a scoring program. A score was calculated in each of the
following three categories:

1. C++ programming experience and volume, measured in number of
programming years and number of lines written;

2. Knowledge of design methods, measured by number of methods known
and number of practical uses of each method;

3. Knowledge of patterns, measured by number of patterns known, and
number of practical applications of each pattern.

1
6

and 2

Finally, the scores were combined with relative weights of %, 3

reflecting the relative priorities of the categories.

Using a scoring program made the relative weights of the different fac-
tors explicit and visible. However, no automated process can fully address
all details of a subjects’ qualifications, especially free-form comments that

"PatMain EMSE".tex; 22/08/2003; 11:32; p.40

41

clarify the purely quantitative aspects. Manual inspection and sometimes
adjustment is required, for example if a subject filled in “5” as the number
of years of education, but stated that two of them were in high school.

7.8. PREQUALIFICATION AND BLOCKING

Having too large a spread of education, experience and knowledge in the
subjects can undermine the use of standard quantitative statistics, because
it introduces individual differences that may mask the trait we seek to
measure. As experienced in this experiment, it is difficult to predict the
performance of subjects from indirect measures such as education or work
experience, and balancing according to such criteria may therefore not be
enough to ensure an actual balance with respect to the experimental tasks.

This can be mitigated by using nontrivial familiarization and calibration
tasks that are common to all the subjects. It might also be necessary to
exclude some subjects based on a pre-test, if it turns out that they are not
qualified to take part. The sample is then no longer random, and great care
must be taken to ensure that the subjects are (and remain!) a representative
sample of the population that is being studied. We note that simply relying
on participating organizations to select a sample (by deciding who to send)
may not be enough.

One consequence is that the process of selecting subjects should be
started several months in advance of the experiment, to allow time for suffi-
cient iterations. “Big-bang” experiments are especially sensitive, because
there is no second chance. As discussed in Section 4.3, this experiment
was robust with respect to (lack of) group balancing. However, mapping
the subjects’ background is still important to help ensure a representative
sample of the targeted population, and thereby improve the experiments’
external validity.

7.9. DETAILS MATTER

In pen and paper experiments, subjects do not have to write exactly correct
syntax. Once a compiler is introduced this is no longer true, and techni-
calities that are viewed by the experimenter as irrelevant may consume
significant amounts of time.

In the Boolean Formulas program, several subjects knew neither the truth
table nor the C++ syntax for the XOR operator, and consequently spent time
on this.

In the Graphics Library program, one subject had never seen a pen
plotter and consequently did not understand what to do. The experimenter
therefore has to take extreme care to fully specify, document or avoid such
details to improve data correctness.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.41

42

The experimental design used here seeks to mitigate the consequences
of such “details”. All the three problems cited contributed to increase the
variability of the data, or to data loss. By making multiple measurements on
both PAT and ALT programs and tasks for each subject, the overall impact
is minimised and the chance of systematic bias in the results lessened.

8. Threats to validity

An experiment is by definition an artificial situation. In this Section we
address threats to both internal and external validity of the observed re-
sults. The discussion is in part based on the guidelines recently set forth by
Kitchenham (Kitchenham et al., 2001).

8.1. THREATS TO INTERNAL VALIDITY

Internal validity is the degree to which the observed effects depend only on
the intended experimental variables. In this experiment, the main threats
are from inter-individual, and inter-group, differences between subjects that
mask the intended effects. The purely technical proficiency of the sub-
jects (as distinct from their ability to understand program structures and
patterns) is also a factor.

8.1.1. Group balancing

We have already described how the groups were balanced with respect to
pattern knowledge, general programming experience and C++ experience.
Recent experience with the programming environment (Microsoft Visual
Studio 6.0) and Windows itself was checked and also found to be reasonably
well distributed.

The regression model and estimation method chosen are robust with
regard to group differences, since each subject is its own control: all the
subjects perform the work tasks of all the programs (half ALT and half PAT
versions).

As it turned out (see 4.3), the regression model revealed no significant
effect of the pre-qualification score, so a fully random assignment would
probably have been just as good. In an experimental design where each
subject receives either treatment A or B, group balancing is much more
important. However, balancing can never be relied on completely, and is
susceptible to problems such as participants not turning up. In such cases,
some kind of calibration task is needed to determine actual performance
levels, and should be included in the statistical model (Arisholm et al.,
2001).

"PatMain EMSE".tex; 22/08/2003; 11:32; p.42

43

8.1.2. Technical factors

The programs used for the tasks were originally designed with a minimal
user interface that consisted of a declaration of a Window class with a few self-
explanatory methods (drawtext, drawline, erase, resize). In the present
experiment, that class was implemented so that the programs actually ran
and could show a window; the well-known stream mechanism for creating
console text output cout << "Hello\n"; was also added.

The windows so constructed remained active even if the program was
stopped in a debugger, so their output was visible. To avoid distractions,
the implementation was carefully hidden. No knowledge of Windows, Mi-
crosoft Foundation Classes, Java or any other specific system was assumed
or needed.

Logs were kept of server load parameters to determine if overloads or
faults interfered somewhat with the experiment. Moreover, all compilations
were inspected, and subjects were also encouraged to submit (as free text)
comments about any technical obstacles they might have encountered.

8.1.3. C++ proficiency
All the subjects performed an initial, familiarization task in order to try out
the programming environment and the user interface.

Individual differences in C++ experience and capabilities interfered with
the time spent on the programming. C++ is a relatively complex language
with fine syntactical and semantic distinctions. Developers who are not
proficient can spend significant time on details.

To lessen this threat, all compilations were evaluated, and the editing
time for compilations that were purely about syntactical problems was sub-
tracted from the total time for each subtask. The procedure is described
in Section 4.1 above. Comparisons of estimates of the regression model
coefficients and their confidence intervals showed that the corrections added
no systematic bias.

However, neither did they shrink the confidence intervals much. Cor-
rections of this kind will always depend to some extent on the subjective
judgement of those doing the grading. Also, since copies of the source files
were made only when compilations were performed, any subjects who spent
time on syntax without making compilations cannot be assigned corrections.
For these reasons the corrections were not used in the final analysis.

Another factor, likewise determined by inspection of the solutions, is that
several subjects implemented one solution to a large extent, only to abandon
it and start again in a different way. This also increased the individual
variations.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.43

44

8.2. THREATS TO EXTERNAL VALIDITY

External validity is the degree to which the results can be generalized and
transferred to other situations. Several differences between the experimental
situation and real-world maintenance must be considered.

8.2.1. Maintenance by the original designers

In our experiment the maintainers were different from the original program-
mers, so the experiment is not applicable to maintenance by the original
designers. Original designers would be expected to remember not only the
actual design, but also much of the motivation for it.

The use of Design Patterns may not have much impact in that case; in
the current context, we are not interested in improvements resulting simply
from the fact that a design with patterns fits the problem better than some
alternative design.

8.2.2. Design Pattern experience

Some maintainers may have more experience with Design Patterns than did
our subjects. In that case, we would expect the beneficial effects of patterns
to be greater. Thus, the experiment is conservative in estimating benefits of
using Design Patterns.

This expectation is motivated by the significant improvements (with one
exception) in maintenance speed after the patterns course. The exceptions
can largely be explained by the course being too short, so that subjects
attempted to use a pattern that they did not fully understand. Deeper
knowledge will probably not make the situation worse!

8.2.3. Program size, task size and tools

Real-world programs are much larger than those used in the experiment.
With a restricted time and money budget, this is a limitation that is diffi-
cult to overcome. In addition, real-world programs are sometimes less well
documented, and changes may be larger and involve more than one pattern.
The effects of such differences are difficult to predict on a general basis.
There are undoubtedly interaction effects that can occur between patterns,
but would not be visible in such an experiment.

Judging by the qualitative findings, we would expect the results to be
generally transferable. Good or bad understanding of a structural pattern
implies similarly good or bad understanding of the structure of programs
employing it, and any benefits or problems should therefore be applicable.
As large changes are often made up of several small ones, program size will
be a scaling factor, but will probably not alter the direction of the effect.
Relatively small change tasks, of the same order of magnitude as those in
the experiment, do actually occur in industrial settings (Arisholm, 2001).

"PatMain EMSE".tex; 22/08/2003; 11:32; p.44

45

Maintainers may be more familiar with the language, development tools,
etc., than were some of our subjects. However, given the widespread use
of consultants, and relatively high turnover of developers in general, the
experiment may reflect the real world in this respect more accurately than
one might desire.

8.2.4. Realism of Tasks
In the experiment, most work tasks consisted of adding features that cor-
responded in some way to features or functions already in the code. The
subjects could therefore use parts of the existing code as templates for their
solutions. In an industrial context this would not necessarily be true.
However, most software does not fundamentally change its nature during
what is normally termed “maintenance”. Most features added or modified
during maintenance correspond to something already present; for instance,
a new layout for an existing screen, the addition of a field, or the addition
of another web page to an existing structure. We therefore do not consider
this aspect of the experiment to be a significant threat, though it excludes
“maintenance” such as porting a program to a new platform or rewriting it
for a fundamentally different kind of database.

8.2.5. Domain Knowledge
Each program came from a different domain: Graphics, Formula manipu-
lation, GUI/Presentation and Communication. The Design Patterns used
(ABSTFACTORY, COMPOSITE, VISITOR, OBSERVER and DECORATOR) are
not domain-specific. Lack of domain knowledge was therefore more a threat
to internal than external validity.

Inspection of the code logs and comments made by the subjects revealed
a few cases of domain unfamiliarity: one subject did not know what a
pen plotter was, and several subjects had some problems with Boolean
arithmetic (see Section 7.9). While this increased the uncertainty of the
estimates of the relevant coefficients of the regression model, we do not
consider it a threat to the external validity of the results concerning the
patterns themselves.

8.2.6. Ezxperimental stress
Finally, our subjects were working under artificial, experimental conditions.
The closest analogy is an exam. Even if one were always sitting beside
someone working on a totally different task, watching a relaxed neighbour
while one struggles is quite stressful, on top of the knowledge that one is
being measured in visible, and possibly invisible, ways.

Another difference is that it is possible to walk away from a nonworking
solution, as actually happened with several subjects. In industry that option

"PatMain EMSE".tex; 22/08/2003; 11:32; p.45

46

is simply unavailable. When it happens, projects tend to become highly
visible failures.

Working under stressful and tight deadlines is not unusual in industry
(Yourdon, 1999). The additional stress from the experimental situation is
expected to add to the size of the individual differences, because some
individuals handle the situation better than others. Given the design of
the experiment, we do not expect the results to be systematically skewed
by this, so they should still be transferable to an industrial context

9. Conclusions

We replicated the experiment performed by Prechelt et al. (Prechelt et al.,
2001), which investigated the question whether it is useful (with respect to
maintenance) to design programs using Design Patterns, even if the actual
design problem is simpler than that solved by the pattern. Our replication
sought to increase experimental realism by using a real programming en-
vironment instead of pen and paper, and by using paid professionals from
multiple consultancy companies as subjects.

Logging tools were used to collect copies of the evolving solutions while
the subjects worked. Together with free-form comments made by the sub-
jects, this formed the basis for a qualitative evaluation of the results. In
addition, a regression-based approach using Generalized Estimating Equa-
tions was adopted for the quantitative statistics. This approach takes into
account the correlations between multiple work tasks performed by each
subject.

We found that each Design Pattern tested has its own nature, so that it
is not valid to characterize Design Patterns as useful or harmful in general,
at least in the context (maintenance by other programmers than the original
developers) addressed here.

The OBSERVER and DECORATOR patterns were generally understood
even by subjects with little or no previous patterns knowledge, and after a
short course the value of the patterns, in terms of both development time
and, to some extent, correctness of the solutions, increased. The COMPOSITE
pattern, with its reliance on recursion, caused some problems. It may be that
recursion is no longer in general use in this kind of software, and a possible
cause is the availability of predefined container classes in most languages.
The VISITOR pattern, which has a fairly complicated structure, extracted a
high cost in development time and poor correctness. Many subjects actually
ignored it even when presented with template solutions that used it (and
were documented as such).

Our results differ somewhat from those found by Prechelt et al., espe-
cially in the case of VISITOR and OBSERVER. While they found VISITOR

"PatMain EMSE".tex; 22/08/2003; 11:32; p.46

47

to be without significant harmful effects, few of our subjects achieved a
good solution with it, even after the course. By contrast, we observed no
significant harm done by using the OBSERVER pattern.

Having not only the final solution, but also the intermediate steps (pro-
vided by the logging mechanism), made possible a more extensive quantita-
tive analysis. Using a real programming environment was one prerequisite
for such logging. The realism was also increased by introducing the need to
compile and test the solutions.

We also demonstrated that it is possible to perform experiments on
this scale while using a realistic environment and tools, and professional,
paid subjects. It is possible to use Windows Terminal Server to provide
a pre-configured environment without having to set up each workstation
individually. This can be combined with Web-based tools to deliver content
and questionnaires to subjects, thereby enabling experiments with a larger
number of subjects.

Paying subjects to participate, and allowing some overhead costs, make
it possible to get professional developers as subjects. If the experimental
design allows it, it is also possible for them to participate while being in their
normal work environment. In future work, these factors can be combined to
increase the realism of the experiments and address some of the traditional
threats to external validity.

Only four Design Patterns were evaluated in the original experiment and
this replication. One area for future work is to evaluate other Design Pat-
terns in widespread use from a similar standpoint: what effect would their
use have on future maintenance, for programmers with and without relevant
Design Pattern knowledge. Another need is to evaluate Design Patterns in
larger contexts. The programming tasks do not necessarily have to be much
larger, but the software of which they are a part should be of a more realistic
size.

Acknowledgements

Gunnar J. Carelius, Halvard Moe and Asmund @degard of the Simula Re-
search Laboratory technical staff provided absolutely invaluable assistance
on the technical side. Under intense time pressure they courteously assisted
experiment participants in setting up their laptops to run on the Simula net-
work. Gunnar also set up the Terminal Servers and provided other technical
assistance.

Lene Hansen smoothly handled the practical logistics of travel, lunch and
other practical details.

Our participants approached the experiment with great enthusiasm and
worked intensely to complete their work tasks.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.47

48
References

Alexander, C.: 1978, A Pattern Language: Towns, Buildings, Construction. New York:
Oxford University Press Inc, USA.

Alexander, C.: 1987, The Timeless Way of Building. New York: Oxford University Press
Inc, USA.

Arisholm, E.: 2001, ‘Empirical Assessment of Changeability in Object-Oriented Software’.
Phd, University of Oslo.

Arisholm, E., D. Sjgberg, G. J. Carelius, and Y. Lindsjgrn: 2002a, ‘SESE an Experiment
Support Environment for Evaluating Software Engineering Technologies’. In: NW-
PER2002 (Tenth Nordic Workshop on Programming and Software Development Tools
and Techniques),. Copenhagen, Denmark, pp. 81-98.

Arisholm, E., D. Sjgberg, G. J. Carelius, and Y. Lindsjgrn: 2002b, ‘A Web-based Support
Environment for Software Engineering Experiments’. Nordic Journal of Computing.

Arisholm, E., D. I. K. Sjgberg, and M. Jgrgensen: 2001, ‘Assessing the Changeability
of two Object-Oriented Design Alternatives - a Controlled Experiment’. Empirical
Software Engineering 6, 231-277.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal: 1996, Pattern-
Oriented Software Architecture. Chichester: Wiley.

Diggle, P., K. Liang, and S. Zeger: 1994, The analysis of Longitudinal Data. Oxford:
Oxford University Press.

Efron, B. and R. J. Tibshirani: 1993, An introduction to the bootstrap, Monographs on
Statistics and Applied Probability. London: Chapman & Hall.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides: 1995, Design Patterns: Elements of
reusable object-oriented software. Addison-Wesley, Reading, MA, 1995.

Kitchenham, B. A.; S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El-Emam,
and J. Rosenberg: 2001, ‘Preliminary guidelines for empirical research in software
engineering’. IEEE Transactions on Software Engineering.

Liang, K. and S. Zeger: 1986, ‘Longitudinal Data Analysis using Generalized Linear
Models’. Biometrika 73, 13-22.

Lindsay, R. and A. Ehrenberg: 1993, ‘The Design of Replicated Studies’. The American
Statistician 47(3), 217-228.

McCullagh, P. and J. Nelder: 1989, Generalized linear models. New York: Chapman and
Hall.

Prechelt, L.: 2000, ‘An empirical study of working speed differences between software
engineers for various kinds of task’. Submitted to IEEE Transactions on Software
Engineering, to be revised.

Prechelt, L., B. Unger, W. F. Tichy, P. Brossler, and L. G. Votta.: 2001, ‘A Controlled
Experiment in Maintenance Comparing Design Patterns to Simpler Solutions.’. [EEE
Transactions on Software Engineering 27(12), 1134-1144.

Sjeberg, D., B. Anda, E. Arisholm, T. Dyba, M. Jgrgensen, A. Karahasanovic, E. Koren,
and M. Vokac: 2002, ‘Conducting Realistic Experiments in Software Engineering’.
In: ISESE2002 (First International Symposium on Empirical Software Engineering).
Nara, Japan, pp. 17-26, IEEE Computer Society.

Smith, D., W. Robertson, and P. Diggle: 1996, ‘Object-Oriented Software for the Analysis
of Longitudinal Data in S’. Technical Report Technical Report MA96/192, Department
of Mathematics and Statistics, University of Lancaster.

Yourdon, E.: 1999, Death March. Prentice Hall PTR.

"PatMain EMSE".tex; 22/08/2003; 11:32; p.48

