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Abstract

The Glymphatic system is the subject of numerous pieces of research in Biology. Math-
ematical modeling plays a considerable role in this field since it can indicate the possible
physical effects in this system and validate the biologists’ hypotheses. The available mathe-
matical models that describe the system at the scale of the brain (i.e. the macroscopic scale)
are often solely based on the diffusion equation and do not consider the fine structures formed
by the perivascular spaces. We therefore propose a mathematical model representing the
time and space evolution of a mixture flowing through multiple compartments of the brain.
We adopt a macroscopic point of view in which the compartments are all present at any
point in space. The equations system is composed of two coupled equations for each com-
partment: One equation for the pressure of a fluid and one for the mass concentration of
a molecule. The fluid and solute can move from one compartment to another according to
certain membrane conditions modeled by transfer functions. We propose to apply this new
modeling framework to the clearance of 14C-inulin from the rat brain.

1 Introduction

The proposed glymphatic system [32] explains the clearance of metabolic waste from the brain
and has been the subject of many pieces of research in the past decade [29, 1, 34]. The glymphatic
theory suggests that clearance of metabolic solutes in the brain is facilitated by specific pathways
for exchange between interstitial fluid (ISF) and cerebrospinal fluid (CSF). This exchange occurs
via perivascular spaces (PVSs), that are small fluid filled spaces surrounding blood vessels. Ac-
cording to the glymphatic theory, CSF enters the parenchyma via periarterial spaces and exits
it via perivenous spaces. Furthermore, Iliff et al. [32] suggested that a bulk flow of fluid occurs
in the interstitial space between periarterial and perivenous spaces draining metabolic waste out
of the brain. Understanding the glymphatic system is critically important since its impairment
may be linked to neurodegenerative diseases such as Alzheimer’s decease [62].

Even after a decade of research to verify this theory many questions remain to be answered:
i) Does the circulation of CSF as described by Iliff et al. [32] (inflow around arteries and outflow
around veins) really occur? ii) What are the mechanisms explaining the movement of CSF in the
perivascular spaces? iii) Does convection in the interstitial space occur and is this flow sufficient
to dominate transport?

∗Department for Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
†Email: poulain@simula.no
‡jorgennr@simula.no
§vegard@simula.no

1



In vivo studies using two-photon microscopy have imaged flow along periarterial spaces at
the pial surface in the same direction as blood [9, 47], suggesting these spaces act as an entry to
the brain. However, the direction and magnitude of flow in penetrating PVS is still debated [7].
Futhermore, the question of the existence of a bulk flow of fluid within the extracellular space
(ECS) as proposed by Iliff et al. [32] remains open. Indeed, some pieces of research indicate
that solute transport in the ECS is dominated by diffusion [4, 29, 69], while others claim that
diffusion alone can not explain the transport of tracer within the brain [75, 61]. In a recent study,
Ray et al. [60] concluded that transport of large molecules is dominated by convection given the
expected ECS flow rates reported in the literature. Convection-diffusion equations have been
widely used to study transport within the brain [60, 75, 29, 53, 71, 61, 14]. These works helped
gain some insights into the relevant mechanisms that may play a role for clearance of interstitial
solutes. However, in these works, the fluid velocities and concentrations are averaged between
ECS and PVS (and all other routes of transport) to capture the overall spread of solutes.

In contrast, multiple-compartment models that can distinguish between different compart-
ments such as blood vessels and tissue have been used to study for example drug transport to
the lung [22] or clot fragmentation [19] with great detail. However, these models require detailed
information on vessel structure and require too many degrees of freedom to study the brain at
the macroscale.

To circumvent these limitations, homogenized models have been successfully applied to repre-
sent infiltration in porous media [31]. Such framework has been successfully applied to represent
transport of solute and fluid in the ECS and vascular network of vascularized tumors [67, 68, 57].
In full scale patient-specific geometries, multiple-network poroelastic theory (MPET) have been
used to study exchange between multiple fluid compartments contained within the (elastic) brain
tissue [10, 11, 5, 74, 76, 27, 26]. However, the MPET equations have not yet been investigated
in terms of transport of tracers or solutes in the context of the glymphatic system.

In this paper, we therefore develop a homogenized model to describe the glymphatic system
and the blood flow at the scale of the rat brain (Figure 1). To validate the relevancy of our
modelling framework, we study the clearance of the molecule 14C-inulin from the rat brain. In
particular, the presented multi-compartment model represents movement of CSF through dif-
ferent structures including the subarachnoid space (SAS), the PVSs, the ECS and the blood
vascular tree. This modeling of the fluid movement is coupled to diffusion-convection equations
for each compartment to represent the clearance of 14C-inulin from the brain. Our model sug-
gests that without blood filtration, transport is explained mainly by diffusion within the brain.
However, when ISF is allowed to filtrate across the vascular wall, PVS flow was reversed and
clearance from the ECS substantially increased.

2 Methods

2.1 Mathematical models

Notations We denote by Ω ⊂ R3 the spatial domain, i.e. the rat brain. We assume that the
boundary ∂Ω of this domain is sufficiently smooth. Therefore, we denote by x ∈ Ω, any point of
this domain such that the coordinates are given by x = (x1, x2, x3). We emphasize that, in the
rest of this article, to denote vectors, we use bold symbols. Since we model the time evolution
of the glymphatic system, our time-space domain is denoted by ΩT = Ω × [0, T ], with T > 0 a
finite time. We test two different mathematical models: First, a pure diffusion model in a single
compartment and then a multi-compartment model which includes both diffusive and convective
transports. We use the following notation convention: when an unknown or a parameter is
indicated with a subscript, it denotes its compartment. The subscripts a, c and v are used to
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Figure 1: Illustrative representation of the three test cases. Red arrows indicate the movement of
fluids through the compartments and blue arrows the diffusive movement of 14C-inulin . Double
arrows indicate that the movement could be directed in both directions and is, a priori, not
known. With exception of the blood compartments, the arrows pointing to the outside of any
compartment denotes a connection of this compartment with the subarachnoid space. AEF
denotes the astrocyte endfeet barrier and BBB the blood-brain barrier.
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denote the arterial, capillary and venous blood networks, respectively. Similarly, the subscripts
pa, pc, pv are used to denote the periarterial, pericapillary and perivenous fluid networks. The
subscript e indicates the ECS.

The diffusion equation Denoting by ce = ce(t,x) the solute concentration in ISF, the diffu-
sion equation reads

∂ce
∂t

= D∗e∆ce, ∀x ∈ Ω, t ∈ (0, T ]. (1)

Here, D∗e is the effective diffusion coefficient of the molecule in the ECS.

The multi-compartment model To take into account the different structures in which the
fluid flows, we consider the multiple compartments as depicted in the schematic illustrations given
in Fig 1. We denote by J the set of compartments (J can thus be modified to describe all three
test cases shown in Fig 1) and we denote the pressure in the j−th compartment by pj = pj(t,x)
and for the solute concentration cj = cj(t,x). The fluid flow in our model is computed via
static MPET equations [6, 74] without displacements. We denote by ϕj the porosity of the j−th
compartment (i.e. the relative volume taken by the pores of this compartment). We emphasize
that the compartments are all present at any point x ∈ Ω. Thus, under the assumption of
incompressible flow, for all x ∈ Ω, t ∈ (0, T ], we have the equations’ systems, for each j ∈ J−∇ · ( κj

ϕjµj
∇pj) = rj ,

∂cj
∂t

− κj

ϕjµj
∇ · (cj∇pj)−D∗j∆cj = sj .

(2)

Here, κj is the permeability coefficient of the fluid, µj is the dynamic viscosity of the fluid, D∗j
is the effective diffusion coefficient in the j-th compartment, and rj , sj are the transfer functions
to model the exchanges between the compartments and will be described in the next paragraph.

Remark 1. For simplicity reasons, we consider the porosity, permeability and diffusion coeffi-
cients to be isotropic, i.e. no spatial variation are considered for these parameters.

Remark 2. We note that cj denote the microscopic fluid concentrations, which is related to the
macroscopic or total concentration via ctotalj = cj ∗ ϕj.

Transfer functions The transfer functions in System (2) model the exchange of fluid, rj ,
and solutes, sj , between the different compartments. These compartments are separated by
a membrane or are in communication with other vessels along the same tree (e.g. an artery
branching to capillaries or the PVS around arteries branching to the PVS around capillaries).

When the compartments are separated by a membrane, the fluid flows from one compartment
to another due to a difference of pressure which is related to the hydraulic conductivity of the
membrane, i.e.

rj =
1

ϕj

∑
i∈J,i ̸=j

γj,i [(pi − pj)− σi,j(πi − πj)] , (3)

with

γj,i = Li,j
|Si,j |
|Ω|

, (4)

where |Ω| =
∫
Ω
1 dx = 2313 mm3 is the brain volume, Li,j is the hydraulic conductivity of the

membrane separating the i−th and j−th compartments,
|Si,j |
|Ω| is the ratio between the surface
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of the membrane and the total volume of the tissue, and σi,j is the osmotic reflection coefficient
for the membrane. This reflection coefficient corresponds to a specific solute. In this work, we
only consider osmotic effects due to plasma cells in the blood where πj is the osmotic pressure.
The solute crosses the membrane due to the combination of two effects: Either via convection of
fluid through the pores of the membrane or via diffusion. These two effects are modelled by the
transfer functions (see e.g. [33])

sj =
1

ϕj

∑
i∈J,i ̸=j

λj,i(ci − cj) +
(cj + ci)

2
γ̃j,i(pi − pj − σi,j(πi − πj)), (5)

where this time

λj,i = Pi,j
|Si,j |
|Ω|

, γ̃j,i = γj,i(1− σreflect),

in which Pi,j is the permeability of the membrane separating the i−th and j−th compartments
to the solute and σreflect reflects the solvent-drag reflection coefficient.

In the case of a continuous transition between compartments (e.g. between arteries and
capillaries), no membrane is present (and we thus set Pi,j = 0). We provide in Subsection 2.3
values for the exchange coefficients γj,i, γ̃j,i, λj,i.

Clearance of 14C-inulin To study the clearance of 14C-inulin from the rat brain, we consider
3 variations.

We first assume that bulk flow of fluid in the interstitial space is negligible, and transport
occurs due to diffusion in the interstitial space only. Hence, we use Equation (1). Clearance of
14C-inulin occurs at the brain surface and is modelled by appropriate boundary conditions that
are described below. This scenario is represented by Test case 1 on Fig 1.

Secondly, we consider a clearance of 14C-inulin due to the glymphatic system. Hence, we
use System (2) with |J | = 4 compartments: ECS, PVS around arteries, PVS around capillaries,
and PVS around veins. Test case 2 in Fig 1 depicts this scenario. CSF is assumed to flow from
the PVS around arteries to the PVS around capillaries or in the ECS. From the PVS around
capillaries, CSF flows to the ECS or to the PVS around veins. From the ECS, CSF may be
reabsorbed in the PVS around veins or capillaries. Clearance from the brain may occur at the
brain surface from the ECS, the PVS around veins and the PVS around arteries.

Thirdly, we add the effect of the blood vasculature. Indeed, cerebral blood vessels are not
impermeable and some fluid could leak from them to the other structures [54]. This case is
depicted by Test case 3 in Fig 1.

For the sake of clarity, in the following we refer to these 3 applications of our modeling
framework as

• Pure diffusion model: Test case 1. Diffusion only in the interstitial space modeled by
Equation (1).

• 4-compartment model: Test case 2. Clearance from the glymphatic system using
System (2) with J = 4 compartments.

• 7-compartment model: Test case 3. Clearance from the glymphatic system and
considering the blood perfusion that could affect fluid movement using System (2) with
J = 7 compartments.
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2.2 Initial and boundary conditions

Initial condition We consider the application in which the solute is injected directly into
the ECS of the rat brain, and assume that the initial 14C-inulin concentration is given as a
three-dimensional Gaussian around the center of injection s (see Fig 2b),

ce(0,x) = C0 exp
|x− s|2

σ2
(6)

where C0 = 1.0 is a reference concentration, and σ determines the initial spread of the solute after
injection. The reference concentration is chosen such that the integral of the initial condition
over the domain matches the injected tracer amount. We emphasize that the initial condition is
the same for the case of a single compartment and when multiple compartments are considered.
In the following, we present numerical results for which the initial point of injection is located in
the right hemisphere with coordinates s = (4, 2, 3).

Boundary conditions To generate a relevant bulk flow within the PVSs, we assume a slight
pressure difference between the boundary of the PVSs around arteries and veins. We know that
intracranial pressure in rat is 4±0.74mmHg (see [64]). ISF pressure has been measured in rat [79]
and is 3.43± 0.65mmHg.

Therefore, we supplement the pressure equations with{
− κe

µCSF

∂pe

∂ννν (t,x) = Le,SAS(pSAS − pe), − κpa

µCSF

∂ppa

∂ννν (t,x) = LPVSpial,pa(pPVSpial − ppa),
∂ppc

∂ννν (t,x) = 0, ppv = 3.36mmHg,

(7)
on ∂Ω, t > 0, with ννν being the outward normal vector to the boundary ∂Ω and pPVSpial =
4.74mmHg is the CSF pressure inside the PVS of pial arteries and pSAS = 3.74mmHg is the CSF
pressure inside the SAS. The coefficients LPVSpial,pa and LSAS,e are related to the permeability
of the pial surface of the brain for the CSF.

Considering the cerebral blood perfusion (test case 3), fluid movement is affected and we need
additional parameters, namely{

−κa

µa

∂pa

∂ννν (t,x) = La,blood(pblood − pa),
∂pc

∂ννν (t,x) = 0, pv(t,x) = 7.0mmHg,
on ∂Ω, t ≥ 0, (8)

with pblood = 120mmHg (see [28]).
For the concentration equations, different boundary conditions are considered. The first and

simplest approach is to use homogeneous Dirichlet boundary conditions to represent clearance
from the tissue and zero-flux boundary conditions for the compartments that are not in commu-
nication with the SAS. Namely, we impose Dirichlet boundary conditions for the concentration
equations in the periarterial, perivenous and extracellular spaces since these compartments rep-
resent possible outflow routes. For the other compartments we assume that there is no flow at
the surface of the brain. Thus, we have cj

∣∣
∂Ω

= 0, for j = {pa, pv, e},
∂
(
Dj∇cj+

κj
µj

cj∇pj

)
∂ν = 0 on ∂Ω, and for j = {pc}.

This condition assumes that no membrane restricts 14C-inulin movement over the pial surface.
Moreover, the clearance of solutes from the SAS is assumed to be sufficiently quick, so that
14C-inulin concentration in the CSF stays zero.
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Alternatively, the solute concentration in the CSF within the SAS may be represented by a
time-dependent boundary condition. Still assuming instant absorption at the surface, we modify
the Dirichlet boundary conditions to

cj
∣∣
∂Ω

= g(t), for j = {pa, pv, e}, t > 0, (9)

where g(t) is given as the total amount of molecules that has been cleared from the brain up to
that time, averaged over the CSF volume VCSF in the fluid filled space surrounding the brain,
i.e. the SAS. The rate of change of molecules tracer within the brain, per unit of time, is given
by

d

dt

∫
Ω

∑
j∈J

ϕjcj dx =
∑
j∈J

∫
Ω

ϕj
∂cj
∂t

dx = −
∫
∂Ω

q · ννν ds, (10)

in which q is the mass total flux from all the compartments at the surface of the brain (we recall
that ννν is the outward pointing normal to the surface of the brain). For each compartment this
flux is given by the combination of diffusion and convection

q =
∑
j∈J

−Dj∇cj + cjvj , vj = −κj

µj
∇pj .

A decrease of molecules within the brain, corresponds to an increase of concentration in the SAS,
and vice-versa. Therefore, g satisfies the linear ordinary differential equation{

dg
dt = −αg(t) + 1

VCSF

∫
∂Ω

q · ννν ds,

g(0) = 0,
(11)

where α > 0 is the rate of CSF absorption from the SAS. This model assumes instantaneous
absorption of molecules in the CSF, and instant mixing of the solute within the whole SAS.

If α = 0, the latter Dirichlet boundary condition may be interpreted as a model for conser-
vation of the amount of molecules. Thus, assuming that the molecules are not eliminated from
the SAS, an alternate formulation of this condition is given by∑

j∈J

∫
Ω

ϕjcj dx+ g(t)VCSF = N0, (12)

where N0 =
∑

j∈J
∫
Ω
ϕjcj(0,x) dx is the total amount of molecules initially injected into the

brain. Thus, this time g is simply given by

g(t) =
1

VCSF

N0 −
∑
j∈J

∫
Ω

ϕjcj dx

 . (13)

We test the effect of all three different concentration boundary conditions (Homogeneous,
Conservation (9) with Equation (13), and Decay (9) with Equation (11)) on clearance of 14C-
inulin from the brain.

2.3 Parameter values

2.3.1 For the convection-diffusion equation

14C-inulin diffusion coefficient The free diffusion coefficient for 14C-inulin is Dfree = 2.98×
10−4 mm2/s as reported in [40], and the tortuosity of the rat brain is given by λ = 1.7 (see [78]).
Hence, the effective diffusion coefficient of 14C-inulin in the rat brain is given by

D∗ =
Dfree

λ2
= 1.03× 10−4 mm2/s.
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2.3.2 For the multi-compartment model

Porosity coefficients From [15], we know that the volume fraction of the extracellular space
of rats is

ϕe = 0.14.

From [58], the volume fraction of blood is estimated to be

VBlood = 3.29× VBrain/100.

Furthermore, using the fractions of arteries, veins, and capillaries stated in [41], we obtain

ϕa = 0.00658, ϕc = 0.00329, ϕv = 0.02303.

The porosity of the PVS in human is estimated to VPVS ≈ 0.3 × VBrain/100 (see e.g. [8]).
This value is unknown for the rat, hence, we assume that the relation holds without relying on
measurements. From the estimated percentages of arterial, venous, and capillary blood volume,
we estimate

ϕpa = 0.0006, ϕpc = 0.0003, ϕpv = 0.0021.

Fluid parameters The interstitial fluid and plasma in the blood compartments are assumed to
possess different properties. The dynamic viscosity of blood and CSF is given by respectively [26]
and [12]. We have

µa = µv = µc = 2.67× 10−3 Pa s, and µpa = µpv = µpc = µe = 7.0× 10−4 Pa s.

In [77], the authors used experimentally obtained resistance coefficients for several compart-
ments. From the definition of these resistances, we can compute the following permeability
coefficients (see Appendix A for details).

κa = 3.30× 10−6 mm2, κv = 6.59× 10−6 mm2, κc = 1.14× 10−9 mm2,

κpa = 1.0× 10−11 mm2, κpv = 6.51× 10−9 mm2, κpc = 3.54× 10−13 mm2,

κe = 2.0× 10−11 mm2.

The baseline values for the fluid parameters are summarized in Table 1.

Symbol Unit Meaning Value Reference

D mm2/s Free diffusion coefficient D
14C-inulin
free = 2.98× 10−4 [40]

D∗ mm2/s Apparent diffusion coefficient D∗,
14C-inulin = 1.03× 10−4 [40]

κj mm2 Permeability κa = 3.30× 10−6, κv = 6.59× 10−6, κc = 1.14× 10−9, [29] and computed
κpa = 1.0× 10−11, κpv = 6.51× 10−9, κpc = 3.54× 10−13, κe = 2.0× 10−11

ϕj No unit Porosity ϕe = 0.14, ϕa = 0.00658, ϕc = 0.00329, ϕv = 0.02303 [15, 58, 41]
ϕpa = 0.0006, ϕpc = 0.0003, ϕpv = 0.0021 and computed

µj Pa s Viscosity µpa = µpv = µpc = µe = 7.0× 10−4 [12]
µa = µv = 2.67× 10−3 [74]

Table 1: Baseline fluids (Blood and CSF) viscosity, permeability, porosity and diffusion param-
eters.

Exchange coefficients We first start by the exchange coefficients from blood to tissue,
i.e. γe,a, γe,c, γe,v.

For these latter, we use the definition

γj,i = Li,j
|Si,j |
|Ω|

.
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As in [66], we use the hydraulic conductivities reported in [25, 37, 63]. We thus use the following
values

La,e = 9.1× 10−10 mm/(sPa), Lc,e = 1.0× 10−10 mm/(s Pa), Lv,e = 2.0× 10−11 mm/(s Pa).

Furthermore, from [70], we estimate the ratio between surface area of capillaries and brain volume
to

|Sc,e|
|Ω|

= 9mm−1.

Using the computations performed in [18], we assume that the surface density of capillaries is 3
times greater than the surface density of arteries and veins, i.e.

|Sa,e|
|Ω|

= 3mm−1,
|Sv,e|
|Ω|

= 3mm−1.

Altogether, we obtain

γe,a = 2.7× 10−9 (s Pa)
−1

, γe,c = 9.0× 10−10 (s Pa)
−1

, γe,v = 6.0× 10−11 (s Pa)
−1

.

Then, we turn to the values of the exchange parameters from PVSs to ECS, i.e. γe,pa, γe,pc, γe,pv.
From the 1D resistance parameters in [77], we compute the following coefficients (see Appendix A
for details about the computations)

γe,pa = 2.2× 10−7 (s Pa)
−1

, γe,pc = 1.0× 10−9 (s Pa)
−1

, γe,pv = 2.0× 10−7 (s Pa)
−1

.

From the previous values, we determine the following exchange coefficients for the transfer be-
tween blood vessels and PVSs (see Appendix A for details)

γpa,a = 2.76× 10−9 (s Pa)
−1

, γpc,c = 9.2× 10−9 (s Pa)
−1

, γpv,v = 6.0× 10−11 (s Pa)
−1

.

For the exchanges between compartments corresponding to branching of blood vessel, we use

γc,a =
Bflow

∆pc,a |Ω|
= 3.3× 10−6 (s Pa)

−1
, γv,c =

Bflow

∆pv,c |Ω|
= 1.0× 10−5 (s Pa)

−1
.

where Bflow = 2.4mL/min (from [49]), and ∆pv,c corresponds to the blood pressure drop between
vessels. We assume a ∆pc,a = 40mmHg blood pressure drop from arteries to capillaries and a
∆pv,c = 13mmHg blood pressure drop from capillaries to veins.

To compute the exchange coefficients between the pial surface artery PVSs and the arterial
PVS as well as for the exchange between ECS and SAS, we adapt the fluid resistance coefficient
for this space from the one used in [77] to obtain (see Appendix A)

LPVSpial,pa = 1.25× 10−6 (s Pa)
−1

, and Le, SAS = 3.13× 10−7 (s Pa)
−1

.

The osmotic pressure in the capillary compartment has been reported to be 20mmHg [36].
We thus set πa = πc = πv = 20mmHg and πe = πpa = πpc = πpv = 0.2 × πc (extravascular
osmotic pressures have been chosen from the fact that due to the BBB the osmotic pressure in
the ECS within the brain is known to be lower than 30% of the capillary one [36]).

We now define the advective mass exchange coefficients using the equation

γ̃
14C-inulin
j,i = γj,i(1− σ

14C-inulin
ij,reflect ),

9



where σ
14C-inulin
ij,reflect is the reflection coefficient for the molecule and the membrane under consider-

ation. Since Inulin is approximately 5000Da in size (measured in [73]), we set

σ
14C-inulin
ij,reflect = 0.2,

for all the membranes.
The diffusive permeabilities through the astrocyte endfeet (AEF) membrane for 14C-inulin

test case 2 and 3, are computed from [43, 48] (see Appendix A for details)

P
14C-inulin
pa,e = P

14C-inulin
pv,e = 1.25× 10−5 mms−1, P

14C-inulin
pc,e = 1.91× 10−6 mms−1.

From the two previous parameters, we defined for the 7 compartments system γpa,a, γpc,c,
γpv,v, γe,pa, γe,pc, γe,pv and γe,v as well as their corresponding transfer coefficients for the two
molecules.

The transfer of solutes between vessel compartments for which the connection exists without
a membrane is assumed to be solely driven by convection and the fact that 14C-inulin does not
cross the BBB implies

P
14C-inulin
a,pa = P

14C-inulin
v,pv = P

14C-inulin
c,pc = P

14C-inulin
a,c = P

14C-inulin
c,v = P

14C-inulin
pa,pc = P

14C-inulin
pc,pv = 0,

and for vessels in communications, the solvent-drag reflection coefficient is assumed to be σreflect =
1.

Altogether, we obtain the transfer coefficients reported in Table 2.

Symbol Unit Meaning Value Reference
γi→j 1/(Pa s) Fluid mass transfer coefficient γa,e = 5.73× 10−9, γv,e = 1.26× 10−10, γc,e = 1.9× 10−15 Computed

γpa,e = 2.19× 10−7, γpv,e = 1.95× 10−7, γpc,e = 9.98× 10−10

γa,pa = 5.89× 10−9, γv,pv = 1.26× 10−10, γc,pc = 1.9× 10−15

γa,c = 1.05× 10−7, γc,v = 5.25× 10−7

γpa,pc = 2.50× 10−8, γc,v = 1.00× 10−7

γPVSpial,pa = 1.10× 10−5, γECS,SAS = 1.10× 10−7

γ̃
14C-inulin
i→j 1/(Pa s) Advective mass transfer coefficient Given by Eq. (21)

λi→j s−1 Solute mass transfer coefficient λ
14C-inulin
pa,e = 3.74× 10−5, λ

14C-inulin
pv,e = 3.74× 10−5, λ

14C-inulin
pc,e = 1.71× 10−5 Computed from [42]

Table 2: Baseline diffusive and convective exchange parameters.

The last value we specify is the CSF volume surrounding the brain, i.e. in the subarachnoid
space. This parameter value is required to define the boundary conditions. The reported values
for this volume vary in the literature, ranging from 90µL [56] to 520µL [39], but seem to be
consistently in the region 5-20% of the total intracranial volume. For the simulations in this
paper we will assume that the CSF volume is 10.8% of the total intracranial volume, as reported
by [50]. Assuming that the intracranial volume consist of brain tissue and the CSF spaces, then
this value corresponds to a CSF volume of VCSF = 0.12 × |Ω|, where |Ω| is the volume of the
brain tissue.

Remark 3. In the previous section, all the parameter values required to model the clearance of
14C-inulin using Equation (1) or System (2) have been precised. Coefficients for which no value
has been specified are assumed to be zero. This is the case for example for exchange coefficients
between compartments that are not in communication.

Remark 4. Most of the parameter values have been found using measurements from in-vitro
or in-vivo biological experiments. However, we have indicated the ones for which the values
are adapted from the literature or the works from which we extracted the values estimated these
parameters using numerical simulations. We recall that Appendix A provides details about the
estimates and computed coefficients.
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2.4 Model variations

The effect of CSF clearance It has been suggested that flow of CSF in the SAS plays a
major role for clearance also from the brain parenchyma [59, 30]. In the present study, the
effect of CSF clearance from the SAS is modeled by three different boundary conditions for the
concentration: 1) A homogeneous Dirichlet condition as described by Equation (2.2), representing
instantaneous clearance from the SAS, 2) CSF/ISF exchange and conservation of tracer molecules
in the intracranial compartment (Equation (12)), and 3) CSF/ISF exchange and exponential
decay of particles from the SAS due to CSF production and absorption (Equation (11)).

The effect of sleep Xie et al. [80] reported an increase of the ECS porosity when the animal is
sleeping. Indeed, they indicated that the porosity of the ECS in the awake state is ϕawake

e = 0.14
whereas in the sleeping state they measured ϕsleep

e = 0.23. Using the Kozeny-Carman equation
this leads to the relation (see [72] for example)

κsleep
e = 5.5× κawake

e .

Recent results [13] indicate that when the animal is asleep, dilation and reduction of the
perivascular spaces are observed due to vasomotion. Assuming that the vasomotion leads on
average to an enhancement of PVS porosities and that the contraction of the blood vessels leads
to a constant factor Cϕ of increase of porosity for these spaces i.e.

ϕsleep
j = Cϕϕ

awake
j .

Then, assuming free (Poiseuille) fluid flow in perivascular spaces, a change of porosity creates a
modification of the permeability leading to

κsleep
j = C2

ϕκ
awake
j ,

(see Appendix A for details). We assume that the parameter values corresponding to the awake
state are given by the baseline values of Table 1. Based on the measurements from [13], we use
an upper estimate of PVS variations during sleep, and assume Cϕ = 4.

The effect of communication with blood The blood vessels composing the cerebral vascu-
lature are not completely impermeable, and there is debate going on to which extend CSF/ISF
communicates with the microcirculation [54]. We consider both a 4-compartment model (test
case 2) that assumes no communication between CSF/ISF and blood, and additionally a 7-
compartment model (test case 3) where fluid can exchange between the blood vessels and the
perivascular spaces around them.

2.5 Quantities of interest

To study the clearance of 14C-inulin , we integrate the concentration for different volumes. To
study how sample size variations from experimental data could affect the results, we integrate
the concentrations over several cubes ω of varying sizes embedded in the brain mesh to represent
possible measurement samples of the brain. In addition we assess the mass of molecules in the
entire brain Ω.

For the first test case (ECS only), the relative mass of molecules in the entire brain at time
t is denoted by

ctot(t) :=

∫
Ω
ϕece(t,x) dx∫

Ω
ϕece(0,x) dx

.
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a) b)

.

Figure 2: a): The computational mesh of the rat brain used for most of the simulations within
this article. The meshing procedure is described in section 2.6. For the given mesh, the maximum
cell size is ≈ 1/32 times the diameter of the mesh. b): The initial 14C-inulin concentration within
the in the ECS, simulating an injection directly into the brain tissue.

The relative mass of molecule in the ECS within a cube ω ⊂ Ω centered around the injection
point is indicated by

cω(t) :=

∫
ω
ϕece(t,x) dx∫

ω
ϕece(0,x) dx

.

For the other test cases (4, and 7-compartments), the relative mass of molecules in the entire
brain and within a cube ω ⊂ Ω at time t is denoted by

ctot(t) :=

∫
Ω

∑
j∈J ϕjcj(t,x) dx∫

Ω
ϕece(0,x) dx

, cω(t) :=

∫
ω

∑
j∈J ϕjcj(t,x) dx∫

ω
ϕece(0,x) dx

,

respectively.
We further measure the fluid velocity in the different compartments. From the solution of

the pressure equations, we compute the vector fields

uj = − κj

ϕjµj
∇pj , j ∈ J, (14)

to obtain the velocity inside the j-th compartment. From these computed velocity fields, we
compute the average velocity within a compartment uaver,j and the maximal velocity umax,j

given by

uaver,j =

∫
Ω
|uj | dx
|Ω|

umax,j = ∥uj∥L∞ , (15)

To compute the volume of fluid transferring between compartment j and compartment i, we
use

Qj,i =

∫
Ω

γj,i (pi − pj) dx. (16)

To compute the volume of CSF exchanged between the compartment j and the SAS, we use

Qj,SAS =

∫
∂Ω

(
−κj

µj
∇pj · ννν

)
ds. (17)

To compute the mass of molecules moving from compartment i to j, we use [33]:

Mji(t) =

∫
Ω

λj,i(ci − cj) +
(cj + ci)

2
γ̃j,i(pi − pj − σi,j(πi − πj)) dx. (18)
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2.6 Computational mesh, solution method and verification

The computational mesh used for the simulations in this paper was constructed from the ”Wax-
holm Space Atlas of the Sprague Dawley Rat Brain v4” (RRID: SCR 017124) [55, 38], available
under the licence CC-BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/) at
the following link: https://www.nitrc.org/projects/whs-sd-atlas. The atlas provides a
detailed segmentation of different regions within the rat brain.

Since the models in this paper do not separate between tissue from different regions of the
brain, we are mainly interested in the segments representing the ventricles, which are removed
from the final mesh. The ventricle segments in the raw data file have a few irregularities. For
example, in regions where the lateral ventricles are very thin, small groups of unlabeled voxels
create holes in the 3D-reconstruction of the ventricles. To repair these irregularities we have
made use of 3D Slicer1, an open-source software application for visualization and analysis of
medical images [24]. 3D Slicer provides a segment editor with tools for manual labeling of voxels,
hole filling and surface smoothing. After refining the segmentation of the ventricular system, it
may be removed from the original volume, to create a realistic representation of the brain surface.
The surface is exported as an stl-file to be used in the meshing algorithm.

The creation of the computational mesh is performed by SVMTK2, which provides a python
API for 3D mesh generation methods from the CGAL library. The mesh generation algorithm
consists of a Delaunay refinement process followed by an optimization phase [2]. Following the
procedures described in [46], we created the mesh illustrated in Fig 2a.

To solve the equations (1) and (2) we use the finite element method for the discretization in
space and an implicit Euler method to integrate the resulting ordinary differential systems in
time.

In this paper, we choose a resolution for the spatial mesh of h = 1/32. The temporal
domain is [0, T ] with T = 360min with a time step ∆t = 1min. Details of the mesh and
time resolutions can be found in Appendix B. The numerical scheme has been implemented
using the FEniCS Library [3, 45], and the linear system was solved using the generalized
minimal residual method (GMRES) and the incomplete LU (ILU) preconditioner. Our code
is publicly available on GitHub at the following link: https://github.com/jorgenriseth/

multicompartment-solute-transport.

3 Results

3.1 CSF flow in the 4-compartment model

Fig 3 depicts the pressure fields inside the different compartments for the 4-compartment model.
We observe that for baseline parameter values, the pressure gradients in the different fields give
a bulk flow of fluid in line with the glympathic theory. Indeed, using Equation (14), our model
represents an inflow of CSF from the surface of the brain in the PVS of arteries and an outflow
from the PVS of veins. Smaller pressure gradients leading to lower velocities directed from the
surface to the depth of the brain are also seen in the ECS and the PVS of capillaries.

Computing the transfer of CSF between the compartments using Equation (16), we obtain

Qpa,e = 0.91µL/min, Qe,pv = 0.33µL/min, Qe,pc = 0.52× 10−3 µL/min.

1https://www.slicer.org/
2https://github.com/SVMTK/SVMTK
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Figure 3: Pressure fields in the 4 compartments (left: coronal cut, right: sagittal cut)
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Compartment uaver (in µm/s) umax (in µm/s)
PVS arteries 2.8 27

ECS 4.9× 10−3 7.3× 10−2

PVS veins 0.74 5.2
PVS capillaries 3.4× 10−2 0.18

Table 3: Velocities of CSF in the different compartments.

The transfer between the compartments and the SAS is computed in the same way using Equa-
tion (17), and we obtain

QSAS,e = 0.36µL/min, QSAS,pa = 0.72µL/min, Qpv,SAS = 0.37µL/min.

In this notation, we choose subscripts such that the flow occurs from the first denoted compart-
ment to the second (e.g. flow occurs from the PVS of arteries to the ECS).

From these pressure fields, we compute the velocity of the CSF in the compartments using
Equation (14). We report the average velocities uaver and the maximal ones umax for each
compartment in Table 3

3.2 Transport within the brain

In the following two subsections, we report the relative amount of 14C-inulin in the entire brain
from the diffusion and the 4-compartment simulations using Equation (9) with (11) as boundary
conditions. We then vary the size of the measurement sample (i.e. the domain in which the
remaining mass of 14C-inulin is computed) and the boundary conditions.

3.2.1 Diffusion in the ECS only

Pure diffusion steadily decreased the amount of tracers found within the brain over the entire
simulation time and ∼53% of the tracer remains after 6 hours (Fig 4a, blue dashed line). Fig 4c
shows the distribution of 14C-inulin transported by pure diffusion (i.e. Equation (1)) in the ECS
at different points in time. The tracer spreads radially out from the point of injection, and peak
concentration has decreased drastically after T = 360 min. At the first time step, some very
small negative values appear near the tail of the Gaussian curve, but are smoothed out over time.

3.2.2 4-compartment convection-diffusion

Fig 5 shows the spatial distribution of 14C-inulin concentration over time in all 4 compartments
considered in 14C-inulin test case 2. Initially, the tracer is contained only in the ECS where it first
was injected. Already after 10 minutes, the concentration spreads equally to all compartments.
From all time points on, the tracer spreads radially outwards in all compartments, similar to the
test case for pure diffusion. We note here that even with equal concentrations, the total mass of
tracer differs between each compartment due to differences in porosity. 14C-inulin is thus mainly
still contained to the ECS in the 4-compartment model. The tracer in the 4-compartment
convection-diffusion model is cleared from the brain slightly faster compared to diffusion alone
and ∼49% of the tracer remains in the brain after 6 hours.

3.2.3 Effect of the measurement sample

Fig 4a shows the evolution of the relative mass of 14C-inulin inside the rat brain and in samples
of the brain of different sizes (cubes of side length 2mm, 4mm, and 5mm). The boundary
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T = 0 T = 100 min

T = 360 minT = 200 min

Figure 4: a) Relative 14C-inulin mass located within regions of varying size surrounding the
injection point. Solid lines result from the multi-compartment model simulations while dashed
lines result from diffusion only in the ECS. b) Relative 14C-inulin mass located in the totality of
the brain for the different boundary conditions. Solid lines result from the multi-compartment
model simulations while dashed lines result from diffusion only in the ECS. c) Evolution in space
and time of 14C-inulin relative concentration in the ECS for test case 1 (single diffusion). The
color scale is chosen for a visual comparison between all time points.

conditions for the concentration equations correspond to the time dependent Dirichlet boundary
conditions (11). For the smallest measurement sample, the relative mass of tracers remaining in
the sample after 6 hours were ∼15% for diffusion and for the 4-compartment model (compared
to 53% and 49% for the entire brain). In general, we observe that as the measurement sample
size increases the mass of 14C-inulin remaining in the sample increases.

3.2.4 Effect of the concentration in the subarachnoid space

Fig 4b shows the evolution of the relative mass of 14C-inulin for the three different boundary con-
ditions for the concentration equations: Homogeneous Dirichlet boundary condition, conservation
of the mass in the subarachnoid space (corresponding to Equation (9) with (13)), and clearance
of molecules in the subarachnoid space (corresponding to Equation (9) with (11)). Fig 4b com-
pares the relative mass of tracer for the diffusion model (dashed lines) to the four-compartment
model (solid lines). In both models, the homogeneous Dirichlet boundary conditions lead to fast
clearance from the tissue with ∼ 33% remaining in the brain after 6 hours (For both diffusion
only and the 4-compartment simulations). When the concentration of 14C-inulin is computed
using the time dependent Dirichlet boundary conditions representing tracer conservation in the
SAS, the mass of tracers is close to plateau level at 68% or 72% at 6 hours. With the time
dependent boundary conditions modelling absorption of CSF in SAS, the relative tracer mass
steadily decreases, and ends up in between the two previously described cases with 49-53% of
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Figure 5: Evolution in time and space of the relative 14C-inulin amount in the rat brain (frontal
cut at the injection point) within the 4 compartments of test case 2.

the tracer remaining in the brain after 6 hours.

3.3 Variations of the 4-compartment model

3.3.1 Effect of an increase in ECS porosity

With an increase of ECS porosity from 0.14 to 0.23, we find no relevant difference for the total
amount of CSF transferring between the compartments. Interestingly, we find that the maximum
velocity in the ECS increases to umax = 9.7×10−2 µm/s (from 7.3×10−2 µm/s) and the average
velocity of CSF in ECS increases to 6.6× 10−3 µm/s (from 4.9× 10−3 µm/s). See Table 3 for all
reference velocities computed with baseline parameter values.

Tracer clearance is slightly slower for the four-compartment model when ECS porosity is
increased (blue versus orange line, Fig 6). As the velocity field in the ECS is directed from the
surface of the brain towards the ventricles, additional flow in the ECS slows down clearance in
this compartment, and the relative mass of tracers within the brain is in this case 56% after 6
hours.
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Figure 6: Comparison of 14C-inulin clearance for different variations of porosity and permeability
coefficients. ”MC Baseline” denotes the clearance curve given by the multi-compartment model
with baseline parameter values and is hidden by the dashed curve ”Diffusion” representing the
clearance given by the application of the Diffusion model in the ECS compartment only. The en-
hancement of ECS porosity leads to the curve denoted ”MC enhancement ECS” and the increase
of the porosities in all the compartments gives the clearance curve denoted ”MC enhancement
ECS+PVS”

3.3.2 Effect of an increase in PVS porosity

Increasing the PVS porosity by a factor 4, increases clearance from the brain via PVS. The
relative mass of tracers found in the brain after 6 hours decreased from 53 % during baseline
to 42% with increased PVS porosity (Figure 6, blue versus red line). Indeed, since the diffusive
transfer between the compartments tends to average the concentration between them, increasing
the porosity of PVSs increases the mass of 14C-inulin in these compartments. Since the PVS
of veins is larger than the other and is a outflow route (with a convective field directed to the
surface of the brain) clearance of 14C-inulin appears faster.

3.3.3 Combined enhancement of the extracellular volume and perivascular spaces

Combining the increase of both ECS and PVS porosity and permeability, we obtain the following
computed amount of CSF transfer between the compartments

Qpa,e = 2.2µL/min, Qe,pv = 1.0µL/min, Qe,pc = 2.4× 10−3 µL/min,

Qe,SAS = 1.0µL/min, QSAS,pa = 2.3µL/min, Qpv,SAS = 1.1µL/min.

We also obtain the maximum and averaged velocities reported in Table 4.
With an increase in both ECS and PVS permeability, we observe a very similar clearance

compared to baseline values (Figure 6, blue versus green line). The clearance of 14C-inulin is
initially slightly faster with the enhanced porosity, however after 6 hours pure diffusion and the
4-compartment model reach both 53% of 14C-inulin mass in this case.
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Compartment uaver (in µm/s) umax (in µm/s)
PVS arteries 4.5 26

ECS 1.2× 10−2 0.15
PVS veins 0.97 6.4

PVS capillaries 4.2× 10−2 15× 10−2

Table 4: Velocities of CSF in the different compartments for an increase of porosity and perme-
ability in all the 4 compartments.

3.4 7-compartment model: Additional effect of cerebral blood perfu-
sion

Using the baseline parameter values for the second and the third test cases, we obtain the velocity
fields in the PVS of arteries shown in Fig 7a. Interestingly, the leakage of fluid from arteries
and capillaries to the PVSs occuring in the 7-compartment model, changes the pressure fields
compared to the 4-compartment model (shown in Fig 3), in which the PVSs were assumed to
be isolated from the blood. In contrast to the 4-compartment model, the fluid flow in the PVS
of arteries and the ECS is directed towards the brain surface. In addition, flow velocities are
increased compared to the 4-compartment model (see Table 5 for details).

Fig 7b shows the clearance curves of 14C-inulin obtained with all three test cases (pure
diffusion, 4-compartment, 7-compartment). We observe that with the additional effect of blood
perfusion, the clearance is much faster compared to both pure diffusion and all variations of
the 4-compartment model. Only ∼ 5% of the tracer remains in the brain after 6 hours for the
7-compartment model (compared to 53% and 49% for pure diffusion and 4-compartment model).

Compartment uaver (in µm/s) umax (in µm/s)
Arterial blood 3.3× 102 6.4× 103

Venous blood 46 3.1× 102

Capillary blood 4.2 1.4× 102

PVS arteries 27 1.5× 102

ECS 1.3× 10−2 6.8× 10−2

PVS veins 31 1.8× 102

PVS capillaries 0.21 1.0

Table 5: Velocities of CSF and blood in the different compartments for baseline values coefficients
for test case 3.

Computing the fluid flow between the different compartments using Equation (16), we find

Qa,pa = 12µL/min, Qv,pv = 8.4× 10−3 µL/min, Qc,pc = 1.2µL/min,

Qpa,e = 7.7µL/min, Qe,pv = 6.1µL/min, Qe,pc = 1.5× 10−2 µL/min,

Qa,influx = 205µL/min, Qv,outflow = 145µL/min, Qe,SAS = 1.46µL/min,

QSAS,pa = 1.2µL/min, Qpv,SAS = 6.2µL/min.

4 Discussion

The main goal of this article is to propose a multi-compartment model representing the fluid
movement and solute transport in the brain. We apply our model to the modelling of the
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Figure 7: a) Comparison of velocity fields in PVS arteries for test case 2 and 3. The velocity field
is oriented to the outside of the brain and the magnitude is larger when blood is considered in
the model. b) Comparison of 14C-inulin clearance for test case 2 with baseline parameter values
and increase of ECS and PVSs porosities with test case 3. ”MC Baseline” denotes the clearance
curve given by the multi-compartment model with baseline parameter values. The enhancements
of ECS and PVSs porosities lead to the curve denoted ”MC enhancement ECS+PVS” and the
result of test case 3 is denoted ”MC 7-compartments”
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glymphatic system at the scale of the rat brain. We design our model and numerical method
to explore different scenarios and hypotheses related to clearance of molecules from the brain.
Indeed, changing the parameter values for permeability, porosity, exchange coefficients allows to
represent for example the possible effect of sleep, the disruption of a membrane, an enhanced
CSF flow in the parenchyma or the effect of blood perfusion on the standard picture depicted
by the Glymphatic theory. Furthermore, the numerical results explore different situations and
allow to access the importance of different modelling aspects such as the boundary conditions
but also biological experimental aspects such as the importance of the measurement sample. To
best of the authors knowledge this is the first attempt of using a multi-compartment model to
combine fluid flow and transport of solute at the scale of the entire brain. This work is largely
built upon works related to blood perfusion in tissues [67, 68, 57].

Effect of the measurement sample The effect of the measurement sample is depicted in
Fig 4a. Our results show that if the measurement sample is small, clearance appears to be faster
compared to larger samples or the entire brain. This information needs to be taken into account
when quantitatively comparing biological experiments to simulations (e.g. clearance curves).
For instance, comparisons between simulation results and the results obtained by e.g. Iliff et
al. [32] and measurements in a piece of tissue or slice (e.g. tracer influx in Xie et al. [80]) is not
straightforward.

Modelling the clearance of 14C-inulin from the SAS using boundary conditions Usu-
ally, mathematical models representing clearance of molecules from the brain use homogeneous
Dirichlet boundary conditions for the concentrations (e.g. see [29, 71]). This modelling assumes
that clearance in the SAS is instantaneous which is in reality not the case. Some studies have
taken this into account by adding a mass conservation between the brain and the SAS [14]. How-
ever, the numerical results presented on Fig 4b show that taking the concentration of solutes in
the CSF in the SAS into account leads much slower clearance rates (there are 39% less relative
14C-inulin mass cleared assuming conservation of molecules in SAS than for homogeneous Dirich-
let boundary conditions after 6 hours). Even when adding an absorption rate of CSF in SAS,
we also obtain slower clearance rates compared to homogeneous Dirichlet boundary conditions
(There is a difference of 20% of relative 14C-inulin mass after 6 hours between the boundary
conditions modelling slower clearance from the CSF in the SAS and the homogeneous boundary
condition). Hence, our results indicate that forthcoming mathematical models should be careful
with the choice of boundary conditions to obtain biologically relevant results.

Baseline parameter values for the multi-compartment model corresponds to the
awake state Even though the model comprises a lot of parameters, most of them can be
estimated using measurements reported in the literature. Using baseline parameter values, dif-
fusion in the ECS (test case 1) gives clearance results very similar to the ones given by the
4-compartment model considering the PVSs as being isolated from the effect of blood perfusion
(test case 2). The results from these models correspond qualitatively to the clearance results
reported in Xie et al. [80] for the awake state. Therefore, these results indicate that the baseline
parameter values correspond to the an animal in the awake state and that diffusion in the ECS
is the main mechanism to explain the observed clearance. The latter point is explained by the
much larger volume fraction of ECS compared to the PVSs. Most of the 14C-inulin mass is thus
contained and cleared within the ECS. Therefore, even though the Péclet number is higher in
the PVSs than in the ECS (Pe = 9.4 in the PVS of arteries compared to Pe = 1.6× 10−2 in the
ECS), most of the transport still occurs in the latter.
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Increasing the porosity of the ECS slows the clearance of 14C-inulin Since the work
of Xie et al. [80], sleep is believed to play an important role in the clearance of molecules. In [80],
an increase of the porosity of the ECS was measured when the animal was asleep. Our results
show that when only the ECS porosity was increased, the clearance of 14C-inulin was slower. This
may be explained by the fact that increasing the ECS porosity leads to smaller concentration
gradients, hence decreasing diffusive movement. However, in this scenario, we assumed that the
diffusion coefficient remained constant. Furthermore, the increased ECS porosity only led to a
74% increase in average velocity, and still the Péclet number remains small (Pe = 2.2 × 10−2

after ECS porosity increase) in the ECS.
Compared to the usual representation of the glymphatic system in which vessels are clearly

spaced and convective movement occurs between them, our multi-compartment model represents
this effect through the exchange terms. The enhancement of the ECS porosity allows for more
fluid transfer from the ECS to PVS veins (as shown in Subsection 3.3.3), hence, capturing well
the hypothesized faster convective movement in the ECS from the PVS of arteries to the PVS
of veins during sleep. However, the usual schematic representation of the glymphatic system
does not allow to consider the directions of the pressure gradients in the ECS at the scale of
the brain. If we assume that the convective movement in the PVS of arteries is generated by
a pressure gradient, our results show fluid flow in the ECS directed inwards from the surface
of the brain. This latter counters the diffusive movement and, hence, slows down the clearance
of solutes. This could indicate an effect that is neglected in the current glymphatic theory and
needs further investigations.

The minor effect of increased porosity in our model seems to indicate that to obtain the
measured effect of sleep (see Xie et al. [80]), another induced change must take place. Recent
results from [13] indicate that sleep also induces vasomotion in the brain. If we assume that sleep
induces a general vasoconstriction trend, we can model this effect by reducing the radius of blood
vessels, and hence, the PVS width increases. Therefore, porosity and permeability coefficients
are adapted correspondingly (see Appendix A). This leads to an enhanced CSF movement in
all structures (e.g. an increase of 350% of fluid volume from the PVS of arteries to the ECS)
and affects the clearance of 14C-inulin . The clearance curves shown in Fig 6 clearly reveal that
the clearance is faster for the scenario in which PVS porosities are increased. Furthermore, it is
worth mentioning to obtain similar results as the ones obtained in Xie et al. [80] for 14C-inulin
clearance for sleeping animals (45% clearance after 4 hours), we would need to increase only
the porosity of the PVSs in an unrealistic way. Therefore, our results for the 4-compartment
indicate that the improvement of clearance due to sleep does not seem to be explained only by
an increase of the porosity coefficients in the ECS and PVSs.

Fluid leakage from the blood vessels improve 14C-inulin clearance and make the
peri-arterial space an outflow route Using biological relevant parameter values, our results
indicate that if the effect of leakage from the blood vessels is taken into account, the flow of CSF in
the PVS of arteries is reversed compared to the standard picture of the glymphatic theory. With
inclusion of blood vessels, the flow direction is in line with the proposed hypothesis by Cserr et
al. [16]. Hence, the PVS arteries compartment becomes an outflow route in this case as observed
in Fig 7a. Additionally, the flow is also reversed in the ECS compared to the 4-compartment
model. This leads to a faster clearance of 14C-inulin as observed in Fig 7c. For this third test
case the relative amount of 14C-inulin decays exponentially with ∼5% of relative 14C-inulin mass
after 6 hours. The shape for the clearance curve corresponds more to the sleeping animals results
from Xie et al. [80]. Therefore, combining our results from the 4- and 7-compartment models
seem to indicate that the transfer of fluid between blood vessels and PVSs and ECS provide
a great potential to increase clearance during sleep. This could be related again to observed
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vasomotion of cerebral vessels during sleep [13].

Limitations and further works Our model is based on a homogenization procedure that
represents the different structures (ECS, PVS, blood vessels) as a continuum. We know that
porous media can be homogenized into a single continuous medium if the pores distance does
not exceed a certain value. Usually, the derivation of the macroscopic model is assumed to
be correct if the ratio between the length scale of the pores (in our case the distance between
vessels) and the length scale of the chamber is less than one. In our model, this holds true
for most compartments (see Shipley et al. [68] for homogenization related issues). However,
we emphasize that this ratio is close to one for cerebral arterioles and venules. Therefore, our
macroscopic continuous view of the glymphatic system and cerebral blood perfusion has to be
viewed as a coarse approximation of the real phenomenon. This strong modelling assumption
could be relaxed considering a 1D-3D model (see e.g. [17]) in which the ECS only is represented
as a continuous medium while the other structures are modelled by 1D lines. This type of
model can describe more accurately the glymphatic system and the cerebral vascular tree but
is too costly to be used at the scale of the total brain. However, some of the observations and
assumptions from this present work could be tested and verified more accurately with such a
1D-3D model. The comparison between these two types of models will be the subject of a future
work.

In our article, the clearance of solutes from the CSF in the SAS is taken into account using
a simplified boundary condition. Indeed, we assumed that once the solute reaches the SAS
it diffuses instantaneously within the CSF in this region. We plan to derive more rigorously
these boundary conditions in a future work by first modelling fluid movement inside a three
dimensional subarachnoid space and then seeking effective boundary conditions while studying
the asymptotic limit of zero width for the subarachnoid space.

Furthermore, due to the complexity induced by the modelling of the different compartments
and exchange between them, there are 8 coefficients per compartment (some of them might be
shared between two compartments, for example for the exchange through a shared membrane).
Some measurements of these parameters exist, however sometimes in different species (rats versus
humans), and we have to the best of our ability translated parameters to reflect rat physiology.
In addition, the measured values may suffer from experimental uncertainties. This can be clearly
seen if we take for the example the permeability of the ECS κe. We can find in the literature very
different values for this coefficient as previously mentioned by Holter et al. [29]. This illustrates
the uncertainty concerning the ECS permeability value on which many of the other permeabilities
are based (see Appendix A). Furthermore, understanding the effect of small variations of all
parameter values on the results is out of scope of the present study. Sensitivity analysis for some
of the important parameters will be the subject of a forthcoming work.

In our study, we made some variations of parameter values to model possible increase of ECS
or PVSs volumes. The enhancement of ECS volume is reported in [80]. However, the increase of
PVSs volume has been measured recently in [13] and does not appear to be a fixed parameter but
rather a time dependent value. Indeed, oscillations, vasoconstrictions and vasodilatations may
occur over a few minutes (see Fig 2d in [13]). If the effect of these oscillations in porosity were
accounted for in our model, the equations change drastically (ϕ(t) becomes a time dependent
function and stays in the time derivative of both the concentration and pressure equations).
Adding the effect in the system forces us to keep the time derivative in the pressure equation and
solve at each time step a coupled system of equations for each compartment. This will increase
tremendously the computational cost of the simulations.

The use of standard continuous finite elements for the discretization of the diffusion equation
leads to the presence of small oscillations of the numerical solution. See e.g. [46] for details
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about this effect and some remarks about stabilization, which could be included in further works.
However, we note that integrated quantities over large domains (e.g. the brain) is not affected
as small oscillations around zero concentration evens out. In this work we arranged the scale on
the figures so that no negative values for the concentration appear.

Conclusion In this paper we presented a multi-compartment model for fluid and solute trans-
port with application to the glymphatic system of a rat brain. The model allows us to test the
effect of different physiological changes (e.g. sleep), and assess different theories concerning fluid
flow and transport in the brain. Unless blood filtration was added to the model, diffusion was
the main driving force for transport. However, as our simulations show, only a small leakage
from blood vessels increased clearance by an order of magnitude.

A Computing biologically relevant parameters

A.1 Permeability coefficients

In the present article we mostly use another definition that can be obtained from the resistance
values given in [77]. Even though this work deals with a one dimensional model, a relation
between these 1D resistances to 3D permeabilities can be found. Indeed, assuming that we have
any 1D line embedded into a 3D cylinder of length L and cross sectional area A, the volumetric
flux in the 1D geometry is given by Poiseuille equation

Q =
1

R
∆p,

where R is the resistance in the 1D geometry and ∆p is the pressure difference between the two
ends of the line. Then, if we assume that the flow in the 3D cylinder is given only by the flow in
the line, Darcy’s law gives the relation

Q =
κ

µ

A

L
∆p =

1

R
∆p,

where κ is the averaged permeability and µ is the dynamic viscosity. Altogether, we obtain

κ =
µL

RA
. (19)

The coefficient L
A is arbitrary because it depends on the choice of cylinder for the homogeniza-

tion step. Therefore, knowing the permeability of the ECS for example from [29], is enough to
find the value of this coefficient and gives a direct relation between Rj and κj . These resistance
coefficients R for the different compartments can be found in [77]. Choosing a permeability for
the ECS of κe = 2.0 × 10−11 mm2, a CSF dynamic viscosity of µe = 0.7 × 10−3 Pa s, and the
resistance coefficient Re = 4.56(Pa s)/mm3 indicated in [77] we have

L

A
= 1.1× 10−7 mm−1,

and we obtain the values for the permeability coefficients

κpa = 1.0× 10−11 mm2, κpv = 6.51× 10−9 mm2, κpc = 3.54× 10−13 mm2.

Then, from [20] and [35]

κa = 3.30× 10−6 mm2, κv = 6.59× 10−6 mm2, κc = 1.14× 10−9mm2

.
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However, in previous works, authors evaluated these coefficients through numerical testings,
leading to very different values. Indeed, from [74, 26, 21] in which the MPET equations are used
to represent the movement of CSF through different compartments, permeabilities are

κa = κv = κc = κpa = κpv = κpc = 1.0× 10−4 mm2, and κe = 1.4× 10−8 mm2.

Therefore, we obtain a difference between these two parameter sets of several order of magnitude,
leading to tremendous differences in fluid movement.

A.2 Transfer coefficients

Following Starling equation, the definition of the coefficients is for transfer between vessels and
tissues

γi,j = Li,j
|Si,j |
|Ω|

, (20)

where Lij is the hydraulic conductivity of the membrane (in mm/(s Pa)),
|Sij |
|Ω| is the ratio between

the surface area of the vessel per unit of volume of tissue (in mm−1).

We know the ratio
|Si,j |
|Ω| , but we are missing the value of the hydraulic conductivity for some

of the considered membranes. For the transfer from blood vessels to ECS, we can find the value of
the hydraulic conductivity of the BBB at the different levels (i.e. arteries, capillaries and veins).
The values are reported in the main body of this article, in Section 2.

For the transfer coefficients between PVSs and the ECS, we use the following method. We
search a suitable relation between the 1D resistance parameters from [77] and the 3D exchange
coefficients γj,i. In the following we assume that the transfer coefficients for the PVSs to ECS
are comparable between human to rat.

Starting from the volumetric flow Qj,i through a 1D structure

Qj,i =
1

Rj,i
(pi − pj),

where Rj,i is the resistance through the structure and using the fact that this same volumetric
flux in 3D is given by

Qj,i =

∫
Ω

γj,i(pi − pj) dx,

assuming that the pressure difference (pi−pj)(x) is constant in space (which is not unreasonable
since the transfer coefficient is homogeneous in space as well), we obtain the relation

γj,i =
1

Rj,i |Ω|
.

We emphasize that since the resistance coefficients reported here are for human, the volume |Ω|
is the volume of the human brain, i.e. |Ω| = 1 × 10−6 mm3. Thus, from this equation we can
define the transfer coefficient in a different manner using only the 1D resistances estimated in
[77] and the volume of our computational domain.

We apply the previously presented method to compute the exchange coefficients between
PVSs and ECS. We obtain

γpa,e = 2.19× 10−7 (Pa s)
−1

, γpv,e = 1.95× 10−7 (Pa s)
−1

, γpc,e = 9.98× 10−10 (Pa s)
−1

.

For the exchange from blood vessels to ECS, we obtain

γa,e = 5.73× 10−9 (Pa s)
−1

, γv,e = 1.26× 10−10 (Pa s)
−1

, γc,e = 1.26× 10−9 (Pa s)
−1

.
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To compute the fluid exchange coefficients between blood vessels and PVSs, we compute the
resistance of the blood brain barrier at the different levels (i.e. arteries, veins, capillaries) and
subtract to it the resistance of the astrocyte end-feet barrier. We obtain the relation

Ra,pa =
1

γe←a |Ω|
−Rpa,e, Ra,pv =

1

γe←v |Ω|
−Rpv,e.

Knowing these resistances and using the previous method, we can compute the coefficients

γa,pa = 5.89× 10−9 (Pa s)
−1

, γv,pv = 1.26× 10−10 (Pa s)
−1

.

For the capillary level, we use the method from [66] to obtain the resistance of the BBB
membrane in which we suppressed the AEF membrane. We obtain

γc,pc = 2.98× 10−9 (Pa s)
−1

.

Next, we need to specify the transfer coefficients for connected spaces, e.g. from arteries to
capillaries. To do so, we use the equation

γj,i =
Q

|∆pi,j |
,

where Q is the flow rate of fluid (CSF or blood) and ∆pi,j denotes the pressure drop from one
compartment to the other. Using a cerebral blood flow of Qblood = 700mm3/s, a pressure drop
from arteries to capillaries of ∆pa,c = 50mmHg, and a pressure drop from capillaries to veins of
∆pa,c = 10mmHg, we obtain

γa,c = 1.05× 10−7 (Pa s)
−1

, γc,v = 5.25× 10−7 (Pa s)
−1

.

Then, assuming a total flow rate of CSF through perivascular spaces of QCSF = 3.33mm3/s,
and a pressure drop from PVS arteries to PVS capillaries of ∆ppa,pc = 1mmHg, and a pressure
drop from PVS capillaries to PVS veins of ∆ppa,pc = 0.25mmHg, we obtain

γpa,pc = 2.50× 10−8 (Pa s)
−1

, γc,v = 1.00× 10−7 (Pa s)
−1

.

The coefficients γ̃j,i are given by the value of the reflection coefficient σreflect,ij and the equation

γ̃
14C-inulin
j,i = γj,i(1− σ

14C-inulin
reflect,ij ). (21)

We also define the hydraulic permeability of the fluid at the pial surface to define the Robin
boundary conditions. Therefore, we search the 3D coefficients γi,j using the previous method
and we then compute the hydraulic conductivity Lij that we can use in the definition of the
boundary conditions. We assume that the boundary permeability for the ECS compartment is
given by a resistance coefficient that we assume to be twice larger than the resistance coefficient
of the PVS of arteries, i.e. Re,SAS = 2×Rpa. Then, using the relation

Li,j =
1

Ri,j |Si,j |
,

where |Si,j | corresponds to the surface area of the pial membrane of the human brain (≈ 1750×
102 mm2), we obtain

Le,SAS = 3.13× 10−7 mm/(Pas), Lpa,SAS = 1.25× 10−6 mm/(Pas).
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The next coefficient to define is λi,j for the mass transfer of the solute. Following the definition
of diffusive mass transfer, we know that

λi,j = Pi,j
Avessel

Vtissue
, (22)

where Pi,j is the permeability (in mm/s) between the two compartments.
The diffusive permeabilities are computed using the method from [44], namely for the per-

meability to the molecule α = 14C-inulin , we have

Pα =
1

πDv

∑
r∈F

1

Rα
r

,

where Dv corresponds to the diameter of the considered vessel (10×10−3 mm for capillaries [23],
50× 10−3 for arterioles and venules [51, 52]), F is the set of index corresponding to the different
layers of the membrane for which we compute the permeability, Rα

r is the resistances to solute
transport for the different layers. For the AEF barrier, the only layer to cross is the astrocyte
endfeet processes. We have the definition of the resistance

RAEF =
LAEF

2BAEFDα
AEF

,

where LAEF is the width of the membrane, 2BAEF is the width between two astrocyte endfeet,
and Dα

AEF is the diffusion coefficient in this same cleft. Assuming that the cleft has a cylindrical
shape, the latter parameter is assumed to be given from the relation [48]{

Dα
AEF = Dα

free

(
1− 2.10444β + 2.08877β3 − 0.094813β5 − 1.372β6

)
,

α = aα

BAEF
,

in which a is the solute radius. The Stokes radius of inulin is indicated to be aInulin = 15.2 ×
10−7 mm in [65].

The permeabilities are computed from the method in [44]. For 14C-inulin , we have

λ
14C-inulin
pa,e = 5.98× 10−5 s−1, λ

14C-inulin
pv,e = 5.97× 10−5 s−1, λ

14C-inulin
pc,e = 3.63× 10−5 s−1.

A.3 Variations of PVS porosities

In our article, we assumed some variations of the PVSs volume. Using the resistance formula
provided in [77] which gives

R ∝ 1

r41
,

where r1 is the inner radius of the PVS. Thus, with our equation for the permeability coeffi-
cient (19), we obtain the proportionality relation

κj ∝ r4.

Furthermore, assuming that the PVSs are just holed cylinders, the change of volume is propor-
tional to the change in r21. Therefore, from the two previous proportionality relations, we obtain
the multiplying the volume of the PVS by a constant C results in multiplying the permeability
by the square of this constant.
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Figure 8: The evolution of tracer measurements relative to the initial value, plotted for varying
mesh resolution. The simulations were run for a pure diffusion model using the tracer decay
model and a time step of 1 minute. a) Relative mass within the entire brain. b) Relative mass
within a cube with side lengths 2mm. c) Relative concentration at the injection point.

B Varying Mesh Resolution and Time Steps

This appendix illustrates the effect of the mesh resolution and the size of time steps on the results
of the simulations presented throughout this paper. Following the procedure from Section 2.6,
we create different meshes of varying resolution. The smallest and largest cell size corresponding
to each of the resolutions are listed in Table 6. For each of these meshes, we simulate a pure

Resolution hmin hmax

16 0.265 2.374
32 0.154 1.190
64 0.073 0.622

Table 6: The smallest and largest cell size h of the mesh
for different values of the resolution argument provided to
SVMTK.

diffusion model to investigate the impact of mesh resolution on different tracer measurements of
interest. Results can be found in Fig 8. We observe a slight difference between the clearance
curves obtained from the mesh with resolution 16 and the mesh with resolution 32. However, the
clearance curves obtained from the 64- and the 32-resolution mesh are virtually indistinguishable.
We conclude that our scheme converges for the pure diffusion model and the mesh with resolution
32 produces accurate results.

Similarly, we investigate the impact of varying the time step sizes on the clearance curves.
The results are shown in in Fig 9 and illustrate that a time step of δt = 60 seconds as used in
our simulations is sufficiently accurate.

Next, we plot the clearance curves for the 7-compartment model for both varying mesh
resolutions and time step size in Fig 10. The behaviour for the full model is similar to the pure
diffusion model, and indicate that further refining the mesh or reducing the time steps will have
minimal impact on the clearance curves, especially if we compare it to the uncertainty in other
parameters.

Finally, we study the convergence properties of the numerical method for solving the pressure
equations. We use the solution of the 64-resolution mesh as a reference solution and compute
the L2 and H1 error norm with the solutions for the different mesh refinement levels. We obtain
the results stated in Table 7 for second-order Lagrange polynomials.
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Figure 9: The evolution of tracer measurements relative to the initial value in the pure diffusion
model, plotted for varying time step sizes. The simulations were done using the tracer decay
model and a mesh with resolution 32. a) Relative mass within the entire brain. b) Relative mass
within a cube with side lengths 2mm. c) Relative concentration at the injection point.

Figure 10: The evolution of total tracer mass relative to the initial value in the 7-compartment
model, plotted for a) varying mesh resolution (with a timestep of 60s) and b) varying time step
sizes (with mesh resolution 32).

Resolution L2-error norm order H1-error norm order
8 748 2302
16 404 0.89 1659 0.47
32 82 2.29 851 0.96

Table 7: Computed L2 and H1 error norms and convergence orders for our numerical method
to solve the pressure equation of the multi-compartment model using second order Lagrange
elements
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