
Surveying Developer Knowledge and Interest in
Code Smells through Online Freelance Marketplaces

Aiko Yamashita
Simula Research Laboratory

Lysaker, Norway
Email: aiko@simula.no

Leon Moonen
Simula Research Laboratory

Lysaker, Norway
Email: leon.moonen@computer.org

Abstract—This paper discusses the use of freelance market-
places to conduct a survey amongst professional developer’s about
specific software engineering phenomena, in our case their knowl-
edge and interest in code smells and their detection/removal.
We present the context and motivation of our research, and
the idea of using freelance marketplaces for conducting studies
involving software professionals. Next, we describe the design of
the survey and the specifics on the selected freelance marketplace
(i.e., Freelancer.com). Finally, we discuss why freelance markets
constitute a feasible and advantageous approach for conducting
user evaluations that involve large numbers of software profes-
sionals, and what challenges such an approach may entail.

Index Terms—survey; user evaluation; developer knowledge

I. INTRODUCTION AND MOTIVATION

The presence of code smells indicates that there are issues
with code quality, such as understandability and changeability,
which can lead to a variety of maintenance problems, including
the introduction of faults [1]. In the last decade, code smells
have become an established concept for patterns or aspects of
software design that may cause problems for further develop-
ment and maintenance of these systems [2].

Since code smells are associated to specific set of refactor-
ing strategies to eliminate them, code smell analysis allows
people to integrate both assessment and improvement into the
software evolution process itself. Van Emden and Moonen [3]
provided the first formalization of code smell detection and
developed an automated code smell detection tool for Java.
Other approaches for code smell detection can be found in [4–
13]. Automated code smell detection has been implemented
in commercial tools such as Together1, Analyst4J2, Stan4J3,
InCode4, NDepend5, and CppDepend6, and in free tools like
JDeodorant7, and OClint8.

Even though code smell detection and removal has been
well-researched over the last decade, it remains open to debate
whether or not code smells should be considered meaningful
conceptualizations of code quality issues from the developer’s
perspective. For example, the authors on a recent study on
the lifespan of code smells in seven open source systems
conclude that developers are aware but not concerned by the
existence of code smells [14]. In another study, Yamashita and
Moonen investigate how code smells relate to maintainability

1 http://www.borland.com/us/products/together
2

http://www.codeswat.com
3 http://wwww.stan4j.com

4
http://www.intooitus.com/products/incode

5 http://www.ndepend.com
6

http://www.cppdepend.com
7 http://www.jdeodorant.com

8
http://oclint.org

characteristics considered important by professional develop-
ers [15]. They found that although some concepts covered
by code smells reflect maintainability properties important
to developers, a considerable percentage of maintainability
properties were unrelated to code smells.

So, the question remains if code smells are really important
to developers? If they are not, is this due to the lack of
relevance of the underlying concepts (e.g., as investigated in
[15]), a lack of awareness about code smells on the developer’s
side, or due to the lack of appropriate tools for code smell
analysis and/or removal? If tool support is lacking, what fea-
tures would best support developers’ needs? Thus, to align and
direct research efforts to address actual needs and problems
of professional developers, we need to better understand their
level of knowledge and interest in code smells.

A good starting point to investigate these aspects would
be an exploratory, descriptive survey. However, to conduct
such a study, one needs a large enough, and representative
sample of professional software engineers, which is gener-
ally difficult to attain. In this paper, we suggest the use of
online freelance marketplaces for obtaining such a sample.
The remainder of this paper is as follows: First, we briefly
discuss the challenge in Software Engineering (SE) research of
accessing representative samples in controlled studies. Second,
we introduce outsourcing on freelance marketplaces as an
approach to overcome the “sampling” challenge. Third, we
describe the design of our survey study and the specifics
on the particular freelance marketplace that we selected (i.e.,
Freelancer.com). Finally, we discuss why the use of freelance
markets constitutes an advantageous approach for conducting
user evaluations involving large numbers of software profes-
sionals, and what challenges such an approach may entail.

II. THE CHALLENGE OF REPRESENTATIVE SAMPLES IN SE

As mentioned above, our goal was to conduct a survey to
investigate developer’s insights and interest in code smells.
A survey is defined as: “A system for collecting information
from or about people to describe, compare or explain their
knowledge, attitudes and behavior” [16].

An important challenge in Software Engineering (SE) re-
search is to generalize from the specific subjects, technology,
tasks and systems of experiments to industrial contexts [17].
Controlled studies that are performed on small systems or in
unrealistic settings suffer from threats to their external validity.

978-1-4673-6433-1/13 c© 2013 IEEE USER 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

5



The same problem applies to the selection of participants or
subjects in user evaluations and surveys, as they need to be
representative of the population that we want to study.

Consequently, it is important for the purpose of our study
to get access to software professionals rather than students or
academic personnel. However, getting access to professional
software engineers for conducting studies is often challenging,
both in terms of establishing the contact with software com-
panies, and in terms of convincing them to invest their time
participating in such studies. Advocates of Action Research
[18] suggest that this methodology enables the conduction
of empirical studies in industry-relevant settings. However,
action research is only one type of research methodology, and
only suited for addressing certain types of research questions;
conducting a wide exploratory survey is not one of them.

III. ONLINE FREELANCE MARKETPLACES

Sjøberg et al., [17] argue that universities or research institu-
tions should allocate resources for enabling realistic software
engineering experiments in the same way as they allocate
resources for acquiring software tools or equipment necessary
for research. However, even if we have enough resources
to “hire” programmers to participate, whenever such studies
require a large population, it may still be challenging to reach
out to enough software professionals to get a representative
sample. We propose the use of online freelance marketplaces
(also know as “outsourcing markets”) as a feasible approach
for reaching out to large numbers of software professionals
for conducting such surveys or experiments.

Bacon et al., [19] define online freelance marketplaces as
“platforms that connect individuals, small-business owners,
and even Fortune 500 companies with freelance technology
specialists to satisfy their technological needs”. They are
supported by websites that provide detailed information on
the freelancers’ history and qualifications, and even provide
tools for monitoring the progress of the outsourced software
projects. Project owners post details of the project they offer
and freelancers interested in taking the assignment will reply
with their offers. The marketplace typically assures that buyers
get the service they ordered and freelancers get payed when
they complete the assignment. Examples of (IT) marketplaces
discussed in [19] include RentACoder and TopCoder.

Freelance marketplaces are an example of crowdsourc-
ing [20], essentially the assignment or distribution of tasks
to a large group of people (often a community) instead of
hiring or outsourcing to specific individuals. Crowdsourcing
is based on announcing an open call to carry out a task, often
involving a payments, prizes or other types of rewards [21].
One particularity of crowdsourcing is that participants in
general have minimal or no interaction with each other (i.e.,
workers are independent and typically cannot see each others’
work). This makes this environment ideal for conducting
studies that demand a degree of control to avoid potential
biases on the participant’s responses. Alonso et al., propose
the use of crowdsourcing for conducting relevance evaluation
of information retrieval systems [21]. Along the same lines,

we argue that online freelance marketplaces offer a platform
that is well-suited to reach out to large numbers of software
professionals, and at the same time provides a reward system
to motivate participation in the proposed study.

IV. DESIGN OF SURVEY

A brainstorming session was organized to define goals and
scope of the survey. The main goal is exploring the level of
insight (i.e., awareness, knowledge) developers have on code
smells, and determining if and why they are interested in
code smell-related concepts and tools. A secondary goal is
to explore how code smells (concept or tools) are currently
used within industry, and how can they potentially be used
within industry. We defined a set of background information
to collect to characterize developer profiles. This information
includes predominant working roles, programming language
expertise, familiarity with programming paradigms, and work-
ing experience (hours and LOC). The format of the survey
is an exploratory, descriptive survey [16], consisting of a
combination of closed and open questions. Open questions
are an important component of qualitative surveys, which
are especially suited in cases where previous experiences
or literature are insufficient to guide the design of closed
questions [16]. To investigate the concern about, and perceived
criticality of code smells, a 5-point Likert-Scale is used.
Appendix A gives an overview of the questions for the
survey. As one of the reviewers remarked, although we did
“cross-examine” the questions with a colleague researcher, we
overlooked the option of doing a real pilot study, which could
have helped with ensuring the usefulness of the questions and
exposing questions that were open to misinterpretation.

The marketplace that was selected to conduct the survey was
Freelancer.com. This is a revised version of the RentACoder
platform discussed in [19] after a merging and rebranding
process. Projects on Freelancer.com are protected by an escrow
service and through arbitration. “Buyers” can post calls for
new projects on the site and “sellers” (freelancers) can ask
questions, provide proposals for solutions, and submit bids
on the projects. After the bidding period ends, the buyer
awards the project to one or more sellers of choice and at the
same time places the funds for payment into into escrow as
a payment guarantee. After the work is completed, the buyer
releases funds from the escrow account to the seller. If any of
the parties fail to deliver the project or release the escrow, an
arbiter will step in and resolve the conflict. Instead of bidding,
another possible arrangement in Freelancer.com is “Pay for
Time” where the buyer pays a freelancer for the time spent
on a task rather than for a concrete outcome. To support the
selection process, buyers and sellers may rate each other after
work is completed. This ”customer” rating system is different
from TopCoder, where most of the reputation information
if computed from measurable performance metrics such as
the percentage of tests passed by the code, etc. We selected
Freelancer.com because this marketplace offered the “Pay for
Time” option that we considered ideal for rewarding tasks such
as completing a questionnaire that comprise a relatively short

6



period of time, and because colleagues at Simula Research
Laboratory had good experiences with using this platform.

V. OPPORTUNITIES AND CHALLENGES OF CONDUCTING
STUDIES IN FREELANCE MARKETPLACES

The use of freelance marketplaces to conduct studies on soft-
ware professionals has several advantages worth considering:
Flexibility: The survey was conducted as part of a larger
online estimation experiment conducted by Simula, which took
approximately two weeks to complete. This implies that in
many cases, you could collect different kinds of data from the
same population, in a fast, and efficient way. As Alonso et
al., [21] points out, the low cost makes it possible to apply
different methods for collecting different kinds of data.
Access to wide populations: 68 developers from 29 coun-
tries answered our survey. Had a similar population been
contacted via more traditional methods, it would have been
rather difficult to reach such an international, large number of
participants within few weeks. The fact that one has access to
large populations also allows to eliminate noise and support
internal validation.
Relatively Low Cost: Developers charged from 15-20USD
per hour for completing the online experiment and answering
our survey questions. Costs may significantly increase if a
large population is required, but for user evaluations, the
costs remain relatively low if the amount of data that can
be extracted is taken into consideration. Also, depending of
the type of study and tasks required by the developers, the
option of contests with a limited number of prizes could be
an alternative option.

Along with the advantages that this approach brings, some
challenges are yet to be tackled. One of the biggest challenges
is the uncertainty with respect to background and skills of the
participants. Verifying aspects such as competence, education
and experience may be problematic. In our study we relied on
self-assessment/self-reporting of skills. This could be replaced
by running skill assessments on the participants at higher
costs for participation. However, just as much aspects of the
background of the participants may remain uncertain, and can
pose a threat to internal validity. This might be particularly
challenging in marketplaces such as Freelance.com, where
rankings are based on subjective assessment of satisfaction
from previous buyers. Some other marketplaces use more
objective measurements of competence and skill, such as
number of successful test cases of delivered code, participation
in competitions and passing certification exams, etc.

A related challenge is ambiguity about representation;
many freelancers are registered on the marketplace as organi-
zations, although this includes a large number of one-person
companies. This means that if we want to conduct a study
investigating aspects pertaining to organizations, we need to
be careful that the selected organizations are of appropriate
structure and size. This ambiguity can also pose a reverse
threat: some large organizations are represented by a single
intermediary, thereby appearing as a single developer. This
makes it hard to establish a user profile based on previous

ratings or projects. Moreover, it remains an open question
who will actually participate in your survey: their non-English-
speaking top developer that achieved their high rating, or their
near-native intermediary who has never written a line of code.

Finally, it is not clear to what extend participants to these
online freelance markets are representative of professional de-
velopers in general. The characteristics of these marketplaces
could attract a certain type of developer or promote a certain
type of behavior that differs from other software engineering
contexts and this needs to be further investigated.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[2] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer, 2005.

[3] E. Van Emden and L. Moonen, “Java quality assurance by detecting code
smells,” in Working Conf. Reverse Eng. (WCRE), 2001, pp. 97–106.

[4] R. Marinescu and D. Ratiu, “Quantifying the quality of object-oriented
design: the factor-strategy model,” in Working Conf. Reverse Eng.
(WCRE). IEEE, 2004, pp. 192–201.

[5] R. Marinescu, “Measurement and quality in object-oriented design,” in
IEEE Int’l Conf. Softw. Maintenance (ICSM), 2005, pp. 701–704.

[6] N. Moha, Y.-G. Guéhéneuc, and P. Leduc, “Automatic generation of
detection algorithms for design defects,” in IEEE/ACM Int’l Conf. on
Automated Softw. Eng., 2006, pp. 297–300.

[7] N. Moha, “Detection and correction of design defects in object-oriented
designs,” in ACM SIGPLAN Conf. Object-oriented programming, sys-
tems, languages, and applications (OOPSLA), 2007, pp. 949–950.

[8] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, and L. Duchien, “A domain
analysis to specify design defects and generate detection algorithms,” in
Fundamental Approaches to Softw. Eng., 2008, pp. 276–291.

[9] A. A. Rao and K. N. Reddy, “Detecting bad smells in object oriented
design using design change propagation probability matrix,” in Int’l
Multiconf. of Eng. and Computer Scientists, 2008, pp. 1001–1007.

[10] E. H. Alikacem and H. A. Sahraoui, “A Metric Extraction Framework
Based on a High-Level Description Language,” in IEEE Int’l Conf.
Source Code Analysis and Manipulation (SCAM), 2009, pp. 159–167.

[11] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An Exploratory Study of
the Impact of Code Smells on Software Change-proneness,” in Working
Conf. Reverse Eng. (WCRE). IEEE, 2009, pp. 75–84.

[12] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “DECOR:
A Method for the Specification and Detection of Code and Design
Smells,” IEEE Transactions on Software Engineering, vol. 36, no. 1,
pp. 20–36, 2010.

[13] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, L. Duchien, and
A. Tiberghien, “From a domain analysis to the specification and detec-
tion of code and design smells,” Formal Aspects of Computing, vol. 22,
no. 3, pp. 345–361, 2010.

[14] R. Peters and A. Zaidman, “Evaluating the Lifespan of Code Smells
using Software Repository Mining,” European Conf. Softw. Maint. and
Reeng., pp. 411–416, 2012.

[15] A. Yamashita and L. Moonen, “Do code smells reflect important main-
tainability aspects?” in IEEE Int’l Conf. Softw. Maintenance (ICSM).
IEEE, 2012, pp. 306–315.

[16] A. Fink, The Survey Handbook, 2nd ed. Thousand Oaks, California:
SAGE Publications, Inc., 2003.

[17] D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dyba, M. Jorgensen,
A. Karahasanovic, E. F. Koren, and M. Vokac, “Conducting realistic
experiments in software engineering,” in Int’l Symposium on Empirical
Softw. Eng., 2002, pp. 17–26.

[18] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen, “Action research,”
Communications of the ACM, vol. 42, no. 1, pp. 94–97, 1999.

[19] D. F. Bacon, Y. Chen, D. Parkes, and M. Rao, “A market-based ap-
proach to software evolution,” in ACM SIGPLAN Conf. Object-oriented
programming, systems, languages, and applications (OOPSLA). ACM,
2009, p. 973.

[20] J. Howe, “The Rise of Crowdsourcing,” Wired, 2006.
[21] O. Alonso, D. E. Rose, and B. Stewart, “Crowdsourcing for relevance

evaluation,” ACM SIGIR Forum, vol. 42, no. 2, p. 9, 2008.

7



APPENDIX A: SURVEY QUESTIONS

Section I: Background
1. What is your predominant role within your organization?

[ ] Developer
[ ] Team Lead
[ ] Tester
[ ] Architect
[ ] QA Manager
[ ] Project Manager
[ ] Self-employed

2. What is your level of skill in the following languages?
(1=novice, 5=expert):

Language Level
Java
C
C++
C#
Python
Javascript
VisualBasic
Other (mention)

3. What is your level of experience (LOC and months) in
the following languages?

Language LOC Months
Java
C
C++
C#
Python
Javascript
VisualBasic
Other (mention)

4. Rank the following programming paradigms according to how
familiar you are with each? (1=least familiar, 5=most familiar)

Paradigm Familiarity
Functional
Imperative
Object Oriented

Section II: Code Smells

5. How familiar are you with code smells or design anti-patterns?
(choose one)
[ ] I have never heard of them.
[ ] I have heard about them in blogs or discussions but I am not

so sure what they are.
[ ] I have a general understanding, but do not use these concepts.
[ ] I have a good understanding, and use these concepts some-

times.
[ ] I have a strong understanding, and use these concepts fre-

quently.

6. What are the sources from which you learn on code smells?
(multiple choices)
[ ] Blogs
[ ] Discussion Forums
[ ] Guru’s websites
[ ] Books
[ ] Research Papers
[ ] Tool vendors’ websites

7. How concerned are you with the presence of code smells or anti-
patterns in your code? (1=not concerned, 5=very concerned) Why?

8. Are there specific code smells / anti-patterns that you are concerned
about? Please list them in order of their perceived importance.

9. Rank the situations where do you think code smell analysis/tools
can be helpful (1=not helpful, 5=essential)

Situation Level
Refactoring guidance (to find out where to refactor)
Quality assessment (e.g., certification processes)
Bug prediction (to identify areas of the code likely to
have more defects)
Effort prediction (to identify areas of the code likely
to consume more time)
Code inspection (to prioritize areas of the code to
inspect)
Others (mention)

10. Have you used tools for detecting/analyzing code smells?
Which ones?

11. Did you find the tools useful? Why/why not?

12. What features would you like in a tool for supporting detection
or analysis of code smells? (list the most important ones first).

No. Feature

13. Do you remove code smells “on the fly” or you plan and allocate
time to “cleanup your code”? (choose one)

[ ] On the fly
[ ] Plan
[ ] Combination

Section III: Removal of code-smells

14. How often do you refactor to remove code smells? (choose one)
[ ] Never
[ ] Almost never
[ ] Sometimes, when is absolutely essential
[ ] In a regular basis
[ ] Constitutes an important part of the process (refactoring is

included as a formal activity within the projects, f. ex. testing)

15. Can you characterize how much (seldom/regularly/often) of the
refactoring is manual, tool assisted or combined?

Method Frequency
Manual
Tool assisted
Combined

16. Can you estimate how much (seldom/regularly/often) of the
refactoring done is of low (renaming methods), of medium (relocating
classes, extracting methods) or high (modify large segments of the
code, replace solutions with the usage of patterns, etc.) complexity?

Refactoring complexity Frequency
Low
Medium
High

17. Would you like to know more about code smells / anti-patterns
or refactoring? Why?

8


