
Noname manuscript No.
(will be inserted by the editor)

Graphs and Self-dual additive codes over GF (4)

Mithilesh Kumar · H̊avard Raddum ·
Srimathi Varadharajan

the date of receipt and acceptance should be inserted later

Abstract We initiate the study of self-dual codes over GF (4) whose corresponding
graphs have fixed rankwidth. We show that by combining the structural properties
of rankwidth 1 graphs, the classification of corresponding codes becomes signifi-
cantly faster.

We give a new algorithm for computing weight enumerators using Binary De-
cision Diagrams (BDD), which has similar complexity to brute force O(2k) but
has the benefit that we automatically get complexity O(2min{k,n−k}) (for k > n/2)
without needing to consider the dual code.

We show that the minimum distance of a code is at least 3 if and only if the
corresponding graph does not contain any pendant vertex or any twin-pairs. We
also give an algorithm for computing an approximate minimum distance in codes
corresponding to general graphs.

Keywords Stabilizer Code · Self-dual · Rankwidth · Binary Decision Diagram ·
Minimum Distance

Mathematics Subject Classification (2010) 94B25

1 Introduction

The implications of quantum computation and information in coding theory and
cryptography needs to be explored more extensively. While the classical error cor-
rection is well understood with decades of research, the quantum error correction
needs more time and effort. In this regard, stabilizer codes are used for quantum
error correction [14]. The corresponding quantum states (called stabilizer states)
can be represented using graphs (called graph states) [16]. Graph states can be
used as a resource for measurement-based quantum computation [21]. These quan-
tum stabilizer codes can be represented as self-dual additive codes over GF (4) [5].
Furthermore, there is a one-to-one correspondence between self-dual additive codes
over GF (4) and simple undirected graphs [25,18,4]. Certain local operations on
graphs preserve the equivalence of self-dual additive codes over GF (4). There is

Simula UiB, Thormøhlensgate 55, 5008 Bergen, Norway

2 Mithilesh Kumar et al.

a long list of papers [12,1,7,6,8,9] that tried to classify such codes and in this
paper, we continue on this path.

Trying to classify codes by considering all possible graphs makes the problem
extremely hard. This is evident since self-dual additive codes over GF (4) has been
classified only for n up to 12 [7]. In this paper, we initiate the study of self-dual
codes whose corresponding graphs have fixed rankwidth. The graph parameter
rankwidth is preserved under local complementation. For rankwidth 1, the class
of graphs is exactly the distance-hereditary graphs. We show that by combining
the structural properties of these graphs with the algorithm used in [13,7], the
classification of corresponding codes becomes significantly faster.

There are two computationally heavy steps in the above algorithm: graph iso-
morphism and weight enumeration. For a fixed k, testing graph isomorphism for
graphs of rankwidth k is polynomial in the size of the graph [15], and it is in
fact linear in n for graphs of rankwidth 1 [24]. Hence, looking at the problem of
classification of such codes in terms of rankwidth has additional advantages.

Another important step in the classification algorithm from [7] was comput-
ing weight-enumerators for a given code. The algorithm in [7] to compute the
weight-enumerator for a linear [n, k] code is essentially a brute-force search with
complexity O(2k). If k > n/2, it is necessary to go via the dual code to do the weight
enumeration efficiently. We use Binary Decision Diagrams (BDD) to compute the
weight-enumerators instead. The algorithm using BDD for weight enumeration has
similar complexity to brute force, but has the benefit that we automatically get
complexity O(2min{k,n−k}) without needing to consider the dual code.

The minimum distance of codes corresponding to distance-hereditary graphs
is 2. We show that the minimum distance of a code is at least 3 if and only if the
corresponding graph does not contain any pendant vertex or any twin-pairs. We
also give an algorithm for computing an approximate minimum distance in codes
corresponding to general graphs and leave some interesting open problems.

2 Preliminaries

Let F be a finite alphabet set (e.g. F = {0, 1} for binary codes) with size |F| = q. A
code of length n is any subset of Fn. For q a prime power and F = Fq a finite field
of q elements, a linear code is a linear subspace of the vector space Fn. Let GF (4)
denote the finite field of four elements. The elements of GF (4) are represented as
{0, 1, ω, ω2} such that ω2 = ω + 1. An addtive code C over GF (4) of length n is an
additive subgroup of GF (4)n. If C contains 2k codewords for some 0 ≤ k ≤ n then
C can be represented via a k×n generator matrix, with entries from GF (4). For any
element x ∈ GF (4), the conjugate of x is defined as x̄ := x2. We define a function
Tr : GF (4) → GF (2), known as trace map as for any x ∈ GF (4), T r(x) := x + x̄.
The set GF (4)n denotes the set of all vectors of length n with each entry from
GF (4). The dot product of two vectors u, v ∈ GF (4)n is defined as The Hermitian

trace inner product of two vectors over GF (4) of length n, u := (u1, u2, . . . , un) and
v := (v1, v2, . . . , vn), is defined as

u ∗ v := Tr(u · v̄) =
n∑

i=1

Tr(uiv̄i) =
n∑

i=1

(uiv
2
i + u2i vi) mod 2 (1)

Graphs and Self-dual additive codes over GF (4) 3

The dual of a code C denoted as C⊥ is defined as

C⊥ = {u ∈ Fn | u ∗ v = 0 ∀ v ∈ C}.

If C = C⊥ then C is said to be self dual. If C is self dual, then |C| = |F|n/2. The
Hamming distance between two codewords x = (x1, . . . , xn) and y = (y1, . . . , yn) is
the number of places where they differ, and is denoted by dist(x, y). The Hamming

weight of a codeword x = (x1, . . . , xn) is the number of nonzero xi and is denoted
by wt(x). We have the relation dist(x, y) = wt (x−y). The minimum distance of the
code C is the minimal Hamming distance between any two distinct codewords of
C. Since C is an additive code, the minimum distance is also given by the smallest
nonzero weight of any code word in C. A linear code with minimum distance d is
called an [n, k, d] code.

2.1 Graphs

A graph is a pair G = (V,E) where V is a set of vertices, and E ⊆ V × V is a set of
edges. A graph with n vertices can be represented by an n×n binary matrix called
the adjacency matrix A such that Aij = 1 if and only if vivj ∈ E, and Aij = 0
otherwise. In this paper we consider simple undirected graphs that have no loops,
so the diagonal entries are 0, and no multiple edges. The open neighbourhood of
v ∈ V , denoted by N(v), is the set of vertices connected to v by an edge. The
closed neighbourhood of v ∈ V , denoted by N [v], is the set of vertices connected to
v by an edge along with v itself. The number of vertices incident to v is called
the degree of a vertex v. A path is a sequence of vertices, (v1, v2, ..., vi) such that
vj , vj+1 ∈ E. A graph is connected if there is a path from any vertex to any other
vertex in the graph. A cycle is a path that has same vertex as start and end point.
A tree is a connected graph that does not contain any cycle. Vertices of degree 1
in a tree are called leaves. We can designate any vertex in a tree as a root vertex.
Usually the root vertex is taken as a start or reference point in the tree. The
complement or the inverse of G is a graph H such that two distinct vertices of H

are adjacent if and only if they are not adjacent in G. A subgraph H of a graph G is
obtained by deleting vertices and edges from G. The subgraph H is called induced

if H can be obtained from G by deleting only vertices from G. A vertex of degree
1 is called a pendant. A pair of vertices u, v are called true twins if N [u] = N [v] and
are called false twins if N(u) = N(v). When we call a pair of vertices as twin-pair,
then they can either be true-twins or false-twins.

Local complementation (LC) on v denoted by G∗v replaces the induced subgraph
of G on N(v) by its complement. See Figure 1 for an example.

A Graph code is an additive code over GF(4) that has a generator matrix of
the form C = A+ωI, where I is the identity matrix and A is the adjacency matrix
of a simple undirected graph. A graph code is always self dual since its generator
matrix has full rank over GF(2).

Theorem 1 ([25,18]) Every self-dual additive code over GF(4) is equivalent to a

graph code.

4 Mithilesh Kumar et al.

v0

v1
v2

v3
v4∗

v5
v0

v1
v2

v3
v4

v5

Fig. 1: Local complementation at v4

v0

v1

v2

v3

v4 v0 v1 v2 v3 v4
L

T

1

2
2

1

1

11

1 0 1

1 0 0

󰀥 󰀦
v0
v1

v2 v3 v4

rank

Fig. 2: A rank decomposition (T,L) of a graph. The rankwidth of T is 2. It so
happens that the rankwidth of this graph is 2 as well.

2.2 Rankwidth

Let G be a simple undirected graph. A rank decomposition of G is a pair (T,L)
of tree T with leaves L such that every internal node in the tree has degree 3 and
there is a bijection between the set of leaves L of T to the set of vertices V of
G. See Figure 2. For every edge e in T , we can associate a partition (A,B) of V ,
where A and B are set of leaves in the two sub-trees that result after deleting e.
The weight of an edge e in T is the rank of the adjacency matrix of bipartite graph
((A,B), E) where E is the set of edges whose one endpoint is in A and other in B.
The rankwidth of the decomposition (T,L) is the largest weight of an edge in T .
The rankwidth rw(G) of G is the smallest rankwidth of any tree decomposition of
G. Local complementation preserves the rankwidth of a graph.

Theorem 2 ([19]) Given a graph G and a vertex v ∈ V (G), rw(G) = rw(G ∗ v).

The distance between two nodes is the length of the shortest path between them.
A distance-hereditary graph is a graph in which the distances in any connected
induced subgraph are the same as they are in the original graph.

Theorem 3 ([19]) G is distance-hereditary if and only if the rankwidth of G is at

most 1.

Graphs and Self-dual additive codes over GF (4) 5

2.3 Weight enumerators

When using a code, it is important to know the probability of correct decoding. In
practical situation it is necessary to know the weight distribution of the the code.
Let Ai denote the number of vectors in a code C having Hamming weight equal
to i. Then A0, A1, A2... is called the weight distribution of the code. The Hamming

weight enumerator of C may be defined by a bivariate polynomial

Wc(x, y) =
∑
u∈C

xn−wt(u)ywt(u) =
n∑

i=0

Aix
n−iyi. (2)

The weight enumerators of a code and its dual are related via the following
theorem from [11, p. 127]

Theorem 4 If C is an [n, k] binary linear code with dual code C⊥ then

WC⊥(x, y) =
1

|C|WC(x+ y, x− y)

where |C| = 2k is the number of codewords in |C|.

2.4 Binary Decision Diagrams

The data structure we use for calculating the weight enumerators of self dual ad-
ditive code over GF (4) are Binary Decision Diagrams (BDD). Binary Decision
Diagrams are used in various applications, such as representing system of Boolean
equations [23], application to permutations [17], or representing integer multipli-
cation [20]. In this paper, we describe the basic operations we must do on a BDD
in order to compute the weight enumerators of self dual codes of GF (4).

2.4.1 Description of BDD

A Binary Decision Diagram (BDD) is a directed acyclic graph with a root node
at the top and a true-node at the bottom. The nodes in a BDD are arranged in
horizontal levels, and we visualize a BDD by drawing the levels in a top-down
fashion. There is only one node on the highest level, called the top node or the root

node, and there is only one node on the lowest level, called the bottom node or the
true-node.

All edges in the BDD are directed downwards, with an edge always going
between nodes on different levels. In other words, no edge is drawn between the
nodes on the same level. Each node, except for the bottom node, has one or two
outgoing edges, called the 0-edge and/or the 1-edge. The bottom node only has
incoming edges and no outgoing edges. 0-edges are drawn as dotted lines, while
1-edges are drawn as solid lines. All the operations on BDD are done over GF(2).
The transition from GF(4) to GF(2) is explained in Section 3.

A level in a BDD is usually associated with a single variable over GF(2). In our
case, we allow a linear combination of variables over GF(2) associated with each
level. A path in a BDD is a sequence of consecutive edges, where the end node of
one edge is the start node for the next edge. A complete path starts in the top

6 Mithilesh Kumar et al.

l1

l2

A B C D

l1

l1 + l2

A B C D

Fig. 3: Adding levels in a BDD

node and ends in the bottom node. We regard each edge in a path to assign a
value over GF(2). If an e-edge starts from a node on a level associated with linear
combination l, it yields the linear equation l = e (for e ∈ {0, 1}).

An edge need not go to a node on the level directly below. In that case we say
that the edge jumps over some levels. For an edge that jumps over some levels, we
can always insert nodes on each jumped level. The inserted nodes should have the
0- and 1-edges pointing to the same nodes. In the left BDD of Figure 5 the last
edge jumps over n levels, while the BDDs in Figure 6 have nodes inserted for the
jumping edge. Both ways of drawing the BDDs are equivalent.

2.4.2 Adding Levels

The add operation allows us to add one linear combination for a level onto the
linear combination for the level directly below, and change the BDD accordingly
to keep the set of binary vectors encoded by the BDD unchanged. We explain the
general case of adding levels using Figure 3. This figure shows the case when all
edges are present. For cases where some edges are missing we can just imagine
that the missing edges go to some ”ghost” nodes, change the edges according to
Figure 3, and then remove the ghost nodes.

Let l1 and l2 be the linear combination for two adjacent levels, with l1 on the
top. We want to add l1 onto l2. In the general case we have two outgoing edges,
the 0-edge and the 1-edge, from the node on level l1. By choosing values for l1 and
l2 we end up in one of the four nodes labelled A,B,C,D in Figure 3. When we add
l1 to l2, the lower level gets associated with the linear combination l1 + l2 and the
choice of values for l1 and l2 must send us to the same node. For instance, l1 = 1
and l2 = 0 leads to node C in the left BDD. That choice of values gives l1 + l2 = 1,
so after adding the levels the values l1 = 1 and l1 + l2 = 1 must also end up in
the node C in the right BDD. To preserve the set of vectors encoded in the BDD
when replacing l2 by l1 + l2 we must flip the outgoing edges from the node pointed
to by the 1-edge from the node on level l1.

2.4.3 Swapping Levels

How to swap the variables on two adjacent levels in a BDD and change the nodes
and edges such that the resulting BDD encodes exactly the same set of vectors is
explained in [22]. By swapping levels the linear combination associated with level i
is swapped to level i+1 and vice versa without affecting the set of vectors encoded
by the BDD. We explain the general case of swapping levels using Figure 4.

Let l1 and l2 be the linear combination for two adjacent levels, with l1 being
above l2. We want to swap these linear combinations without disturbing the set

Graphs and Self-dual additive codes over GF (4) 7

l1

l2

A B C D

l2

l1

A B C D

Fig. 4: Swapping levels in a BDD

of vectors encoded in the BDD. For the node on level l1, we have two outgoing
edges. As seen previously choosing values for l1 and l2 we end up in one of the four
nodes labelled A,B,C,D in Figure 4. In the left BDD before swapping, the choice
of the value l1 = 0 and l2 = 1 leads us to the node B. After we swap l1 and l2, the
choice of values l1 = 0 and l2 = 1 must still leads to the node B. This is achieved
by swapping edges on the lower level of the paths where l1 and l2 have different
values.

The swap and add operations have linear time complexity in the number of
nodes on the two affected levels, so it is very cheap to do when this number is
small. The drawback is that the number of nodes on the lower of the two levels
may, in the worst case, double during the operation. This happens when there is
only one node on the lower level, but after add or swap is done two nodes are
needed to keep the paths intact. Hence repeatedly doing swap or add operations
through the BDD may lead to exponential growth in the number of nodes. The
number of nodes may also decrease during this process, but finding the order of
the linear combinations giving the smallest BDD is an NP-hard problem [3].

3 Construction of BDD

Let G be an n× n generator matrix of a code C over GF (4). We compute the set
of all code words by considering all possible linear combinations over GF (2) of the
rows of G. This is done by first expanding the matrix into an n × 2n matrix G′

over GF (2) by associating (mapping) each GF (4)-element to two bits as follows:
0 = (00), 1 = (01), ω = (10), ω2 = (11).

G =


ω 1

1 ω 0 . . .

. 0 ω 1 . .

.

.

. ω


n×n

=⇒ G′ =


1 0 0 1

0 1 1 0 0 0 . .

. . 0 0 1 0 . .

.

.

. 1 0


n×2n

Now we multiply all binary strings (c1, c2, c3, ...cn) of length n to the matrix
G′ to get the set of all code words (x1, x2, x3,x2n−1, x2n).

(c1, c2, c3, ...cn)


1 0 0 1

0 1 1 0 0 0 . .

. . 1 0 0 1 . .

.

.

. 1 0

 = (x1, x2, x3,x2n−1, x2n)

8 Mithilesh Kumar et al.

...

T

Add, Swap

l1

l2

l3

...

ln

xi1

xi2

xi3

...

xin

...

...

...

...

...

...

...

T

x1

x2

x3

...

xn

xn+1

xn+2

xn+3

...

x2n

Fig. 5: BDD after adding and swapping to resolve all linear combinations into
single variables, sorted on the levels.

In order to construct the BDD that has all code words as paths, we introduce
the parity check matrix H. The parity check matrix describes the set of linear
relations that the coordinates of each code word must satisfy. If x is a code word
and H is the parity check matrix then xHT = 0. For all code words in the code,
we have the following relations:

(x1, x2, x3, ...x2n)



1 0 0 1 . .

0 1 1 0 0 0
. . 1 0 0 1
.

.

.

.

.


2n×n

= (0, 0, 0.....0, 0)

Let the linear equations given by xHT = 0 be li = 0 for 1 ≤ i ≤ n. A BDD that
encodes all code words of the code, i.e. x-vectors satisfying all li = 0 is given in the
left BDD of Figure 5. In that BDD, the xij are free variables such that the li’s can
not be written as a sum of the xij ’s. In other words, considering the free variables
as linear combinations too, all linear combinations in the BDD are independent.
The free variables can take any value, and the li’s represent linear combinations
of the coordinates that must be 0 in order to be a code word.

We now use add and swap operations on this basic BDD to resolve the linear
combinations li. By resolving the linear combinations we mean that we add to-
gether some of the linear combinations and free variables to transform li into a
single variable. We use the swap operation to move levels that need to be added so
they are adjacent to each other, and the add operation to do the actual addition.

We apply the operations until only single variables appear on all levels. We
sort the levels in order such that x1 appears on the top and x2n appears on the
lowest level, as shown in the right BDD of Figure 5. We have given an explicit

Graphs and Self-dual additive codes over GF (4) 9

T

x1 + x3

x2 + x4 + x5

x1

x2

x5

Swap level 2 and 3

T

Swap level 1 and 2

x1 + x3

x1

x2 + x4 + x5

x2

x5

T

Add level 1 and 2

x1

x1 + x3

x2 + x4 + x5

x2

x5

T

x1

x3

x2 + x4 + x5

x2

x5

Fig. 6: Example: Performing add and swap to a BDD

example of how add and swap operations are performed in a BDD, see Figure 6.
Now the paths of the BDD represent all code words in C.

Complexity: In this paper we are concerned with the special case where the
codes are of length 2n and dimension n. However, constructing the BDD repre-
senting a binary code can be done for any length n and any dimension k ≤ n. We
explain here the complexity, in terms of number of nodes in the final BDD, in the
general case for an [n, k] linear code C over GF (2).

Lemma 1 The number of nodes on any level of the final BDD after resolving all linear

combinations for a code C is at most 2k.

Proof The number of code words in C is 2k, and so the total number of paths in
the BDD is also 2k. There are no edges between nodes on the same level, so all
nodes on any level are part of different paths. Hence the number of nodes on any
level can not be more than 2k.

Lemma 2 The number of nodes on any level of the final BDD after resolving all linear

combinations for a code C is at most 2n−k.

Proof The number of nodes on any level of the basic BDD before resolving any
linear combinations is 0 or 1. Applying the swap or add operation will at most
double the number of nodes on the lower of the affected levels. We resolve one linear
combination by adding certain levels in the BDD. Starting with the lowest level
and moving levels upwards, adding as needed, we see that each level is involved
in the resolution of a linear combination only once. So the total number of nodes
in any level of the BDD after resolving one linear constraint may at most double.
Since we are resolving n− k linear combinations, the total number of nodes in the
final BDD will be at most 2n−k.

Combining lemmas 1 and 2 we get the following result.

Theorem 5 The number of nodes in the final BDD representing the code words of a

binary linear [n, k] code is of order O(2min{k,n−k}).

10 Mithilesh Kumar et al.

Weight

0

1

1

1

GF(4) Elements

(00) = 0

(01) = 1

(10) = ω

(11) = ω2

Fig. 7: Weight of consecutive edges in a BDD

Path weight

1 + 1 + 0 = 21 1 0

Fig. 8: Example of computing weight of a path

(p0, p1, p2, ...pn)

(p0, p1...pn) (0, p0, ...pn−1) (0, p0, ...pn−1) (0, p0, ...pn−1)

Fig. 9: Shift weight vector by one to the right when the pair of edges indicate a
non-zero GF (4)-element.

3.1 Algorithm for computing weight enumerators

Recall that pairs of coordinates (x2i−1, x2i) actually represent one element in
GF (4). A path in the BDD with resolved and sorted levels has length 2n, but
represents a code word of length n with elements from GF (4). When computing
the weight enumeration we therefore count how many non-zero GF (4)-elements a
path (code word) represents. Figure 7 shows how the different elements of GF (4)
are represented as paths in the BDD, and Figure 8 gives an example of how to
count the weight of a code word represented as a path.

Now we describe our algorithm for computing weight enumerators using BDD.
We explain the whole process, where we start with a graph G, and want to compute
the weight enumeration of its corresponding code over GF (4).

Step 1: Given the adjacency matrix A of a graph G, we obtain the generator
matrix G = A+ ωI over GF(4). Note all operations are over GF(2).

Step 2: We transform the generator matrix over GF(4) to GF(2) by mapping
two bits to each GF(4) element in the matrix as follows: 0 = (00), 1 = (01),
ω = (10), ω2 = (11).

Step 3: We obtain the parity check matrix H, from the generator matrix over
GF(2) and, get the parity check equations l1 = l2 = . . . = ln = 0.

Step 4: Construct the BDD for l1 = l2 = . . . = ln = 0 with xi1 , xi2 , . . . , xn as
variables.

Graphs and Self-dual additive codes over GF (4) 11

Step 5: Now we apply add and swap operations to the BDD to resolve and sort
the linear combinations, see figures 5 and 6.

Step 6: Weight enumeration: Each node in the BDD has a vector of length (n+1)
of integer values, denoted as (p0, p1, p2, . . . , pn). For a given node, pi indicates
the number of paths of weight i below this node.
1. Start with setting (1, 0, 0, . . . , 0) as the vector for the true-node at the bot-

tom. We say there is one path of weight 0 from the true-node to itself (the
empty path).

2. We compute the vectors for the other nodes in a recursive way, from the
lower levels to higher ones. When a pair of edges from a node T to A

contribute 0 to the path weight, the weight distribution below T along
this path is the same as for A. In other words, prepending the partial code
words with a zero does not change the weight distribution. When the pair of
edges from T to A contribute 1 to the weight, the paths of weight i below
A become paths of weight i + 1 below T . Hence the weight enumeration
vectors for T are obtained by shifting the vector for A by one position to
the right, as shown in Figure 9.

3. Assuming all weight distribution vectors have been computed for the nodes
on one level, compute the weight distribution for the nodes two levels above
by adding all the weight contributions, shifting them by one position to the
right as needed. This is shown in Figure 10.

4. Compute weight distributions for all nodes in the BDD, moving upwards
two levels at the time. In the end, the vector for the root node gives the
weight distribution of the whole code.

The complexity of computing the weight enumeration of a given code repre-
sented as a BDD is O(N), where N is the number of nodes in the BDD and adding
two integer vectors counts as a unit operation. In terms of single integer additions,
the complexity is O(nN).

We have described the algorithm for computing the weight enumeration when
the code represented as a BDD is regarded as being over GF (4). Going back to
the general case of an [n, k] linear code over GF (2), we can easily modify the
algorithm to compute the weight distribution for any binary linear code when it
is represented as paths in a BDD.

Computing the weight distribution in general is a hard problem, that can only
be solved by brute force. The naive way of doing it (without the BDD represen-
tation) is to run through all the code words and count their weights. This has
complexity O(2k). If k > n/2, the complexity of doing weight enumeration be-
comes bigger than it needs to be. Then one can compute the weight distribution
for the dual code (of dimension n− k and complexity O(2n−k) < O(2k)), and use
Theorem 4 to find the weight distribution of the given code.

Theorem 5 shows the advantage of using the BDD approach to calculate the
weight enumeration: We have a single algorithm that automatically gets the lowest
complexity possible, regardless of whether k is bigger or smaller than n/2.

12 Mithilesh Kumar et al.

(a0, a1, ..an)(b0, b1, ..bn) (c0, c1, ..cn)(d0, d1, ..dn)

(a0, a1, a2, .., an)
+(0, b0, b1, .., bn−1)
+(0, c0, c1, .., cn−1)
+(0, d0, d1, .., dn−1)

Fig. 10: Computing weight enumeration for one node.

4 Classification for Rankwidth 1 graphs

The algorithm for classifying self-dual codes corresponding to general graphs as
described in [7]: Let Ln−1 be the set of representatives for classes of graphs on
n− 1 vertices corresponding to equivalent self-dual codes.

– Compute the set of graphs En by adding a vertex to each graph in Ln−1 in
2n−1 − 1 ways i.e. making the vertex adjacent to every possible non-empty
subset of the vertex set.

– For each set of of isomorphic graphs keep only one graph in En.
– Use weight-enumerators to partition the set En i.e. graphs corresponding to

same weight-enumerators are put in one class.
– Partition each class in En by checking for self-dual equivalence.
– Output Ln that contains one graph from each class in En.

We utilize the following definition of distance hereditary graphs.

Theorem 6 ([2]) Let G be a finite graph with at least two vertices. Then G is distance-

hereditary if and only if G is obtained from an edge by a sequence of one of vertex

extensions: add vertex as a pendant, add vertex as a true-twin to an existing vertex

and add vertex as a false-twin to an existing vertex.

Let Gn−1 be all connected graphs of rankwidth 1 on n − 1 vertices. Then Gn
can be obtained by adding a vertex to each graph in Gn−1 as a pendant or a twin
to some vertex. Consider C to be the orbit of a graph G ∈ Gn−1. Let G1, G2 ∈ C.
Then there is a sequence of LC operations S that can take G1 to G2. Let E1 and
E2 be the 3(n−1) extensions of G1 and G2 obtained via adding pendants or twins.
We show that via applying S on any graph in E1, we end-up with a graph in E2
implying that E1 and E2 are LC-equivalent.

Let u be a new vertex added to G1 as a pendant or twin to a vertex v ∈ V (G1).
The LC operations at vertices in G1 switch the role of u relative to v as a pendant or
a twin. At the same time, G1 changes to G2 after S has been performed. Then, u can
be seen as being attached to G2 as a pendant or twin (according to what happens
after apply S to G1 + u). Hence, any graph E2 can be seen as being obtained from
a graph in E1 via applying S. This implies that instead of considering extensions

Graphs and Self-dual additive codes over GF (4) 13

u∗
v

B D u

v

B D

Fig. 11: Here filled circles denote vertices and ellipses denote set of vertices. An
edge from a vertex to a set denotes that vertex is adjacent to every vertex in the
set. The vertices u and v are true twins. After LC at u, the degree of v reduces to
1.

u

v

w∗

A

B

C

D u∗
v

w

A

B

C

D u

v

w

A

B

C

D

Fig. 12: The vertices u and v are false-twins and w is a common neighbor of u and
v. After LC operation at w followed by LC operation at u reduces the degree of v
to 1.

of C, we need only consider extensions of just one representative from C. Let Ln−1

be the set of representatives of all orbits in Gn−1.
Since rankwidth is preserved by LC operations, the graphs in the sets Ln−1, En

and Ln must be of rankwidth 1. Hence by above discussion, in the computation
of En from Ln−1, the vertex must be added as a pendant or a false-twin or a
true-twin. There are at most 3(n − 1) ways to do that. So instead of branching
in 2n−1 − 1 ways, we need only branch in at most 3n− 3 ways. Furthermore, the
isomorphism testing in En is linear in n for rankwidth 1 graphs.

5 Minimum Distance

Glynn et al [13] showed that the minimum distance of a code is equal to one plus
the minimum vertex degree over all graphs in the corresponding LC orbit.

Lemma 3 If a connected graph contains a twin-pair, then the minimum distance of

the corresponding code is 2.

Proof Let u, v be a true-twin pair. Then, after LC operation at u, the degree of v
in the resulting graph is 1. See Figure 11.

If u, v is a false-twin pair, then after LC operation at a common vertex w, they
become true-twins in the resulting graph. Then, as in the above case, a pendant
results after an LC operation at u. See Figure 12. Since LC operation preserves
connectivity, this is the minimum possible degree of a vertex over the entire LC
orbit of the graph. Hence, the minimum distance of the corresponding code is 2.

Lemma 4 Codes with corresponding graphs of rankwidth 1 have minimum distance 2.

14 Mithilesh Kumar et al.

u

v

w∗

A

B

C

D u

v

w

A

B

C

D

Fig. 13: The vertex w is in the common neighborhood of true-twins u and v. LC
at w makes u, v into a false-twin pair.

Proof The rankwidth 1 graphs are exactly distance hereditary graphs which can
be constructed recursively by adding a pendant or a twin-pair. Such graphs will
have either a pendant or a twin-pair (just look at the last step in the construction
of the graph). Hence, by Lemma 3, codes with corresponding graphs of rankwidth
1 have minimum distance 2.

Lemma 5 If a graph contains a twin-pair, then every graph in its LC orbit will contain

a twin-pair or a pendant.

Proof Let u and v be true-twin pairs. An LC operation at either u or v will yield
a pendant. An LC operation at w /∈ N(u) does not effect N(u), hence, u and v

continue as twin pairs. Let w ∈ N(u)/v. Now, after LC at w, the pair u and v

become false-twins. See Figure 13.
Now, suppose u and v are false-twins. They become true twins if an LC oper-

ation is done on w, see Figure 12. An LC operation at either u or v or at a vertex
not in their common neighborhood does not change the neighborhood of u or v
and hence, they continue as false-twins. This concludes the proof of the lemma.

Lemma 6 If G does not have a pendant or a twin-pair, then no graph in the LC orbit

of G will have a twin-pair.

Proof We prove this by contradiction. Suppose G does not contain any twin-pair
or pendant, but an LC operation at u created the twins v and w. By Lemma 5, all
graphs in the orbit must have either a pendant or a twin-pair. Since G lies in the
orbit, it must have a pendant or twin-pair, contradicting the assumption.

Combining Lemma 3, Lemma 5 and Lemma 6 gives the following theorem.

Theorem 7 The minimum distance of a self-dual additive code over GF (4) is at least

3 if and only if the corresponding graph G has no pendants or twin-pairs.

5.1 An approximation algorithm for minimum distance

The problem of computing the minimum distance of a binary linear code is NP-
hard [26]. In addition, the problem is hard to approximate within any constant

Graphs and Self-dual additive codes over GF (4) 15

u

v∗

A

B

C

D u

v

A

B

C

D

Fig. 14: Degree of u decreases when |C| < |B|.

u∗
v

A

B

C

D u

v∗

A

B

C

D u

v

A

B

C

D

Fig. 15: Degree of u decreases when |C| < |A|

u

v

A

B

C

w∗
D

E u

v

A′

B′

C′

w
D′

E

Fig. 16: Taking LC operation at w ∈ C. If |C′| is less than either |A′| or |B′|, then
the degree of u can be decreased.

factor in random polynomial time [10]. For self-dual codes over GF (4), the mini-
mum distance is 1+δ where δ is the minimum degree of any vertex in any graph in
the LC orbit of the graph corresponding to the code. It is possible to get the min-
imum distance from the weight enumerator polynomial or from the LC orbit, but
both these approaches take exponential time. In this section we discuss a heuristic
approach to get some upper bound on the minimum distance.

Computing δ is equivalent to finding a sequence of LC operations starting at
some vertex u such that at the end, there is a vertex of degree δ in the resulting
graph. Clearly, finding this sequence is hard. The strategy we use is to pick a
vertex in the graph and try to decrease its degree as much as possible via LC
operations. Consider Figure 14. After LC operation at v, the degree of u changes
by (1+ |A|+ |C|)−(1+ |A|+ |B|) = |C|−|B|. The degree of u decreases if |B| > |C|.
If |A| > |C| and |B| < |C|, then applying LC at u followed by LC at v decreases
the degree of u by |A| − |C|, see Figure 15.

What if |C| is larger than both |A| and |B|? Then, either we can try LC opera-
tion at some other vertex in the neighborhood of u or try to decrease |C|. The size
of |C| can only be decreased by an LC operation at a vertex in C, see Figure 16.
If |C′| is still larger than |A′| and |B′|, then we can try to decrease the size of |D|

16 Mithilesh Kumar et al.

u
. . .

v0

A0

B0

v1

A1

B1

v2

A2

B2

v3

A3

B3

T
u

v0

v1
...

...
v2

v3
...

Fig. 17: Decomposition of the graph G along a path uv0v1v2v3 . . . in the BFS-
tree T with u as root vertex. Black-filled circles represent vertices. Other shapes
represent sets. An edge from a vertex to a set represents that every vertex in the
set is a neighbor of the vertex. Edges between sets have not been shown.

v0 A0 B0 C1

v1 A00 A01 B00 B01 A1 B1

v2 A10 A11 B10 B11 A2 B2

v3 A20 A21 B20 B21 A3 B3

C2

C3

C4

Vertex Partition of neighborhood Conditions for LC

|C1| < max{|A0|, |B0|}

|A1|+ |C2| < t1 := max{|A00|+ |B01|,
|B00|+ |A01|}

|A2|+ |C3| < t2 := t1 − (|A10|+ |B11|)

|A3|+ |C4| < t3 := t2 − (|A20|+ |B21|)
...

Fig. 18: At each vertex vi store sets Ai, Bi, Ci and ti. If |A3| + |C4| < t3, then
|A2|+ |C3| < t2 which in turn implies |A1|+ |C2| < t1. Hence, just by looking at
v3 we can decide whether degree of u can be decreased.

first by taking an LC operation at a vertex in D, then consider LC at w. Following
this chain of thought, we see that the sequence of LC operations correspond to a
path in a Breadth-First-Search (BFS) tree T of G with u as the root vertex. A
BFS tree is constructed as follows: Pick u as root. At each layer i, the vertices in
layer i are neighbors of vertices in layer i− 1 that have not been already placed in
some layer.

We aim to use this tree to find a path that gives a sequence of LC operations
to decrease the degree of u. If no such path exists, then the algorithm reports the
degree of u as a candidate for δ. See Figure 17. Now, we state the algorithm:

1: Construct BFS tree For u ∈ V (G), construct Breadth-First-Search tree T with
u as the root node. The neighborhood of a vertex at layer i in T lie only in
layers i−1, i and i+1. Note that we would require to reconstruct the tree after
LC operations along the path. The tree T is used to guide the sequence of LC
operations to be applied to decrease the degree of u.

Graphs and Self-dual additive codes over GF (4) 17

2: Partition neighborhoods At each node of the tree, we store some information
that can be used to check whether LC along the path to the root will decrease
the degree of u.
At the root node u, we have C = N(u).
At the second layer in the tree, for each vertex v0 ∈ C0 = N(u), the neigh-
borhood of v0 can be partitioned as (apart from u) as (A0, B0, C1) where
B0 = C0 ∩N(v0), A0 = C0 −B0 and C1 = N(v0)− (u ∪ C0).
At the ith layer with j = i − 1, k = i + 1, for each vertex vi ∈ Ci, partition
the neighborhood of vi as (apart from vj) (Aj0, Aj1, Bj0, Bj1, Ai, Bi, Ck) where
Aj0 = Aj − N(vi), Aj1 = Aj − Aj0, Bj0 = Bj − N(vi), Bj1 = Bj − Bj0, Bi =
Ci −N(vi), Ai = Ci −Bi, Ck = N(vi)− (vj ∪Aj1 ∪Bj1 ∪Bi). See Figure 17.

3: Book keeping For each i ≥ 2 with j = i−1, k = i+1, at each vertex vi, we store
the sets Ai, Bi, Ck and the values ai := |Aj0|+ |Bj1|, ti := tj−ai and |Ai|+ |Ck|.

4: Check for LC If |Ai|+ |Ck| ≤ ti, then an LC operation along the path from vi to
the root will decrease the degree of u. See Figure 18. Then apply LC operations
along this path and construct the BFS-tree T for the new graph and repeat.

5: Return degree of u If there does not exist any vertex in the tree with |Ai| +
|Ck| ≤ ti, then return the current degree of u as δu.

6: Terminate Finally, the algorithm outputs the smallest δu over all vertices in the
graph.

Running Time: For a given graph G, the BFS-tree can be constructed in linear
time. For each vertex v, the partition for neighborhood of v can be computed in
polynomial time and it will take polynomial space to store the necessary informa-
tion. Hence, in polynomial time we can decide whether there exists a path in the
tree along which LC operations decreases the degree of u. Hence, the algorithm
terminates in polynomial time.

6 Conclusion and open problems

In this paper we have shown that classification of self-dual codes over GF(4) is
essentially a graph-theoretic problem and a lot remains to be explored. We showed
that structural properties of rankwidth 1 graphs can make the classification of
corresponding codes faster. Graphs of rankwidth 2 are not fully understood yet.
It would be interesting to follow up with graph classes that can be constructed
recursively like distance-hereditary graphs.

We used BDDs to obtain weight-enumerator polynomials which although im-
proves on the known algorithm is still exponential. Since minimum distance can
be obtained from this polynomial, we can not hope to find the weight enumera-
tion any faster. It would be interesting to improve the algorithm though. We also
characterize when a graph will have minimum degree at least 2 over the entire LC
orbit. Can we find conditions for minimum degree at least 3?

References

1. Bachoc, C., Gaborit, P.: On extremal additive I4 codes of length 10 to 18. Elec-
tronic Notes in Discrete Mathematics 6, 55–64 (2001). URL https://doi.org/10.1016/
S1571-0653(04)00157-X

https://doi.org/10.1016/S1571-0653(04)00157-X
https://doi.org/10.1016/S1571-0653(04)00157-X

18 Mithilesh Kumar et al.

2. Bandelt, H., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory, Ser. B 41(2),
182–208 (1986). URL https://doi.org/10.1016/0095-8956(86)90043-2

3. Bollig, B., Wegener, I.: Improving the variable ordering of obdds is np-complete. IEEE
Trans. Computers 45(9), 993–1002 (1996). URL https://doi.org/10.1109/12.537122

4. Bouchet, A.: Graphic presentations of isotropic systems. Journal of Combinatorial Theory,
Series B 45(1), 58 – 76 (1988). URL http://www.sciencedirect.com/science/article/
pii/009589568890055X

5. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction
via codes over GF(4). IEEE Trans. Information Theory 44(4), 1369–1387 (1998). URL
https://doi.org/10.1109/18.681315

6. Danielsen, L.E., Parker, M.G.: Spectral orbits and peak-to-average power ratio of boolean
functions with respect to the {I, H, N}n transform. In: Sequences and Their Applications
- SETA 2004, Third International Conference, Seoul, Korea, October 24-28, 2004, Revised
Selected Papers, pp. 373–388 (2004)

7. Danielsen, L.E., Parker, M.G.: On the classification of all self-dual additive codes over
GF(4) of length up to 12. J. Comb. Theory, Ser. A 113(7), 1351–1367 (2006). URL
https://doi.org/10.1016/j.jcta.2005.12.004

8. Danielsen, L.E., Parker, M.G.: Edge local complementation and equivalence of binary
linear codes. CoRR abs/0710.2243 (2007). URL http://arxiv.org/abs/0710.2243

9. Danielsen, L.E., Parker, M.G.: Edge local complementation and equivalence of binary
linear codes. Des. Codes Cryptography 49(1-3), 161–170 (2008). URL https://doi.org/
10.1007/s10623-008-9190-x

10. Dumer, I., Micciancio, D., Sudan, M.: Hardness of approximating the minimum distance
of a linear code. IEEE Trans. Information Theory 49(1), 22–37 (2003). URL https:
//doi.org/10.1109/TIT.2002.806118

11. F.J.Macwilliams, Sloane, N.: The Theory of Error-Correcting Codes. North-Holland (1977)
12. Gaborit, P., Huffman, W.C., Kim, J., Pless, V.: On additive GF (4) codes. In: Codes and

Association Schemes, Proceedings of a DIMACS Workshop, Piscataway, New Jersey, USA,
November 9-12, 1999, pp. 135–150 (1999)

13. Glynn, D., Gulliver, T., Maks, J., Gupta, M.: The geometry of additive quantum codes
(2004)

14. Gottesman, D.: Stabilizer codes ad quantum error correction. Phd Thesis, Caltech (May
1997). DOI arXiv:quant-ph/9705052

15. Grohe, M., Schweitzer, P.: Isomorphism testing for graphs of bounded rank width. In: IEEE
56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, pp. 1010–1029 (2015)

16. Hein, M., Eisert, J., Briegel, H.J.: Multiparty entanglement in graph states. Phys. Rev. A
69, 062311 (2004). URL https://link.aps.org/doi/10.1103/PhysRevA.69.062311

17. Minato, S.: πdd: A new decision diagram for efficient problem solving in permutation
space. In: Theory and Applications of Satisfiability Testing - SAT 2011 - 14th International
Conference, SAT 2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings, pp. 90–104
(2011)

18. Van den Nest, M., Dehaene, J., De Moor, B.: Graphical description of the action of local
clifford transformations on graph states. Phys. Rev. A 69, 022316 (2004). URL https:
//link.aps.org/doi/10.1103/PhysRevA.69.022316

19. Oum, S.: Rank-width and vertex-minors. J. Comb. Theory, Ser. B 95(1), 79–100 (2005).
URL https://doi.org/10.1016/j.jctb.2005.03.003

20. Raddum, H., Varadharajan, S.: Factorization using binary decision diagrams. Cryptogra-
phy and Communications 11(3), 443–460 (2018)

21. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation
on cluster states. Phys. Rev. A 68, 022312 (2003). URL https://link.aps.org/doi/10.
1103/PhysRevA.68.022312

22. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In: Proceed-
ings of the 1993 IEEE/ACM International Conference on Computer-Aided Design, 1993,
Santa Clara, California, USA, November 7-11, 1993, pp. 42–47 (1993)

23. Schilling, T.E., Raddum, H.: Solving compressed right hand side equation systems with
linear absorption. In: Sequences and Their Applications - SETA 2012 - 7th International
Conference, Waterloo, ON, Canada, June 4-8, 2012. Proceedings, pp. 291–302 (2012)

24. Uehara, R., Uno, T.: Canonical tree representation of distance hereditary graphs and its
applications. Tech. rep. (2006)

https://doi.org/10.1016/0095-8956(86)90043-2
https://doi.org/10.1109/12.537122
http://www.sciencedirect.com/science/article/pii/009589568890055X
http://www.sciencedirect.com/science/article/pii/009589568890055X
https://doi.org/10.1109/18.681315
https://doi.org/10.1016/j.jcta.2005.12.004
http://arxiv.org/abs/0710.2243
https://doi.org/10.1007/s10623-008-9190-x
https://doi.org/10.1007/s10623-008-9190-x
https://doi.org/10.1109/TIT.2002.806118
https://doi.org/10.1109/TIT.2002.806118
https://link.aps.org/doi/10.1103/PhysRevA.69.062311
https://link.aps.org/doi/10.1103/PhysRevA.69.022316
https://link.aps.org/doi/10.1103/PhysRevA.69.022316
https://doi.org/10.1016/j.jctb.2005.03.003
https://link.aps.org/doi/10.1103/PhysRevA.68.022312
https://link.aps.org/doi/10.1103/PhysRevA.68.022312

Graphs and Self-dual additive codes over GF (4) 19

25. Van Den Nest, M.: Local equivalence of stabilizer states and codes. Phd thesis, K. U.
Leuven, Belgium (May 2005)

26. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Trans.
Information Theory 43(6), 1757–1766 (1997). URL https://doi.org/10.1109/18.641542

https://doi.org/10.1109/18.641542

	Introduction
	Preliminaries
	Construction of BDD
	Classification for Rankwidth 1 graphs
	Minimum Distance
	Conclusion and open problems

