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To meet multimedia servers' increasing performance and scalability
requirements, researchers must design multimedia storage system
components that adapt to various workloads and requirements. They must
also develop strategies for combining components into a single high-
performance system.

Storage systems have long been a major bottleneck in multimedia systems because their



performance increases have not kept pace with those of processors and networks. Additionally,
new multimedia applications impose a much higher load on such systems. As the number of
concurrent users downloading or streaming data from media-on-demand servers increases, so too
does the challenge for a multimedia server's storage system.

In the first of this two-part overview of multimedia storage systems, we discussed streaming-
system requirements and single-disk issues such as disk scheduling and data placement. Here,
we address key issues for multidisk systems and high-layer components, such as buffer
management. We've posted a more comprehensive list of references on multimedia storage
system issues at www.ifi.uio.no/~paalh/publications/dsonline2004.

MULTIPLE DISKS: ISSUES AND CHALLENGES

Given the high bandwidth requirements of continuous media data playouts, a single disk's
bandwidth capacity strongly limits the number of concurrent users in a multimedia scenario. One
approach to overcoming the bandwidth bottleneck is to scatter different file segments across
multiple disks using data striping or interleaving. Another approach is to use replication to
distribute several copies of a file to different disks.

Striping and interleaving

For many years, storage systems have often used striping—also called wide or full striping—to
read multimedia data from disks. Striping spreads data blocks over all storage system devices.
During I/O operations, the system accesses all devices in parallel, increasing the effective
transfer rate. RAID (redundant array of independent disks) technology addresses striping
performance and reliability issues. Streaming RAID uses a grouping approach, arranging stripes
in consecutive segments to achieve good performance.

Recently, however, disk performance has improved considerably (although it's still slow
compared to memory and processor performance), and a single disk can now support several
continuous media streams concurrently. Traditional striping is thus unnecessary. Developers
have proposed several refinements schemes whereby storage systems can serve a request without
involving the whole array disk, enabling service of multiple, simultaneous requests.

Data interleaving (also called compound striping) stores media files across a set of disks. The
simplest version stores successive blocks in a round-robin manner. Other interleaving
approaches are staggered striping, which stripes data over possibly overlapping disk groups, and
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scalable stream pumping, which stores all data blocks in successive disks and zones.

Two important parameters when implementing a multimedia storage server disk array are the
striping unit size and the degree of striping required for optimal resource utilization. Researchers
have experimented with a fixed- and variable-sized block placement policy to determine optimal
stripe unit size.! Another group proposes a scheme to partition the array and stripe data across
single-disk partitions to maximize resources.2 Other work suggests similar policies, because one-
disk stripe groups often have better bandwidth utilization.3 So, as long as using small stripes can
service playout rate, it's more efficient with respect to total storage system I/O bandwidth. This
is because it requires only one or at most a few disks to pay the overhead of moving the disk
head for a particular request, so the system can service concurrent requests in parallel.

Replication

Beyond single-file-retrieval optimization, developers can increase performance of the servers
themselves using replication to guarantee availability and increase concurrent access to
individual titles. Researchers have proposed several schemes.

Static replication explicitly duplicates content files by storing files on multiple machines and
providing various user access points.

Dynamic segment replication dynamically replicates read-only movie segments of equal size
according to the prespecified threshold for concurrent read requests. To avoid further 1/0O

overhead, this scheme uses copyback streams and makes replicas when it reads a user's disk
blocks.

Threshold-based dynamic replication replicates whole continuous media files and deletes
replicas on the basis of workload thresholds. During the replication process, this scheme
considers all system disks and the probability of new requests to determine whether to replicate a
movie or delete a replica. Researchers have proposed several replication variations here,
including injected sequential, piggybacked sequential, injected parallel, piggybacked parallel,
and piggybacked and injected parallel.

Partial replication replicates popular file parts to distribute load among different devices and
reduce damages if the disk fails. This scheme is based on the observation that if a video receives
several consecutive requests and if the server copies the blocks read in by the first request to
another disk, the server can switch subsequent requests to the partial replica it just created.

Finally, random replication creates and deletes replicas randomly and—in a basic application
—doesn't account for differences in access frequency to the different files.
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Replication addresses requirements such as availability and latency and, when used
appropriately, is an important way to increase performance. Because several devices have copies
of data elements, the system is more resilient to failures and can access a replica to avoid long
waiting times for an overloaded device.

Many Internet systems use static replication. To balance loads among file servers, researchers
have proposed automatic replication of the relatively small and frequently accessed read-only
system files.4 Other work uses estimated load information for video-object placement as the
basis of a static placement policy.> Such a policy complements automatic replication because it
reduces dynamic imbalances (although it cannot eliminate them).

Dynamic segment replication, threshold-based dynamic replication, and partial replication have
several similar properties. Researchers have studied them in multimedia (continuous media)
scenarios and shown that by dynamically creating and deleting replicas on the basis of user
accesses, they can improve resource use, the rate of admitted clients, and load balance.
Furthermore, while researchers have long viewed the random policy as inappropriate—at least
in multimedia scenarios—the unpredictability of user behavior has led to several studies of
random placement and replication. Such studies have shown that randomly placing replicas on
randomly chosen disks gives performance equal to that of conventional striping schemes in

multimedia systems.®

Which mechanism to choose depends on several factors, including how frequently file
popularity changes, and file and object size. Also, in a highly loaded system, you must consider
the replication mechanism's overhead; creating a replica and migrating a user to it in midstream,
for example, can be complicated. However, creating and deleting replicas dynamically based on
the current load seems efficient and can reduce sensitivity to workload changes and system
modifications. 7 Nevertheless, the replication mechanism you apply should account for all
possible parameters, because making a copy of a multimedia data element on another device is
expensive.

Load balancing

Data interleaving, which accesses only a few disks for each I/O operation, can cause load
imbalance (resulting in low overall performance and high latencies). This is because all
concurrent requests might come to the same group of disks, leaving others unused. Replication,
striping, and interleaving all deal with load imbalance, but researchers have also proposed
several other approaches.
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Some projects, for example, address the problem of assigning media streams to disks to achieve
a balanced disk array load.2-> Additionally, to determine imbalance across partitions, one of
these projects presents a model to determine which partition sizes best utilize resources.? The
direct-access storage device (DASD) dancing load-balancing policy determines whether the
most frequently accessed files can be played out from memory, how to best assign and replicate
such files to striped disk groups, and how to shift existing streams to another disk group's replica
in case of an overload. The generalized staggered distributed cyclic layout (G-SDCL) policy
tries to avoid hot spots in the disk array (or in the storage node pool) by supporting arbitrary
playout modes in various speeds. This policy interleaves data in a round-robin manner but
staggers the cyclic layout for each round—that is, it stores the first data segment in each round
on a different disk. The prime round-robin (PRR) placement policy is similar to G-SDCL. Both
policies try to avoid load imbalance by introducing a rounding distance based on a prime number
to evenly distribute disk accesses at any retrieval speed.

BUFFER MANAGEMENT

Given multimedia applications' high data consumption rate, they often replace data before it's
reused. Therefore, a complex, computationally expensive caching or page replacement algorithm
can be wasteful with respect to required CPU cycles versus reduction of disk I/O operations. It
thus can make sense to apply a traditional, low-overhead algorithm such as least recently used
(LRU). In some multimedia scenarios, however, data can be reused and proper replacement
algorithms can increase performance significantly.

For multimedia scenarios, we place buffering algorithms into two classes. The first is block-
based buffer management. These caching and replacement algorithms evaluate each block
independently for replacement and are typically implemented using an LRU variant. In the
multimedia systems context, researchers propose algorithms such as least/most relevant for
presentation (L/MRP), which considers parameters such as presentation mode and presentation
point. Other L/MRP variations include Q-L/MRP, which offers QoS support, and MPEG-
L/MRP.

The second class is stream-based buffer management. These policies try to minimize disk
accesses on the basis of the observation that if there are many requests for the same video,
they're likely to retrieve the same data elements within a short period of time. The system
therefore performs caching by keeping in memory data for a stream that follows temporarily
close to another stream of the same object. One example of this type of policy is (generalized)
interval caching.
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Although a system might replace data before it can be reused, caching often offers the benefit of
reduced disk operations and should therefore be applied. On the server side, a complex, block-
based algorithm is often too CPU intensive, but stream-oriented algorithms that make cache
decisions based on the distance between clients might be appropriate. Additionally, as
heterogeneous devices with different capabilities increase, support for strided access as a
generalization of the stream-oriented approach might be an interesting research direction. Such
support is useful, for example, in systems that have multiprotocol support and scalable content.

Another buffer-management consideration is the timeliness of data retrieval from the storage
devices. Demand paging is typically inappropriate in high-data-rate, timed applications such as
multimedia streaming systems. Prefetching data from disk to memory is therefore better suited
to support continuous playback of time-dependent data types. Prefetching preloads data from
slow, high-latency storage devices such as disks, to fast, low-latency storage such as main
memory. This approach dramatically reduces the data read requests' response time. It also
increases the disk I/O bandwidth, because an operation usually retrieves more data by batching
I/O requests for the same file—at least when the system stores the requested data contiguously.
Obviously, you can use knowledge (or estimations) of application behavior for both replacement
and prefetching, and many file systems optimize disk accesses using a read-ahead mechanism if
the system reads data sequentially.

With multimedia presentations, prefetching mechanisms can often take advantage of the
sequential access pattern, and researchers have proposed several mechanisms to that end. For
example, L/MRP calculates relevance values such that the system prefetches, and does not
replace, data elements for a given interval in front of the current playout position. A similar read-
ahead mechanism retrieves data before it's requested if the system determines that the accesses
are sequential.8 Another system determines the data needed in the next period on the basis of a
trade-off between the maximum concurrent streams and the initial delay.? This system
prefetches this data into a shared buffer (assuming a linear playout of the continuous data
stream). Other research describes models for preloading data according to the loading and
consuming rate and its available buffers.10.11 Of course, prefetching data in a multimedia
scenario again depends on access patterns. So, a simple read-ahead-like mechanism can often be
sufficient in a pure playout application such as news on demand, video on demand, and learning
on demand. The amount of data to prefetch should be a trade-off between the data rate, the
retrieval rate, and buffer availability.

FILE SYSTEM METADATA STRUCTURES

File systems use a data structure to hold metadata, such as file name, size, owner, and
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permissions, and data pointers to a file's storage blocks. Traditionally, Unix-like systems have
used i-nodes (with direct, indirect, double indirect, and triple indirect block pointers), and
Windows systems have used file allocation tables (with a unidirectional linked list).!2 However,
these systems require a metadata structure lookup for each accessed block. Systems supporting
extent-based allocation modify this metadata structure. Instead of having a pointer to each block,
the metadata structure points to the extent. So, for example, systems such as SGI's extended file
system (XFS) and Minorca have a pointer to the first block of a contiguous section and a counter
holding the extent's length. Similarly, the Windows NT file system (NTFS) has a master file
table with a record for each file that defines block runs and extents—that is, a start address and
the number of adjacent blocks—in the same way. Thus, metadata structures that use extent
(rather than block) pointers reduce the number and complexity of lookups. Additionally, many
file systems provide metadata for file- or application-specific tasks.

There are three basic approaches to implementing and using file system metadata. The first,
application metadata, is information relevant only for the application, such as the format type,
data rates, extended access rights, and copyright issues. Application (or media) metadata is
important because applications sometimes need it to provide required services. Multimedia file
systems often implement this metadata, and some standard file systems (such as Macintosh's
Hierarchical File System) also support it.

The second approach, operational metadata, changes how the system processes API calls
(particularly standard ones). This metadata is similar to application metadata, but the kernel
interprets the metadata as well and behaves accordingly. In the system context, operational
metadata might be more important than application metadata, because it's sometimes used to
select better performance-optimization mechanisms. Symphony, for example, uses data type
information to select appropriate modules, which, among other things, changes its interpretation
of block sizes. Tiger Shark retrieves a file's default data rate from its metadata and uses it for
data prefetching.

The third approach, integral metadata, is information integrated into the file system structure
itself—the equivalent of the Unix virtual file system i-node and block structures. Integral
metadata structures can give applications timeliness support by enabling straightforward access

to temporal data units.!3 The Video File Server, for example, stores information for substream
synchronization in integral structures.

PUTTING IT ALL TOGETHER

Although many of the techniques we've presented here were developed independently, to
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evaluate a storage system's overall performance you must integrate the appropriate techniques
into a complete storage system. Doing so in a way that increases performance and flexibility for
a mixed interactive workload is, in our view, the main research challenge.

Types of file systems

Developers have previously created storage systems that integrate several subcomponents.
Although such systems have been labeled inconsistently—file system, file server, and storage
server, for example—applications always access them through file system abstractions. We can
classify multimedia application file systems as general file systems, multimedia file systems, and
high-performance file systems.

General file systems. These systems support all applications rather than a specific application
area. Examples include file allocation table (FAT), NTFS, second extended file system (Ext2),
and fast file system (FFS). Although general file systems try to support all application classes,
they're not optimized for multimedia applications. So, in a multimedia system context, general
file systems typically provide performance benchmarks only.

Multimedia file systems. These systems address multimedia requirements such as high
throughput, low delay, and synchronization (we described these in Part 1 of this survey).
Examples include Video File Server, Shark, Everest, continuous media file system (CMFS),
Fellini, Symphony, Tiger Shark, Minorca, embedded real-time file system (ERTFS), XFS,
parallel multimedia file system (PMFS), and multimedia integrated parallel file system (MiPFS).
Among these, Minorca and XFS are general file systems with multimedia support, while most of
the others support only multimedia applications.

Multimedia file systems address multimedia applications' distinguishing feature: they have soft
real-time constraints. Many file systems focus on scheduling to address this demand.
Additionally, the degree of multimedia support varies. Developers have created systems (and
system components) exclusively for streaming (such as ERTFS, Tiger Shark, Shark, CMFS,
Video File Server, and Everest), for combining with a second, non-real-time class to
accommodate mixed workloads (such as Fellini), and for serving several application classes
(such as Symphony and the adaptive disk scheduler for mixed-media workloads (APEX).

High-performance file systems. These systems are primarily for applications that must
read and write large data amounts in a very short time. Examples include General Parallel File
System (GPFS), clustered extended file system (CXFS), Frangipani, global file system (GFS),
parallel portable file system (PPFS), Exemplar, and extensible file system (ELFS).

Unlike multimedia file systems, high-performance file systems do not need timeliness
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guarantees, but their overall performance must be maximized (for experiments in physics and
large-scale simulations, for example). Newly developed high-performance file systems
concentrate on this task, while high-performance file systems such as GPFS and CXFS—which
are derived from multimedia file systems—have gained scalability while continuing to support
resource reservation. However, because of their high performance for large data amounts, even
independently developed file systems can be used for multimedia applications and compete with
multimedia file systems. Furthermore, as multimedia applications become more interactive and
include less predictable read—and write—operations, we should consider high-performance
file system features. Many high-performance file systems support operations such as efficient
strided reading and writing and other noncontiguous operations by providing a separate API or
detecting access patterns. These abilities will be increasingly useful for multimedia applications
that offer editing tasks, protocol-dependent packaging, scalable streaming media, and nonlinear
multimedia.

Storage system evolution

Prashant Shenoy's analysis of new requirements—which includes the need for integrated file
systems that support a variety of applications!4—offers a comprehensive approach to
modernizing multimedia file systems. He considers the development of server-independent, self-
healing, self-managing networked file systems a new goal and predicts that more functions will
be off-loaded to disk processors. Although storage area networks (SAN) and network-attached
storage (NAS) products already claim such abilities, Frank Schmuck and Roger Haskin's
recognition of current system limitations led to GPFS's integrated approach.!3

Integration

Typically, newer storage systems address a breadth of workloads and take many subcomponents
into account, whereas older ones often focus on a single component. In the latter case,
developers must integrate suitable subcomponents into one "optimal" system for a particular
workload, which is a significant challenge. As we mentioned earlier, decisions for each
subcomponent often depend on the expected access patterns, but developers must also consider
the properties of the mechanisms chosen for the other components. So, developers must make
appropriate choices for all components or mechanisms if they're to work well together.

For example, data placement on the disk and disk scheduling are tightly coupled because the
disk arm movement depends on the platter location of each data block. Because many disk
scheduling algorithms give shortest access time to data blocks near the disk's center, the most
popular data could be placed according to this property as in skewed organ-pipe placement.
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On the other hand, if developers apply a buffer-management algorithm that tries to store in
memory the most frequently accessed data—as in generalized interval caching or L/MRP
—they'll often end up with a counterproductive data placement strategy. That's because the
requested data probably resides in memory, so the disk isn't accessed during I/O operations that
access popular data items, which is the basis of disk block placement optimization. (That is, the
disk serves a request distribution that is different from that of the application.)

Furthermore, reorganizing blocks based on popularity is expensive and typically should be
minimized. However, dynamic block reorganization can be useful. For example, developers can
increase scalability by dynamically reorganizing and replicating a block granularity spanning
several disks. This prevents a single disk from being overloaded by frequent access to individual
blocks. It also reduces partial file locking in interactive applications that include write
operations, such as online gaming.

Improving performance

Although some mechanisms have contradicting properties, you can combine several mechanisms
in different ways to achieve good storage system performance. One interesting example would
be to use a hierarchical mixed-media scheduler that

# Supports different service classes with heterogeneous requirements

# Removes device idle time and increases overall performance (device utilization)
through work conservation

# Improves disk efficiency by sorting requests in a round according to their platter
placement.

Because video and audio streams can benefit greatly from sequential prefetching (read-ahead),
you should use some kind of adjacent block placement to minimize intrarequest seeks. Pure
continuous placement results in large "file sized" seeks as the system retrieves several files in
parallel. That is, it might be best to use a type of extent-based placement with an extent size
that's large enough to accommodate expected read sizes during one round, avoiding wasteful
intrarequest seeks.

As we discussed earlier, caching can improve performance and possibly reduce startup latency
for new requests. However, the data rates in multimedia scenarios are high, and the benefits
might be small because data might be replaced before it's reused. Given this, you shouldn't use a
complex, block-based, CPU-intensive algorithm such as L/MRP in a server. Stream-oriented
algorithms that make cache decisions based on the average time between requests might be
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appropriate.

With index structures, you can reduce the number of accesses required to find the requested data
blocks' address using some kind of "extent info" that points to several continuous blocks in a
structure entry (such as the location and length of the extent's first block).160:17 In contrast,
adapting application-specific index structures!3 to new application requirements is difficult and
should be avoided for future integrated file systems.

To provide multimedia-specific information to the file system, applications access the storage
system through the operating system's system call interface. You can solve this by either using
an entirely proprietary API or extending the operating system's standard file system API.
Because existing applications are often implemented on commodity operating systems, using
extended standard APIs is typically the easiest approach.

To meet a multimedia server's demand for storage space, reliability, fault tolerance, and 1/0
bandwidth, it is often best to use multiple parallel disks. However, because single disks today
support several concurrent streams (for example in MPEG-II DVD quality), striping units must
be as small as possible—while still meeting playout rates—to best utilize overall disk
bandwidth. So, you don't need full striping to achieve high-enough bandwidths, but you can use
mechanisms like staggered striping, along with replication, to distribute the workload on several
devices. The "Existing Systems" sidebar describes some current systems and how they address
multimedia storage challenges.

RESEARCH DIRECTIONS

Future applications will integrate both time-dependent multimedia data types, such as audio and
video, and time-independent data types, such as text, graphics, and images. Because the storage
systems found in current commercial operating systems were designed for best-effort
applications, they often cannot store and retrieve such data efficiently.

It is not clear how future systems will better support multimedia applications, but storage system
design should focus on application requirements, access patterns, performance characteristics,
and the behavior of underlying storage devices. This task is complex; all these factors change
over time, and storage system designs often lag behind the changes.

For example, early storage systems optimized disk scheduling and placement on the basis of
issues such as rotational delay. Now, most disks do whole-track reads and cache the track in the
internal buffer. So, careful data placement within a track is a waste of time, as is disk scheduling
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at too fine a granularity.

Also, issues such as bad-block replacement can affect timing-sensitive storage systems. Disks
will often transparently replace a damaged block with another one that might be located far
away. Because disks present a virtual, rather than physical, view of storage, contiguous reading
can involve more seeking than expected.

In addition, multimedia storage systems will probably use complex delivery systems—such as
NAS, Internet small computer system interface (iSCSI), and Virtual Shared Disks—that are
hidden behind block device interfaces. Such systems require new storage system approaches
because they reduce control over block placement and can introduce contention for bandwidth
and jitter.

Generally, giving disks some freedom to reorder requests (a common feature in newer disks that
might receive multiple requests) will improve throughput. Most multimedia applications use
buffers (typically on the client side) to provide tolerance for small delays and smooth jitter
before presentation. So, for many such applications, we can relax strict timing requirements in
the storage system to better utilize the inherent access pattern predictability and thus support
prefetching and focus on periodical services.

Furthermore, there is an emerging trend toward letting systems support multiple application
classes with heterogeneous performance requirements. Adding such support in a middleware
layer increases runtime overhead and reduces application isolation.!8 However, experiments
show that an integrated server typically outperforms an integration layer on a partitioned
server.!9 Implementing such a file system is more complex, but the system is easier to
administrate and eases the integration of new service classes.

As the number of application classes increases, storage systems must be able to manage various
loads and heterogeneous requirements. To fully support different service classes, all system
components must be appropriately designed and implemented. Storage system research should
thus focus on systems that can automatically adapt to particular workloads by adapting their data
layout, scheduling strategy, and buffer management approaches. Finally, although researchers
have proposed different storage system mechanisms, policies, and options for multimedia (or
mixed-media) support, much work remains on how to integrate suitable mechanisms and analyze
their combined performance.
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Existing Systems: A Sampling

Research systems have typically focused on enhancing individual storage system components to
accommodate multimedia applications. Commercial products that deliver complete systems
usually combine several mechanisms targeted at individual storage system elements; following
1s a survey of some working systems that address most of the issues we have covered in this
survey.

IBM's General Parallel File System (GPFS) integrates many elements,! but stops at a block
device interpretation of the disk itself. The block device might offer access to a RAID
(redundant array of independent disks) system or Virtual Shared Disks. GPFS handles data
placement on single and multiple block devices using parameters defined by the system
administrator. It uses block distribution and replication to balance load and improve throughput
and fault tolerance. Although GPFS knows only a fixed, large block size per file system, it uses
subblocks to efficiently store small files. GPFS provides applications with standard APIs and
extended APIs that, for example, provide hints for specific access patterns. The system's buffer
management supports prefetching and access pattern prediction to reduce access time. Its
directory handling is optimized for numerous entries, and it supports application metadata.

SGI's clustered extended file system (CXFS) integrates elements similar to those in GPFS but is
based on the XVM volume manager. XVM provides striping and replication for load balancing
and fault tolerance. The system administrator manages the type and degree of XVM striping and
replication; CXFS does not influence placement in any way. For data placement, CXFS's block
size 1s determined when the file system is created, and its extents consist of an arbitrary number
of consecutive blocks.

Spiffi, a parallel file system for Intel's Paragon architecture, is implemented on top of its
individual nodes' file systems. Spiffi stripes files over the nodes's disks in a round-robin manner
and determines striping granularity at file creation time. The system has a fixed block size, but,
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if possible, it stores blocks belonging to the same file contiguously on each node. Spiffi
prefetches to memory, delays write at each node, and runs parallel transfers between its nodes
and client nodes. One case study added video-on-demand system enhancements, including a
buffer-management policy that keeps requested buffers in memory, even though the least-
recently-used (LRU) algorithm would remove them; priority Scan (PScan) disk scheduling; and
prefetching based on priority within a maximum prefetch time window. 2

The University of Southern California's Integrated Media Systems Center developed Yima, a
real-time streaming architecture derived from the Mitra server. Yima's storage system is
distributed over standard PCs. Yima can place data in a round-robin or pseudorandom manner;
in the latter case, a known seed-value determines the placement per file to reduce metadata
overhead. Yima offers replication to improve throughput, and uses disk merging to implement
parity-based redundancy for fault tolerance and to hide device heterogeneity. In Yima, buffering
and prefetching are left to the client applications, which can retrieve data concurrently from all
server nodes.

Lucent Technologies' CineBlitz is a commercial product based on the Fellini storage system.
Fellini is built for single-node servers and focuses on buffer management. Its file system uses
fixed block sizes, and developers can place data using different policies. Fellini typically stores
media files contiguously, but it can also use a striped disk array. The system's buffer cache is
organized in pages that are managed per file; if possible LRU replaces the pages within the
buffers assigned to that file. The system determines the number of buffers for each file on the
basis of admission control and the number of clients that use the file concurrently. Fellini does
not provide a standard file system API, and it has no hierarchical file system structure. It does,
however, let applications specify the required data rate.

Each of these systems considers key storage system topics for continuous-media applications. As
you would expect, they consider buffer management important, and only the experimental Yima
system leaves it to the client. Also, only the older Fellini storage system exclusively uses a
proprietary file system API; the other systems come with standard APIs. Finally, only GPFS
makes online decisions for striping and replication to adapt to varying access patterns and
throughput demands.
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