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ABSTRACT
In this paper, we present a two-step deep learning method that
is used to predict sperm motility and morphology based on video
recordings of human spermatozoa. First, we use an autoencoder
to extract temporal features from a given semen video and plot
these into image-space, which we call feature-images. Second, these
feature-images are used to perform transfer learning to predict the
motility and morphology values of human sperm. The presented
method shows it’s capability to extract temporal information into
spatial domain feature-images which can be used with traditional
convolutional neural networks. Furthermore, the accuracy of the
predicted motility of a given semen sample shows that a deep
learning-based model can capture the temporal information of
microscopic recordings of human semen.

1 INTRODUCTION
The 2019 Medico task [7] focuses on automatically predicting se-
men quality based on video recordings of human spermatozoa.
This is change from previous years which have mainly focused
on image classification of images taken from the gastrointestinal
tract [10, 11]. For this year’s task, we look at predicting the mor-
phology and motility of a given semen sample. Motility is defined
by three variables, namely, the percentage of progressive, non-
progressive, and immotile sperm. Morphology is determined by the
percentage of sperm with tail defects, midpiece defects, and head
defects. The organizers have provided a dataset consisting of 85
videos of different semen samples and a preliminary analysis of
each, which is used as the ground truth. For this competition, the
organizers have provided a predefined three-fold split of the VISEM
dataset [5], which contains 85 videos from different participants
and a preliminary analysis of each semen sample. In the dataset
paper, the authors presented baseline mean absolute error (MAE)
values for motility andmorphology. Furthermore, the importance of
computer-aided sperm analysis can be identified from the previous
works which have been done over the last few decades [3, 9, 12].

To solve this year’s task, we propose a deep learning-based
method consisting of two steps - (i) unsupervised feature extraction
using an autoencoder [1] and (ii) video regression using a standard
convolutional neural networks (CNN) and transfer learning. The au-
toencoder we use is different from the state-of-the-art autoencoders
used to extract video features [2, 13] as they use autoencoders to
extract feature vectors which are used with long-short memory
models or multi-layer perceptron (MLP)s. In contrast, we use au-
toencoders to extract feature-images for use in CNNs.
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2 APPROACH
Our method can primarily be split into two distinct steps. First,
we use an autoencoder to extract temporal features from multi-
ple frames of a video into a feature-image. Second, we pass the
extracted feature-image into a standard pre-trained CNN to pre-
dict the motility and morphology of the spermatozoa in a given
video. In this paper, we present the preliminary results for four
experiments based on four different input types. The first input
type (I1) uses a single raw frame. Input type two (I2) is a stack of
identical frames copied across the channel-dimension. The third
(I3) and fourth (I4) input type stack 9 and 18 consecutive frames
from a video respectively.

The first two experiments (using I1 and I2) were performed as
baseline experiments. The two other experiments (using I3 and
I4) were performed to see how the temporal information affects
the prediction performance of the approach. For all input types,
we split the extracted datasets into three folds based on the folds
provided by the organizers. Then, three-fold cross-validation was
conducted to evaluate our four experiments. An overview of all
experiments is shown in Figure 1.

2.1 Step 1 - Unsupervised temporal feature
extraction

In step 1, we trained an autoencoder that takes an input frame or
frames (I1, I2, I3 or I4) from the sperm videos as depicted in Figure 1.
Then, the encoder of the autoencoder extracted feature-images and
passed them through the decoder architecture to reconstruct the
input frame or frames back (R1, R2, R3, and R4). These extracted
feature-images are different from traditional feature extractions of
autoencoders because the traditional autoencoders extract feature
vectors instead of feature-images. In this autoencoder, the mean
square error (MSE) loss function is used to calculate the difference
between input data and reconstructed data. Then, this error value
is backpropagated to train the autoencoder. After training 2,000
epochs, we use the encoder architecture of the autoencoder model
to step 2.

2.2 Step 2 - CNN regression model
We have selected the pre-trained ResNet-34 [6] as our basic CNN to
predict the values of motility and morphology of the sperm videos.
However, any pre-trained CNN could be chosen for this step and
in future work we will test and compare different ones in more
detail. Firstly, we take an input frame or frames (I1, I2, I3 or I4)
and pass through the pre-trained encoder model (only the encoder
section of the autoencoder model) which was trained also from the
same data inputs in an unsupervised way. Then, the outputs of the
encoder model were passed through the CNN model which has a
modified last layer to output three prediction values for motility or
morphology.
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Figure 1: A big picture overview of our two step deep learning model: Step 1 - an autoencoder architecture used to extract
image features, Step 2 - the pre-trained Resnet-34 CNN for predicting the regression values of motility and morphology, I1, I2,
I3 and I4 - input frames extracted from the video dataset, R1, R2, R3 and R4 - reconstructed data corresponding to the input
data I1, I2 I3 and I4, sample 4 feature frames shows extracted 4 feature images from the autoencoder after training 2000 epochs
(actual resolution of a feature image is 256X256 which is equal to the original frame size of the input data)

3 RESULTS AND ANALYSIS
According to the average MAE values shown in Table 1, the average
motility values of input I3 and I4 shows the best results among other
motility values of input I1 and I2. These performance improvements
imply that our model is able to learn temporal features into a spatial
feature image representation. Furthermore, input I4 which uses 18
stacked frames shows the best motility average values compared
to input I3. This performance gain shows that to predict the sperm
motility in sperm videos, it is better to analyze more frames at
the same time. This might be due to the fact that the behaviour of
sperm is something that needs to be observed over time and not in
single frames. Moreover, the predictions for our base case inputs I1
and I2 show the same average values. This shows that our model
learns temporal information from different sperm video frames.
Otherwise, it would be shown different average values for our two
base case inputs I1 and I2.

When we consider the predicted morphology average in Table 1,
it shows values that are almost equal to each other. This is ex-
pected because the morphology of a sperm is something that can
be observed using a single frame. In contrast to predicting accurate
morphology, the predicted morphology values support the prove
that our model has the capability to learn temporal data from mul-
tiple frames because motility predictions show an improvement
when we increase the number of frames analyzed simultaneously.

4 CONCLUSION AND FUTUREWORKS
In this paper, we proposed a novel method to extract temporal
features from videos to create feature-images, which can be used
to train traditional CNN models. Furthermore, we show that the

Table 1: Mean absolute error values collected from the pro-
posed method from different inputs: I1, I2, I3 and I4

Motility Morphology
Input Fold MAE Average MAE Average

I1
Fold 1 13.330

13.017
5.698

5.715Fold 2 12.880 5.748
Fold 3 12.840 5.698

I2
Fold 1 12.890

13.017
5.573

5.606Fold 2 13.010 5.593
Fold 3 13.150 5.653

I3
Fold 1 10.850

10.970
5.567

5.632Fold 2 11.310 5.748
Fold 3 10.750 5.580

I4
Fold 1 9.462

9.427
5.900

5.777Fold 2 9.426 5.738
Fold 3 9.393 5.692

feature-images capture temporal present in a sequence of frames,
which can be used to predict the motility of the sperm videos.

This method can be improved by using different error functions
to force the model to learn more temporal data. For example, re-
searchers can experiment with variational autoencoders [8] and
generative adversarial learning methods [4] to improve this tech-
nique. Additionally, it may be beneficial to embed long short-term
memory units to investigate how our feature-images compare to
actual extracted temporal features.
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