LEARS: A Lockless, Relaxed-Atomicity State
Model for Parallel Execution of a Game Server
Partition

Kjetil Raaen, Havard Espeland, Hakon K. Stensland, Andreas Petlund, Pal Halvorsen, Carsten Griwodz

NITH, Norway

Simula Research Laboratory, Norway

IFI, University of Oslo, Norway

Email: raakje@nith.no, {haavares, haakonks, apetlund, paalh, griff} @ifi.uio.no

Abstract—Supporting thousands of interacting players in a
virtual world poses huge challenges with respect to processing.
Existing work that addresses the challenge utilizes a variety of
spatial partitioning algorithms to distribute the load. If, however,
a large number of players needs to interact tightly across an area
of the game world, spatial partitioning cannot subdivide this
area without incurring massive communication costs, latency or
inconsistency. It is a major challenge of game engines to scale such
areas to the largest number of players possible; in a deviation
from earlier thinking, parallelism on multi-core architectures is
applied to increase scalability. In this paper, we evaluate the
design and implementation of our game server architecture,
called LEARS, which allows for lock-free parallel processing of
a single spatial partition by considering every game cycle an
atomic tick. Our prototype is evaluated using traces from live
game sessions where we measure the server response time for
all objects that need timely updates. We also measure how the
response time for the multi-threaded implementation varies with
the number of threads used. Our results show that the challenge
of scaling up a game-server can be an embarrassingly parallel
problem.

I. INTRODUCTION

Over the last decade, online multi-player gaming has expe-
rienced an amazing growth. Providers of the popular online
games must deliver a reliable service to thousands of concur-
rent players meeting strict processing deadlines in order for
the players to have an acceptable quality of experience (QoE).

One major goal for large game providers is to support as
many concurrent players in a game-world as possible while
preserving the strict latency requirements in order for the
players to have an acceptable quality of experience (QoE).
Load distribution in these systems is typically achieved by
partitioning game-worlds into areas-of-interest to minimize
message passing between players and to allow the game-world
to be divided between servers. Load balancing is usually com-
pletely static, where each area has dedicated hardware. This
approach is, however, limited by the distribution of players
in the game-world, and the problem is that the distribution
of players is heavy-tailed with about 30% of players in 1%
of the game area [5]. To handle the most popular areas of
the game world without reducing the maximum interaction
distance for players, individual spatial partitions can not be
serial. An MMO-server will experience the most CPU load
while the players experience the most “action”. Hence, the

worst case scenario for the server is when a large proportion of
the players gather in a small area for high intensity gameplay.

In such scenarios, the important metric for online multi-
player games is latency. Claypool et. al. [7] classify different
types of games and conclude that for first person shooter (FPS)
and racing games, the threshold for an acceptable latency
is 100ms. For other classes of networked games, like real-
time strategy (RTS) and massively multi-player online games
(MMOGs) players tolerate somewhat higher delays, but there
are still strict latency requirements in order to provide a good
QoE. The accumulated latency of network transmission, server
processing and client processing adds up to the latencies that
the user is experiencing, and reducing any of these latencies
improves the users’ experience.

The traditional design of massively multi-player game
servers rely on sharding for further load distribution when too
many players visit the same place simultaneously. Sharding
involves making a new copy of an area of a game, where
players in different copies are unable to interact. This approach
eliminates most requirements for communication between the
processes running individual shards. An example of such a
design can be found in [6].

The industry is now experimenting with implementations
that allow for a greater level of parallelization. One known ex-
ample is Eve Online [8] where they avoid sharding and allow
all players to potentially interact. Large-scale interactions in
Eve Online are handled through an optimized database. On the
local scale, however, the server is not parallel, and performance
is extremely limited when too many players congregate in
one area. With LEARS, we take this approach even further
and focus on how many players that can be handled in a
single segment of the game world. We present a model that
allows for better resource utilization of multi-processor, game
server systems which should not replace spatial partitioning
techniques for work distribution, but rather complement them
to improve on their limitations. Furthermore, a real prototype
game is used for evaluation where captured traces are used to
generate server load. We compare multi-threaded and single-
threaded implementations in order to measure the overhead of
parallelizing the implementation and showing the experienced
benefits of parallelization. The change in responsiveness of
different implementations with increased load on the server is

studied, and we discuss how generic elements of this game
design impact the performance on our chosen platform of
implementation.

Our results indicate that it is possible to design an “em-
barrassingly parallel” game server. We also observe that the
implementation is able to handle a quadratic increase of in-
server communication when many players interact in a game-
world hotspot.

The rest of the paper is organized as follows: In section II,
we describe the basic idea of LEARS, before we present the
design and implementation of the prototype in section III. We
evaluate our prototype in section IV and discuss our idea in
section V. In section VI, we put our idea in the context of
other existing work. Finally, we summarize and conclude the
paper in section VII and give directions for further work in
section VIII.

II. LEARS: THE BASIC IDEA

Traditionally, game servers have been implemented much
like game clients. They are based around a main loop, which
updates every active element in the game. These elements
include for example player characters, non-player characters
and projectiles. The simulated world has a list of all the
active elements in the game and typically calls an “update”
method on each element. The simulated time is kept constant
throughout each iteration of the loop, so that all elements get
updates at the same points in simulated time. This point in time
is referred to as a tick. Using this method, the active element
performs all its actions for the tick. Since only one element
updates at a time, all actions can be performed directly. The
character reads input from the network, performs updates on
itself according to the input, and updates other elements with
the results of its actions.

LEARS is a game server model with support for lockless,
relaxed-atomicity state-parallel execution. The main concept
is to split the game server executable into lightweight threads
at the finest possible granularity. Each update of every player
character, Al opponent and projectile runs as an independent
work unit.

White et al. [15] describe a model they call a state-effect
pattern. Based on the observation that changes in a large,
actor-based simulation are happening simultaneously, they
separate read and write operations. Read operations work on a
consistent previous state, and all write operations are batched
and executed to produce the state for the next tick. This means
that the ordering of events scheduled to execute at a tick
does not need to be considered or enforced. For the design
in this paper, we additionally remove the requirement for
batching of write operations, allowing these to happen anytime
during the tick. The rationale for this relaxation is found
in the way traditional game servers work. In the traditional
single-threaded main-loop approach, every update is allowed
to change any part of the simulation state at any time. In such
a scenario the state at a given time is a combination of values

from two different points in time, current and previous, exactly

the same situation that occurs in the design presented here.
The second relaxation relates to the atomicity of game state

updates. The fine granularity creates a need for significant
communication between threads to avoid problematic lock
contentions. Systems where elements can only update their
own state and read any state without locking [1] do obviously
not work in all cases. However, game servers are not accurate
simulators, and again, depending on the game design, some
(internal) errors are acceptable without violating game state
consistency. Consider the following example: Character A
moves while character B attacks. If only the X coordinate
of character A is updated at the point in time when the attack
is executed, the attack sees character A at a position with the
new X coordinate and the old Y coordinate. This position is
within the accuracy of the simulation which in any case is no
better than the distance an object can move within one tick.

On the other hand, for actions where a margin of error is not
acceptable, transactions can be used keeping the object’s state
internally consistent. However, locking the state is expensive.
Fortunately, most common game actions do not require trans-
actions, an observation that we take advantage of in LEARS.

These two relaxations allow actions to be performed on
game objects in any order without global locking. It can be
implemented using message passing between threads and re-
tains consistency for most game actions. This includes actions
such as moving, shooting, spells and so forth. Consider player
A shooting at player B: A subtracts her ammunition state,
and send bullets in B’s general direction by spawning bullet
objects. The bullet objects runs as independent work units, and
if one of them hits player B, it sends a message to player B.
When reading this message, player B subtracts his health and
sends a message to player A if it reaches zero. Player A then
updates her statistics when she receives player B’s message.
This series of events can be time critical at certain points. The
most important point is where the decision is made if the bullet
hits player B. If player B is moving, the order of updates can
be critical in deciding if the bullet hits or misses. In the case
where the bullet moves first, the player does not get a chance
to move out of the way. This inconsistency is however not
a product of the LEARS approach. Game servers in general
insert active items into their loops in an arbitrary fashion, and
there is no rule to state which order is “correct”.

The end result of our proposed design philosophy is that
there is no synchronization in the server under normal run-
ning conditions. Since there are cases where transactions are
required, they can be implemented outside the LEARS event
handler running as transactions requiring locking. In the rest of
the paper, we consider a practical implementation of LEARS,
and evaluate its performance and scalability.

III. DESIGN AND IMPLEMENTATION

In our experimental prototype implementation of the
LEARS concept, the parallel approach is realized using thread
pools and blocking queues.

Position Cone Projectile

Update Attack Attack
p——

Character Dispatch Network

Update Worker
p—

Thread Pool
| N[O F||O]||©||~]||0

Execute 52) 221212121212 Network

Workload 5| el 1| | ¢ Selector
p—

Figure 1. Design of the Game Server

A. Thread pool

Creation and deletion of threads incur large overheads, and
context switching is an expensive operation. These overheads
constrain how a system can be designed, i.e., threads should
be kept as long as possible, and the number of threads should
not grow unbounded. We use a thread pool pattern to work
around these constraints, and a thread pool executor (the
Java ThreadPoolExecutor class) to maintain the pool of
threads and a queue of tasks. When a thread is available, the
executor picks a task from the queue and executes it. The
thread pool system itself is not preemptive, so the thread runs
each task until it is done. This means that in contrast to normal
threading, each task should be as small as possible, i.e., larger
units of work should be split up into several sub-tasks.

The thread pool is a good way to balance the number of
threads when the work is split into extremely small units.
When an active element is created in the virtual world, it is
scheduled for execution by the thread pool executor, and the
active element updates its state exactly as in the single threaded
case. Furthermore, our thread pool supports the concept of
delayed execution. This means that tasks can be put into the
work queue for execution at a time specified in the future.
When the task is finished for one time slot, it can reschedule
itself for the next slot, delayed by a specified time. This allows
active elements to have any lifetime from one-shot executions
to the duration of the program. It also allows different elements
to be updated at different rates depending on the requirements
of the game developer.

All work is executed by the same thread pool, including the
slower I/O operations. This is a consistent and clear approach,
but it does mean that game updates could be stuck waiting for
I/O if there are not enough threads available.

B. Blocking queues

The thread pool executor used as described above does not
constrain which tasks are executed in parallel. All systems
elements must therefore allow any of the other elements to
execute concurrently.

To enable a fast communication between threads with shared
memory (and caches), we use blocking queues, using the Java
BlockingQueue class, which implements queues that are
synchronized separately at each end. This means that elements
can be removed from and added to the queue simultaneously,
and since each of these operations are extremely fast, the prob-
ability of blocking is low. In the scenario analysed here, all
active elements can potentially communicate with all others.
Thus, these queues allow information to be passed between
active objects. Each active object that can be influenced by
others has a blocking queue of messages. During its update,
it reads and processes the pending messages from its queue.
Messages are processed in the order they were put in the
queue. Other active elements put messages in the queue to
be processed when they need to change the state of other
elements in the game.

Messages in the queues can only contain relative informa-
tion, and not absolute values. This restriction ensures that the
change is always based on updated data. For example, if a
projectile needs to tell a player character that it took damage,
it should only inform the player character about the amount
of damage, not the new health total. Since all changes are put
in the queue, and the entire queue is processed by the same
work unit, all updates are based on up-to-date data.

C. Our implementation

To demonstrate LEARS, we have implemented a prototype
game containing all the basic elements of a full MMOG with
the exception of persistent state. The basic architecture of the
game server is described in figure 1. The thread pool size
can be configured, and will execute the different workloads
on the CPU cores. The workloads include processing of
network messages, moving computer controlled elements (in
this prototype only projectiles) checking for collisions and hits
and sending outgoing network messages.

Persistent state do introduce some complications, but as
database transactions are often not time critical and can usually
be scheduled outside peak load situations, we leave this to
future work.

In the game, each player controls a small circle ("the
character") with an indicator for which direction they are
heading (see figure 2). The characters are moved around by
pressing keyboard buttons. They also have two types of attack,
i.e., one projectile and one instant area of effect attack. Both
attacks are aimed straight ahead. If an attack hits another
player character, the attacker gets a positive point, and the
character that was hit gets a negative point. The game provides
examples of all the elements of the design described above:

o The player character is a long lifetime active object.

It processes messages from clients, updates states and
potentially produces other active objects (attacks). In

Dealt: 0

Taken: 1

Figure 2. Screen shot of a game with six players.

addition to position, which all objects have, the player
also has information about how many times it has been
hit and how many times it has hit others. The player
character also has a message queue to receive messages
from other active objects. At the end of its update, it
enqueues itself for the next update unless the client it
represents has disconnected.

o The frontal cone attack is a one shot task that finds player
characters in its designated area and sends messages to
those hit so they can update their counters, as well as
back to the attacking player informing about how many
were hit.

o The projectile is a short lifetime object that moves in the
world, checks if it has hit anything and reschedules itself
for another update, unless it has hit something or ran to
the end of its range. The projectile can only hit one target.

To simulate an MMORPG workload that grow linearly
with number of players, especially collision checks with the
ground and other static objects, we have included a synthetic
load which emulates collision detection with a high-resolution
terrain mesh. The synthetic load ensures that the cache is
regularly flushed to enhance the realism of our game server
prototype compared to a large-scale game server.

The game used in these experiments is simple, but it
contains examples of all elements typically available in the
action based parts of a typical MMO-like game.

The system described in this paper is implemented in Java.
This programming language has strong support for multi-
threading and has well-tested implementations of all the re-
quired components. The absolute values resulting from these

experiments depend strongly on the complexity of the game,
as a more complex game would require more processing.

In addition, the absolute values depend on the runtime en-
vironment, especially the server hardware, and the choice of
programming language also influence absolute results from the
experiments. However, the focus of this paper is the relative
results, as we are interested in comparing scalability of the
multi-threaded solution with a single-threaded approach and
whether the multi-threaded implementation can handle the
quadratic increase in traffic as new players join.

IV. EVALUATION

To have a realistic behavior of the game clients, the game
was run with 5 human players playing the game with a game
update frequency of 10 Hz. The network input to the server
from this session was recorded with a timestamp for each
message. The recorded game interactions were then played
back multiple times in parallel to simulate a large number of
clients. To ensure that client performance is not a bottleneck,
the simulated clients were distributed among multiple physical
machines. Furthermore, as an average client generates 2.6 kbps
network traffic, the 1 Gbps local network interface that was
used for the experiments did not limit the performance. The
game server was run on a server machine containing 4 Dual-
Core AMD Opteron 8218 (2600 MHz) with 16 GB RAM.
To ensure comparable numbers, the server was taken down
between each test run.

A. Response latency

The most important performance metric for client-server
games is response latency from the server. From a player
perspective, latency is only visible when it exceeds a certain
threshold. Individual peaks in response time are obvious to
the players, and will have the most impact on the Quality of
Experience, hence we focus on peak values as well as averages
in the evaluation.

The experiments were run with client numbers ranging from
40 to 800 in increments of 40, where the goal is to keep the
latencies close to the 100 ms QoE threshold for FPS games [7].
Figure 3 shows a box-plot of the response time statistics from
these experiments. All experiments used a pool of 48 worker
threads and distributed the network connections across 8 IP
ports.

From these plots, we can see that the single-threaded
implementation is struggling to support 280 players at an
average latency close to 100 ms. The median response time
is 299 ms, and it already has extreme values all the way to
860 ms, exceeding the threshold for a good QoE. The multi-
threaded server, on the other hand, is handling the players
well up to 640 players where we are getting samples above 1
second, and the median is at 149 ms.

These statistics are somewhat influenced by the fact that the
number of samples is proportional to the update frequency.
This means that long update cycles to a certain degree get
artificially lower weight.

Figure 4 shows details of two interesting cases. In figure
4(a), the single-threaded server is missing all its deadlines
with 400 concurrent players, while the multi-threaded version

CPU load (%)

Response time (s)

Figure 5.

Delay per scheduled run (ms)

400 600 800

200

0.8

0.6

0.4

0.2

0.0

1000 1500 2000 2500

500

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800

Number of concurrent clients

(a) Single-threaded server

Figure 3.

2500
|

2000

1500

Delay per scheduled run (ms)

500
|
i

1000
L
i
i
.

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800

Number of concurrent clients
(b) Multi-threaded server

Response time for single- and multi-threaded servers (dotted line is the 100 ms threshold).

1.0

CDF
0.4

0.2

> Multithreaded
~— Single threaded

0.0

o
=

0.8

0.6

CDF
0.4

0.2

= Multithreaded
- Single threaded

S o

o
o

0 1000 2000 3000 4000
Delay for each scheduled run (ms)

(a) 400 concurrent clients

5000

0 1000 2000 3000 4000 5000

Delay for each scheduled run (ms)

(b) 800 concurrent clients

Figure 4. CDF of response time for single- and multi-threaded servers with 400 and 800 concurrent clients.

T T T
100 150 200

Seconds since start of test

multi-threaded server.

T
250

CPU load and response time for 620 concurrent clients on the

is processing almost everything on time. At 800 players
(figure 4(b)), the outliers are going much further for both cases.
Here, even the multi-threaded implementation is struggling to
keep up, though it is still handling the load significantly better
than the single-threaded version, which is generally completely
unplayable.

B. Resource consumption

We have investigated the resource consumption when play-
ers connect to the multhreaded server as shown in figure 5. We
present the results for 620 players, as this is the highest number
of simultaneous players that server handles before significant
degradation in performance, as shown in figure 3(b). The mean
response time is 133 ms, above the ideal delay of 100 ms.
Still, the server is able to keep the update rate smooth, without
significant spikes. The CPU utilization grows while the clients
are logging on, then stabilizes at an almost full CPU utilization
for the rest of the run. The two spikes in response time happen

while new players log in to the server at a very fast rate (30
clients pr. second). Receiving a new player requires a lock in

1000 1500 2000 2500

Delay per scheduled run (ms)

500

T T
0 50 100 150 200 250

Number of threads in threadpool

Figure 6. Response time for 700 concurrent clients on using varying number
of threads. Shaded area from 5 to 95 percentiles.

the server, hence this operation is, to a certain degree, serial.

C. Effects of thread-pool size

To investigate the effects of the number of threads in the
threadpool, we performed an experiment where we kept the
number of clients constant while varying the number of threads
in the pool. 700 clients were chosen, as this number slightly
overloads the server. The number of threads in the pool was
increased in increments of 2 from 2 to 256. In figure 6,
we see clearly that the system utilizes more than 4 cores
efficiently, as the 4 thread version shows significantly higher
response times. At one thread per core or more, the numbers
are relatively stable, with a tendency towards more consistent
low response times with more available threads, to about 40
threads. This could mean that threads are occasionally waiting
for I/O operations. Since thread pools are not pre-emptive,
such situations would lead to one core going idle if there are
no other available threads. Too many threads, on the other
hand, could lead to excessive context switch overhead. The
results show that the average is slowly increasing after about
50 threads, though the 95-percentile is still decreasing with
increased number of threads, up to about 100. From then on
the best case is worsening again most likely due to context
switching overhead.

A game developer needs to consider this trade-off when
tuning the parameters for a specific game.

V. DISCUSSION

Most approaches to multi-threaded game server implemen-
tations in the literature (e.g., [1]) use some form of spatial
partitioning to lock parts of the game world while allowing
separate parts to run in parallel. Spatial partitioning is also
used in other situations to limit workload. The number of play-
ers that game designers can allow in one area in a game server
is limited by the worst-case scenario. The worst case scenario
for a spatially partitioned game world is when everybody move

to the same point, where the spatial partitioning still ends up
with everybody in the same partition regardless of granularity.

This paper investigates an orthogonal and complementary
approach which tries to increase the maximum number of users
in the worst case scenario where all players can see each other
at all times. Thus, spatial partitioning could be added to further
scale the game server.

Experiments using multiple instances of a single-threaded
server are not performed, as having clients distribueted acrosss
multiple servers would mean partitioning the clients in areas
where they can not interact, making numbers from such a
scenario incomparable to the multithreaded solutions.

The LEARS approach does have limitations and is for ex-
ample not suitable if the outcome of a message put restrictions
on an object’s state. This is mainly a game design issue, but
situations such as trades can be accommodated by doing full
transactions. The following example where two players trade
illustrates the problem: Player A sends a message to player B
where he proposes to buy her sword for X units. After this
is sent, player C steals player A’s money, and player A is
unable to pay player B should the request go through. This is
only a problem for trades within a single game tick where the
result of a message to another object puts a constraint on the
original sender, and can be solved by means such as putting
the money in escrow until the trade has been resolved, or by
doing a transaction outside of LEARS (such as in a database).
Moreover, the design also adds some overhead in that the code
is somewhat more complex, i.e., all communication between
elements in the system needs to go through message queues.
The same issue will also create some runtime overhead, but
our results still demonstrate a significant benefit in terms of
the supported number of clients.

Tasks in a thread pool can not be pre-empted, but the threads
used for execution can. This distinction creates an interesting
look into the performance trade-off of pre-emption. If the
number of threads in the threadpool is equal to the number of
CPU cores, we have a fully cooperative multitasking system.
Increasing the number of threads allow for more pre-emption,
but introduces context-switching overhead.

VI. RELATED WORK

At Netgames 2011 [12], we presented a demo with a
preliminary version of LEARS. Significant research has been
done on how to optimize game server architectures for online
games, both MMOGs and smaller-scale games. In this section,
we summarize some of the most important findings from
related research in this field. For example, "Red Dwarf",
the community-based successor to "Project Darkstar" by Sun
Microsystems [13], is a good example of a parallel approach to
game server design. Here, response time is considered one of
the most important metrics for game server performance, and
suggests a parallel approach for scaling. The described system
uses transactions for all updates to world state, including
player position. This differs from LEARS, which investigates
the case for common actions where atomicity of transactions
is not necessary.

Work has also been done on scaling games by looking at
the optimization as a data management problem. The authors
in [14] have developed a highly expressive scripting language
called SGL that provides game developers a data-driven Al
scheme for non-player characters. By using query processing
and indexing techniques, they can efficiently scale to a large
number of non-player objects in games. This group also
introduces the concept state-effect pattern in [15], which we
extend in this paper. They test this and other parallel concepts
using a simulated actor interaction model, in contrast to this
paper which evaluates a running prototype of a working games
under realistic conditions.

Moreover, Cai et al. [4] present a scalable architecture
for supporting large-scale interactive Internet games. Their
approach divides the game world into multiple partitions and
assigns each partition to a server. The issues with this solution
is that the architecture of the game server is still a limiting
factor in worst case scenarios as only a limited number of
players can interact in the same server partition at a given time.
There have also been proposed several middleware systems
for automatically distributing the game state among several
participants. In [9], the authors present a middleware which
allows game developers to create large, seamless virtual worlds
and to migrate zones between servers. This approach does,
however, not solve the challenge of many players that want
to interact in a popular area. The research presented in [10]
shows that proxy servers are needed to scale the number of
players in the game, while the authors discuss the possibility
of using grids as servers for MMOGs. Beskow et al. [3] have
also been investigating partitioning and migration of game
servers. Their approach uses core selection algorithms to locate
the most optimal server. We have worked on how to reduce
latency by modifying the TCP protocol to better support time-
dependent applications [11]. However, the latency is not only
determined by the network, but also the response time for the
game servers. If the servers have a too large workload, the
latency will suffer.

In [2], the authors are discussing the behavior and per-
formance of multi-player game servers. They find that in
the terms of benchmarking methodology, game servers are
very different from other scientific workloads. Most of the
sequentially implemented game servers can only support a
limited numbers of players, and the bottlenecks in the servers
are both game-related and network-related. The authors in [1]
extend their work and use the computer game Quake to study
the behavior of the game. When running on a server with up
to eight processing cores the game suffers because of lock
synchronization during request processing. High wait times
due to workload imbalances at global synchronization points
are also a challenge.

A large body of research exits on how to partition the
server and scale the number of players by offloading to several

servers. Modern game servers have also been parallelized
to scale with more processors. However, a large amount of
processing time is still wasted on lock synchronization, or the

scaling is limited by partitioning requirements. In our game
server design, we provide a complementary solution and try

to eliminate the global synchronization points and locks, i.e.,
making the game server “embarrassingly parallel” which aims
at increasing the number of concurrent users per machine.

VII. CONCLUSION

In this paper, we have shown that we can improve resource
utilization by distributing load across multiple CPUs in a uni-
fied memory multi-processor system. This distribution is made
possible by relaxing constraints to the ordering and atomicity
of events. The system scales well, even in the case where all
players must be aware of all other players and their actions.
The thread pool system balances load well between the cores,
and its queue-based nature means that no task is starved unless
the entire system lacks resources. Message passing through
the blocking queue allows objects to communicate intensively
without blocking each other. Running our prototype game, we
show that the 8-core server can handle twice as many clients
before the response time becomes unacceptable.

VIII. FUTURE WORK

From the research described in this paper, a series of further
experiments present themselves. The relationship between
linearly scaling load and quadratic load can be tweaked in our
implementation. This could answer questions about which type
of load scale better under multi-threaded implementations.
Ideally, the approach presented here should be implemented
in a full, complete massive multiplayer game. This should
give results that are fully realistic, at least with respect to
this specific game.

Another direction this work could be extended is to go
beyond the single shared memory computer used and distribute
the workload across clusters of computers. This could be
achieved by implementing cross-server communication di-
rectly in the server code, or by using existing technology that
makes cluster behave like shared memory machines.

Furthermore, all experiments described here were run with
an update frequency of 10 Hz. This is good for many types
of games, but different frequencies are relevant for different
games. Investigating the effects of running with a higher or
lower frequency of updates on server performance could yield
interesting results.

If, during the implementation of a complex game, it is
shown that some state changes must be atomic to keep the
game state consistent, the message passing nature of this
implementation means that we can use read-write-locks for
any required blocking. If such cases are found, investigat-
ing how read-write-locking influence performance would be
worthwhile.

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

A. Abdelkhalek and A. Bilas. Parallelization and performance of
interactive multiplayer game servers. In Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS), page 72, april
2004.

A. Abdelkhalek, A. Bilas, and A. Moshovos. Behavior and performance
of interactive multi-player game servers. Cluster Computing, 6:355-366,
October 2003.

P. B. Beskow, G. A. Erikstad, P. Halvorsen, and C. Griwodz. Evaluating
ginnungagap: a middleware for migration of partial game-state utilizing
core-selection for latency reduction. In Proceedings of the 8th Annual
Workshop on Network and Systems Support for Games (NetGames),
pages 10:1-10:6, 2009.

W. Cai, P. Xavier, S. J. Turner, and B.-S. Lee. A scalable architecture
for supporting interactive games on the internet. In Proceedings of the
sixteenth workshop on Parallel and distributed simulation (PADS), pages
60-67, 2002.

K.-T. Chen and C.-L. Lei. Network game design: hints and implications
of player interaction. In Proceedings of the workshop on Network and
system support for games (NetGames), 2006.

H. S. Chu. Building a simple yet powerful mmo game ar-
chitecture. http://www.ibm.com/developerworks/architecture/library/ar-
powerupl/, Sept. 2008.

M. Claypool and K. Claypool. Latency and player actions in online
games. Communications of the ACM, 49(11):40—45, Nov. 2005.

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

B. Drain. Eve evolved: Eve online’s server model.
http://massively.joystiq.com/2008/09/28/eve-evolved-eve-onlines-
server-model/, Sept. 2008.

F. Glinka, A. PloB, J. Miiller-Iden, and S. Gorlatch. Rtf: a real-
time framework for developing scalable multiplayer online games. In
Proceedings of the workshop on Network and system support for games
(NetGames), pages 81-86, 2007.

J. Miiller and S. Gorlatch. Enhancing online computer games for grids.
In V. Malyshkin, editor, Parallel Computing Technologies, volume 4671
of Lecture Notes in Computer Science, pages 80-95. Springer Berlin /
Heidelberg, 2007.

A. Petlund. Improving latency for interactive, thin-stream applications
over reliable transport. Phd thesis, Simula Research Laboratory /
University of Oslo, Unipub, Oslo, Norway, 2009.

K. Raaen, H. Espeland, H. K. Stensland, A. Petlund, P. Halvorsen, and
C. Griwodz. A demonstration of a lockless, relaxed atomicity state
parallel game server (LEARS). In Proceedings of the workshop on
Network and system support for games (NetGames), pages 1-3, 2011.
J. Waldo. Scaling in games and virtual worlds. Commun. ACM, 51:38—
44, Aug. 2008.

W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan.
Scaling games to epic proportions. In Proceedings of the international
conference on Management of data (SIGMOD), pages 31-42, 2007.
W. White, B. Sowell, J. Gehrke, and A. Demers. Declarative processing
for computer games. In Proceedings of the ACM SIGGRAPH symposium
on Video games (Sandbox), pages 23-30, 2008.

