Modeling and Analysis of CPU Usage in Safety-Critical
Embedded Systems to Support Stress Testing

Shiva Nejati!, Stefano Di Alesio''?, Mehrdad Sabetzadeh®, and Lionel Briand!-?

'SnT Center, 2Certus Software V&V Center,
University of Luxembourg, Luxembourg Simula Research Laboratory, Norway

{shiva .nejati,stefano.dialesio,mehrdad.sabetzadeh, lionel. briand}@uni lu
Abstract. Software safety certification needs to address non-functional constraints
with safety implications, e.g., deadlines, throughput, and CPU and memory us-
age. In this paper, we focus on CPU usage constraints and provide a framework
to support the derivation of test cases that maximize the chances of violating
CPU usage requirements. We develop a conceptual model specifying the generic
abstractions required for analyzing CPU usage and provide a mapping between
these abstractions and UML/MARTE. Using this model, we formulate CPU us-
age analysis as a constraint optimization problem and provide an implementation
of our approach in a state-of-the-art optimization tool. We report an application
of our approach to a case study from the maritime and energy domain. Through
this case study, we argue that our approach (1) can be applied with a practically
reasonable overhead in an industrial setting, and (2) is effective for identifying
test cases that maximize CPU usage.

1 Introduction

Many safety-critical systems, e.g., those in the avionics, railways, and maritime and
energy domains, are increasingly relying on embedded software for control and moni-
toring of their operations. The safety-related software components of these systems are
often subject to software safety certification, whose goal is to provide an assurance that
the components are deemed safe for operation. Software safety certification needs to
take into account various non-functional constraints that govern how software should
react to its environment, and how it should execute on a particular physical platform [1].
These constraints, among others, include deadlines, throughput, jitter, and resource uti-
lization such as CPU and memory usage [2, 3]. Reasoning about these constraints is
becoming more complex in large part due to the multi-threaded design of embedded
software, the shift towards multi-core and decentralized architectures for execution plat-
forms, and the increasing complexity of real-time operating systems.

In this paper, we concentrate on a particular type of non-functional constraints,
namely CPU usage, and provide a framework to derive test cases to verify that the
CPU time used by a set of concurrent threads running on a multi-core CPU does not
exceed a given limit, even under the worst possible circumstances. Keeping CPU usage
low in safety-critical applications is not merely for general quality reasons, but rather an
important safety precaution since with CPU usage above a certain threshold, the system
may fail to respond in a timely manner to safety-critical alarms. For example, if a fire
and gas monitor is starved of CPU time due to CPU overload, it can have a delayed or
miss response to a fire or gas leak with potentially serious consequences. As a result,
test cases that can stress the system to maximize CPU usage are crucial for certification

of safety-critical systems. Our approach to CPU usage modeling and analysis is driven
by two main considerations:

1) Explicit modeling of time. Reasoning about CPU usage requires an explicit notion of
time. Logic-based languages used for reasoning about concurrent software, e.g., most
temporal logics, do not capture time explicitly [4]. Hence, while they can be used to
reason about relative orderings of concurrent tasks, they cannot be used for computing
constraints involving actual time values. We instead follow the common practice in
standard languages such as the UML Profile for Modeling and Analysis of Real-Time
and Embedded Systems (MARTE) [5], where time should be explicitly expressed.

2) Search-based optimization. Our goal is to find testing scenarios that maximize CPU
usage by a set of parallel threads running on a multi-core platform. We refer to this test-
ing activity as stress testing [6]. We characterize the stress test scenarios, i.e., test cases,
by environment-dependent parameters of the embedded software, e.g., the size of time-
delays used in software to synchronize with hardware devices or to receive feedback
from the hardware devices. To stress test the system, we choose the environment pa-
rameters in such a way that the system is pushed to use the maximum amount of CPU.
Finding such stress test cases requires to search the possible ways that a set of real-time
tasks can be executed according to the scheduling policy of their underlying real-time
operating system. In our approach, the search for stress test cases is formalized using a
constraint optimization model that includes (1) a set of constraints describing a declara-
tive representation of the tasks, their timing constraints and priorities, and the platform-
specific information, and (2) a cost function that estimates CPU usage. Our approach
for deriving test cases, while it may not result in provable system safety arguments, can
always provide test cases within a time budget and given a (potentially partial) set of
declarative constraints characterizing the embedded software and its environment.
Contributions of This Paper. We develop an automated tool-supported solution for
deriving test cases exercising the CPU usage requirements of a set of embedded parallel
threads running on a multi-core CPU. Specifically, we make the following contributions:

— A conceptual model that captures, independently from any modeling language, the
abstractions required for analyzing CPU usage requirements in embedded systems
(Section 3.1). To simplify the application of our conceptual model in standard Model-
Driven Engineering (MDE) tools, we provide a mapping between our conceptual
model and UML/MARTE (Section 3.2).

— Casting of the CPU usage problem as a constraint optimization problem over our
conceptual model (Section 4). If done effectively, this enables the use of mature con-
straint optimization technologies that have not been used so far to address this type
of problems. We provide an implementation of our approach in the COMET tool [7]
(Section 4). COMET comes with efficient implementations of various search algo-
rithms and is widely used in Operations Research for solving optimization problems.

— An industrial case study from the maritime and energy domain concerning safety-
critical IO drivers. IO drivers are some of the most complex software components
in the maritime and energy domain with sophisticated concurrent designs and many
real-time properties (Sections 2). Our case study shows that our approach (1) can
be applied with a practically reasonable overhead, and (2) can identify test cases
maximizing CPU usage within time constraints (Section 5).

Structure of the Paper. In Section 2, we motivate our work using a specific industrial
context. In Section 3, we present our conceptual model and show how it can be mapped
to UML/MARTE. In Section 4, we formulate CPU usage as a constraint optimization
problem. We provide an evaluation of our approach in Section 5. We compare with
related work in Section 6, and conclude the paper in Section 7.

2 Motivating Case Study

We motivate our work with a class of safety-critical I/O drivers from the maritime and
energy industry. These drivers are used in fire and gas monitoring applications, and their
overall objective is to transfer data between control modules, and hardware devices,
i.e., detectors. The variations between different drivers are mainly due to the different
communication protocols that they implement in order to connect to different types of
detectors built by different vendors. Such drivers are common in many industry sectors
relying on embedded systems.

One of the main complexity factors in drivers is that they need to bridge the timing
discrepancies between hardware devices and software controller modules. Hence, their
design typically consists of several parallel threads communicating in an asynchronous
manner to enable smooth data transfer between hardware and software. Often, several
execution time constraints are included in the drivers’ requirements to ensure that the
flexibility in the design of the drivers does not come at the cost of overusing the re-
sources of the execution platform. An example of such constraints is the following: An
1/0 driver shall, under normal conditions, not impact heavily on the CPU time. When
only one driver instance is running, the idle CPU time shall be above 80%.

There are three important context factors from the case study influencing our for-
mulation of the CPU usage problem in this paper:

1. Different instances of a given driver are independent in the sense that they do not

communicate with one another and do not share memory.
2. The purpose of the CPU usage constraints is to enable engineers to estimate the

number of driver instances of a given monitoring application that can be deployed
on a CPU. These constraints express bounds on the amount of CPU time required by
one driver instance. Our analysis in this paper, therefore, focuses on individual driver
instances. The independence of the drivers (first factor above) is key to being able to

localize CPU usage analysis to individual instances in a sound manner.
3. The drivers are not memory-bound, i.e., the CPU time is not largely affected by the

low-bound memory allocation activities such as transferring data in and out of the
disk and garbage collection. To ensure this, the partner company (over-) approximates
the maximum memory required for each driver instance by multiplying the number
of detectors connected to the driver instance and the maximum size of data sent by
each detector. Execution profiles at the partner company indicate that the drivers are
extremely unlikely to exceed this limit during their lifetime.

Figure 1(a) illustrates an activity diagram capturing the overall architecture of the
I/O drivers we focus on. Each driver consists of three parallel threads: Two of these
threads, pullData and pushCmd, are executed periodically upon receipt of a trigger,
i.e., scan. The IODispatch thread, however, is enclosed within an infinite (uncon-
ditional) loop. The pullData thread receives (pulls) data from sensors/human opera-
tors/control modules, then puts the data in an appropriate command form, and finally

sends it to the IODispatch thread through a shared memory storage. The pushCmd
thread receives commands from the IODispatch thread via another memory storage,
and transfers them to the Fire Monitoring Systems (FMS). The memory storages in
Figure 1 are shared only between the threads of one driver instance.

(a) (b)

E“pe’“"“” Data Transfer Scenario:
scan N .
1. The system retrieves commands from its detectors
y I 2. The system stores the commands in Queue
[ahreads ,% thread- % «thread> } 3. The system sleeps for 50 msec
10Dispatch |—> pushCmd J 4 The system reads the first command (or the
oter ?buﬂer” Sufiers command with the highest priority) from Queue
From sensors Message Message 5. The system puts the command in Message Box 2
g Box 1 Box 2 to be read by FMS and then goes to step |

To Fire Monitoring
System (FMS)

Fig. 1. Driver case study: (a) Overview of the drivers’ architecture. (b) The CPU intensive sce-
nario of drivers. This scenario is subject to stress testing regarding CPU usage.

P S,
controllers

Drivers in our partner company have four modes of operation: maintenance, normal,
initial and termination. Only the normal mode is critical with regard to CPU usage. In
this mode, the connections with FMSs are established, and the data transfer scenario is
enabled. The data transfer scenario of the drivers for an example communication proto-
col is shown in Figure 1(b). It describes a uni-directional communication where some
delay is injected between the commands in each transmission iteration to ensure that
the commands are received by FMSs at a slow enough rate so that the FMS can pro-
cess them. To show that drivers satisfy their CPU usage requirement, we focus on data
transfer scenarios of drivers only because other driver scenarios are not CPU intensive

The drivers run on a CPU with three separate cores. The operating system used
is VxWorks [8] — a Real-Time Operating System (RTOS). RTOSs share many features
with general-purpose operating systems, but in addition have specialized kernels and
a process scheduler that takes into account real-time constraints [3]. The installation
of VxWorks in our study uses a fixed priority preemptive scheduler. This scheduling
policy does not allow for a lower-priority task to execute while a high-priority task
is ready. The pullData, pushCmd, and IODispatch threads communicate in an asyn-
chronous way through buffers implemented using message queuing utilities provided by
VxWorks. In the driver implementation, all accesses to the shared buffers are properly
protected by semaphores and can potentially be blocking.

To estimate the CPU time used by a driver, we need to first include in our design
models timing information such as how long it takes for the threads to run and their
frequency. We then need to specify how the CPU usage can be characterized based on
the input timing information. This requires capturing the concurrent dependencies be-
tween the threads, how these threads communicate, how the RTOS scheduler preempts
the threads, and how the threads can run on a multi-core processor. In the subsequent
sections, we provide our solution that can address all these details.

3 Modeling Guidelines

In this section, we first provide a conceptual model that captures the timing abstractions
necessary for analyzing CPU usage (Section 3.1). We then show how the abstractions
are mapped to the UML/MARTE metamodel (Section 3.2).

4

Computing Platform |1 allocated ™ Fmbedded Software App |
¢

Scheduler |1UT*| Processing Unit | Thread
1

- number of cores :int - priority :int
o * triggers | - period (p) :int

1.~

Scheduling - - P
Polic -min |_n|er-arr|_/al tl_me (mm_:a} m_l
ol y [Global Clock | - max inter-arrival time (max_ia) :int
= preemptive ; bool - Start)
N - - Finish()
schedules Activity = @ - Wait()
| - min duration(min_d) :int ordered ™1 . Sleep()

Data dependency (j.!ﬂ,—— - max duration (max_d) sint = - Rgsume()
[* 1. delay :int - Trigger()
1 1.* ,t,

uses 1 temporal precedence(<)
[Synch] [Asynch | B} Buffer
1. ————= - size :int

- access!

Fig. 2. The conceptual model characterizing the information required for CPU usage analysis.

3.1 Conceptual Model

The conceptual model depicted in Figure 2 and explained below specifies the informa-
tion required for analysis of CPU usage:

Thread. An embedded software application consists of a set J = {j1,...,jn} of par-
allel threads. A thread j € J can be periodic or aperiodic. Periodic threads, which
are triggered by timed events, are invoked at regular intervals and as such their execu-
tion time is bounded by the (fixed) length of one interval, denoted p(j) [9]. Any thread
that is not periodic is called aperiodic. Aperiodic threads have irregular arrival times.
In general, there is no limit on the execution time of an aperiodic thread, but one can
optionally have a minimum inter-arrival time min_ia(j) and a maximum inter-arrival
time maz_ia(j) indicating the minimum and maximum time intervals between two
consecutive arrivals of the event triggering the thread, respectively [10].

A common use of periodic threads is when we need to send/receive data regularly
(e.g., pullData and pushCmd in Figure 1). In contrast, aperiodic threads are often
used to process asynchronous events/communications (e.g., IODispatch in Figure 1).
Each periodic or aperiodic thread has a priority, denoted priority(j) that is used by a
priority-based scheduler to determine which thread should be running at each time.

During its lifetime, a thread may perform the following lifecycle operations: (1)
Start(): to start execution after having been assigned to a CPU core by the scheduler.
(2) Finish(): to complete its execution. (3) Wait(): to
wait in order to synchronize with another thread or to
acquire some resource. (4) Sleep(): to go to sleep. (5)
Resume(): to indicate to the scheduler that it is ready
to resume execution after a previous block or sleep pe-
riod. (6) Trigger(): to indicate to the scheduler that it
is ready to start a new execution in response to a new
triggering event after having completed a prior round of execution. The above state ma-
chine shows the lifecycle of a typical thread. A thread consumes CPU time only when
it is running.

Activity. An activity is a sequence of operations in a thread that can execute without
needing to release the CPU until its very last operation. The only situation where an
activity releases the CPU is when it is preempted by a (preemptive) scheduler so that

the CPU can go to another activity belonging to a thread that has a higher priority. In
other words, an activity is a sequence of operations that has Wait(), Sleep() or Finish()
as its last operation but nowhere else in the sequence. Each thread j € J has a se-
quence (ai, ..., an,,) of activities. We denote the set of all activities within a software
application by A. Each activity a has an estimated minimum and maximum execution
time denoted by min_d(a) and maz_d(a), respectively. For each activity a, we denote
the thread that owns that activity by thread(a). Each activity a has a priority, inherited
from its owning thread, i.e., priority(thread(a)). When activities end with a Sleep()
operation, they are followed by a period of sleeping time. We use delay(a) to denote
the duration of the sleeping time. Activities of parallel threads can be related to one
another by two kinds of relations: temporal precedence and data dependency.

Temporal precedence. When an activity a must be executed prior to an activity a’,
i.e., a is a prerequisite of a’, we say that a (temporally) precedes a’ and denote this by
a = a’ where <;C A x A. Temporal precedence relates activities belonging to the
same thread only.

We unroll the loops by copying the loop body a certain number of times. The num-
ber of unrollings can be chosen as an input parameter, and depends on the amount of
time during which we choose to observe execution of the threads in our case study (see
the notion of observation time interval discussed in Section 4). Temporal precedence
then indicates that the activities in the first copy of the loop body precede those in the
second copy, and those in the second copy precede those in the third copy, and so on —
an example is given in Section 3.2. We also ensure that the last activity in the ith copy
of the loop is followed by the first activity in the (¢ + 1)st copy of the loop (see loop
constraints in Section 4).

Data dependency. An activity ¢ may depend on another activity a’ because a requires
some data that is computed by a’. We denote this relation by a’ <4 a where <4C A x A.
For any data-dependent pair of activities, we need to specify whether the communica-
tion is synchronous or asynchronous. The activities related by a data dependency rela-
tion may or may not belong to the same thread.

Buffer. Asynchronous communications may or may not use buffers. Buffer accesses
by activities are protected by semaphores, and are blocking. Hence, each buffer access
within an activity implies an implicit Wait() operation and indicates the last operation
of that activity. Therefore, each activity can be related to at most one buffer. Also, at
most one activity can access a given buffer at any point in time. The time an activity is
blocked, waiting for a shared buffer, is determined by our scheduling constraints and is
zero when the buffer is not locked by any other activity (see Section 4).

Computing Platform and Global Clock. In addition to information about the soft-
ware application itself, we need information about the characteristics of the underlying
computing platform. In particular, we require knowledge of the number of CPU cores,
denoted ¢, which indicates the maximum number of parallel activities that the CPU
can host. We further need to know whether the scheduling policy used by the real-time
scheduler is preemptive or non-preemptive. Lastly, we need a (real-time) clock to model
time-based events/triggers.

{priority = 200,
interOccT = (0.8, 's'min),
(1.2,'s', max)}

- KB" {priority = 200,
0 [ize=(o0, kB] [(size= (200, KB {size = (200, KB} interOccT = (1,'s) }
] -)
<<GaScenario>> — — / - 1 __ i j2
pullData Resource>>
i Recource>>
' Message Box 1 Queue |ODispatch N o pushCmd

Scan '
=

{priority = 200,
interOccT = (1, 's) }

a0

access() a6
a2 Data

access() —>

<<GaStep>>
{execTime = (50, ms,
min), (100, 'ms’, max)}

at

<<GaStep>>
{execTime = (100, 'ms',
min), (200, 'ms', max)}

'

|
i i a5 access()
i i p i
| access() a2 !
(m-} T ;
i

T

i i access()
! O‘ a4

T
I i

' U

1 ' access() & 3

| H

i

v

Fig. 3. A sequence diagram capturing the data transfer scenario in Figure 1(b). The diagram is
augmented with MARTE timing and concurrency stereotypes and attributes.

3.2 Mapping to UML/MARTE

In this section, we demonstrate how the abstractions in Figure 2 are mapped to the
UML/MARTE metamodel. This mapping shows the feasibility of extracting the ab-
stractions required for CPU usage analysis from standard modeling languages sup-
ported by industry strength tools. We begin by first describing the abstractions that are
already present in UML. We then show how missing timing and concurrency aspects
can be mapped to MARTE.

In UML, Active Objects have their own threads of control, and can be regarded as
concurrent threads [11]. Active objects in UML sequence diagrams can be associated
to lifelines with several Execution Specifications that match activities in our conceptual
model in Figure 2. The notation for describing synch and asynch communication al-
ready exists in UML sequence diagrams where an Occurrence Specification indicates a
sending or a receiving of a message.

Figure 3 shows a sequence diagram capturing the data transfer scenario described in
Figure 1(b). As shown in the figure, each thread in the driver application has an object
with lifeline. Similar to threads and as shown in Figure 3, buffers correspond to passive
objects in UML, and can be represented using lifelines as well.

We represent each activity of a thread using an activation or an execution specifica-
tion (a thin box on the lifeline of a thread that shows the interval of time that the thread
is active). Each thread lifeline is made up of a sequence of activations corresponding to
its activities: thread jy is composed of activities ag and a;; thread j; is composed of
as, as, a4, as, ab, and a}; and thread js is composed of a single activity, ag. Activities
al, and a% are repetitions of as and as, respectively. Due to space reasons, we have not
shown any repetition of a4 or as, or any further repetitions of as or ag. As mentioned
earlier, we use constraints to ensure that aj is followed by a), (see Section 4).

The order of activations on a thread lifeline implies the temporal precedence be-
tween activities of that thread. For every pair a,a’ of activities, a <; o’ if a and o’
belong to the same thread j and a precedes a’ as indicated by the lifeline of j. For
example, in Figure 3, we have ag <; a1 and ag =; a3z <t a4 =¢ a5 =<t ab = ab.

In sequence diagrams, a synchronous message from an activity a to an activity a’
is shown using a solid arrow with a full head; an asynchronous message is shown by a
solid arrow with a sticky head. Synchronous communication is blocking and does not
require a buffer by default. L.e., the sending activity must wait until the receiving activ-
ity is ready to receive messages. Asynchronous communications may or may not use
buffers. In our case study, and hence in the sequence diagram of Figure 3, all commu-
nications are asynchronous and buffered. Based on the information obtained from the
drivers’ design, for the activities in Figure 3, we have ag <4 as, a3 =4 a4, and aq4 =<4 ag.

Even though UML sequence diagrams can already capture several concepts in the
Embedded Software Application package in Figure 2, the schedulability concepts, and
the timing and concurrency attributes in that figure do not have appropriate counterparts
in UML. These concepts are captured by extensions of UML, in particular MARTE,
which is geared towards both the real-time and embedded system domains.

MARTE provides a Generic Quantitative Analysis Modeling (GQAM) sub-profile
intended to provide a generic framework for collecting information required for perfor-
mance and schedulability analysis. The domain model of this sub-profile includes two
key abstractions that closely resemble our notions of thread and activity respectively:
Scenario and Step. Step is a unit of execution, and Scenario is a sequence of steps. We
map ((GaStep)) (resp. ((GaScenario))) which is a stereotype representing the notion
of Step (resp. Scenario) in the domain model of GQAM to our notion of activity (resp.
thread). These two stereotypes can be applied to a wide set of behaviour-related ele-
ments in UML 2.0 metamodel, and in particular, to UML sequence diagrams. We also
map our notion of buffer to ((MessageComResource)) which represents artifacts for
communicating messages among concurrent resources.

MARTE includes a list of measures that are widely-used for analysis of real-time
properties of embedded systems. The majority of these are applied to Steps and Sce-
narios, creating their sets of quantitative attributes. The top two rows of Table 1 show
the mapping between our timing attributes to those of ((GaScenario)) and ((GaStep))
in MARTE. For example, we map interOccTime, the time interval between two succes-
sive occurrences of scenarios, to period or (max/min) inter-arrival times of threads, and
execTime, the execution time of a step, to (min/max) duration of activities. Note that
both of these measures can be specified either as single values or as max/min intervals.
As an example, the sequence diagram in Figure 3 is augmented with the timing and
concurrency stereotypes and attributes from MARTE.

We identified only one discrepancy in our mapping: In MARTE, individual steps
have a priority attribute, indicating the priority of the step on their processing host, but
this priority attribute does not directly apply to scenarios. At the implementation level,
however, it is common to define priorities for threads rather than for steps within the
threads. Hence, we specified priorities at the level of threads (Scenarios) and not for
individual activities (Steps). In our mapping, we assume that the steps within a scenario
have the same priority that carries over to the scenario which is a composite entity.

Information about the computing platform in Figure 2 is not captured on the se-
quence diagram but can be represented using MARTE streotypes applied to UML class
diagrams. The GRM::Scheduling sub-profile already includes the schedulability con-
cepts of Figure 2, i.e., ((Scheduler)) and ((SchedulingPolicy)). Finally, we map process-

ing units in Figure 2 to ({(ComputingResource)) from GRM::ResourceType sub-profile,
and the global clock to ((LogicalClock)) from TimeAccesses::Clocks sub-profile. The
latter allows us to define regular triggers/events in RTOSs, e.g., scan in Figure 1.

Table 1. Mapping abstractions in Figure 2 to UML/MARTE.

Concept MARTE StereoType/attributes =~ MARTE Sub-Profile
Thread «GaScenario» GQAM::
- priority - *priority: NFP_Integer GQAM_Workload

. | - period, - interOccT: NFP_Duration[*]
sl - (min/max)
; inter-arrival time «TimedConstraint» TimedConstraints
o [Activity «GaStep» GQAM::
2| - (minmax) duration | - execTime: NFP_Duration[*] [GQAM_Workload
3 - delay - selfDelay: NFP_Duration[*]
§ Buffer «MessageComResource» SRM::
£ - size - messageSizeElements: SW_Interaction
w ModelElement [0..*]

- access() - sendServices/receiveServices:
BehavioralFeature [0..*]

. | Scheduler «Scheduler» GRM::Scheduling
E Scheduling Policy «SchedulingPolicy» GRM::Scheduling
‘E" Processing Unit «ComputingResource» GRM::ResourceTypes
H -
O | Global Clock «LogicalClock> TimeAccesses::Clocks

- scan - clockTick

4 CPU Usage Analysis through Constraint Optimization

Figure 4 shows an overview of our solution for CPU usage analysis using constraint
optimization. Our solution has four main elements: (1) time and concurrency informa-
tion, (2) scheduling variables, (3) objective functions, and (4) constraints characterizing
schedulability algorithms.

Intuitively, given the input (time and concurrency information), the goal is to com-
pute values for the scheduling variables such that: (a) the schedulability constraints are
satisfied, and (b) an objective function is maximized or minimized depending on the
problem at hand. One main advantage of approaching our objectives as a constraint
optimization problem is that such computations can be performed using off-the-shelf
constraint optimization tools. We ground our formulation of the CPU usage problem
on the COMET tool. This choice is motivated mainly by the efficient implementation of
complete search in COMET and its support for parallel search (see Section 5), which is
used for the evaluation of our approach in this paper. Below, we discuss each of the four
main elements of our solution and outline their implementation in COMET.

(1) Time and Concurrency Information. All the input data in Fig 4 (part (1)) corre-
sponds to the elements in our conceptual model in Section 3, and hence can be automat-
ically extracted from the UML/MARTE models. We implement this information using
COMET pre-defined data types. We define the notion of observation time interval as the
time we spend observing the thread executions and denote it by 7'.

(2) Scheduling Variables. These variables specify a schedule for a given set of activi-
ties A during an observation time interval 7'. Specifically, a schedule specifies the actual
start time start(a) and the actual end time end(a) for every activity a € A. We denote
the duration of an activity a by d(a) (not to be confused with delay which represents
the delay time after activities). In non-preemptive scheduling, d(a) is simply defined as

(R
/1 (1) Time and concurrency information (Input)

range Threads = 0..n-1; range Activities = 0..m-1;

intc=3; // Number of cores
int p[Threads] = ..; // Periods

int priority[Threads] = ..; // Priority

/1 (2) Scheduling variables (Output)

var{int} start[Activities]; // Actual start times
var{int} end[Activities]; // Actual end times
var{int} active[Activities, T]; // Active matrix for individual time points

var{int} eligible_for_execution[Activities]; // Start times in ideal situation

/1 (3) Objective function (maximizing CPU usage)
maximize
sum (a in Activities, t in T) (active[a, t])/ c* sizeof T/ CPU usage computation function

// (4) Constraints (characterizing schedulability algorithms)
subject to

forall (a in Activities)
post (end[a] < p[thread(a)]); // An activity must end before the period of its thread
post (active[a, start[a]] == 1); /...

}
- J

Fig. 4. CPU usage as a constraint optimization problem. The full COMET implementation can be
found at [12].

the length of the interval between start(a) and end(a), i.e., d(a) = end(a) — start(a).
But for preemptive scheduling, a can be interrupted during its execution, and hence, it
may not be executing continuously. Therefore, we define d(a) to be a set variable rep-
resenting the set of time points at which a executes. In addition, for an activity a and
time point ¢, we define a function active(a, t) as follows:

active(a,) = { 1if a executes at time ¢

’ 0 otherwise.

To account for multi-core scheduling, we define a variable eligible_for_execution(a),
or efe(a) for short, that returns the earliest possible time that a can start running assum-
ing that the number of cores is infinite, and hence, there is no bound on the number of
activities that can run in parallel.

We implement scheduling variables as COMET variables with a specific type and a

finite range. Values for these variables are computed within a given observation time
interval 7T'. In our formulation, we have added a new dimension to the scheduling vari-
ables to compute these variables for multiple execution rounds, where the number of
rounds is determined by 7' (not shown in Figure 4 to avoid clutter, see [12]).
(3) Constraints. We use first-order logic to express the constraints. All the constraints
are provided below. We omitted constraint formulations when the formulations were
straightforward or lengthy. The complete formulations are available at [12].

> Well-formedness (sanity rules).

— Every activity must finish before the period of its corresponding thread elapses and
cannot start before the start time of that thread.

— The number of time points at which an activity is running is bounded by its min/max
duration.

— An activity starts running at its start time, ends just before its end time, and does
not run before its start time or after its end time.

t> Loop Threads. Consider activities aj), . . . afl representing the activities of itera-

tion ¢ of a thread. Then, for every iteration 4, we must have: start(a(()”l)) > end(al,).

10

> Temporal Precedence. For every a,a’ € A s.t. a <; a, we have start(a’) —
end(a) > delay(a). Note that delay(a) = 0 if a is not followed by a delay.

> Synch/Asynch Communication. For every a,a’ € A s.t. a <4 d, if the com-
munication is synchronous then we have start(a’) > end(a).

> Buffer. For every a,a’ € A s.t. a <4 d, if the communication goes through a
shared buffer then if start(a) < start(a’), then start(a’) > end(a). This is because a
locks the shared resource during its execution. Also, if @ and a’ access the same buffer
(but no data dependency relation is known between them), then a and a’ cannot be
active at the same time at any given time.

> Multi-Core. The number of running activities at every time point is less than or
equal to the number of cores:

> Scheduling Policy.

— Each activity can potentially be preempted: Va € A - end(a) — start(a) > d(a).

— The earliest time an activity a can start (efe(a)) is after the arrival time of its corre-
sponding thread and after the earliest termination time of all the activities preceding
a. Here, precedence includes both temporal precedence (<;) and data dependency
(=4) orderings.

— Atany time, if there are two activities that can be scheduled for execution in parallel
but only one is running, the one that is not running has a lower priority.

Amongst the constraints above, only the scheduling policy constraints have a context-

specific nature and need to change according to the specific policy used in a given sys-
tem. The remaining constraints are generic and be reused across different domains and
applications.
(4) Objective Functions. Our objective is to find combinations of input values that
can generate schedules that consume the CPU time most, and hence, are more likely to
violate CPU usage requirements of the system. To capture high usage of CPU time, we
define two alternative objective functions. The first one computes average CPU usage,
is denoted by fysqge, and is defined as:

Dacaer active(a,t)
fusage = Txc

The summation), 4 o<;<7 active(a, t) measures the total time points when at least
one activity is running, and 7" X c is the total available time on all the cores. The sec-
ond objective function, called makespan, measures the total length of the schedule. We
denote this objective function by fr,akespan and define it as:

f7rLak'asme = MaXge A end(a)

The fakespan function is the time it takes for all the activities in an application to
terminate after the arrival time of the first thread in that application. Makespan is a
common metric for measuring response time [7].

By maximizing either fysqge OF frakespan, W€ compute schedules that are more
likely to violate the CPU usage requirements. Note that fysqge OF fimakespan are heuris-
tics as their accuracy is bounded by the accuracy of the input data and the precision of
our constraints in characterizing the domain. Therefore, these functions should not be
viewed as measures for the actual CPU usage of the system. In Section 5, we discuss
how the input values maximizing these functions can be used to generate test cases for
CPU usage requirements.

11

5 Evaluation

The main goal of our evaluation is to investigate whether our technique can effectively
help engineers in deriving test cases for CPU usage requirements. The practical useful-
ness of our approach depends on (1) whether the input to our approach can be provided
with reasonable overhead, and (2) whether the engineers can utilize the output of our
analysis to derive test cases that can maximize CPU usage.

(i) Prerequisite and Overhead. As discussed before, the information required for
CPU usage estimation is captured by the conceptual model in Figure 2. To gather this
information, we first built UML sequence diagrams for the IO drivers in our partner
company using the existing design and implementation of the drivers. The resulting
sequence diagrams were iteratively validated and refined in collaboration with the lead
engineer of the IO drivers. Sequence diagrams are popular for visualizing concurrent
multi-threaded interactions and are intuitive to most developers as was confirmed in our
industry collaboration [13].

The quantitative elements in Figure 2 for our case study were obtained as follows:
The values for priority and period of the threads, and the size of the buffers were ex-
tracted from the certification design documents and the IO driver code. The min/max
inter-arrival times of IQDispatch, which is an aperiodic thread, and the values for the
min/max duration of activities in our case study were extracted from the performance
profiling logs of the drivers. We created the sequence diagrams augmented with the tim-
ing information over 8 days, involving approximately 25 man-hours of effort. This was
considered worthwhile as such drivers have a long lifetime and are regularly certified.

Finally, we obtained the computing platform information in Figure 2 from the RTOS
configuration and hardware design documents. Note that, given the mapping in Table 1,
any modeling development environment that supports UML/MARTE can be used to
develop and manipulate our input design notation.

(ii) Test Case Derivation. The 1/O drivers in our study are subject to certification
based on the IEC61508 standard [14], which is one of the most detailed and widely-
used functional safety standards. It specifies 4 levels of safety, called Safety Integrity
Levels (SILs). SIL1 is the lowest and SIL4 is the highest level. The drivers in our study
need to be compliant to IEC61508 up to SIL2 or SIL3 depending on the context of their
application. Stress testing (subjecting the system to harsh inputs with the intention of
breaking it [6]) is classified by IEC61508 as “Recommended” for SILs 1-2 and “Highly
Recommended” for SILs 3-4. “Highly Recommended” techniques/measures are often
seen as “mandatory” by the certifiers, unless the supplier provides a convincing argu-
ment as to why a highly recommended technique/measure does not apply. Subsequently,
the engineers in our partner company needed to stress test the drivers (mandatory for
SIL3 deployments).

We characterize the stress test cases in our case study by the delay times that (po-
tentially) follow execution of activities, i.e., the delay attribute of the activity class in
Figure 2. IO drivers are instantiated in different environments with different numbers
and kinds of detectors and FMSs. The delay times after the 1O driver activities must be
set to values that match the load and speed of the detectors and FMSs.

Based on the engineers’ intuition, large and complex hardware configurations, e.g.,
those consisting of several thousands of detectors, are more likely to violate the CPU

12

Non-Parallel Version Parallel Version

(% for cpu usage, (% for cpu usage,
ms for makespan) ms for makespan) Max:550 ms
58 A

Max:550 ms

54 1 550
2 Max: 50% 2
249 =
44 40
00:00:42 00:00:43 00:00:44 00:00:45 00:00:46 00:00:47 00:00:00 00:10:05 00:20:10 00:30:14 00:40:19 00:50:24
(Time) (Time)
=+—CPU Usage (14:34:06) ——~Makespan (14:13:12) ~—4—CPU Usage (02:56:08) =ll=Makespan (02:54:41)

termination time termination time termination time termination time

Fig.5. The result of maximizing fyokespan and fusage (Section 4) for both parallel and non-
parallel COMET implementations.

usage requirements. To identify the suspicious hardware configurations, however, the
analysis provided in this paper is necessary because the hardware configurations affect
the delay times of the IO drivers activities, and subsequently, the CPU usage estimates.

For example, the size of the delay time at step 3 of the data transfer scenario in
Figure 1(b) can heavily impact the CPU usage. Specifically, the delay time cannot be
so small that IODispatch (Figure 1(a)) keeps the CPU busy for so long that it exceeds
the given CPU usage requirement. Neither can the delay be too large, because then
pullData, which is periodic, may miss its deadline. Specifically it may quickly fill up
the Message Box 1 buffer, which in turn causes pullData to be blocked and waiting
for IODispatch to empty Message Box 1, which is now very slow due to a large delay
time. As a result, pullData may not be able to terminate before its next scan arrival.

To derive stress test cases based on the delay times of the activities, in our formula-
tion in Figure 4, we specify delay as an output variable whose value is bounded within
arange. The search then varies the values of these variables to maximize fy,qkespan and
fusage- Those combinations that maximize our objective functions are more likely to
stress the system to the extent that the CPU usage requirements are violated.

To perform the above experiment, we implemented the constraint optimization for-
mulation in Figure 4 in COMET Version 2.1.0 [7]. We further used the native support
of COMET for parallel programming to create a distributed version of our COMET im-
plementation that divides the search work-load among different cores. To perform the
experiment, we varied the observation time 7' from 1s to a few seconds and set the
quantum time (i.e., the minimum time step that a scheduler may preempt activities) to
10 ms. The input model included eight activities belonging to three parallel threads.

Figure 5 shows the result of our experiment, maximizing fqkespan aNd fusage for
both parallel and non-parallel COMET implementations. In both diagrams, the X-axis
shows the time, and the Y-axis shows the size of fy,akespan in ms, and the percentage for
fusage- In our experiment, we used a complete (exhaustive) constraint solver of COMET,
and ran it on a MacBook Pro with a 2.0 Ghz quad-core Intel Core i7 with 8GB RAM.
As shown in the figure, the search terminated in both cases: after around 14 hours for
the non-parallel version, and after around 2 hours and 55 min for the parallel version.
The maximum computed values are: 50% for fysage, and 550 ms for foakespan- In the
non-parallel case, the maximum result was computed after around 1 hour and 10 min
for finakespan, and 1 hour and 13 min for fysqgqe. No higher value was found in the
remainder of the search which took more than 14 hours in total. In the parallel case,

13

it took about 15 min to find the maximum for fy5q4¢, and 40 min to compute that for
fmakespan - To make sure these values were indeed maximum, the search continued until
it terminated after 2 hours and 55 min.

In the end, we could compute maximum values for fy,qkespan and fusage in around
2 hours and 55 min using COMET’s built-in support for parallel search. The values for
the delay times maximizing fp,qkespan aNd fusqge are candidates for stress test cases.
We have recorded these values and have communicated them to our partner company.

Currently, the engineers at our partner company spend several days simulating their
systems and monitoring the CPU usage without following a systematic strategy for
stressing the systems to their CPU usage limits. We expect that by executing their sys-
tems based on the values produced by our approach, they can push the systems to states
where the CPU usage is maximized and ensure that the input delay times remain within
safe margins. The engineers at our partner company intend to test their system using
our findings. Our experimental results and the input data values are available at [12].

6 Related Work

All approaches to performance engineering and schedulability analysis require a model
of the time and concurrency aspects of the system under analysis [15]. Examples of
such modeling languages include queuing networks [16], stochastic Petri nets [17], and
stochastic automata networks [18]. Recently, there has been a growing interest in devel-
oping standardized languages to enhance the adoption of performance engineering con-
cepts and techniques in the industry [19]. The most notable these languages is MARTE
which extends UML with concepts for modeling and quantitative analysis of real-time
embedded systems [5]. While a UML-profile, MARTE also encompasses the timing and
concurrency abstractions in many other languages, e.g., Architecture Analysis and De-
sign Language (AADL) [20]. As indicated by the mapping from our conceptual model
to MARTE (Section 3.2), the abstractions we use in our work already exist in MARTE.
However, MARTE is a large profile and by itself does not provide guidelines on what
subset of it is required for a particular type of analysis. Our conceptual model can thus
be viewed as a subset selection of MARTE, aimed specifically at CPU usage analysis.

The techniques for analysis of real-time systems can be divided into two general
groups: (1) Approaches based on real-time scheduling theory [9]. These approaches
estimate schedulability of a set of tasks through customized formulas and theorems that
often assume worst case situations only such as worst case execution times, worst case
response times, etc. Their results, therefore, can be too conservative because due to
inaccuracies in estimating worst-case time values, the worst-case situations may never
happen in practice. As a result, in general, we cannot rely on schedulability theory alone
when dealing with analysis of real-time systems. Moreover, extending these theories to
multi-core processors has shown to be a challenge [21, 22].

(2) Model-based approaches to schedulability analysis. The idea is to base the
schedulability analysis on a system model that captures the details and specifics of real-
time tasks. This provides the flexibility to incorporate specific domain assumptions and
arange of possible scenarios, not just the worst cases [23, 24]. Most approaches that fall
in this category, including our work, can deal with multi-core processors as well [24].

We formulate the problem of CPU usage analysis as a constraint optimization prob-
lem. Our work is inspired by Job shop scheduling — a well-known optimization problem

14

where jobs are assigned to resources at particular times [25]. Job shop has several vari-
ations. Our formulation is closest to the discrete resources variant [7], but differs from
it in that we need to specify scheduling policies used by the underlying RTOS.

Model checkers, in particular, real-time model checkers, e.g., UPPAAL [26], have
been successfully used for the evaluation of time-related properties. Model checking is
intended to be used for verification, i.e., to check if a given set of real-time tasks satisfy
some property of interest. To adapt model checkers to checking different properties of
real-time applications, the underlying state machines are built such that the question at
hand can be formulated as a reachability query. For example, in [24], in order to analyze
CPU-time usage, an idle state-machine is added to the set of interacting timed-automata
to keep track of the CPU-time, and the error states were chosen so that their reachability
could lead to violation of the CPU-time usage limit.

In our work, the property to be checked is captured by a quantitative objective
function as opposed to a boolean reachability property, as in the case of model checking.
Therefore, our work is more geared towards optimization with applications in test-case
generation rather than verification. One significant practical advantage is that, to adapt
our formulation to check other kinds of real-time properties, it often suffices to change
the objective function, and most of the constraints remain untouched. Lastly, to handle
multiple cores, the existing UPPAAL-based solution in [22] assumes that a mapping
between threads and cores is given a priori. Our approach in contrast does not require
any mapping between threads and cores.

7 Conclusions and Future Work

We provided a practical approach to support derivation of stress test cases for the CPU
usage requirements of concurrent embedded applications running on multi-core plat-
forms. We proposed a conceptual model that captures, independently from any mod-
eling notation, the abstractions required for analysis of CPU usage. We mapped our
conceptual model onto the standard modeling language UML/MARTE to support the
application of our approach in practice. We, then, formulated the CPU usage problem
as a constraint optimization problem over our conceptual model, and implemented our
formulation in COMET. Our evaluation on a real case study shows that our approach
(1) can be applied with practically acceptable overhead, and (2) can identify test cases
that maximize CPU usage. These (stress) test cases are crucial for building satisfactory
evidence to demonstrate that no safety risks are posed by potential CPU overloads. Fi-
nally, we note that while our approach cannot provide proofs, we can always provide
results given a (partial) set of declarative constraints and within a time budget.

Our solution draws on a number of context factors (Section 2) which need to be
ascertained before our solution can be applied. While the generalizability of these fac-
tors need to be further studied, we have found the factors to be commonplace in many
industry sectors relying on embedded systems. In the future, we plan to perform larger
case studies to better evaluate the generalizability and scalability of our approach and
experiment with other search methods, in particular, meta-heuristic search methods and
hybrid approaches combining complete and meta-heuristic search strategies.
Acknowledgments. We thank Bran Selic for his useful comments on an earlier draft

of this paper. We thank the research council of Norway for partially funding this work.
L. Briand was supported by a FNR PEARL grant.

15

References

11.

12.

13.

14.

16.

17.

18.

19.
20.

21.

22.

23.

24.

. Jackson, D., Thomas, M., Millett, L., eds.: Software for Dependable Systems: Sufficient

Evidence? National Academy Press (2007)

. Henzinger, T., Sifakis, J.: The embedded systems design challenge. In: FM. (2006) 1-15
. Lee, E., Seshia, S.: Introduction to Embedded Systems: A Cyber-Physical Systems Ap-

proach. http://leeseshia.org (2010)

. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)

A UML profile for MARTE: Modeling and analysis of real-time embedded systems (May
2009)

. Beizer, B.: Software testing techniques (2. ed.). Van Nostrand Reinhold (1990)
. Hentenryck, P.V., Michel, L.: Constraint-Based Local Search. The MIT Press (2005) www.

dynadec.com.

. Wind River VXWorks. nttp://www.windriver.com/products/vxworks/ (2009)
. Liu, J.LW.S.: Real-time systems. Prentice Hall (2000)
. Sprunt, B.: Aperiodic task scheduling for real-time systems. PhD thesis, Carnegie Mellon

University, Pittsburgh, PA, USA (1990)

OMG: The Unified Modelling Language. Version 2.1.2. nttp://www.omg.org/spec/UML/2.
1.2/ (2007)

Alesio, S.D.: The CPU usage constraints in COMET. http://home.simula.no/~stefanod/
comet .pdf

Harel, D., Marelly, R.: Specifying and executing behavioral requirements: the play-in/play-
out approach. Software and System Modeling 2(2) (2003) 82-107

IEC 61158: industrial communication networks - fieldbus specifications. International Elec-
trotechnical Commission (2010)

. Cortellessa, V., Marco, A.D., Inverardi, P.: Model-Based Software Performance Analysis.

Springer (2011)

Lazowska, E., Zahorjan, J., Graham, S., Sevcik, K.: Quantitative system performance com-
puter system analysis using queueing network models. In: Int. CMG Conference. (1984)
786-788

Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with gener-
alized stochastic petri nets. SIGMETRICS Performance Evaluation Review 26(2) (1998)
2

Plateau, B., Atif, K.: Stochastic automata network for modeling parallel systems. IEEE
Trans. Software Eng. 17(10) (1991) 1093-1108

Petriu, D. In: Software Model-based Performance Analysis. John Wiley & Sons (2010)
Hudak, J., Feiler, P.: Developing AADL models for control systems: A practitioner’s guide
(October 2006)

Bertogna, M.: Real-Time Scheduling Analysis for Multiprocessor Platforms. PhD thesis,
Scuola Superiore Sant’ Annna, Pisa (2007)

David, A., Illum, J., Larsen, K., Skou, A. In: Model-Based Framework for Schedulability
Analysis Using UPPAAL 4.1. CRC Press (2010) 93-119

Briand, L., Labiche, Y., Shousha, M.: Using genetic algorithms for early schedulability anal-
ysis and stress testing in real-time systems. Genetic Programming and Evolvable Machines
7(2) (2006) 145-170

Mikucionis, M., Larsen, K., Nielsen, B., [llum, J., Skou, A., Palm, S., Pedersen, J., Hougaard,
P.: Schedulability analysis using UPPAAL: Herscehl-Planck case study. In: Proceedings of
4th International Symposiumo on Leveraging Applications of Formal Methods, Verification
and Validation; track: Quantitative Verification in Practice. (2010)

16

25.

26.

Applegate, D., Cook, W.: A computational study of the job-shop scheduling problem. IN-
FORMS Journal on Computing 3(2) (1991) 149-156
Behrmann, G., David, A., Larsen, K.: A tutorial on uppaal. In Bernardo, M., Corradini, F.,
eds.: International School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM-RT 2004. Revised Lectures. Volume 3185 of Lecture Notes in
Computer Science., Springer Verlag (2004) 200-237

17

