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Finite element assembly interfaces in FEniCS



UFL is a domain specific language (DSL) for

PDEs

UFL allows the declaration (not computation) of:

I Choice of finite element spaces.

I Functions in these spaces.

I Expressions depending on functions and geometry.

I Integrals of expressions over subdomains.

I Transformations of forms, including differentiation.



UFL is a library for representation and

manipulation of symbolic expressions

I Expressions are represented as expression trees

I The values and operators available are designed
specifically for finite element methods, differential
equations, and tensor algebra expressions

I Algorithms for differentiation and other symbolic
manipulations are built in



UFL is a compiler frontend

UFL is part of the code generation pipeline in FEniCS:

I You write up your equations in UFL.

I The symbolic UFL representation of your equations is
passed to a form compiler, which generates efficient low
level code.

I This generated low level code is passed together with
mesh and coefficient data to an assembler to assemble
matrices, vectors, and scalars (from functionals).

Some other FEniCS components are FFC, UFC, DOLFIN.
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A simple example equation

a(u, v) =

∫
Ω

gradu · grad v dx, (1)

L(v; f) =

∫
Ω

f v dx (2)

1 cell = tetrahedron
2 V = FiniteElement("Lagrange", cell, 1)
3

4 f = Coefficient(V)
5 u = TrialFunction(V)
6 v = TestFunction(V)
7

8 a = dot(grad(u),grad(v))*dx
9 L = f*v*dx



Tree representation of right hand side

1 L = f*v*dx
2 print ufl.algorithms.tree_format(L)

1 Form:
2 Integral:
3 domain type: cell
4 domain id: 0
5 integrand:
6 Product
7 (
8 Argument(FiniteElement(...), -2)
9 Coefficient(FiniteElement(...), 0)

10 )



Tree representation of left hand side

1 a = dot(grad(u),grad(v))*dx
2 print ufl.algorithms.tree_format(a)

1 Form:
2 Integral:
3 domain type: cell
4 domain id: 0
5 integrand:
6 Dot
7 (
8 Grad
9 Argument(FiniteElement(...), -1)

10 Grad
11 Argument(FiniteElement(...), -2)
12 )



Functionals and variational forms are modelled

as sums of integrals over subdomains

a(u, v; c) =

∫
Ω1

uv dx +

∫
Ω2

cgradu · grad v dx, (3)

L(v; f ,g) =

∫
Ω1

fv dx +

∫
∂Ω2

gv ds (4)

1 a = u*v*dx(1) + c*dot(grad(u),grad(v))*dx(2)
2 L = f*v*dx(1) + g*v*ds(2)



A sublanguage for choosing finite element

spaces

Finite elements can be declared as

1 U = FiniteElement(family, cell, degree)
2 V = VectorElement(family, cell, degree[, dim])
3 T = TensorElement(family, cell, degree[, shape[, symmetry]])

and combined into mixed element hierarchies:

1 TH = V*U; H = (V*U)*(T*V); M = MixedElement(T, V, U)

I Family is a string like "Lagrange", "DG", "Nedelec", etc.

I A cell is usually interval, triangle, tetrahedron.

I UFL does not know anything about a basis for these
spaces.



Terminal expression types in UFL

I Literal constants (3.14, Identity(3), PermutationSymbol(3))

I Geometric quantities (cell.x, cell.n, cell.volume, etc.)

I Functions: Coefficient functions and argument functions



General properties of declared functions in UFL

I UFL allows the declaration of functions in specified
function spaces

f ∈ V, (5)

which is (usually) a finite element space.

I Each function is a tensor valued function of x ∈ Rd

f : Ω 7→ Rs, s = (d1, . . . ,dr). (6)



Coefficient functions represent functions given

at assembly time

A coefficient function f represents a given discrete function

f(x) =
∑

i

fiφi(x) ∈ V. (7)

Example declaration:

1 V = VectorElement(’CG’, tetrahedron, 2)
2 f = Coefficient(V)

Note that the basis {φi} is typically provided by the form
compiler, while the degrees of freedom {fi} are provided when
the form is assembled.



Argument functions represent any function in

a finite element space

1 u = TrialFunction(V) # an Argument
2 v = TestFunction(V) # an Argument
3 f = Coefficient(V)
4 M = f**2*dx
5 L = f*v*dx
6 a = u*v*dx

Each Argument a form depends on adds to its arity, e.g.:

I The functional M depends on no arguments.

I The linear form L depends on one argument.

I The bilinear form a depends on two arguments.



A brief overview of available operators on

expressions

I Basic arithmetic operators + - * / **

I Scalar nonlinear functions sqrt, exp, ln, abs

I Scalar trigonometric functions
cos, sin, tan, acos, asin, atan

I Product operators outer, inner, dot, cross

I Other common operators from tensor algebra are
transpose (A.T), tr, dev, skew, sym, det



Tensor algebra and index notation
Example using both tensor valued expressions and index notation

u : x 7→ Rd, v : x 7→ Rd, M : x 7→ Rd,d. (8)

a1(u, v;M) =

∫
Ω

(gradu ·M) : grad v dx, (9)

a2(u, v;M) =

∫
Ω

(MT∇u) : ∇v dx, (10)

a3(u, v;M) =

∫
Ω

Mijuk,ivk,j dx (11)

1 a1 = inner(dot(grad(u), M), grad(v))*dx
2 a2 = inner(M.T*nabla_grad(u), nabla_grad(v))*dx
3 a3 = M[i,j] * u[k].dx(i) * v[k].dx(j) * dx



You can switch between tensor and index

notation freely

A | Aijk = ui
dvj

dxk
, (12)

B | Bjki = Aijk. (13)

1 Aijk = u[i] * v[j].dx(k)
2 A = as_tensor(Aijk, (i,j,k))
3 B = as_tensor(Aijk, (j,k,i))



Conditional operators allow simple branching

f =

{
g, if c

h, otherwise.
(14)

1 c = lt(abs(g), abs(h))
2 f = conditional(c, g, h)

Available boolean operators are named
eq, ne, le, ge, lt, gt, And, Or, Not.
Same as ternary operator in C (c ? g: h).



Operators to support Discontunuous Galerkin

methods

I Restrict any expression to positive or negative side of a
facet: v(’+’), v(’-’)

I Operators jump(v) and avg(v)

I Integrate over set of interior facets Γk in mesh using
integrand*dS(k)



Spatial differential operators

I df
dxi

can be written f.dx(i) or Dx(f, i)

I Common compound differential operators are
grad, div, nabla_grad, nabla_div, curl, rot, Dn.



Derivatives w.r.t. user defined variables can be

expressed with ’variable’ and ’diff’

Say you want to express:

v = 3x2, (15)

f = f(v) = sin(v) + 3x2, (16)

g =
df

dv
= cos(v). (17)

In UFL this is done by annotating an expression as a variable:

1 v = 3*x**2
2 v = variable(v)
3 f = sin(v) + 3*x**2
4 g = diff(f, v)

If diff is applied to a form, it is applied to each integrand.



Some high level transformations of forms (1/2)

Consider the example bilinear form

1 a = dot(grad(f*u),grad(v))*dx

With this you can

I Replace a coefficient function with another expression
replace(a, { f: g }) == dot(grad(g*u),grad(v))*dx

I Construct the action of a bilinear form on a coefficient
action(a, g) == dot(grad(f*g),grad(v))*dx



Some high level transformations of forms (2/2)

I Construct the adjoint(*) of a bilinear form
adjoint(a) == dot(grad(f*u2),grad(v2))*dx

where u2 and v2 are ordered opposite of u and v.
(* only for cases where adjoint = transpose!)

I Compute the derivative of a form or functional
derivative(a, u, du)
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Some expression simplifications are carried

out when constructing expression objects

Canonical ordering of sum and product terms:

I a*b→ a*b, b*a→ a*b

Simplification of identity and zero terms:

I 1*f→ f, 0*f→ 0, 0+f→ f

Constant folding:

I cos(0)→ 1

Tensor component cancellations:

I as_tensor(A[i,j], (i,j))→ A

Note how these simplifications work together with the
differentiation chain rule:

I d
dx(xf) = 1f + x0→ f .



Consider this example expression for

explanation of the differentiation algorithm

With u a scalar (coefficient or argument) function,

u : x 7→ R, (18)

consider the example expression

z = xe2u, (19)

and its derivative z′ ≡ dz
dx

z′ = e2u + xe2uu′. (20)

We want to compute the symbolic representation of z′ from z.



The symbolic representation of z = xe2u is an

expression tree (or DAG) with vertices vi

v0 = 2, literal constant, (21)

v1 = x, spatial coordinate, (22)

v2 = u, coefficient function, (23)

v3 = v0v2, product, (24)

v4 = ev3 , exp, (25)

v5 = v1v4, product, (26)

z ≡ v5 = xe2u.

(27)



The symbolic representation of z = xe2u is an

expression tree (or DAG) with vertices vi

v0 = 2, literal constant, (21)

v1 = x, spatial coordinate, (22)

v2 = u, coefficient function, (23)

v3 = v0v2, product, (24)

v4 = ev3 , exp, (25)

v5 = v1v4, product, (26)

z ≡ v5 = xe2u.

(27)



The symbolic representation of z = xe2u is an

expression tree (or DAG) with vertices vi

v0 = 2, literal constant, (21)

v1 = x, spatial coordinate, (22)

v2 = u, coefficient function, (23)

v3 = v0v2, product, (24)

v4 = ev3 , exp, (25)

v5 = v1v4, product, (26)

z ≡ v5 = xe2u. (27)



The symbolic representation of z′ = d
dx(xe2u) is

computed using the same algorithm underlying

forward mode automatic differentiation

v0 = 2, v′
0 = 0, (28)

v1 = x, v′
1 = 1, (29)

v2 = u, v′
2 = u′, (30)

v3 = v0v2, v′
3 = v′

0v2 + v0v′
2, (31)

v4 = ev3 , v′
4 = v4v′

3, (32)

v5 = v1v4, v′
5 = v′

1v4 + v1v′
4, (33)

z ≡ v5, z′ ≡ v′
5 = e2u + xe2u2u′.

(34)
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Automatic functional differentiation explained
Preliminaries

Consider a functional F in functions g and h:

F(g,h) =
∑

r

∫
Dr

Er(g,h)dµr. (35)

For the purpose of explaining functional derivatives w.r.t. g, it
is enough to consider

F(g) =

∫
D

E(g)dµ, (36)

assuming dh
dg = 0.



Automatic functional differentiation explained
Definition

The Gateaux derivative of F w.r.t. g ∈ V in a direction φ ∈ V is

Dg,φF(g) ≡ d

dτ
[F(g + τφ)]τ=0 =

∫
D

d

dτ
[E(g + τφ)]τ=0 , (37)

assuming the domain D is independent of g.



Automatic functional differentiation explained
Basic differentiation rules

The computation of

Dg,φE(g) =
d

dτ
[E(g + τφ)]τ=0 . (38)

requires differentiation rules for Dg,φt for all types of terminal
expression t.

Dg,φg =
d

dτ
[g + τφ]τ=0 = φ, (39)

Dg,φ
dg

dxi
=

d

dτ

[
d(g + τφ)

dxi

]
τ=0

=
d

dxi

([
d(g + τφ)

dτ

]
τ=0

)
=

dφ

dxi
.

(40)

For coefficient functions other than g and all other terminal
values, Dg,φt = 0.
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Derivatives w.r.t functions in mixed spaces are

allowed

D(u,p),(φ,η)E(u,p) =
d

dτ
[E(u + τφ,p + τη)]τ=0 . (41)

1 V = VectorElement("CG", cell, 2)
2 P = FiniteElement("CG", cell, 1)
3 TH = V*P
4

5 u = Coefficient(V)
6 p = Coefficient(P)
7 dup = TestFunction(TH)
8

9 F = derivative(E(u,p)*dx, (u,p), dup)



Coefficient dependencies can be specified

when differentiating

Dg,φE(g,h) =
d

dτ

[
E(g + τφ,h + τ

dh

dg
φ)

]
τ=0

. (42)

1 P = FiniteElement("CG", cell, 1)
2

3 g = Coefficient(P) # Differentiation variable
4 dg = Argument(P) # Variation direction
5 h = Coefficient(P) # Dependent coefficient
6 f = Coefficient(P) # dh/dg
7

8 # Yields (dg*h)*dx:
9 F1 = derivative(g*h*dx, g, dg)

10 # Yields (dg*h + g*f*dg)*dx:
11 F2 = derivative(g*h*dx, g, dg, coefficient_derivatives={ g: f })
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Example uses of differentiation features

Typical uses of the differentiation features in UFL are

I Exact linearization of nonlinear residual equation for
Newtons method

I Differentiation of material laws in e.g. hyperelastic
equations.

I Differentiation of Lagrangian functional to form the
optimality system in PDE constrained optimization.

I Computing a source term symbolically for validation of a
solver.

I Sensitivity analysis.



Example: Stokes equations, taken from DOLFIN

demo directory

1 P2 = VectorElement("Lagrange", tetrahedron, 2)
2 P1 = FiniteElement("Lagrange", tetrahedron, 1)
3 TH = P2 * P1
4

5 u, p = TrialFunctions(TH)
6 v, q = TestFunctions(TH)
7

8 f = Coefficient(P2)
9

10 a = (inner(grad(u), grad(v)) + div(v)*p + div(u)*q)*dx
11 L = dot(f, v)*dx



Computational hemodynamics

1 # Define Cauchy stress tensor
2 def sigma(v, w):
3 I = Identity(v.cell().d)
4 return 2.0*mu*0.5*(grad(v) + grad(v).T) - w*I
5

6 def epsilon(v): # Define symmetric gradient
7 return 0.5*(grad(v) + grad(v).T)
8

9 # Tentative velocity step (sigma formulation)
10 U = 0.5*(u0 + u)
11 F1 = (rho*(1/k)*inner(v, u - u0)*dx
12 + rho*inner(v, grad(u0)*(u0 - w))*dx
13 + inner(epsilon(v), sigma(U, p0))*dx
14 + inner(v, p0*n)*ds - mu*inner(grad(U).T*n, v)*ds
15 - inner(v, f)*dx)
16 a1, L1 = lhs(F1), rhs(F1)
17

18 # Pressure correction
19 a2 = inner(grad(q), k*grad(p))*dx
20 L2 = inner(grad(q), k*grad(p0))*dx - q*div(u1)*dx
21

22 # Velocity correction
23 a3 = inner(v, u)*dx
24 L3 = inner(v, u1)*dx + inner(v, k*grad(p0 - p1))*dx

Valen-Sendstad, Mardal, Logg, Computational hemodynamics (2011)



Example: Snippet from an optimal control code

1 # Define Lagrangian functional
2 def J(u, v):
3 return 0.5*(u-d)**2*dx + 0.5*alpha*v**2*dx
4 def a(u, w):
5 return dot(grad(u), grad(w))*dx
6 def b(v, w):
7 return v*w*dx
8 L = J(u, v) + a(u, w) - b(v, w)
9

10 # Derive equations for u, then w
11 Lw = derivative(L, w); Lwu = derivative(Lw, u)
12 Lu = derivative(L, u); Luw = derivative(Lu, w)
13

14 # Alternatively derive full optimality system at once:
15 F = derivative(L, (u,v,w))
16 J = derivative(F, (u,v,w))



Example: Hyperelasticity equations(1/2), taken

from DOLFIN demo directory

1 cell = tetrahedron
2 V = VectorElement("Lagrange", cell, 1)
3

4 du = TrialFunction(V) # Incremental displacement
5 v = TestFunction(V) # Test function
6

7 u = Coefficient(V) # Displacement from previous iteration
8 B = Coefficient(V) # Body force per unit volume
9 T = Coefficient(V) # Traction force on the boundary

10

11 # Elasticity parameters
12 mu = Constant(cell)
13 lmbda = Constant(cell)



Example: Hyperelasticity equations(2/2), taken

from DOLFIN demo directory

1 # Kinematics
2 I = Identity(cell.d) # Identity tensor
3 F = I + grad(u) # Deformation gradient dX/dx
4 C = F.T*F # Right Cauchy-Green tensor
5 # Invariants of deformation tensors
6 Ic = tr(C); J = det(F)
7 # Stored strain energy density (compressible neo-Hookean model)
8 psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda/2)*(ln(J))**2
9 # Total potential energy

10 Pi = psi*dx - inner(B, u)*dx - inner(T, u)*ds
11

12 # First variation of Pi (directional derivative
13 # about u in the direction of v)
14 F = derivative(Pi, u, v)
15 J = derivative(F, u, du)



Example: Hyperelasticity equations, Ogden

type model (1/3)

1 cell = tetrahedron
2 d = cell.d
3 I = Identity(d)
4

5 V = VectorElement("CG", cell, 1)
6 Q = FiniteElement("DG", cell, 0)
7

8 u = Coefficient(V)
9

10 alpha1 = Constant(cell); mu1 = Constant(cell)
11 alpha2 = Constant(cell); mu2 = Constant(cell)
12 alpha3 = Constant(cell); mu3 = Constant(cell)



Example: Hyperelasticity equations, Ogden

type model (2/3)

1 F = I + grad(u)
2 C = F*F.T
3 m = tr(C) / 3
4 CmI = C - m*I
5 q = det(CmI) / 2
6

7 p = inner(CmI, CmI.T) / 6
8 phi = atan(sqrt(p**3 - q**2) / q) / 3
9

10 l1 = m + 2*sqrt(p)*cos(phi)
11 l2 = m - sqrt(p)*(cos(phi) + sqrt(3)*sin(phi))
12 l3 = m - sqrt(p)*(cos(phi) - sqrt(3)*sin(phi))



Example: Hyperelasticity equations, Ogden

type model (3/3)

1 psi = ( (mu1/alpha1) * (l1**alpha1 + l2**alpha1 + l3**alpha1)
2 + (mu2/alpha2) * (l1**alpha2 + l2**alpha2 + l3**alpha2)
3 + (mu3/alpha3) * (l1**alpha3 + l2**alpha3 + l3**alpha3) )
4 M = psi*dx
5

6 v = TestFunction(V)
7 du = TrialFunction(V)
8 F = derivative(M, u, v)
9 J = derivative(F, u, du)



Questions?

I All about the FEniCS project: http://www.fenicsproject.org

I The UFL project and source code:
http://www.launchpad.net/ufl

I Ongoing work: a form compiler with a plugin mechanism
for other FEM libraries. http://www.launchpad.net/uflacs

I martinal@simula.no
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