
Using a Commodity Hardware Video Encoder for Interactive Video Streaming

Martin Alexander Wilhelmsen, Håkon Kvale Stensland, Vamsidhar Reddy Gaddam,
Asgeir Mortensen, Ragnar Langseth, Carsten Griwodz, Pål Halvorsen

University of Oslo / Simula Research Laboratory

Abstract—Over the last years, video streaming has become
one of the most dominant Internet services. A trend now is
that due to the increased availability of high-speed internet
access, multimedia services are becoming more interactive
and immersive. Examples of such applications are both cloud
gaming [4] and systems where users can interact with high-
resolution content [1]. Over the last few years, hardware
video encoders have been built into commodity hardware. We
evaluate one of these encoders in a scenario where we have
individual streams delivered to the end users. Our results show
that we can reduce almost half of the CPU time spent on video
processing, while also greatly reducing the power consumption
on the system. We also compare the visual video quality and
the frame size of the hardware based encoder, and we find no
significant difference compared to a software based approach.

I. INTRODUCTION

Video streaming is the dominant service on the Internet
today giving extreme resource requirements in order to
process and deliver data to billions users. In this respect, we
have researched the efficiency of the sender side processing,
and in particular the encoding.

Providing efficient video processing is important in many
scenarios like on-demand services such as YouTube and live
services such as sport events. As a case study in this paper,
we have targeted an interactive and immersive streaming
scenario, enabled by the growing availability of high-speed
Internet access. In this respect, we already see systems
where users can interact with live high-resolution content,
e.g., some systems allow end-users to pan, tilt and zoom
with a virtual camera into panorama videos [1] and new
cloud gaming systems run the games entirely on the server
providing only the output as a video stream to the clients [4].
Thus, in such scenarios, each user is delivered a personalized
video stream requiring enormous processing demands on the
server.

A lot of research have focused on reducing the resource
and power requirements for encoding and transcoding videos
with general purpose processors [5]. Dedicated hardware
solutions for encoding and transcoding video have also been
investigated, but they are usually very expensive and lack
flexibility. Encoding is therefore often done in software
across multiple servers in clusters which consume significant
amounts of resources and power [2].

Nevertheless, over the last few years, the hardware video
encoders have become much more flexible, and they have

Figure 1: NVENC block diagram [3]

been built into commodity hardware such as graphics pro-
cessing units (GPUs) from Nvidia and general purpose
processors (CPUs) from Intel. In this paper, we evaluate
the efficiency of Nvidia’s NVENC. The reason for choosing
NVENC is support for Linux and a free SDK, feature wise
i is very similar to the QuickSync hardware encoder on new
Intel CPUs. NVENC is one of the new commodity hardware-
based video encoders with support for multiple resolutions
and quality settings. One of the scenarios for NVENC
is ending the display output from computer games and
stream it to handheld devices such as tablets. We evaluate a
scenario where individual streams are delivered to the users
in terms of video quality, CPU usage,interactivity/encoding
latency, bandwidth requirement and power consumption. Our
experiments show that video can be delivered at similar
quality as with a software encoder, but with much less CPU
utilization and power consumption. The hardware encoder
is also able to serve more streams in parallel.

II. COMMODITY HARDWARE ENCODING

Over the last few years, dedicated hardware H.264 en-
coders have appeared in commodity hardware such as CPUs
and GPUs. Hardware video encoders are not new; it is
commonly integrated in system on chips found in mobile
phones. These encoders are often limited to encoding video
from the built-in camera on the device. Video encoders
are also found in the broadcasting market, however, these
encoders are often expensive and not flexible with regards
to encoding parameters.

One of the first commodity hardware H.264 encoder was
released by Nvidia in 2012 [3] when the Kepler GPU
architecture was launched. This first generation encoder was
named NVENC. The second generation was released in



2014 with the Maxwell GPU architecture. NVENC is a
fully dedicated hardware encoder which does not use the 3D
engine on the GPU, leaving it free to perform other compute
or 3D tasks. The encoder described in figure 1 supports
resolutions up to 4096x4096 (4K resolution) at 30 frames per
second, and can encode multiple streams in parallel. Support
for advanced parts of H.264 such as B-frames, MVC and
CABAC entropy coding are also present, and the hardware
have the possibility of using an external motion estimation.
The encoder API has several presets defined for different
encoding scenarios. The two presets we will use in this
papers are the high quality (HQ) preset and the low latency
(LL) preset. The main differences between HQ and LL is
that HQ enables CABAC and B-frames.B-frames usually
enable better compression since they are generated using
both preceding and following frames. However, they add
additional latency before a frame can be delivered to the
client.

Since the rendering often takes place on the GPU, having
the H.264 encoder close saves time otherwise spent transfer-
ring the image over the PCIe bus, it also reduces the size of
the transfers, since a 1920×1080 24bit RGB image is 6MB
uncompressed, while with NVENC, we only need to transfer
the encoded image which is about 13KB. This enables us to
send the image to the client earlier reducing the interaction
latency.

III. SYSTEM DESIGN

The video delivery system is interactive, and the individ-
ual users can have a personalized virtual camera, enabling
the users to manually control the view. The data required
for viewing the entire panorama of a match is over 6GB
compressed H.264 video making it inaccessible to the end-
users. In addition, a high-end CPU or GPU is also required to
decode the 4450x2000 panorama video stream. Our solution
is to make the delivery pipeline execute on the server side.
All we need on the client is a web-browser with support for
WebSockets and HTML5 video elements. The resolution of
the virtual camera that are delivered to the browser on the
end-device can be individually adjusted to adapt to either
bandwidth requirements or screen limitations if the device
is a smartphone or tablet device. In this study, we use 720p
and 1080p resolution for video delivery to the clients.

A detailed overview of the delivery pipeline can be seen in
figure 2. We use NVENC to encode the personalized H.264
streams. The panorama is rendered to framebuffer using
OpenGL. Next, the color buffer is processed by an OpenGL
Compute Shader transforming it from standard RGB to
NV12 (YUV 4:2:0 with interleaved chroma channels), which
in turn is used as input for NVENC to generate the final
H.264 video stream.

The clients connect to a standard HTTP server that returns
an HTML page containing a JavaScript for creating and
establishing a WebSocket between the client and the server

Figure 2: Block diagram of delivery pipeline

for streaming mouse and keyboard input directly to the
visual view application. The HTML5 video element on the
page connects to the H.264 video stream. When the client
connects, it will receive a general matroska video (MKV)
header containing the frame rate, format and the size. As
the NVENC video encoder outputs video, the video frames
will be added to a frame queue, where the client controller
can fetch the frames. If the client is on a high latency and/or
low bandwidth network, the client controller may ask the
stream generator (frame queue) to tune the bit rate. It is
also possible to ask for a key frame if a frame is lost or
the client is lagging behind, clearing the frame queue. The
NVENC encoder has support for dropping frames, however,
we do not currently utilize this feature.

IV. EXPERIMENTS

The computer used for our experiments has a quad-core
Intel Core i7-2600 processor clocked at 3.40 GHz, 16 GB
dual-channel main memory, and an Nvidia GeForce GTX
750 Ti with 2 GB memory, based on the Maxwell GPU
architecture. The x264 encoder used is the latest version that
comes with Ubuntu 12.04. All the x264 encoding results are
tuned for zero latency to match our interactive scenario.

The video delivery pipeline used for experiments in this
paper is the pipeline in our Bagadus soccer analysis system.
The Bagadus soccer analysis system integrates a video
pipeline, sensor system and annotation system. The system



is described in detail in [6]. In this paper we will focus on
the delivery part of the video pipeline. The video system
in Bagadus is described in [1] delivers a stitched panorama
video. The panorama consists of five 1080p cameras that
are mounted vertical in a matrix. The stitched panorama
resolution is 4450x2000, which in turn is used to create
virtual cameras for the users of the system.

A. Video quality

NVENC LL

NVENC HP

NVENC HQ

x264 ultra
fast

x264 su
perfa

st

x264 m
edium

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

S
S
IM

1080p
720p

Figure 3: Video quality measured with SSIM.

In the first experiment, we are comparing the quality of
different presets with SSIM as the quality metric (figure 3).
We found that the quality of all three NVENC presets
are similar, and they perform between x264 superfast and
medium. We also used subjective testing of the videos,
and we found that x264 ultrafast did not produce adequate
video quality compared to the other presets. There was no
noticeable difference between the other presets.

B. Frame size and bandwidth

NVENC LL

NVENC HP

NVENC HQ

x264 ultra
fast

x264 su
perfa

st

x264 m
edium

0,0

10,0

20,0

30,0

40,0

50,0

60,0

Fr
a
m

e
 s

iz
e
 (

kB
)

1080p
720p

Figure 4: Size of the frames produced by the encoder.

In figure 4, we compare the size of every frame encoded
and found that the bandwidth savings of using NVENC
compered to x264 ultrafast were significant. The results
produced by NVENC are again comparable with x264
medium and superfast. When we compare NVENC LL and
HQ, we see that the usage of B-frames in HQ does not
result in notably changes in file size. Based on the frame
size finding and the video quality tests, we use the superfast
preset of x264 and the LL preset of NVENC for further
tests.

x264 superfast NVENC LL
0

2

4

6

8

10

12

La
te

n
cy

 p
e
r 

fr
a
m

e
 (

m
s)

1080p
720p

Figure 5: Latency of encoding a single image

C. Encoding latency
The latency of the encoder is measured inside the running

system, i.e., it comprises the time it takes from when a
frame is sent into the encoder component until it is ready.
In figure 5, we observe, as expected, that NVENC is more
than twice as fast compared to x264 superfast. The times
for NVENC include downloading the encoded stream while
x264 does not include the time for downloading the NV12
to system memory as we were able to hide in an earlier
pipeline stage. Typically, downloading an OpenGL buffer
is done using glMapBuffer which is known for being
notoriously slow and stall the pipeline. Our readings show
this to be around 9 ms. Similarly, NVENC will need to
synchronize OpenGL buffers with CUDA buffers, but we
found this to be as low as 45 µs.

D. Energy Usage

Idle

x264 su
perfa

st

NVENC LL
0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

Po
w

e
r 

u
sa

g
e
 (

kW
)

1080p
720p

Figure 6: Power usage of system while running pipeline

The power measurements can be seen in figure 6. The data
is collected by monitoring the entire system while running
our delivery pipeline. To measure the power consumption,
we use an APC Rack PDU 2G specified to have an accuracy
of ± 3% of the reading. From the measurements, we observe
that the NVENC pipeline uses considerably less energy
compared to the software encoder. We also observe that the
power usage using NVENC does not increase much when
we change the resolution.

E. CPU usage on delivery pipeline
The final test in figure 7 is the CPU usage of the entire

delivery pipeline. The most obvious gain from using an



x264 su
perfa

st 
- 7

20p

x264 su
perfa

st 
- 1

080p

NVENC LL - 7
20p

NVENC LL - 1
080p

Pipelin
e w/o Encoding - 1

080p
0

50

100

150

200

250

300

C
P
U

 U
sa

g
e
 (

%
)

Figure 7: Total CPU usage of delivery pipeline

external video encoder such as NVENC would be to lower
the CPU usage. We have done a single test where the entire
encoding part of the pipeline was removed from the code.
We can see that this gives the same CPU usage as when
using NVENC, meaning that NVENC does not load the CPU
during encoding.

V. DISCUSSION

We have also tried to test scaling of the system, even
though our test setup only has a single GPU. The x264
software encoder was able to deliver two 1080p streams
in parallel while maintaining the 30 frames per second
framerate. On the GPU with NVENC, we were able to
deliver four concurrent session while still maintaining the
framerate. The tests were simply done by running several
instances of the application and does not utilize that a lot of
resource sharing is possible in the video source application.
During raw performance tests of NVENC we found that
it should be able to encode more than 200 1080p frames
per second. In our test case, CPU resources for creating the
virtual view were actually the limiting factor.

For scaling individual streams to millions of users con-
currently, hardware video encoding with commodity hard-
ware is a step in the right direction. Encoding of video
is a compute intensive workload, and not all the parts of
such workload have potential for parallelization. New video
codecs such as HEVC will increase this complexity even
further. Dedicated hardware can help offload parts of this
compute intensive workload. Another advantage with using
hardware is the reduced energy consumption. This means
that the data center is cheaper to run, and requires less effort
to cool, which again leads to reduced maintenance.

We have used interactive streaming as our case study,
but our solution can be used in several other scenarios as
well. For example, adaptive HTTP streaming is frequently
used today for both live and on-Demand video delivery. The
adaptiveness is achieved by encoding the video stream in
multiple bit-rates, temporal and spatial resolutions, as well
as conversion from one video coding to another, i.e., each
video is encoded multiple times. For example, taking into
account that one hour of video to is uploaded YouTube every

second (January 2012) and that YouTube alone delivers more
than four billion video views globally every day [7], one can
clearly see the need for efficient video encoding systems.

VI. CONCLUSION

Our experiments show that NVENC is able to deliver a
30Hz stream at 1080p for real time application streaming.
The resulting latency from interaction to display of the
decoded image at a client using the Google Chrome web
browser is about 100 ms + network latency. Here, most of the
time is spent in the browser’s buffer, creating a subjectively
smooth experience for the end-user.

Using NVENC, we both save power and are able to run
more instances of the same application on a single computer.
The visual quality and the compression rate produced by
NVENC are comparable to x264 at the superfast preset
mode, which is acceptable for the live streaming use-case.
For other cases where encoding latency is not important,
x264 at higher presets may still be preferred.

Further and ongoing work includes increasing the frame
rate at which the virtual view is rendered to 60 Hz which
will lower the user interaction latency, but will also increase
the performance requirements. We are also investigating
how our pipeline can scale over multiple GPUs on multiple
computers.

ACKNOWLEDGEMENTS

This work has been performed in the context of the iAD cen-
tre for Research-based Innovation (project number 174867)
funded by the Norwegian Research Council.

REFERENCES

[1] V. R. Gaddam, R. Langseth, S. Ljødal, P. Gurdjos, V. Charvil-
lat, C. Griwodz, and P. Halvorsen. Interactive zoom and
panning from live panoramic video. In Proc. of NOSSDAV,
pages 19–24. ACM, 2014.

[2] Z. Li, Y. Huang, G. Liu, F. Wang, Z.-L. Zhang, and Y. Dai.
Cloud transcoder: Bridging the format and resolution gap
between internet videos and mobile devices. In Proc. of
NOSSDAV, pages 33–38. ACM, 2012.

[3] NVIDIA. Nvenc – nvidia kepler hardware video encoder, 2012.

[4] OnLive Cloud Gaming. http://games.onlive.com, 2014.

[5] M. Song, Y. Lee, and J. Park. Cpu power management in video
transcoding servers. In Proc. of NOSSDAV, pages 91:91–91:96.
ACM, 2014.

[6] H. K. Stensland, V. R. Gaddam, M. Tennøe, E. Helgedagsrud,
M. Næss, H. K. Alstad, A. Mortensen, R. Langseth, S. Ljødal,
O. Landsverk, C. Griwodz, P. Halvorsen, M. Stenhaug, and
D. Johansen. Bagadus: An integrated real-time system for
soccer analytics. ACM Trans. Multimedia Comput. Commun.
Appl. (TOMCCAP), 10(1s):14:1–14:21, Jan. 2014.

[7] YouTube statistics. http://youtube.com/t/press statistics, 2012.


